[go: up one dir, main page]

JP6688113B2 - Surface processing method for sliding bearing and sliding bearing - Google Patents

Surface processing method for sliding bearing and sliding bearing Download PDF

Info

Publication number
JP6688113B2
JP6688113B2 JP2016055286A JP2016055286A JP6688113B2 JP 6688113 B2 JP6688113 B2 JP 6688113B2 JP 2016055286 A JP2016055286 A JP 2016055286A JP 2016055286 A JP2016055286 A JP 2016055286A JP 6688113 B2 JP6688113 B2 JP 6688113B2
Authority
JP
Japan
Prior art keywords
laser light
slide bearing
bearing
uneven portion
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016055286A
Other languages
Japanese (ja)
Other versions
JP2017166680A (en
Inventor
利昌 松井
利昌 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2016055286A priority Critical patent/JP6688113B2/en
Publication of JP2017166680A publication Critical patent/JP2017166680A/en
Application granted granted Critical
Publication of JP6688113B2 publication Critical patent/JP6688113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、すべり軸受の表面加工方法及びすべり軸受に関する。   The present invention relates to a surface processing method for a slide bearing and a slide bearing.

従来、摺動部材の摺動面の粗面化(凹凸部の形成)を短パルス(ピコ秒パルス)レーザ照射装置により行い、摺動面に凹凸形状を生成させ、樹脂との密着力と耐久性を向上させる摺動部材の表面加工方法が公知となっている。(例えば、特許文献1参照)。従来の表面加工方法においては、摺動部材の摺動面へレーザ光を照射するレーザ光照射工程と、上記レーザ照射を受けた摺動面にフッ素樹脂塗装を施す樹脂塗装工程と、前記樹脂塗装工程によりフッ素樹脂が塗装された摺動面を焼成する焼成工程とが行われる。   Conventionally, roughening of the sliding surface of the sliding member (formation of irregularities) was performed with a short pulse (picosecond pulse) laser irradiation device to generate irregular shapes on the sliding surface, and adhesion and durability with resin The surface processing method of the sliding member which improves the property is known. (For example, refer to Patent Document 1). In the conventional surface processing method, a laser light irradiation step of irradiating a sliding surface of a sliding member with a laser beam, a resin coating step of applying a fluororesin coating to the sliding surface subjected to the laser irradiation, and the resin coating A firing step of firing the sliding surface coated with the fluororesin by the step is performed.

しかし、従来の表面加工方法では、レーザ照射により粗面化した基材と基材上に形成した樹脂との密着力が十分ではなく、基材から樹脂が剥離することがあった。特に、すべり軸受においては、潤滑油がすべり軸受内部へ流入もしくは外部へ流出するすべり軸受の軸方向両端内周面においては、樹脂の剥離が発生しやすかった。また、粗面化を行う際に凹凸部の粗さを向上させるためには、レーザ照射を長時間行う必要があり、すべり軸受の内周面全面の凹凸部の粗さを向上させると加工コストが高くなることが有った。   However, in the conventional surface processing method, the adhesion between the base material roughened by laser irradiation and the resin formed on the base material is not sufficient, and the resin may peel off from the base material. Particularly, in the slide bearing, the resin is easily peeled off on the inner peripheral surfaces of both ends in the axial direction of the slide bearing in which the lubricating oil flows into or out of the slide bearing. Further, in order to improve the roughness of the uneven portion when roughening, it is necessary to perform laser irradiation for a long time, and if the roughness of the uneven portion on the entire inner peripheral surface of the slide bearing is improved, the processing cost will be increased. Was sometimes high.

特開2007−289963号公報JP, 2007-289963, A

そこで、本発明は上記課題に鑑み、加工コストを抑えつつ、すべり軸受の内周面に形成された凹凸部の粗さを向上させて、樹脂の剥離を防止することができるすべり軸受の表面加工方法及びすべり軸受を提供することを目的とする。   Therefore, in view of the above problems, the present invention improves the roughness of the uneven portion formed on the inner peripheral surface of the sliding bearing while suppressing the processing cost, and it is possible to prevent the resin from being peeled off. An object is to provide a method and a plain bearing.

本発明においては、レーザ照射装置を用いてすべり軸受の内周面に凹凸部を形成するすべり軸受の表面加工方法であって、前記レーザ照射装置を用いて、前記すべり軸受の周方向と平行な方向の列上にレーザ光を照射し、前記すべり軸受の軸方向両端部において、列上に照射されるレーザ光の隣接するパルス中心間の距離がスポット半径よりも短くなるようにレーザ光を照射し、前記すべり軸受の軸方向両端部における凹凸部の粗さは、前記すべり軸受の軸方向中央部における凹凸部の粗さよりも大きくなるように形成し、前記すべり軸受の凹凸部表面に樹脂膜を形成するものである。 In the present invention, there is provided a surface processing method for a sliding bearing in which a concave and convex portion is formed on the inner peripheral surface of the sliding bearing by using a laser irradiation device, wherein the laser irradiation device is used to form a surface parallel to the circumferential direction of the sliding bearing. The laser beam is radiated onto the row in the direction, and the laser light is radiated so that the distance between the adjacent pulse centers of the laser light radiated onto the row is shorter than the spot radius at both axial ends of the slide bearing. However, the roughness of the uneven portion at both axial ends of the slide bearing is formed so as to be larger than the roughness of the uneven portion at the axial center of the slide bearing, and a resin film is formed on the uneven surface of the slide bearing. Is formed .

本発明においては、レーザ光が列上に連続的に照射され、照射された前記レーザ光により内周面に凹凸部が形成されるすべり軸受であって、前記すべり軸受の軸方向両端部における凹凸部の粗さは、前記すべり軸受の軸方向中央部における凹凸部の粗さよりも大きくなるように形成され、前記すべり軸受の凹凸部表面に樹脂膜が形成されるものである。 In the present invention, a laser beam is continuously irradiated on a row, and a sliding bearing in which a concave and convex portion is formed on the inner peripheral surface by the irradiated laser light, the concave and convex portions at both axial ends of the sliding bearing. The roughness of the portion is formed to be larger than the roughness of the uneven portion at the central portion in the axial direction of the slide bearing, and the resin film is formed on the surface of the uneven portion of the slide bearing .

本発明によれば、樹脂膜の剥離が軸方向両端内周面よりも発生しにくいすべり軸受の軸方向中央部内周面のレーザ照射加工においては、レーザ光の照射回数を少なくすることができるので、加工コストを低減することが可能となる。また、潤滑油が軸受内部へ流入もしくは外部へ流出するすべり軸受の軸方向両端内周面における凹凸部を粗く形成することができ、樹脂膜との密着力が向上する。これにより、樹脂膜の剥離を防止することができる。また、凹凸部表面に樹脂膜が入り込んで密着することにより、樹脂膜との密着力が向上する。 According to the present invention, it is possible to reduce the number of times of laser light irradiation in the laser irradiation processing of the axial center inner peripheral surface of the slide bearing in which peeling of the resin film is less likely to occur than both axial inner peripheral surfaces. It is possible to reduce the processing cost. Further, it is possible to roughen the irregularities on the inner peripheral surfaces of both ends in the axial direction of the sliding bearing, in which the lubricating oil flows in or out of the bearing, and the adhesion with the resin film is improved. Thereby, peeling of the resin film can be prevented. In addition, the resin film enters the surface of the uneven portion and is brought into close contact therewith, so that the adhesive force with the resin film is improved.

本発明によれば、特に、潤滑油が軸受内部へ流入もしくは外部へ流出するすべり軸受の軸方向両端内周面における凹凸部を粗く形成することにより、樹脂膜との密着力が向上する。これにより、樹脂膜の剥離を防止することができる。また、凹凸部表面に樹脂膜が入り込んで密着することにより、樹脂膜との密着力が向上する。 According to the present invention, in particular, by forming rough uneven portions on the inner peripheral surfaces of both ends in the axial direction of the slide bearing, in which lubricating oil flows in or out, the adhesion with the resin film is improved. Thereby, peeling of the resin film can be prevented. In addition, the resin film enters the surface of the uneven portion and is brought into close contact therewith, so that the adhesive force with the resin film is improved.

本発明の実施の形態に係るすべり軸受を示す概略正面図。The schematic front view which shows the slide bearing which concerns on embodiment of this invention. 同じくすべり軸受の表面加工方法を示すフローチャート図。The flowchart figure which similarly shows the surface processing method of a slide bearing. 同じくすべり軸受を構成する基材の表面加工過程を示す概略正面図。The schematic front view which shows the surface processing process of the base material which similarly comprises a slide bearing. (A)同じくすべり軸受の表面加工過程を示す平面拡大図、(B)端部の表面における表面加工過程を示す平面拡大図、(C)図4(B)の後の表面加工過程を示す平面拡大図。(A) Similarly, a plane enlarged view showing a surface processing process of the plain bearing, (B) a plane enlarged view showing a surface processing process on the end surface, (C) a plane showing a surface processing process after FIG. 4 (B). Enlarged view. 同じくすべり軸受を示す平面図。The top view which similarly shows a plain bearing. 中央部の表面における表面加工工程を示す平面拡大図。The plane enlarged view which shows the surface processing process in the surface of a center part. 同じく表面加工後のすべり軸受を示す平面図。Similarly, the top view which shows the slide bearing after surface processing. (A)同じく摺動部材にレーザ光を一回照射した際の凹凸部を示す平面拡大図、(B)摺動部材にレーザ光を連続的に照射した際の凹凸部を示す平面拡大図。(A) Similarly, a plane enlarged view showing a concavo-convex portion when the sliding member is irradiated with laser light once, and (B) a plane enlarged view showing a concavo-convex portion when the sliding member is continuously irradiated with laser light. 同じく摺動部材を示す正面断面拡大図。Similarly, the front cross-sectional enlarged view which shows a sliding member.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments below.

図1はすべり軸受1の正面図であり、図面の上下を上下方向、図面の手前方向及び奥方向を軸方向(前後方向)とする。
すべり軸受1は、回転軸2を回転可能に軸支するための部材であり、円筒状に構成されている。回転軸2をすべり軸受1で軸支する場合、所定の隙間が形成され、この隙間に対し図示せぬ油路から潤滑油が供給される。
なお、すべり軸受1は2つの半円筒状の部材を組合わせて構成してもよい。
回転軸2は、図示せぬ動力源によって回転する軸であり、例えば、クランクシャフトや、カムシャフト等である。
FIG. 1 is a front view of a plain bearing 1, where the top and bottom of the drawing are the vertical direction, and the front and back directions of the drawing are the axial direction (front-back direction).
The slide bearing 1 is a member for rotatably supporting the rotary shaft 2 and is formed in a cylindrical shape. When the rotating shaft 2 is pivotally supported by the slide bearing 1, a predetermined gap is formed, and lubricating oil is supplied to this gap from an oil passage (not shown).
The plain bearing 1 may be configured by combining two semi-cylindrical members.
The rotary shaft 2 is a shaft that is rotated by a power source (not shown), and is, for example, a crankshaft or a camshaft.

図2は、本発明の実施形態に係るすべり軸受1の表面加工処理を示すフローチャートである。図2に示すように、すべり軸受1の表面加工処理においては、すべり軸受1の内周面へレーザ光を照射するレーザ光照射工程S100と、前記レーザ照射を受けた内周面に樹脂塗装を施す樹脂塗装工程S200と、前記樹脂塗装工程S200により樹脂が塗装された内周面を焼成する焼成工程S300とが行われる。   FIG. 2 is a flowchart showing the surface processing of the sliding bearing 1 according to the embodiment of the present invention. As shown in FIG. 2, in the surface processing of the slide bearing 1, a laser beam irradiation step S100 of irradiating the inner peripheral surface of the slide bearing 1 with a laser beam and a resin coating on the inner peripheral surface subjected to the laser irradiation are performed. A resin coating step S200 to be performed and a firing step S300 of firing the inner peripheral surface coated with the resin in the resin coating step S200 are performed.

以下、レーザ照射工程S100で行われるレーザ照射について説明する。図3に示すように、まずすべり軸受1を構成する基材11を準備する。基材11は、油脂などの不純物を除くために洗浄してもよいが、そのあとの過程で、基材11の全面にレーザ光を照射するため洗浄しなくてもよい。レーザ光が照射される基材11の材質は、特に限定されず、鉄系、アルミニウム系、銅系の金属材料や、裏金にアルミニウム系、銅系等の材料を固着、接合させた複合材料等を用いてもよい。また、基材11は平板状に形成されている。なお、本実施形態においては特に平板状に形成された基材11に表面加工処理を行い、円筒状に成形することですべり軸受1を製造するが、これに限定されるものではなく、例えば円筒状に成形した後に表面加工処理を行ってもよい。基材11の厚さは、0.5mm以上であることが好ましい。この厚さを有する基材11を用いることで、レーザ光を照射したときに貫通することがなく、かつ、基材11上に形成される樹脂膜12を隙間なく容易に形成することができる。   The laser irradiation performed in the laser irradiation step S100 will be described below. As shown in FIG. 3, first, a base material 11 that constitutes the slide bearing 1 is prepared. The base material 11 may be cleaned to remove impurities such as fats and oils, but may not be cleaned since the entire surface of the base material 11 is irradiated with laser light in the subsequent process. The material of the base material 11 to which the laser light is irradiated is not particularly limited, and is an iron-based, aluminum-based, or copper-based metal material, or a composite material in which an aluminum-based or copper-based material is fixed and joined to the back metal. May be used. The base material 11 is formed in a flat plate shape. In the present embodiment, the plain bearing 1 is manufactured by subjecting the base material 11 formed in a flat plate shape to a surface treatment to form a cylindrical shape. You may perform surface processing after shape | molding in a shape. The thickness of the base material 11 is preferably 0.5 mm or more. By using the base material 11 having this thickness, it is possible to easily form the resin film 12 formed on the base material 11 without gaps, without penetrating when the laser light is irradiated.

図3に示すように、基材11にレーザ照射装置101によってレーザ光を照射することにより、基材11に凹凸部13を作成する。レーザ照射装置101は、レーザ光を出射するレーザ光源101Aと、レーザ光源101Aからのレーザ光のパルス幅を制御するパルス幅制御装置101Bと、を有する。本実施形態におけるレーザ照射装置101は、パルス幅がピコ秒以下となるように設定されている。   As shown in FIG. 3, by irradiating the base material 11 with laser light by the laser irradiation device 101, the uneven portion 13 is created on the base material 11. The laser irradiation device 101 includes a laser light source 101A that emits laser light, and a pulse width control device 101B that controls the pulse width of the laser light from the laser light source 101A. The laser irradiation apparatus 101 in this embodiment is set so that the pulse width is picoseconds or less.

レーザ光源101Aは、図示せぬ工作台に固定されており、基材11を図3の矢印方向へ移動させることにより、レーザ光源101Aから照射されるレーザ光は、基材11に対して列上に連続的に照射される。レーザ光は、基材11の移動方向と平行な列上に連続的に照射される。   The laser light source 101A is fixed to a work table (not shown), and by moving the base material 11 in the direction of the arrow in FIG. Is continuously irradiated. The laser light is continuously irradiated onto a row parallel to the moving direction of the base material 11.

ここで、基材11に照射するレーザ光について説明する。レーザ光を用いたレーザ加工は、被加工物に工具等を接触させずに、微細な加工を精度良く行うことができる。基材11に照射するレーザ光は、例えば、YAGレーザ、半導体レーザ、液体レーザ、気体レーザのいずれかを選択して用いてもよいが、その中でも特に加工性の観点からYAGレーザを用いることが好ましい。   Here, the laser light with which the base material 11 is irradiated will be described. Laser processing using a laser beam can perform fine processing with high precision without bringing a tool or the like into contact with a workpiece. As the laser light with which the base material 11 is irradiated, for example, any one of a YAG laser, a semiconductor laser, a liquid laser, and a gas laser may be selected and used. Among them, the YAG laser is particularly used from the viewpoint of workability. preferable.

図4(A)に示すように、レーザ光は、基材11に対してスポット直径2rの平面視円状に照射される。レーザ光のスポット直径は、数〜数十μmとなるように構成されている。スポット直径とは、レーザ光の最小直径である。レーザ光の単位面積当たりのエネルギー強度は、パワー密度で10MW/mm以上であることが好ましい。 As shown in FIG. 4A, the laser light is applied to the base material 11 in a circular shape in a plan view having a spot diameter 2r. The spot diameter of the laser light is configured to be several to several tens of μm. The spot diameter is the minimum diameter of laser light. The energy intensity per unit area of the laser light is preferably 10 MW / mm 2 or more in power density.

すべり軸受1の軸方向端部を形成する部分である基材11に照射されるレーザ光は、すべり軸受1の周方向と平行な方向に列上に照射される。また、図4(B)に示すように、レーザ光は、レーザ光の所定回の照射によって形成される円と次回の照射によって形成される円とが重なるように連続して照射される。すなわち、列上に照射されるレーザ光の隣接するパルス中心間の距離がスポット半径rよりも短くなるようにレーザ光を照射される。パルス中心とは、照射される円形のレーザ光の中心である。図4(B)に示すように、所定回の照射によって形成される円のパルス中心P(n)と次回の照射によって形成される円のパルス中心P(n+1)との間の距離D1はスポット半径rよりも短くなるように形成されている。   The laser light applied to the base material 11 that is a portion forming the axial end of the slide bearing 1 is applied to the rows in a direction parallel to the circumferential direction of the slide bearing 1. Further, as shown in FIG. 4B, the laser light is continuously irradiated so that a circle formed by the predetermined irradiation of the laser light and a circle formed by the next irradiation overlap with each other. That is, the laser light is irradiated so that the distance between the adjacent pulse centers of the laser light irradiated on the row becomes shorter than the spot radius r. The pulse center is the center of the circular laser light that is emitted. As shown in FIG. 4B, the distance D1 between the pulse center P (n) of the circle formed by the predetermined irradiation and the pulse center P (n + 1) of the circle formed by the next irradiation is the spot. It is formed to be shorter than the radius r.

レーザ光によって列上に凹凸部13が形成された後、基材11を移動させて形成された列と略平行な列上へレーザ光を照射する。すなわち、図4(C)に示すように、レーザ光によって列L(m)が形成された後、基材11を起動させて形成された列L(m)と平行な列L(m+1)上へレーザ光を照射するものである。   After the concavo-convex portions 13 are formed on the rows by the laser light, the base material 11 is moved to irradiate the laser light on the rows substantially parallel to the formed rows. That is, as shown in FIG. 4C, after the row L (m) is formed by the laser light, the row L (m + 1) parallel to the row L (m) formed by activating the base material 11 is formed. The laser light is emitted to the laser.

次に、基材11の内周面全体の表面加工について図4から図7を用いて説明する。
図5に示すように、軸方向上流側の列をL(1)とし、軸方向下流側の列をL(N)(Nは所定の数)とする。
列が、L(1)からL(a)(aは所定の数)までと、L(N−(a−1))からL(N)(aは所定の数)までのレーザ照射は、図4(B)に示すように、レーザ光の所定回の照射によって形成される円と次回の照射によって形成される円とが重なるように連続して照射される。
言い換えれば、すべり軸受1の軸方向における上流側端部の内周面を形成する部分である基材11の表面11aと、すべり軸受1の軸方向における下流側端部の内周面を形成する部分である基材11の表面11bとにおいて、レーザ光の所定回の照射によって形成される円と次回の照射によって形成される円とが重なるように連続して照射される。
Next, surface processing of the entire inner peripheral surface of the base material 11 will be described with reference to FIGS. 4 to 7.
As shown in FIG. 5, the axially upstream row is L (1), and the axially downstream row is L (N) (N is a predetermined number).
Laser irradiation from a row of L (1) to L (a) (a is a predetermined number) and from a row of L (N- (a-1)) to L (N) (a is a predetermined number) As shown in FIG. 4B, irradiation is continuously performed so that a circle formed by a predetermined irradiation of laser light and a circle formed by the next irradiation overlap.
In other words, the surface 11a of the base material 11 which is a portion forming the inner peripheral surface of the upstream end in the axial direction of the slide bearing 1 and the inner peripheral surface of the downstream end in the axial direction of the slide bearing 1 are formed. On the surface 11b of the base material 11 which is a portion, the circle formed by the predetermined irradiation of the laser light and the circle formed by the next irradiation are continuously irradiated so as to overlap with each other.

また、列L(a+1)から列L(N−a)までのレーザ照射は図6に示すように、レーザ光の所定回の照射によって形成される円と次回の照射によって形成される円とが重ならないように連続して照射される。すなわち、列上に照射されるレーザ光の隣接するパルス中心間の距離D2がスポット直径2r以上となるようにレーザ光を照射される。図6に示すように、所定回の照射によって形成される円のパルス中心P(n)と次回の照射によって形成される円のパルス中心P(n+1)との間の距離D2はスポット直径2rよりも長くなるように形成されている。   Further, as shown in FIG. 6, the laser irradiation from the row L (a + 1) to the row L (N−a) is divided into a circle formed by a predetermined irradiation of laser light and a circle formed by the next irradiation. Irradiate continuously so that they do not overlap. That is, the laser light is irradiated so that the distance D2 between the adjacent pulse centers of the laser light irradiated on the row becomes the spot diameter 2r or more. As shown in FIG. 6, the distance D2 between the pulse center P (n) of the circle formed by the predetermined irradiation and the pulse center P (n + 1) of the circle formed by the next irradiation is calculated from the spot diameter 2r. Is also formed to be long.

言い換えれば、すべり軸受1の軸方向における中央部の内周面を形成する部分である基材11の表面11cにおいて、レーザ光の所定回の照射によって形成される円と次回の照射によって形成される円とが重ならないように連続して照射される。   In other words, on the surface 11c of the base material 11 which is a portion forming the inner peripheral surface of the central portion in the axial direction of the plain bearing 1, a circle formed by a predetermined irradiation of laser light and a next irradiation are formed. Irradiation is performed continuously so that the circles do not overlap.

このように構成することにより、図7に示すように、すべり軸受1の軸方向における端部の内周面を形成する表面11a及び表面11bの粗さは、すべり軸受1の軸方向における中央部の内周面を形成する表面11cと比較して大きくなる。なお、粗さとは、本実施形態においては、連続的に照射されるレーザ光の列と平行な方向における粗さである。   With such a configuration, as shown in FIG. 7, the roughness of the surfaces 11a and 11b forming the inner peripheral surface of the end portion of the sliding bearing 1 in the axial direction is determined by the roughness of the central portion of the sliding bearing 1 in the axial direction. Is larger than the surface 11c forming the inner peripheral surface of the. Note that, in the present embodiment, the roughness is the roughness in the direction parallel to the row of the laser light that is continuously irradiated.

列L(m)を形成させる過程から列L(m+1)を形成する過程への移行時における基材11の移動は、不連続的な移動であってもよいし、若しくは連続的な移動であってもよい。すなわち、列L(m)を形成させる過程から列L(m+1)を形成する過程への移行時において、レーザ光の照射を停止させて基材11を移動させてもよいし、レーザ光の照射を継続させて基材11を移動させても良い。   The movement of the substrate 11 during the transition from the process of forming the row L (m) to the process of forming the row L (m + 1) may be discontinuous movement or continuous movement. May be. That is, during the transition from the process of forming the row L (m) to the process of forming the row L (m + 1), the irradiation of the laser light may be stopped and the substrate 11 may be moved, or the irradiation of the laser light may be performed. The base material 11 may be moved by continuing.

ここで、基材11にレーザ光を列上に連続的に照射することで形成される凹凸部13の微細な形状について説明する。図8は、基材11の凹凸部13を示す概略表面拡大図である。図8(A)に示すように、基材11にレーザ光を一回照射した場合には、レーザ光の中心(パルス中心)を中心とする平面視円形の凹部13aが形成され、その周囲に、王冠状の凸部13bが形成される。凸部13bは、いわゆるミルククラウン状に形成され、基材11が変形したものである。また、一部の飛沫は周囲へと飛散する。また、図8(B)に示すように、凹凸部13は、列上に照射されるレーザ光の隣接するパルス中心間の距離D1がスポット半径rよりも短くなるようにレーザ光を基材11に照射し、隣接する列上のパルス中心間の距離D2がスポット半径rの1/2よりも長く、かつ、スポット直径2rよりも短くなるようにレーザ光を基材11に照射することにより微細な凹凸が形成され、縞形状が形成される。基材11が変形した飛沫は、隣接する凹部13aや凸部13b上に付着し、凝固する。   Here, the fine shape of the concave-convex portion 13 formed by continuously irradiating the base material 11 with laser light in rows will be described. FIG. 8 is a schematic surface enlarged view showing the uneven portion 13 of the base material 11. As shown in FIG. 8A, when the substrate 11 is irradiated with the laser light once, a concave portion 13a having a circular shape in plan view centered on the center (pulse center) of the laser light is formed, and the periphery thereof is formed. , A crown-shaped convex portion 13b is formed. The convex portion 13b is formed in a so-called milk crown shape, and the base material 11 is deformed. Also, some of the droplets will be scattered around. Further, as shown in FIG. 8B, the concave-convex portion 13 applies the laser light to the base material 11 so that the distance D1 between the adjacent pulse centers of the laser light irradiated on the row becomes shorter than the spot radius r. By irradiating the substrate 11 with laser light such that the distance D2 between the pulse centers on adjacent columns is longer than 1/2 of the spot radius r and shorter than the spot diameter 2r. Unevenness is formed, and a stripe shape is formed. The droplets deformed on the base material 11 adhere to the adjacent concave portions 13a and convex portions 13b and are solidified.

次に、図9に示すように、凹凸部13を形成した基材11表面に樹脂膜12を形成する。樹脂膜12は、固体潤滑剤とバインダー樹脂とからなる被膜である。本発明の実施形態に用いることができる固体潤滑剤としては、特に限定されないが、二硫化モリブデン(MoS)、グラファイト、h−BN、二硫化タングステン(WS)、ポリ四フッ化エチレン(以下、PTFEと称する)、フッ素系樹脂、Pb、CF等が挙げられる。これらの固体潤滑剤は、摩擦係数を低く且つ安定させる作用とともに、焼付きを防止する作用を有する。これらの作用を十分に発揮させるため、固体潤滑剤の平均粒径は15μm以下であることが好ましく、特に0.2μm〜10μmであることが好ましい。 Next, as shown in FIG. 9, a resin film 12 is formed on the surface of the base material 11 on which the uneven portion 13 is formed. The resin film 12 is a film made of a solid lubricant and a binder resin. The solid lubricant that can be used in the embodiment of the present invention is not particularly limited, but molybdenum disulfide (MoS 2 ), graphite, h-BN, tungsten disulfide (WS 2 ), polytetrafluoroethylene (hereinafter , PTFE), fluororesins, Pb, CF and the like. These solid lubricants have a function of lowering and stabilizing the friction coefficient and a function of preventing seizure. In order to sufficiently exert these effects, the average particle diameter of the solid lubricant is preferably 15 μm or less, and particularly preferably 0.2 μm to 10 μm.

固体潤滑剤は1種また複数種を合わせて用いてもよい。また樹脂膜12の材料中に含まれる固体潤滑剤の含有量は好ましくは10質量%〜80質量%、より好ましくは40質量%〜60質量%であり、固体潤滑剤の含有量がその範囲にあることにより、摩擦特性や耐摩耗性に優れた膜となる。   The solid lubricant may be used alone or in combination of two or more. Further, the content of the solid lubricant contained in the material of the resin film 12 is preferably 10% by mass to 80% by mass, more preferably 40% by mass to 60% by mass, and the content of the solid lubricant falls within the range. Due to this, a film having excellent friction characteristics and abrasion resistance is obtained.

バインダー樹脂は特に限定されないが、耐熱性の高いものが好ましく、例えばポリアミドイミド、ポリイミド、エポキシ樹脂、フェノール樹脂、ポリアミド(ナイロン)、フッ素樹脂(PTFE,FEP等)、エラストマ等が挙げられる。これらのバインダー樹脂は固体潤滑剤の保持及び耐摩耗性を付与する。バインダー樹脂の樹脂膜12への含有量は10質量%〜80質量%であることが好ましい。バインダー樹脂の含有量がこの範囲にあることにより、樹脂膜中の固体潤滑剤の保持性が維持され、固体潤滑剤の保持及び耐摩耗性に優れた被膜を得ることができる。   The binder resin is not particularly limited, but those having high heat resistance are preferable, and examples thereof include polyamide imide, polyimide, epoxy resin, phenol resin, polyamide (nylon), fluororesin (PTFE, FEP, etc.), and elastomer. These binder resins provide solid lubricant retention and wear resistance. The content of the binder resin in the resin film 12 is preferably 10% by mass to 80% by mass. When the content of the binder resin is within this range, the retention of the solid lubricant in the resin film can be maintained, and a coating film excellent in retention of the solid lubricant and abrasion resistance can be obtained.

また樹脂膜12の材料は、上記以外にも添加剤を含んでもよい。例えばAl、Si、TiO及びSiO等の硬質粒子や極圧剤が挙げられる。 The material of the resin film 12 may include an additive other than the above. Examples thereof include hard particles such as Al 2 O 3 , Si 2 N 4 , TiO 2 and SiO 2 and extreme pressure agents.

樹脂膜12の基材11表面への形成方法は特に限定されないが、例えば、凹凸部13を有する基材11表面に樹脂膜12の材料を混合してスプレーで塗布後、150℃〜300℃で乾燥、焼成することによって形成してもよい。スプレー塗装法(例えばエアスプレー、エア静電塗装等)の他に、タンブリング法、浸漬法、はけ塗り法、ロール型法等を用いてもよい。樹脂膜12の厚みは1μm〜50μmであることが好ましい。   The method of forming the resin film 12 on the surface of the base material 11 is not particularly limited, but for example, after mixing the material of the resin film 12 on the surface of the base material 11 having the uneven portions 13 and applying the mixture by spraying, at 150 ° C to 300 ° C You may form by drying and baking. In addition to the spray coating method (for example, air spraying, air electrostatic coating, etc.), a tumbling method, a dipping method, a brush coating method, a roll type method or the like may be used. The thickness of the resin film 12 is preferably 1 μm to 50 μm.

基材11上に形成された樹脂膜12は、その摺動面に開口する油溜まりとなる複数の穴を有してもよい。穴の開口面の形状は、特に限定されない。例えば円形、楕円形、多角形等であってもよい。この穴は、上述したYAGレーザを用いて形成してもよい。また穴の深さは5μm以上40μm以下であることが好ましい。この範囲の深さを有することにより、潤滑油等の流出を抑え、潤滑油、異物などを保持することができる。また上記穴の深さは、樹脂膜12の厚みより小さいことが望ましい。また穴は必ずしも摺動面全体に形成されている必要はなく、特定部位に形成されていてもよい。   The resin film 12 formed on the base material 11 may have a plurality of holes that serve as oil reservoirs and open on the sliding surface. The shape of the opening surface of the hole is not particularly limited. For example, it may be circular, elliptical, polygonal, or the like. This hole may be formed using the YAG laser described above. The depth of the holes is preferably 5 μm or more and 40 μm or less. By having a depth within this range, it is possible to suppress the outflow of lubricating oil and the like, and to retain the lubricating oil and foreign substances. Further, the depth of the hole is preferably smaller than the thickness of the resin film 12. Further, the hole does not necessarily have to be formed in the entire sliding surface, and may be formed in a specific portion.

また、基材11上に形成された樹脂膜12は、初期なじみ性を向上させ、厳しい摺動条件下においても優れた摺動特性を有するようにするため、隣接する溝が山部を形成してもよい。この場合、隣接する溝が山部を形成していればよく、溝の谷部形状については特に限定されない。潤滑油を確保することができればよく、例えば、半円状、三角形状、台形状等が挙げられる。山部の形成率が高く、初期の接触面圧が高くなるため、摩耗、変形が生じやすく、初期なじみ性が良好に達成できる点で、半円状、三角形状が好ましい。特に半円状は、溝内に潤滑油を多く確保できるため好ましい。   In addition, the resin film 12 formed on the base material 11 improves initial conformability and has excellent sliding characteristics even under severe sliding conditions. May be. In this case, it suffices that adjacent grooves form peaks, and the shape of the valleys of the grooves is not particularly limited. It is sufficient that the lubricating oil can be secured, and examples thereof include a semicircular shape, a triangular shape, and a trapezoidal shape. The semi-circular shape and the triangular shape are preferable because the rate of formation of the crests is high and the initial contact surface pressure is high, so that abrasion and deformation are likely to occur and the initial conformability can be satisfactorily achieved. Particularly, the semicircular shape is preferable because a large amount of lubricating oil can be secured in the groove.

以上のように、レーザ照射装置101を用いてすべり軸受1の内周面に凹凸部13を形成するすべり軸受1の表面加工方法であって、レーザ照射装置101を用いて、すべり軸受1の周方向と平行な方向の列上にレーザ光を照射し、すべり軸受1の軸方向両端部において、列上に照射されるレーザ光の隣接するパルス中心間の距離D1がスポット半径rよりも短くなるようにレーザ光を照射するものである。
このように構成することにより、樹脂膜の剥離が軸方向両端内周面よりも発生しにくいすべり軸受1の軸方向中央部内周面のレーザ照射加工においては、レーザ光の照射回数を少なくすることができるので、加工コストを低減することが可能となる。
As described above, the method for processing the surface of the slide bearing 1 in which the uneven portion 13 is formed on the inner peripheral surface of the slide bearing 1 by using the laser irradiation device 101 is described. The laser beam is radiated onto the row in the direction parallel to the direction, and the distance D1 between the adjacent pulse centers of the laser light radiated onto the row becomes shorter than the spot radius r at both axial ends of the slide bearing 1. Thus, the laser light is emitted.
With this structure, the number of times of laser light irradiation is reduced in the laser irradiation processing of the inner peripheral surface of the central portion of the sliding bearing 1 in the axial direction in which peeling of the resin film is less likely to occur than in the inner peripheral surfaces at both ends in the axial direction. Therefore, the processing cost can be reduced.

また、すべり軸受1の軸方向両端部の表面11a及び表面11bにおける凹凸部13の粗さは、すべり軸受1の軸方向中央部の表面11cにおける凹凸部13の粗さよりも大きくなるように形成するものである。
このように構成することにより、特に、潤滑油が軸受内部へ流入もしくは外部へ流出するすべり軸受1の軸方向両端内周面における凹凸部13を粗く形成することができ、樹脂膜12との密着力が向上する。これにより、樹脂膜12の剥離を防止することができる。
Further, the roughness of the uneven portion 13 on the surfaces 11a and 11b at both axial ends of the slide bearing 1 is formed to be larger than the roughness of the uneven portion 13 on the surface 11c at the axial center of the slide bearing 1. It is a thing.
With such a configuration, in particular, it is possible to form the rough portions 13 on the inner peripheral surfaces of both ends in the axial direction of the sliding bearing 1 through which lubricating oil flows in or out, and to closely contact the resin film 12. Power improves. Thereby, peeling of the resin film 12 can be prevented.

1 すべり軸受
11 基材
12 樹脂膜
13 凹凸部
1 sliding bearing 11 base material 12 resin film 13 uneven portion

Claims (2)

レーザ照射装置を用いてすべり軸受の内周面に凹凸部を形成するすべり軸受の表面加工方法であって、
前記レーザ照射装置を用いて、前記すべり軸受の周方向と平行な方向の列上にレーザ光を照射し、
前記すべり軸受の軸方向両端部において、列上に照射されるレーザ光の隣接するパルス中心間の距離がスポット半径よりも短くなるようにレーザ光を照射し、
前記すべり軸受の軸方向両端部における凹凸部の粗さは、前記すべり軸受の軸方向中央部における凹凸部の粗さよりも大きくなるように形成し、
前記すべり軸受の凹凸部表面に樹脂膜を形成する、
すべり軸受の表面加工方法。
A surface processing method for a slide bearing, which comprises forming an uneven portion on the inner peripheral surface of the slide bearing using a laser irradiation device,
Using the laser irradiation device, irradiating a laser beam on a row in a direction parallel to the circumferential direction of the slide bearing,
At both ends in the axial direction of the slide bearing, the laser light is irradiated so that the distance between adjacent pulse centers of the laser light irradiated on the row is shorter than the spot radius ,
The roughness of the uneven portion at both axial ends of the slide bearing is formed to be larger than the roughness of the uneven portion at the axial center of the slide bearing,
Forming a resin film on the surface of the uneven portion of the plain bearing,
Surface processing method for plain bearings.
レーザ光が列上に連続的に照射され、照射された前記レーザ光により内周面に凹凸部が形成されるすべり軸受であって、
前記すべり軸受の軸方向両端部における凹凸部の粗さは、前記すべり軸受の軸方向中央部における凹凸部の粗さよりも大きくなるように形成され
前記すべり軸受の凹凸部表面に樹脂膜が形成される、
すべり軸受。
A sliding bearing in which a laser beam is continuously irradiated on a row, and an uneven portion is formed on an inner peripheral surface by the irradiated laser beam,
The roughness of the uneven portion at both axial end portions of the slide bearing is formed to be larger than the roughness of the uneven portion at the axial center portion of the slide bearing ,
A resin film is formed on the surface of the uneven portion of the plain bearing,
Plain bearing.
JP2016055286A 2016-03-18 2016-03-18 Surface processing method for sliding bearing and sliding bearing Active JP6688113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055286A JP6688113B2 (en) 2016-03-18 2016-03-18 Surface processing method for sliding bearing and sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055286A JP6688113B2 (en) 2016-03-18 2016-03-18 Surface processing method for sliding bearing and sliding bearing

Publications (2)

Publication Number Publication Date
JP2017166680A JP2017166680A (en) 2017-09-21
JP6688113B2 true JP6688113B2 (en) 2020-04-28

Family

ID=59912939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055286A Active JP6688113B2 (en) 2016-03-18 2016-03-18 Surface processing method for sliding bearing and sliding bearing

Country Status (1)

Country Link
JP (1) JP6688113B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108274125B (en) * 2018-01-17 2024-06-07 江苏大学 Shaft hole tight-fit surface and manufacturing method thereof
JP2019211001A (en) 2018-06-04 2019-12-12 大豊工業株式会社 Slide bearing
US20240239082A1 (en) * 2022-01-27 2024-07-18 Mutsuki Electric Co., Ltd. Metal member, metal-resin joined body, and method for manufacturing metal-resin joined body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543423B2 (en) * 1990-02-28 1996-10-16 トヨタ自動車株式会社 Plain bearing device
JP2003269454A (en) * 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd Bearing metal and slide bearing using bearing metal
JP5571430B2 (en) * 2010-03-30 2014-08-13 大同メタル工業株式会社 Sliding member and manufacturing method thereof
JP5621513B2 (en) * 2010-11-02 2014-11-12 大豊工業株式会社 Plain bearing
JP2013071312A (en) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd Composite molding body of metal member and molded resin member, and surface processing method of metal member
JP5848104B2 (en) * 2011-11-21 2016-01-27 株式会社ダイセル Method for producing composite molded body
JP5903391B2 (en) * 2013-02-06 2016-04-13 大豊工業株式会社 Manufacturing method of sliding member
JP5814988B2 (en) * 2013-07-25 2015-11-17 本田技研工業株式会社 Method for surface modification of casting mold

Also Published As

Publication number Publication date
JP2017166680A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP5903391B2 (en) Manufacturing method of sliding member
JP6688113B2 (en) Surface processing method for sliding bearing and sliding bearing
US9541131B2 (en) Method for producing a rolling bearing cage for an axial-radial rolling bearing and axial-radial rolling bearing
JP2009520926A (en) Connecting rod for internal combustion engine and method of manufacturing the same
JP2009002436A (en) Rolling slide member
CN101779048A (en) Coated bearing
JP2005249150A (en) Sliding member, and its manufacturing method and device
JP6928454B2 (en) Manufacturing method of sliding member, sliding member, swash plate for compressor using sliding member
JP2008223942A (en) Rolling bearing
JP2019049330A (en) Slide bearing
CN110242575B (en) Friction piece, compressor, air conditioner and friction surface treatment method
JP4442349B2 (en) Rolling bearing and spindle device
KR20200020779A (en) Mechanical systems comprising shafts coupled to bearings and methods of manufacturing such systems
KR20200070347A (en) Swash
JP2007321806A (en) Rolling slide part and rolling device equipped with rolling slide part
JP7373898B2 (en) Contact surface structure
GB2529465A (en) Rolling element bearing
JP6392130B2 (en) Manufacturing method of sliding surface structure
JPWO2019013220A1 (en) Rolling device
JP4972748B2 (en) How to improve fretting fatigue strength
JP6608503B1 (en) Contact surface structure and method of forming contact surface structure
JP2007100759A (en) Roller bearing
JP2007285352A (en) Bearing
JP2020020359A (en) Thrust slide bearing
JP2005325961A (en) Machine part and cage for rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6688113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250