JP6693646B2 - ニッケル元素の回収方法 - Google Patents
ニッケル元素の回収方法 Download PDFInfo
- Publication number
- JP6693646B2 JP6693646B2 JP2015229553A JP2015229553A JP6693646B2 JP 6693646 B2 JP6693646 B2 JP 6693646B2 JP 2015229553 A JP2015229553 A JP 2015229553A JP 2015229553 A JP2015229553 A JP 2015229553A JP 6693646 B2 JP6693646 B2 JP 6693646B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- aqueous solution
- solution
- liquid
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 CN(*)C(CN(CC(N(*)*)=O)CC(O)=O)=O Chemical compound CN(*)C(CN(CC(N(*)*)=O)CC(O)=O)=O 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Physical Water Treatments (AREA)
- Extraction Or Liquid Replacement (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
しかしながら、上記の方法では無電解ニッケルめっき液のpH調整を行わないで抽出を行った場合、ニッケルの抽出率が35%程度と十分な値が得られていない。pHを中性から弱アルカリ性に調整すればニッケルの抽出率が向上するが、pH調整にコストと手間がかかり、また、ニッケルが水酸化物として沈殿し、抽出に悪影響を及ぼすことが予想される。さらには、ニッケルの抽出速度が低く、効率良く回収できないという問題もある。
しかしながら、上記の方法では無電解ニッケルめっき液のpH調整を行わないで抽出を行った場合、ニッケルの抽出率が十分な値ではない。そのため、pHを中性領域に調整する必要があるが、pH調整にコストと手間がかかる。また、ニッケルの抽出平衡時間まで10分程度かかり、十分な抽出速度も得られていない。さらには、有機リン酸系抽出剤による2−ヒドロキシ−5−ノニルアセトフェノンオキシムの分解やナトリウムを同時に抽出するため、高純度のニッケルを得ることが困難であることが指摘されている。
しかしながら、上記の方法では2種類の抽出剤を使用するため抽出操作が煩雑となる。また、D2EHPAによるニコチン酸ドデシル及びイソニコチン酸ドデシルの分解やナトリウムを同時に抽出するため、高純度のニッケルを得ることが困難であることが指摘され
ている。
即ち、本発明は以下の通りである。
<1> ニッケル含有水溶液を準備する準備工程、並びに下記一般式(1)で表される化合物又はその塩の存在下、前記準備工程で準備したニッケル含有水溶液と有機溶媒を接触させて、ニッケル元素(Ni)を抽出する液液接触工程を含む、ニッケル元素の回収方法。
(式(1)中、R1、R2、R3、及びR4は、それぞれ同一種又は異種の炭化水素基を表す。但し、R1、R2、R3、及びR4の炭化水素基の炭素数の合計が、8〜64である。)
<2> 前記準備工程で準備したニッケル含有水溶液のpHが、7.0以下である、<1>に記載のニッケル元素の回収方法。
<3> さらに前記液液接触工程で接触させたニッケル含有水溶液と有機溶媒を分液する分液工程、及び前記分液工程で分液した有機溶媒に、前記分液工程で分液したニッケル含有水溶液とは別の酸性水溶液を接触させる逆抽出工程を含む、<1>又は<2>に記載のニッケル元素の回収方法。
<4> 前記ニッケル含有水溶液が、電解ニッケルめっき液、使用済み電解ニッケルめっき液、無電解ニッケルめっき液、使用済み無電解ニッケルめっき液、廃Ni−Cd電池を浸出して得られる溶液、又は含ニッケル鉱を浸出して得られる溶液である、<1>〜<3>の何れかに記載のニッケル元素の回収方法。
本発明の一態様であるニッケル元素の回収方法(以下、「本発明の回収方法」と略す場合がある。)は、ニッケル含有水溶液を準備する準備工程(以下、「準備工程」と略す場合がある。)、並びに下記一般式(1)で表される化合物又はその塩の存在下、前記準備工程で準備したニッケル含有水溶液と有機溶媒を接触させて、ニッケル元素(Ni)を抽出する液液接触工程(以下、「液液接触工程」と略す場合がある。)を含むことを特徴とする。
(式(1)中、R1、R2、R3、及びR4は、それぞれ同一種又は異種の炭化水素基を表す。但し、R1、R2、R3、及びR4の炭化水素基の炭素数の合計が、8〜64である。)
本発明者らは、ニッケル元素の回収方法について鋭意検討を重ねた結果、一般式(1)で表される化合物又はその塩の存在下で抽出を行うことにより、ニッケル含有水溶液からニッケル元素を効率的に回収することができることを見出したのである。
一般式(1)で表される化合物は、ニトリロ三酢酸の2つのカルボキシル基がジアルキルアミンによってアミド化された構造となっているが、構造内に含まれる第三級アミノ基、アミド基、及びカルボキシル基が、ニッケル元素との結合に非常に適しているものと考えられる。そして、水素イオン濃度やアニオン濃度によって、それぞれの金属元素に対する親和性が変化するため、ニッケル元素を選択的に抽出することを可能とし、さらに炭化水素基の炭素数等によって有機溶媒との親和性を制御できるため、溶媒抽出法による回収に適しているのである。
なお、「その塩」とは、一般式(1)で表される化合物とイオン等によって形成される
塩を意味し、塩を形成するためのイオンの種類は特に限定されないものとする。
また、「一般式(1)で表される化合物又はその塩の存在下」とは、通常有機溶媒に一般式(1)で表される化合物又はその塩が存在していることを意味し、予め有機溶媒に含有させていても、或いはニッケル含有水溶液と有機溶媒を接触させるときに別途一般式(1)で表される化合物又はその塩を添加するものであってもよいものとする。
以下、「準備工程」、「液液接触工程」等について、詳細に説明する。
pH3.0〜pH6.0であると、ニッケル元素をより効率的に回収することができるため、ニッケル含有水溶液をそのまま使用するほか、ニッケル含有水溶液に酸や塩基を添加して、pHを調整してもよい。但し、pHを調整しなくてもニッケル元素を効率的に回収することができる点が本発明の回収方法の利点の1つである。なお、使用する酸の具体的種類は、特に限定されないが、塩酸、硫酸、硝酸、リン酸、亜リン酸、次亜リン酸等の無機酸が挙げられる。塩酸を使用する場合、水溶液は塩化物イオン(Cl−)を含み、硫酸を使用する場合、水溶液は硫酸イオン(SO4 2−)を含み、硝酸を使用する場合、水溶液は硝酸イオン(NO3 −)を含み、リン酸を使用する場合、水溶液はリン酸イオン(PO4 3−、HPO4 2−、H2PO4 −)を含み、亜リン酸を使用する場合、水溶液は亜リン酸イオン(HPO3 2−、H2PO3 −)を含み、次亜リン酸を使用する場合、水溶液は次亜リン酸イオン(H2PO2 −)を含むと表現することができる。
(式(1)中、R1、R2、R3、及びR4は、それぞれ同一種又は異種の炭化水素基を表す。但し、R1、R2、R3、及びR4の炭化水素基の炭素数の合計が、8〜64である。)
R1、R2、R3、及びR4は、それぞれ同一種又は異種の炭化水素基を表しているが、「炭化水素基」とは、直鎖状の飽和炭化水素基に限られず、炭素−炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよいことを意味する。
R1、R2、R3、及びR4の炭化水素基の炭素数の合計は、8〜64であるが、好ましくは16以上、より好ましくは24以上であり、好ましくは56以下、より好ましくは48以下である。
R1、R2、R3、及びR4の炭化水素基のそれぞれの炭素数は、通常2以上、好まし
くは4以上、より好ましくは6以上であり、通常16以下、好ましくは14以下、より好ましくは12以下である。
R1、R2、R3、R4としては、エチル基(−C2H5)、n−プロピル基(−nC3H7)、i−プロピル基(−iC3H7)、n−ブチル基(−nC4H9)、t−ブチル基(−tC4H9)、n−ペンチル基(−nC5H11)、n−ヘキシル基(−nC6H13)、n−ヘプチル基(−nC7H15)、n−オクチル基(−nC8H17)、2−エチルヘキシル基(−CH2CH(C2H5)C4H9)、n−ノニル基(−nC9H19)、n−デシル基(−nC10H21)、n−ウンデシル基(−nC11H23)、n−ドデシル基(−nC12H25)、n−トリデシル基(−nC13H27)、n−テトラデシル基(−nC14H29)、n−ペンタデシル基(−nC15H31)、n−ヘキサデシル基(−nC16H33)、シクロヘキシル基(−cC6H11)、フェニル基(−C6H5)、ナフチル基(−C10H7)等が挙げられる。この中でも、n−ヘキシル基(−nC6H13)、n−オクチル基(−nC8H17)、2−ジエチルヘキシル基(−CH2CH(C2H5)C4H9)、n−デシル基(−nC10H21)、n−ドデシル基(−nC12H25)等が特に好ましい。
また、一般式(1)で表される化合物から形成される塩の種類としては、アンモニウム塩、リチウム塩、ナトリウム塩、カリウム塩、塩酸塩、硝酸塩、硫酸塩、酢酸塩等が挙げられる。
(i)2−ハロゲン化アセチルハライドに対するジアルキルアミンの求核置換反応によって、2−ハロゲノ−N,N−ジアルキルアセトアミドを得る工程。
(ii)2−ハロゲノ−N,N−ジアルキルアセトアミドに対するイミノジ酢酸の求核置換反応によって、ニトリロ三酢酸誘導体を得る工程。
(iii)ニトリロ三酢酸誘導体の1つのカルボキシル基をジアルキルアミンでアミド化することによって、一般式(1)で表される化合物又はその塩を得る工程。
なお、下記式で表される化合物は、市販されており、適宜入手して一般式(1)に該当する幅広い化合物を製造することができる。
また、一般式(1)で表される化合物又はその塩の存在下でニッケル含有水溶液と有機溶媒を接触させる方法は、例えば下記(イ)〜(ハ)の方法が挙げられる。
(イ)一般式(1)で表される化合物又はその塩を含む有機溶媒溶液を、容器内等でニッケル含有水溶液と接触させる方法。
(ロ)一般式(1)で表される化合物又はその塩を含むニッケル含有水溶液を、容器内等で有機溶媒と接触させる方法。
(ハ)一般式(1)で表される化合物又はその塩とニッケル含有水溶液と有機溶媒をそれぞれ容器等に投入し、接触させる方法。
この中でも、(イ)の方法が特に好ましい。
・液液接触工程で接触させたニッケル含有水溶液と有機溶媒を分液する分液工程
・分液工程で分液した有機溶媒に、分液工程で分液したニッケル含有水溶液とは別の酸性水溶液を接触させて逆抽出する逆抽出工程
下記反応式で表される反応によって、2−クロロ−N,N−ジオクチルアセトアミド(以下、「ClDOAA」と略す場合がある。)を合成した。
ジオクチルアミン25g(101mmol)を100mLの脱水ジクロロメタンに溶解させ、さらにトリエチルアミン10.32g(101mmol)を加えて氷浴で撹拌した
。この溶液に脱水ジクロロメタン10mLに溶解させた塩化クロロアセチル14.1g(121mmol)を、氷浴中アルゴン置換の下、ゆっくり滴下した。滴下後、室温で3時間撹拌して反応を終了した。反応後、0.1mol/L塩酸100mLで3回、超純水100mLで4回分液を行い、回収した有機相を硫酸ナトリウムで脱水した。硫酸ナトリウムをろ過し、エバポレーターにより溶媒を減圧留去した。さらに、カラムクロマトグラフィー(シリカゲル、展開溶媒 ヘキサン:酢酸エチル=3:1)により精製を行った。溶媒を完全に減圧留去し、黄色粘性液体28.1g(収率:87.5%)を得た。得られた合成物を核磁気共鳴法(NMR)、元素分析、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF/MS)を用いて同定したところ、2−クロロ−N,N−ジオクチルアセトアミド(ClDOAA)であることを確認した。
水酸化ナトリウム3.3g(80mmol)を超純水250mLに溶解し、さらにイミノジ酢酸10.65g(80mmol)を溶解させた。溶解後、5mol/L水酸化ナトリウム水溶液を12mL、pH試験紙が青色になるまで加え、さらにエタノール230mLを加えて撹拌した。ClDOAA 12.7g(40mmol)をエタノール20mLに溶解させ、アルゴン置換後、室温で撹拌しながらゆっくり滴下した。滴下後、85℃で17.5時間還流した。還流中、pHが11程度になるように随時5mol/L水酸化ナトリウム水溶液を加え、さらに同体積のエタノールを加えた。反応溶液からエバポレーターによりエタノールのみ留去した。残った水溶液をジエチルエーテル100mLで3回分液を行った。得られた水溶液を撹拌しながら3mol/L塩酸30mLを加え、生じた白色沈殿物をろ過により回収した。得られた沈殿物を超純水100mLで2回洗浄し、真空乾燥後、アセトンとヘキサンを用いて再沈殿により精製を行い、白色粉末12.9g(収率:77.8%)を得た。得られた合成物を核磁気共鳴法(NMR)、元素分析、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF/MS)を用いて同定したところ、2,2’−(2−(ジオクチルアミノ)−2−オクソエチルアザンジイル)二酢酸(DONTAMA)であることを確認した。
合成したDONTAMA 4.35g(10.5mmol)を120mLの脱水ジクロロメタンに懸濁させた。水溶性カルボジイミド(WSC)2.16g (11.04mm
ol)を脱水ジクロロメタン120mLに溶かし、室温で撹拌しながらアルゴン置換の下、ゆっくり滴下し、1時間撹拌を行った。撹拌後、ジオクチルアミン2.72g(11.04mmol)を脱水ジクロロメタン10mLに溶かし、室温で撹拌しながらアルゴン置換の下、ゆっくり滴下した。滴下後、40℃で24時間還流した。反応後、1mol/L塩酸200mLで3回、超純水200mLで4回分液を行い、回収した有機相を硫酸ナトリウムで脱水した。硫酸ナトリウムをろ過し、エバポレーターにより溶媒を減圧留去した。さらに、カラムクロマトグラフィー(シリカゲル、展開溶媒 酢酸エチル)により精製を行った。溶媒を完全に減圧留去し、無色透明液体4.31g(収率:64.3%)を得た。得られた合成物を核磁気共鳴法(NMR)、元素分析、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF/MS)を用いて同定したところ、テトラオクチルニトリロ酢酸ジアセトアミド(TONTADA)であることを確認した。なお、図1に1H NMRの結果を示す。
1H NMR(400MHz,CDCl3,25℃): δ0.88(m,12H,CH3),1.28(s,40H,CH3(CH2)5),1.52(m,8H,CH2CH2N),3.10(t,4H,CH2N),3.30(t,4H,CH2N),3.48(s,2H,NCH2COOH),3.67(s,4H,NCH2C=O).
比較として、ジオクチルジグリコールアミド酸(以下、「DODGAA」と略す場合がある。)を準備した。DODGAAは、下記反応式で表される反応によって合成した。なお、DODGAAの合成方法については、本発明者らが既に報告しているH. Naganawa et
al., Solvent Extr. Res. Dev., Jpn, 2007, 14, 151-159.等を参照することができる。
無水ジグリコール酸4.17g(0.036mol)を三角フラスコに入れ、40mLのジクロロメタンに懸濁させた。滴下漏斗にジクロロメタン10mLに溶解させたオクチルアミン7g(0.0284mol)を入れ、氷浴の下、撹拌しながらゆっくり滴下した。滴下後、室温で一晩撹拌し、溶液が透明になっていることを確認し、反応を終了した。超純水で中性になるまで4回分液を行い、水溶性不純物を除去した。分液後の溶液を硫酸ナトリウムで脱水し、硫酸ナトリウムを濾過により取り除いた。エバポレーターにより溶媒を減圧留去した後、真空ポンプで完全に溶媒を除去した。ヘキサンで溶液が透明になるまで3回再結晶を行い、凍結乾燥機で完全に乾燥させた。白色粉末。収量9.57g、収率94.2%。得られた合成物は元素分析及び1H NMRにより、DODGAAであることを確認した。
Niイオンを0.01mM含んだpH0.6〜5.8水溶液を調製した。このとき、pH1.0〜5.8の水溶液は2−モルホリノエタンスルホン酸(MES)緩衝液に硝酸又は水酸化ナトリウム水溶液を加えて調製した。pH1.0以下の水溶液については硝酸のみで調製した。
調製した水溶液と、それと同体積の10mM TONTADAを含むイソオクタン溶液を混合し、25℃で30分間以上激しく振盪した。振盪後、両相を分取し、分取した水相はpH測定を行い、硝酸水溶液で希釈後、誘導結合プラズマ質量分析装置(ICP−MS)を用いて、Niイオンの濃度を測定した。
一方、分取した有機相と、それと同体積の1M硝酸を混合し、25℃で30分間以上激
しく振盪することで逆抽出を行った。逆抽出相中のNiイオン濃度をICPを用いて測定した。得られたNiイオン濃度から抽出率を、有機相中の物質量/初期条件の物質量×100で定義し、算出した。抽出結果を図2に示す。黒丸がTONTADAを用いた抽出率の結果である。
水相のpHを2.0〜5.8に調整し、抽出剤DODGAAをイソオクタン(5% 1−オクタノール)に溶解した有機相を用いたこと以外は、実施例1と同じ方法で抽出実験を行った。結果を図2に示す。白丸がDODGAAを用いた抽出率の結果である。
水相のpHを0.8〜7.0に調整し、抽出剤(ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC−88A))をイソオクタンに溶解した有機相を用いたこと以外は、実施例1と同じ方法で抽出実験を行った。結果を図2に示す。黒三角がD2EHPAを用いた抽出率の結果、白三角がPC−88Aによる抽出率の結果である。
図2に示すように、合成例1の抽出剤(TONTADA)を用いることで、NiをpH3.0以上で99%以上抽出することができることが確認された。一方、その他の抽出剤(DODGAA、D2EHPA、PC−88A)では、Niに対する抽出能が小さく、定量的な抽出が困難であった。特に無電解ニッケルめっき液に適用されるpH領域(pH4.7付近)では、TONTADAの抽出率が100%であるのに対し、DODGAAの抽出率が20%、D2EHPAの抽出率が5%、PC−88APの抽出率が0%であった。
振盪後、両相を分取し、分取した水相はpH測定を行い、硝酸水溶液で希釈後、ICP−MSを用いて、Niイオンの濃度を測定した。
無電解ニッケルめっき液には硫酸イオン、次亜リン酸イオン、亜リン酸イオン、有機酸等が高濃度に含まれており、これらがNiイオンと錯体を形成するために、抽出を阻害し、抽出率が低下することが問題とされていた。しかし、合成例1の抽出剤(TONTADA)を用いることで、ニッケル水溶液と無電解ニッケルめっきモデルA液との間でニッケルの抽出挙動が同じであり、抽出率が低下しないことが確認された(図3)。さらに、無電解ニッケルめっきモデルA液よりも複数の有機酸を含む無電解ニッケルめっきモデルB液を用いても同様な抽出挙動を示し、抽出率は低下しなかった(図4)
表1に示す組成の無電解ニッケルめっきモデルA液と無電解ニッケルめっきモデルB液を作製した。無電解ニッケルめっきモデル液:pH調整剤(硫酸又は水酸化ナトリウム水溶液)=4:1になるよう混合してpHを4.7に調製し、10mM Ni(SO4)2ストック水溶液を添加することで、Niイオン濃度を0.1mMに調製した。
調製した無電解ニッケルめっきモデル液と、それと同体積の10mM TONTADAを含むイソオクタン溶液とを容量5mLのポリプロピレンチューブに入れ、25℃、回転振幅約3mm、振盪速度1800rpmの条件で、振盪時間を変えてニッケルの抽出を行った。両相を分取後、分取した水相はpH測定を行い、硝酸水溶液で希釈後、ICP−MSを用いて、Niイオンの濃度を測定した。
一方、分取した有機相と、それと同体積の0.5M硫酸を混合し、25℃で1時間激しく振盪することで逆抽出を行った。逆抽出相中のNiイオン濃度をICP−MSを用いて測定した。得られたNiイオン濃度から抽出率を、有機相中の物質量/初期条件の物質量×100で定義し、算出した。抽出結果を図5に示す。黒丸が無電解ニッケルめっきモデルA液の抽出結果、黒三角が無電解ニッケルめっきモデルB液の抽出結果である。
無電解ニッケルめっき液には硫酸イオン、次亜リン酸イオン、亜リン酸イオン、有機酸などが高濃度に含まれており、これらがNiイオンと錯体を形成するために、抽出を阻害し、抽出速度が低下することが問題とされていた。しかし、図5に示すように、合成例1の抽出剤(TONTADA)を用いることで、無電解ニッケルめっきモデルA液の場合、振盪開始後3分で99%以上のニッケルを抽出することができ、抽出速度が速いことが確認された。一方、複数の有機酸を含む無電解ニッケルめっきモデルB液の場合は、振盪開始後20分で約94%、30分で約99%のニッケルを抽出することができた。
Claims (4)
- 前記準備工程で準備したニッケル含有水溶液のpHが、7.0以下である、請求項1に記載のニッケル元素の回収方法。
- さらに前記液液接触工程で接触させたニッケル含有水溶液と有機溶媒を分液する分液工程、及び前記分液工程で分液した有機溶媒に、前記分液工程で分液したニッケル含有水溶液とは別の酸性水溶液を接触させる逆抽出工程を含む、請求項1又は2に記載のニッケル元素の回収方法。
- 前記ニッケル含有水溶液が、電解ニッケルめっき液、使用済み電解ニッケルめっき液、無電解ニッケルめっき液、使用済み無電解ニッケルめっき液、廃Ni−Cd電池を浸出して得られる溶液、又は含ニッケル鉱を浸出して得られる溶液である、請求項1〜3の何れか1項に記載のニッケル元素の回収方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015229553A JP6693646B2 (ja) | 2015-11-25 | 2015-11-25 | ニッケル元素の回収方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015229553A JP6693646B2 (ja) | 2015-11-25 | 2015-11-25 | ニッケル元素の回収方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017095768A JP2017095768A (ja) | 2017-06-01 |
JP6693646B2 true JP6693646B2 (ja) | 2020-05-13 |
Family
ID=58817794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015229553A Active JP6693646B2 (ja) | 2015-11-25 | 2015-11-25 | ニッケル元素の回収方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6693646B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6874266B2 (ja) * | 2017-09-22 | 2021-05-19 | 国立研究開発法人日本原子力研究開発機構 | テトラアルキルニトリロ酢酸ジアセトアミド化合物の合成方法 |
-
2015
- 2015-11-25 JP JP2015229553A patent/JP6693646B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017095768A (ja) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111592459B (zh) | 羧酸类化合物、其制备方法及应用 | |
JP5035788B2 (ja) | 希土類金属の抽出剤と抽出方法 | |
JP6693647B2 (ja) | 金属元素の分離方法 | |
Deferm et al. | Purification of indium by solvent extraction with undiluted ionic liquids | |
CN103764857B (zh) | 钪萃取方法 | |
AU2013258153B2 (en) | New bifunctional compounds useful as ligands of uranium (VI), methods of synthesising same and uses thereof | |
JP5487506B2 (ja) | 希土類金属抽出剤の合成方法 | |
JP6573115B2 (ja) | アミド化リン酸エステル化合物、抽出剤、及び抽出方法 | |
JP5679158B2 (ja) | 希土類金属の溶媒抽出用有機相の製造方法 | |
WO2012005183A1 (ja) | 希土類金属抽出剤の合成方法 | |
Sasaki et al. | Mutual separation of indium (III), gallium (III) and zinc (II) with alkylated aminophosphonic acids with different basicities of amine moiety | |
JP5398885B1 (ja) | ガリウム抽出方法 | |
CA2745228A1 (en) | Synthesis of rare earth metal extractant | |
JP6614654B2 (ja) | ニトリロ酢酸ジアセトアミド化合物、抽出剤、及び抽出方法 | |
JP6693646B2 (ja) | ニッケル元素の回収方法 | |
JP5420033B1 (ja) | インジウム抽出剤およびこの抽出剤を用いたインジウム抽出方法 | |
CN104540972B (zh) | 有价金属分离方法 | |
CN104995319B (zh) | 有价金属萃取方法 | |
WO2024074783A1 (fr) | Utilisation de dérivés lipophiles d'acides aminopolycarboxyliques pour l'extraction de terres rares d'une solution aqueuse acide | |
JP2007126716A (ja) | カドミウムに対する亜鉛の高選択的抽出剤及び亜鉛の回収 | |
PL225664B1 (pl) | Protonowe ciecze jonowe z kationem 1-(2-chloroetylo)pirolidyniowym oraz sposób ich otrzymywania |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200407 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6693646 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |