JP6695182B2 - Method for producing seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal ingot - Google Patents
Method for producing seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal ingot Download PDFInfo
- Publication number
- JP6695182B2 JP6695182B2 JP2016058793A JP2016058793A JP6695182B2 JP 6695182 B2 JP6695182 B2 JP 6695182B2 JP 2016058793 A JP2016058793 A JP 2016058793A JP 2016058793 A JP2016058793 A JP 2016058793A JP 6695182 B2 JP6695182 B2 JP 6695182B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- seed crystal
- crystal
- silicon carbide
- carbide single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 167
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 85
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 85
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000005498 polishing Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 27
- 238000000859 sublimation Methods 0.000 claims description 21
- 230000008022 sublimation Effects 0.000 claims description 21
- 238000001953 recrystallisation Methods 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 17
- 238000005520 cutting process Methods 0.000 claims description 7
- 239000000758 substrate Substances 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910002804 graphite Inorganic materials 0.000 description 17
- 239000010439 graphite Substances 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
この発明は、昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる際に用いる種結晶の製造方法、及び、得られた種結晶の成長面に昇華再結晶法により炭化珪素単結晶を成長させる炭化珪素単結晶インゴットの製造方法に関する。 This invention provides a method for producing a seed crystal used when growing a silicon carbide single crystal on a seed crystal by the sublimation recrystallization method, and a silicon carbide single crystal on the growth surface of the obtained seed crystal by the sublimation recrystallization method. The present invention relates to a method for producing a grown silicon carbide single crystal ingot.
炭化珪素(以下、SiCという)は、2.2〜3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体であり、その優れた物理的、化学的特性から、耐環境性半導体材料として研究開発が行われている。特に近年では、青色から紫外にかけての短波長光デバイス、高周波電子デバイス、高耐圧・高出力電子デバイス等の材料として注目されており、SiCによるデバイス(半導体素子)作製の研究開発が盛んになっている。 Silicon carbide (hereinafter referred to as SiC) is a wide band gap semiconductor having a wide band gap of 2.2 to 3.3 eV, and due to its excellent physical and chemical characteristics, it has been researched and developed as an environment resistant semiconductor material. Is being done. Particularly in recent years, attention has been paid to materials for short-wavelength optical devices from blue to ultraviolet, high-frequency electronic devices, high-voltage / high-power electronic devices, and the like, and research and development for producing devices (semiconductor elements) using SiC have become popular. There is.
SiCデバイスの実用化を進めるにあたっては、大口径のSiC単結晶を製造することが不可欠であり、その多くは、種結晶を用いた昇華再結晶法(改良型レーリー法と呼ばれる)によってバルクのSiC単結晶を成長させる方法が採用されている(非特許文献1参照)。すなわち、坩堝内にSiCの昇華原料を収容し、坩堝の蓋体にはSiC単結晶からなる種結晶を取り付けて、原料を昇華させることで、再結晶により種結晶上にSiC単結晶を成長させる。そして、略円柱状をしたSiCのバルク単結晶(以下、SiC単結晶インゴットと言う)を得た後、一般には、300〜600μm程度の厚さに切り出すことでSiC単結晶基板が製造され、電力エレクトロニクス分野等でのSiCデバイスの作製に供されている。 In order to put SiC devices into practical use, it is indispensable to produce large-diameter SiC single crystals, and most of them are bulk SiC produced by a sublimation recrystallization method using a seed crystal (called an improved Rayleigh method). A method of growing a single crystal has been adopted (see Non-Patent Document 1). That is, a SiC sublimation raw material is accommodated in the crucible, a seed crystal made of a SiC single crystal is attached to the lid of the crucible, and the raw material is sublimated to grow the SiC single crystal on the seed crystal by recrystallization. .. Then, after obtaining a substantially cylindrical SiC bulk single crystal (hereinafter referred to as a SiC single crystal ingot), generally, a SiC single crystal substrate is manufactured by cutting out to a thickness of about 300 to 600 μm, and power is consumed. It is used for the manufacture of SiC devices in the electronics field and the like.
ところで、SiC単結晶中には、マイクロパイプと呼ばれる成長方向に貫通した中空ホール状欠陥のほか、転位欠陥、積層欠陥等の結晶欠陥が存在する。これらの結晶欠陥はデバイス性能を低下させるため、その低減がSiCデバイスの応用上で重要な課題となっている。このうち、転位欠陥には、貫通刃状貫通転位、基底面転位、及び貫通らせん転位が含まれる。例えば、市販されているSiC単結晶基板では、貫通らせん転位が8×102〜3×103(個/cm2)、貫通刃状転位が5×103〜2×104(個/cm2)、基底面転位が2×103〜2×104(個/cm2)程度存在するとの報告がある(非特許文献2参照)。 By the way, in the SiC single crystal, in addition to hollow hole-shaped defects called micropipes penetrating in the growth direction, crystal defects such as dislocation defects and stacking faults exist. Since these crystal defects deteriorate device performance, the reduction thereof is an important issue in application of SiC devices. Among these, the dislocation defects include threading edge threading dislocations, basal plane dislocations, and threading screw dislocations. For example, in a commercially available SiC single crystal substrate, threading screw dislocations are 8 × 10 2 to 3 × 10 3 (dislocations / cm 2 ), and threading edge dislocations are 5 × 10 3 to 2 × 10 4 (dislocations / cm 2 ). 2 ) and basal plane dislocations are reported to be present in the range of 2 × 10 3 to 2 × 10 4 (dislocations / cm 2 ) (see Non-Patent Document 2).
近年、SiCの結晶欠陥とデバイス性能に関する研究・調査が進み、貫通らせん転位欠陥がデバイスのリーク電流の原因となることや、ゲート酸化膜寿命を低下させることなどが報告されており(非特許文献3及び4参照)、高性能なSiCデバイスを作製するには、貫通らせん転位密度を低減させたSiC単結晶インゴットが求められる。 In recent years, researches and investigations on crystal defects of SiC and device performance have been advanced, and it has been reported that threading screw dislocation defects cause a leak current of a device and shorten the life of a gate oxide film. 3 and 4), a SiC single crystal ingot with a reduced threading screw dislocation density is required to manufacture a high-performance SiC device.
種結晶を用いた昇華再結晶法によるSiC単結晶インゴットの製造では、種結晶と成長させるSiC単結晶との界面において、成長SiC単結晶側の貫通らせん転位の転位密度が増大する傾向にある。 In the production of a SiC single crystal ingot by the sublimation recrystallization method using a seed crystal, the dislocation density of threading screw dislocations on the growing SiC single crystal side tends to increase at the interface between the seed crystal and the SiC single crystal to be grown.
そこで、本発明の目的は、種結晶と成長SiC単結晶との界面近傍で発生する貫通らせん転位を抑制することで転位密度を低減して、成長初期段階から貫通らせん転位密度の小さいSiC単結晶インゴットが製造できる種結晶の製造方法を提供することにある。 Therefore, an object of the present invention is to reduce the dislocation density by suppressing threading screw dislocations generated near the interface between the seed crystal and the grown SiC single crystal, so that the SiC single crystal having a small threading screw dislocation density from the initial stage of growth. It is intended to provide a method for producing a seed crystal capable of producing an ingot.
本発明者等は、昇華再結晶法を用いたSiC単結晶の成長において、種結晶と成長させたSiC単結晶との界面におけるらせん貫通転位増大の影響を抑えるための手段について鋭意検討した。その結果、炭化珪素単結晶インゴットを切断し、切断面を機械研磨して、更に化学機械研磨(CMP、Chemical Mechanical Polishing)によりその表面を一定量除去した種結晶を用いた場合に、昇華再結晶法により該種結晶上にSiC単結晶を成長させることで、貫通らせん転位の発生を抑制できることを見出し、本発明に至った。 The present inventors diligently studied means for suppressing the influence of the increase in screw threading dislocations at the interface between the seed crystal and the grown SiC single crystal in the growth of the SiC single crystal using the sublimation recrystallization method. As a result, when a silicon carbide single crystal ingot was cut, a cut surface was mechanically polished, and a certain amount of the surface was removed by chemical mechanical polishing (CMP), a seed crystal was used, sublimation recrystallization was performed. The present invention was found to be able to suppress the generation of threading screw dislocations by growing a SiC single crystal on the seed crystal by the method.
すなわち、本発明の要旨は次のとおりである。
(1)昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる際に用いる種結晶の製造方法であって、炭化珪素単結晶インゴットを切断し、切断面を機械研磨した後に、該機械研磨面の表面から少なくとも深さ2μmまでを化学機械研磨により除去することを特徴とする炭化珪素単結晶成長用種結晶の製造方法。
(2)(1)記載の方法で製造した種結晶の成長面に、昇華再結晶法により、炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶インゴットの製造方法。
That is, the gist of the present invention is as follows.
(1) A method for producing a seed crystal used when growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, which comprises cutting a silicon carbide single crystal ingot, mechanically polishing a cut surface, A method for producing a seed crystal for growing a silicon carbide single crystal, which comprises removing at least a depth of 2 μm from the surface of the polishing surface by chemical mechanical polishing.
(2) A method for producing a silicon carbide single crystal ingot, which comprises growing a silicon carbide single crystal by a sublimation recrystallization method on a growth surface of a seed crystal produced by the method described in (1).
本発明によって得られたSiC単結晶成長用の種結晶によれば、昇華再結晶法によりSiC単結晶を成長させる際に、種結晶と成長SiC単結晶との界面近傍における貫通らせん転位の増大を抑制して、デバイスに悪影響を及ぼす貫通らせん転位の密度を低減することができる。また、この種結晶を用いることで、成長初期段階から転位密度の小さいSiC単結晶を成長させることができる。そのため、得られたSiC単結晶インゴットでは、成長初期の領域からもSiC基板を切り出せるようになることから、SiC基板製造の歩留まりを向上させることができるなど、工業的に極めて有用である。 According to the seed crystal for growing a SiC single crystal obtained by the present invention, when the SiC single crystal is grown by the sublimation recrystallization method, an increase in threading screw dislocation in the vicinity of the interface between the seed crystal and the growing SiC single crystal is suppressed. It can be suppressed to reduce the density of threading screw dislocations that adversely affect the device. Further, by using this seed crystal, an SiC single crystal having a low dislocation density can be grown from the initial stage of growth. Therefore, the obtained SiC single crystal ingot allows the SiC substrate to be cut out even from the initial growth region, which is industrially very useful in that the yield of the SiC substrate production can be improved.
以下、本発明についてより詳細に説明する。
上述したように、本発明の目的は、昇華再結晶法によりSiC単結晶を成長させる際に、種結晶と成長SiC単結晶との界面近傍で発生する貫通らせん転位を抑制し、SiC単結晶中の転位密度を低減して、成長初期段階から貫通らせん転位密度の小さいSiC単結晶インゴットが得られるようにすることである。
Hereinafter, the present invention will be described in more detail.
As described above, the object of the present invention is to suppress threading screw dislocations generated in the vicinity of the interface between the seed crystal and the grown SiC single crystal when the SiC single crystal is grown by the sublimation recrystallization method, Is to reduce the dislocation density of Si so that a SiC single crystal ingot with a small threading screw dislocation density can be obtained from the initial stage of growth.
一般に、SiC単結晶成長用の種結晶は、予め得られたSiC単結晶インゴットを切断し、切断面を機械研磨して種結晶を製造している。そのため、種結晶の表面にはこのような加工工程によるダメージ層が形成されていると考えられる。表面にダメージ層を持つ種結晶を高温に加熱すると、前記ダメージ層の歪みの大きな部分から選択的に昇華が起こり、表面に潜傷と呼ばれる凹凸が形成される。この凹凸の部分で結晶成長が開始すると、周囲の成長ステップとの不整合により貫通らせん転位が発生しやすくなる。 Generally, for a seed crystal for growing a SiC single crystal, a previously obtained SiC single crystal ingot is cut, and a cut surface is mechanically polished to produce a seed crystal. Therefore, it is considered that a damaged layer is formed on the surface of the seed crystal by such a processing step. When a seed crystal having a damage layer on the surface is heated to a high temperature, sublimation selectively occurs from a portion of the damage layer where the strain is large, and irregularities called latent scratches are formed on the surface. When crystal growth starts in this uneven portion, threading screw dislocations are likely to occur due to mismatch with surrounding growth steps.
ここで、化学機械研磨は新たに種結晶にダメージ層を生じさせず、機械研磨により生成したダメージ層を除去することが可能である。よって、本発明者らは、昇華再結晶法によりSiC単結晶を成長させる前に、種結晶の成長面側を更に化学機械研磨することで、潜傷を発生させる要因となるダメージ層を事前に除去するという発想のもと、本発明に至った。 Here, the chemical mechanical polishing does not newly generate a damaged layer on the seed crystal, and the damaged layer generated by the mechanical polishing can be removed. Therefore, the present inventors further chemically damage the growth surface side of the seed crystal by chemical mechanical polishing before growing the SiC single crystal by the sublimation recrystallization method, so that the damage layer that causes latent scratches is formed in advance. The present invention has been accomplished based on the idea of removing.
ところで、例えば特開2014-210687号公報(段落0043)や特開2014-024703号公報(段落0052)等で記載されているように、種結晶を製造する際に化学機械研磨を施す場合もある。しかしながら、これらは表面ダメージ層を除去する目的で化学機械研磨を行っているが、表面ダメージ層の深さをAFM(原子間力顕微鏡)等の表面粗さ観察装置で確認していることなどから、化学機械研磨により取り除く厚みは0.5μm程度であり、その場合には潜傷を発生させる要因となるようなより深いダメージ層を完全に除去するまでには至らない。 By the way, as described in, for example, JP-A-2014-210687 (paragraph 0043) and JP-A-2014-024703 (paragraph 0052), chemical mechanical polishing may be performed when a seed crystal is manufactured. .. However, although these are subjected to chemical mechanical polishing for the purpose of removing the surface damage layer, the depth of the surface damage layer is confirmed by a surface roughness observation device such as an AFM (atomic force microscope). The thickness removed by chemical mechanical polishing is about 0.5 μm, and in that case, it is not possible to completely remove the deeper damaged layer that causes latent scratches.
そこで、化学機械研磨により種結晶の成長面側をどの深さまで除去すべきかについて数々の実験を試みて検討した結果、機械研磨面後の表面から少なくとも深さ2μmまで除去しないと、本発明の効果である貫通らせん転位密度の低減が起こらないことが分かった。このことから、潜傷を発生させる要因となるようなダメージ層は種結晶の表面から深さ2μm未満程度まで存在していると考えられる。なお、化学機械研磨により除去する深さに上限はないが、化学機械研磨は時間が掛るため、2μmを超えて種結晶の成長面側を必要以上に除去することは工業生産効率化の視点から好ましくない。また、化学機械研磨により除去した量は研磨前後で厚みを比較することで把握することができる。 Therefore, as a result of conducting various experiments and examining the depth to which the growth surface side of the seed crystal should be removed by chemical mechanical polishing, the effect of the present invention is obtained unless the surface after the mechanical polishing surface is removed to a depth of at least 2 μm. It was found that the reduction of threading screw dislocation density, which is, does not occur. From this, it is considered that the damage layer that causes a latent scratch exists up to a depth of less than 2 μm from the surface of the seed crystal. There is no upper limit to the depth to be removed by chemical mechanical polishing, but chemical mechanical polishing takes time, so removing more than 2 μm on the growth surface side of the seed crystal is necessary from the viewpoint of industrial production efficiency. Not preferable. The amount removed by chemical mechanical polishing can be grasped by comparing the thicknesses before and after polishing.
本発明における化学機械研磨については、公知の手法を採用することができ、例えば、コロイダルシリカ等の極微細懸濁粒子を含むスラリーを使用し、研磨パッドを用いて加工すればよい。また、SiC単結晶を成長させる成長面と反対側の種結晶の裏面については、前記ダメージ層が残っていても結晶成長時の貫通らせん転位密度の生成には影響しないため、化学機械研磨は必須ではないが、例えば黒鉛製の坩堝を形成する黒鉛上蓋内面に種結晶を装着する際に密着性を高めることなどの目的から、種結晶の裏面を更に化学機械研磨して平滑性を高めてもよい。 Known methods can be adopted for the chemical mechanical polishing in the present invention. For example, a slurry containing ultrafine suspended particles such as colloidal silica may be used and processed by using a polishing pad. Further, regarding the back surface of the seed crystal opposite to the growth surface on which the SiC single crystal is grown, even if the damaged layer remains, it does not affect the generation of threading screw dislocation density during crystal growth, so chemical mechanical polishing is essential. However, even if the back surface of the seed crystal is further chemically mechanically polished to improve the smoothness, for example, for the purpose of increasing the adhesion when mounting the seed crystal on the inner surface of the graphite upper lid that forms the graphite crucible. Good.
また、種結晶を製造する際のSiC単結晶インゴットの切断についても、ワイヤーソー等を用いるなどして公知の手法と同様にすることができ、切断面の機械研磨についてもダイヤモンド粒子等を含んだ研磨液を用いるなどして公知の手法と同様にすることができる。なお、本発明における種結晶の製造方法は、得られる種結晶の口径に制限されるものではない。 Further, the cutting of the SiC single crystal ingot at the time of producing the seed crystal can be performed in the same manner as a known method by using a wire saw or the like, and the mechanical polishing of the cut surface also includes diamond particles or the like. A known method can be performed by using a polishing liquid. The method for producing a seed crystal in the present invention is not limited to the diameter of the obtained seed crystal.
以下、実施例等に基づき本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples and the like. The present invention is not limited to the examples below.
(実施例1)
図1は、本発明の実施例に係るSiC単結晶インゴットを製造するための装置であって、改良レーリー法(昇華再結晶法)による単結晶成長(製造)装置の一例を示す。結晶成長は、黒鉛製の坩堝を形成する黒鉛坩堝本体4に装填されたSiCの昇華原料1を誘導加熱により昇華させ、同じく黒鉛製の坩堝を形成する黒鉛上蓋3に配置されたSiC単結晶基板からなる種結晶2上に再結晶させることにより行われる。
(Example 1)
FIG. 1 is an apparatus for manufacturing a SiC single crystal ingot according to an embodiment of the present invention, showing an example of a single crystal growth (manufacturing) apparatus by an improved Rayleigh method (sublimation recrystallization method). Crystal growth is performed by sublimating the SiC sublimation raw material 1 loaded in the graphite crucible body 4 forming the graphite crucible by induction heating, and the SiC single crystal substrate arranged on the graphite
この実施例1では、予め昇華再結晶法により得られたSiC単結晶インゴットをワイヤーソーにより切断して、厚さ1.1mm程度の円盤状厚板に加工した。次に、ダイヤモンド粒子を含んだ研磨液を用いて、上記切断面を機械研磨した。この機械研磨では、ワイヤーソーによる切断面の片側表面が深さ50μm程度研磨されるように加工した。次いで、得られた円盤状薄板の結晶成長面にあたる一方の表面を更に化学機械研磨して、表面から深さ2μmまで除去した。その際、コロイダルシリカ等の極微細懸濁粒子を含むスラリーと研磨パッドを使用して加工した。このようにして、厚さ1.0mm、口径51mmであって、4°のオフ角を有する(000−1)面を結晶成長面として備えた種結晶2を製造した。
In Example 1, a SiC single crystal ingot previously obtained by the sublimation recrystallization method was cut with a wire saw and processed into a disk-shaped thick plate having a thickness of about 1.1 mm. Next, the cut surface was mechanically polished by using a polishing liquid containing diamond particles. In this mechanical polishing, processing was performed so that one surface of the cut surface with the wire saw was polished to a depth of about 50 μm. Next, one surface corresponding to the crystal growth surface of the obtained disk-shaped thin plate was further subjected to chemical mechanical polishing to remove it to a depth of 2 μm. At that time, a slurry containing ultrafine suspended particles such as colloidal silica and a polishing pad were used for processing. In this way, a
上記のようにして得られた種結晶2を用いて、先の図1に示した単結晶成長装置によりSiC単結晶の成長を行い、SiC単結晶インゴットを製造した。ここで、単結晶成長装置において、黒鉛製の坩堝を形成する黒鉛坩堝本体4及び黒鉛上蓋3は、熱シールドのために黒鉛製フェルト5で被膜されており、二重石英管6内部の黒鉛支持棒7の上に設置される。二重石英管6の内部を真空排気装置8によって真空排気した後、高純度Arガス及び窒素ガスを配管9を介してマスフローコントローラ10でAr:窒素=15:1になるように制御しながら流入させ、石英管内圧力(成長雰囲気圧力)を真空排気装置8で調整して80kPaにした。この圧力下において、ワークコイル11に電流を流して温度を上げ、黒鉛上蓋3に取り付けられた種結晶2の温度が2200℃になるまで上昇させた。その後、30分かけて成長雰囲気圧力を1.3kPaに減圧して、黒鉛坩堝本体4に装填されたSiCの昇華原料1を昇華させながら、種結晶2の(000−1)面を結晶成長面とする30時間の結晶成長を行った。
Using the
上記のプロセスにより、高さ8mm、口径51mmのSiC単結晶インゴットが得られた。得られたSiC単結晶インゴットについて、先ず、該インゴットから、種結晶の結晶成長面からの高さで表される成長高さ2mmの位置において、種結晶表面に平行に(すなわち4°のオフ角を有するように)評価用基板Aを切り出した。得られた評価用基板Aについて、520℃の溶融KOHに基板の全面が浸るように5分間浸して溶融KOHエッチングを行い、エッチングされた評価用基板Aの表面を光学顕微鏡(倍率:80倍)で観察して転位密度を計測した。ここでは、J. Takahashi et al., Journal of Crystal Growth, 135, (1994), 61-70に記載されている方法に従い、貝殻型ピットを基底面転位、小型の6角形ピットを貫通刃状転位、中型・大型の6角形ピットを貫通らせん転位として、エッチピット形状による転位欠陥を分類し、貫通らせん単位の転位密度を算出した。その結果、評価用基板Aの外周から直径比で内側方向に5%に相当する部分を占めるリング状領域(外周から幅2.55mmの領域)を除いた残りの中心円領域でほぼ一様に転位密度が分散していることを確認した。なお、同様にして、この実施例1で得られた種結晶についても確認したところ、面内に転位密度は一様に分布していた。 By the above process, a SiC single crystal ingot having a height of 8 mm and a diameter of 51 mm was obtained. Regarding the obtained SiC single crystal ingot, first, at a position of a growth height of 2 mm, which is represented by the height from the crystal growth surface of the seed crystal, parallel to the seed crystal surface (that is, an off angle of 4 °). The evaluation substrate A was cut out so that The obtained evaluation substrate A was immersed in molten KOH at 520 ° C. for 5 minutes so that the entire surface of the substrate was immersed in molten KOH etching, and the surface of the etched evaluation substrate A was observed with an optical microscope (magnification: 80 times). And the dislocation density was measured. Here, according to the method described in J. Takahashi et al., Journal of Crystal Growth, 135, (1994), 61-70, the shell-shaped pits are basal plane dislocations, and the small hexagonal pits are threading edge dislocations. Using the medium- and large-sized hexagonal pits as threading screw dislocations, dislocation defects due to etch pit shapes were classified and the dislocation density of threading screw units was calculated. As a result, the dislocations were distributed almost uniformly in the remaining central circle area excluding the ring-shaped area (the area having a width of 2.55 mm from the outer circumference) that occupies a portion corresponding to 5% in the inner diameter direction from the outer circumference of the evaluation substrate A. It was confirmed that the density was dispersed. Similarly, when the seed crystal obtained in Example 1 was also confirmed, the dislocation density was uniformly distributed in the plane.
次に、図2(a)に示したように、上記で得られたSiC単結晶インゴットを、種結晶2のc軸のオフ方向と反対方向へ4°傾いた方向が結晶のc軸となるように切り出し(図中の斜め太実線が切り出し面を示す)、(0001)面に種結晶と反対方向にオフ角を持つ評価用基板Bを得た。その際、評価用基板Bが種結晶の直径方向中心を通るようにして切り出し、評価用基板Bの表面には、種結晶からなる結晶領域と成長した成長SiC単結晶からなる結晶領域とが含まれるようにして、図2(b)に示したように、評価用基板Bの表面上のa辺と種結晶の直径方向上のb辺とのなす角が8°であり、高さhの直角三角形が形成される位置関係となるようにした。本切り出し方法を用いることにより、成長に従う転位密度の変化を結晶成長方向に対して連続的に観察することが可能となる。また、種結晶2と成長SiC単結晶16との界面17も直接観察可能である。更に、成長方向の変化が実質的に1/sin8°(約7倍)に拡大されるため、より詳細な高精度の転位密度計測を行なうことができる。
Next, as shown in FIG. 2A, the direction in which the SiC single crystal ingot obtained above is inclined 4 ° in the direction opposite to the off direction of the c-axis of the
得られた評価用基板Bについて、先の評価用基板Aと同様に、520℃の溶融KOHに基板の全面が浸るように5分間浸して溶融KOHエッチングを行い、エッチングされた評価用基板Bの表面を、成長SiC単結晶の高さ変化に沿うように、図2(b)に示したa辺(=h/sin8°)上の測定点を主に2mm(成長方向の高さhの変化がおよそ0.3mmに相当)ごとに光学顕微鏡(倍率:80倍)で観察して転位密度を計測した。結果を表1に示す。なお、表1中の成長高さ(mm)は、種結晶2の結晶成長面からの高さを表す。
The obtained evaluation substrate B was immersed in molten KOH at 520 ° C. for 5 minutes so that the entire surface of the substrate was immersed in molten KOH etching as in the case of the above-described evaluation substrate A. The measurement point on the a side (= h / sin8 °) shown in FIG. 2 (b) is mainly 2 mm (change in height h in the growth direction) so that the surface follows the change in height of the grown SiC single crystal. Was observed with an optical microscope (magnification: 80 times) for each dislocation density. The results are shown in Table 1. The growth height (mm) in Table 1 represents the height from the crystal growth surface of the
(比較例1)
比較例1では、種結晶の結晶成長面に化学機械研磨を行わなかった以外は実施例1と同様にして種結晶を製造した。すなわち、昇華再結晶法により予め得られたSiC単結晶インゴットを実施例1と同様に切断して厚さ1.1mm程度の円盤状厚板に加工し、次いで、実施例1と同様に機械研磨して口径51mm、厚さ1.0mmの円盤状薄板に加工して比較例1に係る種結晶2とした。この種結晶2は、実施例1と同様に4°のオフ角を有する(000−1)面を結晶成長面として備えている。そして、この比較例1に係る種結晶2を用いて、実施例1と同様の条件でSiC単結晶インゴットを製造した。
(Comparative Example 1)
In Comparative Example 1, a seed crystal was manufactured in the same manner as in Example 1 except that the crystal growth surface of the seed crystal was not subjected to chemical mechanical polishing. That is, a SiC single crystal ingot previously obtained by the sublimation recrystallization method was cut in the same manner as in Example 1 to be processed into a disk-shaped thick plate having a thickness of about 1.1 mm, and then mechanically polished in the same manner as in Example 1. Then, it was processed into a disk-shaped thin plate having a diameter of 51 mm and a thickness of 1.0 mm to obtain a
得られたSiC単結晶インゴットについて、実施例1と同様に(0001)面に種結晶と反対方向にオフ角を持つように切り出して、評価用基板Bを得て、実施例1と同様にKOHエッチングを行ない、光学顕微鏡で転位密度を計測した。結果を表1に示す。 The obtained SiC single crystal ingot was cut out in the same manner as in Example 1 so that the (0001) plane had an off angle in the direction opposite to the seed crystal to obtain a substrate for evaluation B, and KOH was obtained in the same manner as in Example 1. Etching was performed and the dislocation density was measured with an optical microscope. The results are shown in Table 1.
ここで、表1に示した結果について、実施例1及び比較例1における各測定点での成長高さと貫通らせん転位密度との関係をグラフにしたものが図3である。図3のグラフから分かるように、従来法によって製造された比較例1のSiC単結晶インゴットは、成長高さ0.6mmで貫通らせん転位密度が約9000個/cm2であるのに対し、本発明の製造方法を用いて製造された実施例1のSiC単結晶インゴットでは、約2000個/cm2と低い値となっている。さらに成長高さ1.9mmでは比較例1が貫通らせん転位密度が約1000個/cm2であるのに対し、本発明の製造方法を用いて製造された実施例1のSiC単結晶インゴットでは、約200個/cm2まで減少している。特に、種結晶との界面近傍の成長初期は、従来では貫通転位密度が高く、SiC単結晶基板の切り出しには不向きとされていたのに対して、本発明によれば、成長高さ約2mmから種結晶以上の品質のSiC単結晶基板を切り出すことも可能となることが分かる。 Here, with respect to the results shown in Table 1, FIG. 3 is a graph showing the relationship between the growth height and the threading screw dislocation density at each measurement point in Example 1 and Comparative Example 1. As can be seen from the graph of FIG. 3, the SiC single crystal ingot of Comparative Example 1 manufactured by the conventional method has a threading screw dislocation density of about 9000 / cm 2 at a growth height of 0.6 mm, whereas The SiC single crystal ingot of Example 1 manufactured using the manufacturing method of the invention has a low value of about 2000 pieces / cm 2 . Further, in the growth height of 1.9 mm, the threading screw dislocation density of Comparative Example 1 is about 1000 / cm 2 , whereas the SiC single crystal ingot of Example 1 manufactured by the manufacturing method of the present invention is It is reduced to about 200 pieces / cm 2 . In particular, in the early stage of growth near the interface with the seed crystal, the threading dislocation density was high in the past, which was unsuitable for cutting out a SiC single crystal substrate, whereas according to the present invention, the growth height is about 2 mm. From this, it is understood that it is possible to cut out a SiC single crystal substrate having a quality higher than that of the seed crystal.
1:昇華原料、2:種結晶、3:黒鉛上蓋、4:黒鉛坩堝本体、5:黒鉛製フェルト、6:二重石英管、7:黒鉛支持棒、8:真空排気装置、9:配管、10:マスフローコントローラ、11:ワークコイル。 1: Sublimation raw material, 2: Seed crystal, 3: Graphite upper lid, 4: Graphite crucible body, 5: Graphite felt, 6: Double quartz tube, 7: Graphite support rod, 8: Vacuum exhaust device, 9: Piping, 10: Mass flow controller, 11: Work coil.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058793A JP6695182B2 (en) | 2016-03-23 | 2016-03-23 | Method for producing seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal ingot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058793A JP6695182B2 (en) | 2016-03-23 | 2016-03-23 | Method for producing seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal ingot |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017171532A JP2017171532A (en) | 2017-09-28 |
JP6695182B2 true JP6695182B2 (en) | 2020-05-20 |
Family
ID=59973637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016058793A Active JP6695182B2 (en) | 2016-03-23 | 2016-03-23 | Method for producing seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal ingot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6695182B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114277442B (en) * | 2022-03-07 | 2022-05-17 | 浙江大学杭州国际科创中心 | Low dislocation density silicon carbide single crystal growth method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5843725B2 (en) * | 2012-08-08 | 2016-01-13 | 三菱電機株式会社 | Single crystal manufacturing method |
JP5839069B2 (en) * | 2014-03-28 | 2016-01-06 | 住友電気工業株式会社 | Silicon carbide single crystal substrate, silicon carbide epitaxial substrate, and manufacturing method thereof |
-
2016
- 2016-03-23 JP JP2016058793A patent/JP6695182B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017171532A (en) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6537590B2 (en) | Method of manufacturing silicon carbide single crystal ingot | |
JP5682643B2 (en) | Method for producing silicon carbide single crystal | |
WO2017057742A1 (en) | Sic single crystal ingot | |
JP5304713B2 (en) | Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer | |
JP6584428B2 (en) | Method for producing silicon carbide single crystal and silicon carbide single crystal substrate | |
JP5304712B2 (en) | Silicon carbide single crystal wafer | |
WO2010041497A1 (en) | Method for forming sic single crystal | |
JP6579889B2 (en) | Method for manufacturing silicon carbide single crystal substrate | |
JP6594146B2 (en) | Method for producing silicon carbide single crystal ingot | |
WO2014017197A1 (en) | Method for manufacturing silicon carbide substrate | |
JP2017065986A (en) | Method for producing low resistivity silicon carbide single crystal substrate | |
JP5614387B2 (en) | Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot | |
JP4494856B2 (en) | Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same | |
JP6695182B2 (en) | Method for producing seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal ingot | |
JP4374986B2 (en) | Method for manufacturing silicon carbide substrate | |
JP5135545B2 (en) | Seed crystal for growing silicon carbide single crystal ingot and method for producing the same | |
JP6594148B2 (en) | Silicon carbide single crystal ingot | |
JP6335716B2 (en) | Method for producing silicon carbide single crystal ingot | |
WO2017043215A1 (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180301 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180621 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180628 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6695182 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |