[go: up one dir, main page]

JP6686922B2 - Power receiving device and power transmitting device - Google Patents

Power receiving device and power transmitting device Download PDF

Info

Publication number
JP6686922B2
JP6686922B2 JP2017018267A JP2017018267A JP6686922B2 JP 6686922 B2 JP6686922 B2 JP 6686922B2 JP 2017018267 A JP2017018267 A JP 2017018267A JP 2017018267 A JP2017018267 A JP 2017018267A JP 6686922 B2 JP6686922 B2 JP 6686922B2
Authority
JP
Japan
Prior art keywords
power
power transmission
power receiving
predetermined range
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017018267A
Other languages
Japanese (ja)
Other versions
JP2018126018A (en
Inventor
上地 健介
健介 上地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017018267A priority Critical patent/JP6686922B2/en
Publication of JP2018126018A publication Critical patent/JP2018126018A/en
Application granted granted Critical
Publication of JP6686922B2 publication Critical patent/JP6686922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本開示は、受電装置及び送電装置に関し、特に、受電装置における受電効率と相関を有するパラメータに従って非接触電力伝送の可否を判定する技術に関する。   The present disclosure relates to a power receiving device and a power transmitting device, and particularly to a technique for determining whether or not non-contact power transmission is possible according to a parameter having a correlation with a power receiving efficiency of the power receiving device.

送電装置から受電装置に非接触で送電する非接触電力伝送システムが知られている(特許文献1〜6参照)。送電装置は送電コイルを含み、受電装置は受電コイルを含む。   A contactless power transmission system in which power is transmitted from a power transmitting device to a power receiving device in a contactless manner is known (see Patent Documents 1 to 6). The power transmission device includes a power transmission coil, and the power reception device includes a power reception coil.

特開2015−144529号公報(特許文献1)に開示される非接触電力伝送システムにおいては、送電装置に対する受電装置の位置合わせが行なわれた後に、送電装置から受電装置への送電が可能か否かが判定される。具体的には、送電装置に対する受電装置の相対的な位置が所定条件を満たすか否かによって、送電装置から受電装置への送電が可能か否かが判定される(特許文献1参照)。   In the contactless power transmission system disclosed in JP-A-2005-144529 (Patent Document 1), whether power transmission from the power transmission device to the power reception device is possible after the power reception device is aligned with the power transmission device. Is determined. Specifically, whether or not power transmission from the power transmitting device to the power receiving device is possible is determined by whether or not the relative position of the power receiving device with respect to the power transmitting device satisfies a predetermined condition (see Patent Document 1).

特開2015−144529号公報JP, 2005-144529, A 特開2013−154815号公報JP, 2013-154815, A 特開2013−146154号公報JP, 2013-146154, A 特開2013−146148号公報JP, 2013-146148, A 特開2013−110822号公報JP, 2013-110822, A 特開2013−126327号公報JP, 2013-126327, A

送電装置から受電装置への非接触での送電が開始されると、送電装置及び受電装置に含まれる一部の素子が発熱し、素子の特性が変化する。したがって、送電開始前においては受電装置が十分な電力を受電できると判定されていたとしても、送電開始後の素子特性の変化によって、送電開始後に受電装置が十分な電力を受電できなくなることも考えられる。上記特許文献1においては、このような送電開始後の素子特性の変化について特に考慮されていない。   When non-contact power transmission from the power transmitting device to the power receiving device is started, some elements included in the power transmitting device and the power receiving device generate heat, and the characteristics of the elements change. Therefore, even if it is determined that the power receiving device can receive sufficient power before the start of power transmission, it is possible that the power receiving device may not be able to receive sufficient power after the start of power transmission due to changes in element characteristics after the start of power transmission. To be In the above-mentioned Patent Document 1, no particular consideration is given to such changes in element characteristics after the start of power transmission.

本開示は、このような問題を解決するためになされたものであって、その目的は、送電装置から受電装置への非接触での送電の開始後に、受電装置が十分に受電できなくなる可能性を低減可能な技術を提供することである。   The present disclosure has been made to solve such a problem, and an object thereof is to prevent the power receiving device from being unable to sufficiently receive power after the start of non-contact power transmission from the power transmitting device to the power receiving device. Is to provide a technology capable of reducing

本開示の受電装置は、受電コイルと、蓄電装置と、制御装置とを備える。受電コイルは、送電装置から非接触で受電するように構成されている。蓄電装置は、受電コイルによって受電された電力を蓄えるように構成されている。制御装置は、受電コイルによる受電効率と相関を有するパラメータが所定範囲内に収まっているか否かに従って、受電コイルによる受電の可否を判定するように構成されている。制御装置は、受電コイルにより受電された電力を用いた蓄電装置の充電に要する時間及び外気温の少なくとも一方に従って上記所定範囲を修正する。   The power receiving device of the present disclosure includes a power receiving coil, a power storage device, and a control device. The power reception coil is configured to receive power from the power transmission device in a contactless manner. The power storage device is configured to store the electric power received by the power receiving coil. The control device is configured to determine whether or not power reception by the power reception coil is possible, depending on whether or not a parameter having a correlation with the power reception efficiency by the power reception coil is within a predetermined range. The control device corrects the predetermined range in accordance with at least one of the time required to charge the power storage device using the electric power received by the power receiving coil and the outside air temperature.

また、本開示の送電装置は、送電コイルと、制御装置とを備える。送電コイルは、受電装置に非接触で送電するように構成されている。制御装置は、受電装置による受電効率と相関を有するパラメータが所定範囲内に収まっているか否かに従って、送電コイルによる送電の可否を判定するように構成されている。受電装置は、受電コイルと、蓄電装置とを備える。受電コイルは、送電コイルから非接触で受電するように構成されている。蓄電装置は、受電コイルによって受電された電力を蓄えるように構成されている。制御装置は、受電コイルにより受電された電力を用いた蓄電装置の充電に要する時間及び外気温の少なくとも一方に従って上記所定範囲を修正する。   Further, the power transmission device of the present disclosure includes a power transmission coil and a control device. The power transmission coil is configured to transmit power to the power receiving device in a contactless manner. The control device is configured to determine whether or not power transmission by the power transmission coil can be performed depending on whether or not a parameter having a correlation with the power reception efficiency of the power reception device falls within a predetermined range. The power receiving device includes a power receiving coil and a power storage device. The power receiving coil is configured to receive power from the power transmitting coil in a non-contact manner. The power storage device is configured to store the electric power received by the power receiving coil. The control device corrects the predetermined range according to at least one of the time required to charge the power storage device using the electric power received by the power receiving coil and the outside air temperature.

蓄電装置の充電に要する時間が長い場合や外気温が高い場合には、非接触電力伝送中に送電装置及び受電装置に含まれる素子の温度が上昇しやすく、素子の特性が変化しやすい。これらの受電装置及び送電装置においては、蓄電装置の充電に要する時間及び外気温の少なくとも一方に従って上記所定範囲が修正されるため、非接触電力伝送中における送電装置及び受電装置に含まれる素子の特性変化を考慮した上で、非接触電力伝送の可否が判定される。したがって、これらの受電装置及び送電装置によれば、非接触電力伝送の開始後に受電装置が十分に受電できなくなる可能性を低減することができる。   When the time required to charge the power storage device is long or the outside air temperature is high, the temperature of the element included in the power transmission device and the power reception device is likely to rise during non-contact power transmission, and the element characteristics are likely to change. In these power receiving devices and power transmitting devices, since the above predetermined range is modified according to at least one of the time required to charge the power storage device and the outside temperature, the characteristics of the elements included in the power transmitting device and the power receiving device during non-contact power transmission. The possibility of non-contact power transmission is determined after considering the change. Therefore, according to the power receiving device and the power transmitting device, it is possible to reduce the possibility that the power receiving device cannot sufficiently receive power after the start of the non-contact power transmission.

本開示によれば、送電装置から受電装置への非接触での送電の開始後に、受電装置が十分に受電できなくなる可能性を低減可能な技術を提供することができる。   According to the present disclosure, it is possible to provide a technique capable of reducing the possibility that the power receiving device cannot sufficiently receive power after the power transmission from the power transmitting device to the power receiving device is started in a non-contact manner.

非接触電力伝送システムの構成図である。It is a block diagram of a non-contact electric power transmission system. 蓄電装置の充電に要する時間、外気温、及び、充電中の素子特性の変化度合いの関係を示す図である。It is a figure which shows the time required for charge of a power storage device, the outside temperature, and the relationship of the change degree of the element characteristic during charge. 蓄電装置の充電中の素子特性の変化度合いと、上記所定範囲を修正するためのマージンとの関係を示す図である。It is a figure which shows the relationship between the change degree of the element characteristic during charge of an electrical storage apparatus, and the margin for correcting the said predetermined range. 非接触電力伝送の可否判定の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the propriety determination of non-contact electric power transmission. 非接触電力伝送中における素子特性の変化度合いを求める処理手順を示すフローチャートである。7 is a flowchart showing a processing procedure for obtaining a degree of change in element characteristics during non-contact power transmission.

以下、実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments will be described in detail with reference to the drawings. It should be noted that the same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.

[実施の形態1]
(非接触電力伝送システムの構成)
図1は、本実施の形態に従う車両100が適用される非接触電力伝送システム1の構成図である。図1を参照して、非接触電力伝送システム1は、車両100と送電装置200とを備える。車両100と送電装置200との間では、非接触で電力伝送が行なわれる。
[Embodiment 1]
(Configuration of contactless power transmission system)
FIG. 1 is a configuration diagram of a contactless power transmission system 1 to which a vehicle 100 according to the present embodiment is applied. Referring to FIG. 1, contactless power transmission system 1 includes a vehicle 100 and a power transmission device 200. Electric power is transmitted between the vehicle 100 and the power transmission device 200 in a non-contact manner.

送電装置200は、送電部210と、通信部240と、制御装置250とを含む。送電装置200は、系統電源300から受けた交流電力を送電部210を介して車両100に送電する。   Power transmission device 200 includes a power transmission unit 210, a communication unit 240, and a control device 250. Power transmission device 200 transmits AC power received from system power supply 300 to vehicle 100 via power transmission unit 210.

送電部210は、たとえば、インバータと、送電コイルと、キャパシタとを含む(いずれも不図示)。送電部210において、送電コイルとキャパシタとは、非接触電力伝送における伝送周波数で共振するように設計されている。送電コイルは、系統電源300の交流電力を基にインバータによって生成された送電電力の供給を受けることにより磁界を形成し、形成された磁界を通じて受電部110の受電コイルに非接触で送電する。なお、送電コイルにおける導線の巻き数は、Q値(たとえば、Q≧100)及び結合係数κが大きくなるように適宜設計される。また、送電コイル及びキャパシタは、温度によって素子特性(たとえば、L(インダクタンス)又はC(キャパシタンス))が変化する。   Power transmission unit 210 includes, for example, an inverter, a power transmission coil, and a capacitor (all not shown). In the power transmission unit 210, the power transmission coil and the capacitor are designed to resonate at the transmission frequency in non-contact power transmission. The power transmission coil forms a magnetic field by receiving the transmission power generated by the inverter based on the AC power of the system power supply 300, and transmits the power to the power reception coil of the power reception unit 110 in a non-contact manner through the formed magnetic field. The number of turns of the conductive wire in the power transmission coil is appropriately designed so that the Q value (for example, Q ≧ 100) and the coupling coefficient κ are large. Further, the element characteristics (for example, L (inductance) or C (capacitance)) of the power transmission coil and the capacitor change depending on the temperature.

通信部240は、車両100の通信部120(後述)と通信可能である。通信部240は、たとえば、IEEE(Institute of Electrical and Electronic Engineers)802.11等の無線LAN規格に準拠した通信モジュールで構成される。   The communication unit 240 can communicate with the communication unit 120 (described later) of the vehicle 100. The communication unit 240 is composed of, for example, a communication module conforming to a wireless LAN standard such as IEEE (Institute of Electrical and Electronic Engineers) 802.11.

制御装置250は、図示しないCPU(Central Processing Unit)及びメモリを内蔵し、当該メモリに記憶された情報や各センサ(不図示)からの情報に基づいて送電装置200の各機器(送電部210、通信部240等)を制御する。   The control device 250 has a CPU (Central Processing Unit) and a memory (not shown) built therein, and each device of the power transmission device 200 (the power transmission unit 210, based on information stored in the memory or information from each sensor (not shown)). Communication unit 240, etc.).

制御装置250は、たとえば、送電を行なうように送電部210を制御する。制御装置250は、蓄電装置150の充電を目的とした送電の他、微弱電力の送電を行なうように送電部210を制御することができる。微弱電力の送電は、車両100が十分に受電できる位置に停車しているか否かを判定するために行なわれる。車両100においては、微弱電力の受電状況によって、非接触電力伝送の可否が判定される。   Control device 250 controls power transmission unit 210 to perform power transmission, for example. Control device 250 can control power transmission unit 210 to transmit weak power in addition to power transmission for charging power storage device 150. Transmission of weak electric power is performed to determine whether or not vehicle 100 is stopped at a position where it can sufficiently receive electric power. In the vehicle 100, it is determined whether or not contactless power transmission is possible, depending on the power reception status of weak power.

車両100は、受電部110と、通信部120と、蓄電装置150と、温度センサ160と、ECU(Electronic Control Unit)140とを含む。車両100においては、送電装置200から非接触で受電された電力が蓄電装置150に蓄えられる。そして、車両100においては、蓄電装置150に蓄えられた電力に基づいて車両100の走行駆動力が生成される。   Vehicle 100 includes a power receiving unit 110, a communication unit 120, a power storage device 150, a temperature sensor 160, and an ECU (Electronic Control Unit) 140. In vehicle 100, electric power received contactlessly from power transmission device 200 is stored in power storage device 150. Then, in vehicle 100, the traveling driving force of vehicle 100 is generated based on the electric power stored in power storage device 150.

受電部110は、受電コイルとキャパシタとを含む(いずれも不図示)。受電部110において、受電コイルとキャパシタとは、非接触電力伝送における送電周波数で共振するように設計されている。受電コイルは、送電部210の送電コイルから非接触で受電する。受電部110により受電された電力(交流)は、直流電力に変換され、電圧が所望の電圧に変換された上で蓄電装置150に蓄えられる。なお、受電コイルにおける導線の巻き数は、Q値(たとえば、Q≧100)及び結合係数κが大きくなるように適宜設計される。また、受電コイル及びキャパシタは、温度によって素子特性(たとえば、L(インダクタンス)又はC(キャパシタンス))が変化する。本実施の形態においては、温度による素子特性の変化が考慮された上で、非接触電力伝送の可否が判定される。詳細については後程説明する。   Power reception unit 110 includes a power reception coil and a capacitor (both not shown). In the power receiving unit 110, the power receiving coil and the capacitor are designed to resonate at the power transmission frequency in non-contact power transmission. The power reception coil receives power from the power transmission coil of the power transmission unit 210 in a non-contact manner. The electric power (AC) received by the power receiving unit 110 is converted into DC power, and the voltage is converted into a desired voltage and then stored in the power storage device 150. The number of turns of the conductive wire in the power receiving coil is appropriately designed so that the Q value (for example, Q ≧ 100) and the coupling coefficient κ are large. Further, the element characteristics (for example, L (inductance) or C (capacitance)) of the power receiving coil and the capacitor change depending on the temperature. In the present embodiment, the possibility of non-contact power transmission is determined in consideration of changes in element characteristics due to temperature. Details will be described later.

通信部120は、送電装置200の通信部240と通信可能である。通信部120は、たとえば、送電部210が送電した電力(上述の微弱電力を含む)の大きさを示す情報を受信する。通信部120は、たとえば、IEEE802.11等の無線LAN規格に準拠した通信モジュールで構成される。   The communication unit 120 can communicate with the communication unit 240 of the power transmission device 200. The communication unit 120 receives, for example, information indicating the magnitude of the power transmitted by the power transmission unit 210 (including the weak power described above). The communication unit 120 is composed of, for example, a communication module compliant with a wireless LAN standard such as IEEE 802.11.

蓄電装置150は、充放電可能に構成された電力貯蔵要素である。蓄電装置150は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池等の二次電池や、電気二重層キャパシタ等の蓄電素子を含んで構成される。   Power storage device 150 is a power storage element configured to be chargeable and dischargeable. Power storage device 150 is configured to include, for example, a secondary battery such as a lithium-ion battery, a nickel hydrogen battery or a lead storage battery, or a power storage element such as an electric double layer capacitor.

温度センサ160は、外気温を検知するように構成されている。温度センサ160による検知結果は、ECU140に出力される。   The temperature sensor 160 is configured to detect the outside air temperature. The detection result of the temperature sensor 160 is output to the ECU 140.

ECU140は、図示しないCPU及びメモリを内蔵し、当該メモリに記憶された情報や各センサ(不図示)からの情報に基づいて車両100の各機器(受電部110、通信部120等)を制御する。   The ECU 140 has a CPU and a memory (not shown) built therein, and controls each device (the power receiving unit 110, the communication unit 120, etc.) of the vehicle 100 based on the information stored in the memory and the information from each sensor (not shown). .

ECU140は、たとえば、上述の微弱電力の受電状況に応じて、非接触電力伝送の可否を判定する。具体的には、ECU140は、通信部120を介して、送電部210によって送電された微弱電力の大きさを示す情報を取得する。そして、ECU140は、送電部210によって送電された微弱電力に対する、受電部110によって実際に受電された微弱電力の割合(受電電力/送電電力)、すなわち受電効率(以下、「所定パラメータ」とも称する。)を算出する。ECU140は、所定パラメータが所定条件を満たすか否かによって、非接触電力伝送の可否を判定する。非接触電力伝送の可否の判定方法については後程詳しく説明する。なお、受電部110によって実際に受電された電力の大きさは、受電部110の受電電圧を検知する電圧センサ、及び、受電部110の受電電流を検知する電流センサ(いずれも不図示)の出力に基づいて算出される。   The ECU 140 determines whether or not contactless power transmission is possible, for example, according to the above-described weak power reception status. Specifically, the ECU 140 acquires, via the communication unit 120, information indicating the magnitude of the weak power transmitted by the power transmission unit 210. Then, ECU 140 has a ratio of the weak power actually received by power reception unit 110 to the weak power transmitted by power transmission unit 210 (power reception power / transmission power), that is, power reception efficiency (hereinafter, also referred to as “predetermined parameter”). ) Is calculated. The ECU 140 determines whether or not non-contact power transmission is possible depending on whether or not a predetermined parameter satisfies a predetermined condition. The method for determining whether or not the contactless power transmission is possible will be described later in detail. The magnitude of the power actually received by the power receiving unit 110 is determined by the output of a voltage sensor that detects the power receiving voltage of the power receiving unit 110 and a current sensor (not shown) that detects the power receiving current of the power receiving unit 110. Is calculated based on.

(非接触電力伝送中の回路特性の変化)
送電装置200から車両100への非接触での送電が開始されると、送電部210及び受電部110に含まれる一部の素子(たとえば、コイル及びキャパシタ)が発熱し、素子の特性が変化する。素子特性の変化に伴ない、送電部210及び受電部110に含まれる共振回路の電気回路特性(電気回路定数)が変化する。したがって、非接触電力伝送の開始前においては、受電部110が十分な電力を受電できると判定されていたとしても、非接触電力伝送の開始後における電気回路特性の変化によって、非接触電力伝送の開始後に受電部110が十分な電力を受電できなくなる可能性がある。
(Change in circuit characteristics during non-contact power transmission)
When non-contact power transmission from power transmission device 200 to vehicle 100 is started, some elements (for example, a coil and a capacitor) included in power transmission section 210 and power reception section 110 generate heat, and the characteristics of the elements change. . As the element characteristics change, the electric circuit characteristics (electric circuit constants) of the resonance circuits included in the power transmission unit 210 and the power reception unit 110 change. Therefore, even if it is determined that the power receiving unit 110 can receive sufficient power before the start of the contactless power transmission, the change in the electric circuit characteristics after the start of the contactless power transmission causes the contactless power transmission to be stopped. The power receiving unit 110 may not be able to receive sufficient power after the start.

蓄電装置150の充電に要する時間が長い場合や外気温が高い場合には、送電部210及び受電部110に含まれる素子の温度が上昇しやすく、素子特性が変化しやすい。したがって、蓄電装置150の充電に要する時間が長い場合や外気温が高い場合に、非接触電力伝送の可否判定を厳しくすることによって、非接触電力伝送の開始後に受電部110が十分に受電できなくなる可能性を低減することができる。   When the time required to charge power storage device 150 is long or the outside air temperature is high, the temperatures of the elements included in power transmission unit 210 and power reception unit 110 are likely to rise and the element characteristics are likely to change. Therefore, when the time required to charge power storage device 150 is long or the outside air temperature is high, the power receiving unit 110 cannot sufficiently receive power after the start of contactless power transfer by making the determination as to whether or not contactless power transfer is strict. Possibility can be reduced.

本実施の形態に従う車両100において、ECU140は、上述の所定パラメータ(受電効率)が所定範囲内に収まっているか否かに従って、非接触電力伝送の可否(受電部110による受電の可否)を判定する。そして、ECU140は、受電部110の受電コイルにより受電された電力を用いた蓄電装置150の充電に要する時間及び外気温の少なくとも一方に従って上記所定範囲を修正する。この車両100によれば、非接触電力伝送の可否判定において受電部110及び送電部210に含まれる素子の特性変化が考慮されるため、非接触電力伝送の開始後に受電部110が十分に受電できなくなる可能性を低減することができる。   In vehicle 100 according to the present embodiment, ECU 140 determines whether or not non-contact power transmission is possible (whether or not power reception unit 110 is able to receive power), according to whether or not the above-described predetermined parameter (power reception efficiency) falls within a predetermined range. . Then, ECU 140 corrects the predetermined range in accordance with at least one of the time required to charge power storage device 150 using the electric power received by the power receiving coil of power receiving unit 110 and the outside temperature. According to this vehicle 100, the characteristic change of the elements included in the power reception unit 110 and the power transmission unit 210 is considered in the determination of whether or not the contactless power transmission is performed, so that the power reception unit 110 can sufficiently receive the power after the start of the contactless power transmission. The possibility of disappearing can be reduced.

上記所定範囲の修正方法の一例について次に説明する。所定範囲における下限値のデフォルト値をPminとし、所定範囲における上限値のデフォルト値をPmaxとする。本実施の形態においては、蓄電装置150の充電に要する時間(Tchg)及び外気温(Tamb)に基づいて、蓄電装置150の充電中の素子特性の変化度合い(α1)が求められる。そして、α1に基づいて、上記下限値及び上限値を修正するためのマージン(β1)が求められる。所定範囲の修正後の下限値はPmin+β1となり、所定範囲の修正後の上限値はPmax−β1となる。   An example of a method of correcting the predetermined range will be described next. The default value of the lower limit value in the predetermined range is Pmin, and the default value of the upper limit value in the predetermined range is Pmax. In the present embodiment, the degree of change (α1) in the element characteristics during charging of power storage device 150 is determined based on the time (Tchg) required to charge power storage device 150 and the outside air temperature (Tamb). Then, the margin (β1) for correcting the lower limit value and the upper limit value is obtained based on α1. The corrected lower limit value of the predetermined range is Pmin + β1, and the corrected upper limit value of the predetermined range is Pmax−β1.

図2は、蓄電装置150の充電に要する時間(Tchg)、外気温(Tamb)、及び、蓄電装置150の充電中の素子特性の変化度合い(α1)の関係を示す図である。図2を参照して、横軸はTchgを示し、縦軸はα1を示す。直線L1,L2,L3の各々は、異なる外気温における、Tchgに対するα1を示し、直線L1,L2,L3の順に外気温が高い。図2に示されるように、蓄電装置150の充電に要する時間が長くなるほど、外気温が高くなるほど、α1は大きくなる。   FIG. 2 is a diagram showing the relationship between the time (Tchg) required to charge the power storage device 150, the outside air temperature (Tamb), and the degree of change (α1) in the element characteristics during charging of the power storage device 150. Referring to FIG. 2, the horizontal axis represents Tchg and the vertical axis represents α1. Each of the straight lines L1, L2, and L3 indicates α1 with respect to Tchg at different outside temperatures, and the outside temperatures are high in the order of the straight lines L1, L2, and L3. As shown in FIG. 2, α1 increases as the time required to charge power storage device 150 increases and the outside air temperature increases.

図3は、蓄電装置150の充電中の素子特性の変化度合い(α1)と、上記所定範囲を修正するためのマージン(β1)との関係を示す図である。図3を参照して、横軸はα1を示し、縦軸はβ1を示す。図3に示されるように、α1が大きくなるほど、β1は指数関数的に大きくなる。   FIG. 3 is a diagram showing the relationship between the degree of change (α1) in the element characteristics during charging of power storage device 150 and the margin (β1) for correcting the predetermined range. Referring to FIG. 3, the horizontal axis represents α1 and the vertical axis represents β1. As shown in FIG. 3, as α1 becomes larger, β1 becomes exponentially larger.

図2及び図3に示される関係を示すデータは、たとえば、ECU140の内部メモリに記憶されている。ECU140は、蓄電装置150のSOC(State Of Charge)を算出し、算出されたSOCと受電部110による受電電力(目標値)とに基づいて蓄電装置150の充電に要する時間を予測する。なお、受電部110による受電電力(目標値)は、ECU140の内部メモリに記憶されている。ECU140は、図2に示される関係を示すデータ、予測された充電時間、及び、温度センサ160の出力に基づいてα1を求める。ECU140は、図3に示される関係を示すデータ、及び、求められたα1に基づいてβ1を求める。そして、ECU140は、求められたβ1に基づいて所定範囲を修正し、修正後の所定範囲に基づいて非接触電力伝送の可否を判定する。これにより、車両100によれば、非接触電力伝送の可否判定において受電部110及び送電部210に含まれる素子の特性変化が考慮されるため、非接触電力伝送の開始後に受電部110が十分に受電できなくなる可能性を低減することができる。   The data showing the relationship shown in FIG. 2 and FIG. 3 is stored in the internal memory of the ECU 140, for example. ECU 140 calculates the SOC (State Of Charge) of power storage device 150, and predicts the time required to charge power storage device 150 based on the calculated SOC and the power received by power receiving unit 110 (target value). The received power (target value) by the power receiving unit 110 is stored in the internal memory of the ECU 140. The ECU 140 calculates α1 based on the data indicating the relationship shown in FIG. 2, the predicted charging time, and the output of the temperature sensor 160. The ECU 140 calculates β1 based on the data indicating the relationship shown in FIG. 3 and the calculated α1. Then, ECU 140 corrects the predetermined range based on the obtained β1, and determines whether or not non-contact power transmission is possible based on the corrected predetermined range. Thus, according to vehicle 100, the characteristic change of the elements included in power reception unit 110 and power transmission unit 210 is taken into consideration when determining whether or not contactless power transmission is performed. It is possible to reduce the possibility that power cannot be received.

(非接触電力伝送の可否判定の処理手順)
図4は、非接触電力伝送の可否判定の処理手順を示すフローチャートである。このフローチャートに示される処理は、送電装置200上における車両100の停車後に実行される。
(Processing procedure for determining whether contactless power transmission is possible)
FIG. 4 is a flowchart showing a processing procedure for determining whether or not contactless power transmission is possible. The process shown in this flowchart is executed after the vehicle 100 stops on the power transmission device 200.

図4を参照して、ECU140は、非接触電力伝送中における受電部110及び送電部210に含まれる素子特性の変化度合い(α1)を求める(ステップS100)。α1の推定方法については、後程詳しく説明する。ECU140は、内部メモリに記憶されている図3に示す関係を示すデータ、及び、求められたα1に基づいてマージンβ1を求める(ステップS110)。ECU140は、求められたマージンβ1に基づいて上記所定範囲を修正する(ステップS120)。具体的には、ECU140は、所定範囲の下限値をPmin(デフォルトの下限値)+β1に修正し、所定範囲の上限値をPmax(デフォルトの上限値)−β1に修正する。   Referring to FIG. 4, ECU 140 obtains the degree of change (α1) in the element characteristics included in power reception unit 110 and power transmission unit 210 during non-contact power transmission (step S100). The method of estimating α1 will be described later in detail. The ECU 140 obtains the margin β1 based on the obtained α1 stored in the internal memory and indicating the relationship shown in FIG. 3 (step S110). The ECU 140 corrects the predetermined range based on the obtained margin β1 (step S120). Specifically, ECU 140 corrects the lower limit value of the predetermined range to Pmin (default lower limit value) + β1, and the upper limit value of the predetermined range to Pmax (default upper limit value) −β1.

その後、ECU140は、微弱電力の送電開始指示を送電装置200に送信するように通信部120を制御する(ステップS130)。これにより、送電装置200によって送電される微弱電力の大きさを示す情報が送電装置200から通信部120を介して受信されるとともに、送電装置200による微弱電力の送電が開始される。   After that, the ECU 140 controls the communication unit 120 to transmit an instruction to start transmitting weak power to the power transmission device 200 (step S130). As a result, information indicating the magnitude of the weak power transmitted by the power transmitting apparatus 200 is received from the power transmitting apparatus 200 via the communication unit 120, and the power transmitting apparatus 200 starts transmitting the weak power.

ECU140は、受電部110による受電電力を検知するとともに、受電部110による受電効率(所定パラメータ)を算出する(ステップS140)。具体的には、ECU140は、送電部210によって送電された微弱電力に対する、受電部110によって実際に受電された微弱電力の割合(受電電力/送電電力)を算出する。   The ECU 140 detects the power received by the power receiving unit 110 and calculates the power receiving efficiency (predetermined parameter) by the power receiving unit 110 (step S140). Specifically, ECU 140 calculates the ratio of the weak power actually received by power reception unit 110 to the weak power transmitted by power transmission unit 210 (power reception power / transmission power).

ECU140は、算出された所定パラメータが、所定範囲の修正後の下限値(Pmin+β1)以上であり、かつ、所定範囲の修正後の上限値(Pmax−β1)以下であるか(所定条件が成立するか)を判定する(ステップS150)。該所定条件が成立すると判定されると(ステップS150においてYES)、ECU140は、非接触電力伝送が可能(受電部110による受電が可能)であると判定する(ステップS160)。一方、該所定条件が成立しないと判定されると(ステップS150においてNO)、ECU140は、非接触電力伝送が不可能(受電部110による受電が不可能)であると判定する(ステップS170)。   The ECU 140 determines whether the calculated predetermined parameter is equal to or higher than the corrected lower limit value (Pmin + β1) of the predetermined range and is equal to or lower than the corrected upper limit value (Pmax−β1) of the predetermined range (the predetermined condition is satisfied). Is determined (step S150). When it is determined that the predetermined condition is satisfied (YES in step S150), ECU 140 determines that non-contact power transmission is possible (power reception by power reception unit 110 is possible) (step S160). On the other hand, if it is determined that the predetermined condition is not satisfied (NO in step S150), ECU 140 determines that non-contact power transmission is impossible (power reception by power reception unit 110 is impossible) (step S170).

図5は、非接触電力伝送中における素子特性の変化度合い(α1)を求める処理手順を示すフローチャートである。このフローチャートに示される処理は、図4のステップS100のタイミングで実行される。   FIG. 5 is a flowchart showing a processing procedure for obtaining the degree of change (α1) in element characteristics during non-contact power transmission. The processing shown in this flowchart is executed at the timing of step S100 in FIG.

図5を参照して、ECU140は、蓄電装置150が満充電になるまでに要する時間を推定する(ステップS200)。具体的には、ECU140は、蓄電装置150のSOCを算出し、算出されたSOCと、蓄電装置150の充電中における受電部110による受電電力(目標値)とに基づいて蓄電装置150が満充電になるまでに要する時間を予測する。ECU140は、温度センサ160の検知結果を取得する(ステップS210)。   Referring to FIG. 5, ECU 140 estimates the time required for power storage device 150 to be fully charged (step S200). Specifically, ECU 140 calculates the SOC of power storage device 150, and based on the calculated SOC and the power received by power reception unit 110 (target value) during charging of power storage device 150, power storage device 150 is fully charged. Predict the time it will take to become. The ECU 140 acquires the detection result of the temperature sensor 160 (step S210).

ECU140は、内部メモリに記憶されている図2に示される関係を示すデータ、推定された充電時間、及び、外気温(温度センサ160の検知結果)に基づいて、非接触電力伝送中における素子特性の変化度合い(α1)を求める(ステップS220)。   The ECU 140 uses the data indicating the relationship shown in FIG. 2 stored in the internal memory, the estimated charging time, and the ambient temperature (the detection result of the temperature sensor 160) to determine the element characteristics during non-contact power transmission. Change degree (α1) is obtained (step S220).

以上のように、本実施の形態に従う車両100において、ECU140は、上述の所定パラメータ(受電効率)が所定範囲内に収まっているか否かに従って、非接触電力伝送の可否(受電部110による受電の可否)を判定する。そして、ECU140は、蓄電装置150の充電に要する時間及び外気温の少なくとも一方に従って上記所定範囲を修正する。この車両100によれば、非接触電力伝送の開始後に受電部110が十分に受電できなくなる可能性を低減することができる。   As described above, in vehicle 100 according to the present embodiment, ECU 140 determines whether or not contactless power transmission is possible (power reception by power reception unit 110) according to whether or not the above-described predetermined parameter (power reception efficiency) falls within a predetermined range. Yes / No) is determined. Then, ECU 140 corrects the predetermined range in accordance with at least one of the time required to charge power storage device 150 and the outside air temperature. According to this vehicle 100, it is possible to reduce the possibility that the power receiving unit 110 cannot sufficiently receive power after the start of non-contact power transmission.

[実施の形態2]
上記実施の形態1においては、非接触電力伝送の可否が車両100側で判定された。本実施の形態2においては、非接触電力伝送の可否が送電装置200側で判定される。以下では、実施の形態1と異なる点を中心に説明し、実施の形態1と同様の部分については説明を繰り返さない。
[Second Embodiment]
In the above-described first embodiment, the possibility of non-contact power transmission is determined on the vehicle 100 side. In the second embodiment, the possibility of non-contact power transmission is determined on the power transmission device 200 side. In the following, points different from those of the first embodiment will be mainly described, and description of the same parts as those of the first embodiment will not be repeated.

再び図1を参照して、本実施の形態2に従う送電装置200Aが適用される非接触電力伝送システム1Aは、車両100Aと、送電装置200Aとを備える。車両100AはECU140Aを含み、送電装置200Aは制御装置250Aを含む。   Referring again to FIG. 1, non-contact power transmission system 1A to which power transmission device 200A according to the second embodiment is applied includes vehicle 100A and power transmission device 200A. Vehicle 100A includes an ECU 140A, and power transmission device 200A includes a control device 250A.

ECU140Aは、図示しないCPU及びメモリを内蔵し、当該メモリに記憶された情報や各センサ(不図示)からの情報に基づいて車両100Aの各機器(受電部110、通信部120等)を制御する。ECU140Aは、上記実施の形態1におけるECU140とは異なり、図2及び図3に示される関係を示すデータを内部メモリに記憶していない。ECU140Aは、たとえば、蓄電装置150のSOCを示すデータ、受電部110の受電電力を示すデータ、及び、温度センサ160の検知結果を送電装置200に送信するように通信部120を制御可能に構成されている。   The ECU 140A has a built-in CPU and memory (not shown), and controls each device (power receiving unit 110, communication unit 120, etc.) of the vehicle 100A based on information stored in the memory and information from each sensor (not shown). . ECU 140A does not store data indicating the relationship shown in FIGS. 2 and 3 in the internal memory, unlike ECU 140 in the first embodiment. ECU 140A is configured to be able to control communication unit 120 to transmit data indicating the SOC of power storage device 150, data indicating the received power of power reception unit 110, and the detection result of temperature sensor 160 to power transmission device 200, for example. ing.

制御装置250Aは、図示しないCPU及びメモリを内蔵し、当該メモリに記憶された情報や各センサ(不図示)からの情報に基づいて送電装置200Aの各機器(送電部210、通信部240等)を制御する。制御装置250Aは、図2及び図3に示される関係を示すデータを内部メモリに記憶する。制御装置250Aは、通信部240を介して、蓄電装置150のSOCを示すデータ、受電部110の受電電力を示すデータ、及び、温度センサ160の検知結果を車両100から取得可能に構成されている。   The control device 250A includes a CPU and a memory (not shown), and each device (the power transmission unit 210, the communication unit 240, etc.) of the power transmission device 200A based on the information stored in the memory and the information from each sensor (not shown). To control. The control device 250A stores data indicating the relationships shown in FIGS. 2 and 3 in the internal memory. Control device 250A is configured to be able to acquire data indicating the SOC of power storage device 150, data indicating the received power of power reception unit 110, and the detection result of temperature sensor 160 from vehicle 100 via communication unit 240. .

制御装置250Aは、受電部110の受電電力及び送電部210の送電電力に基づいて、受電効率(受電電力/送電電力)を算出するように構成されており、受電効率(所定パラメータ)が所定範囲に含まれている場合に非接触電力伝送可能と判定し、受電効率が所定範囲から外れている場合に非接触電力伝送不可能と判定するように構成されている。   The control device 250A is configured to calculate the power reception efficiency (power reception power / power transmission power) based on the power reception power of the power reception unit 110 and the power transmission power of the power transmission unit 210, and the power reception efficiency (predetermined parameter) is within a predetermined range. If the power receiving efficiency is out of the predetermined range, it is determined that the non-contact power transmission is impossible.

送電装置200A上における車両100Aの停車後に、制御装置250Aは、通信部240を介して車両100から取得された、蓄電装置150のSOCを示すデータ、及び、蓄電装置150の充電中における受電部110の受電電力(目標値)を示すデータに従って蓄電装置150の充電に要する時間を推定する。そして、制御装置250Aは、通信部240を介して車両100から取得された温度センサ160の検知結果、推定された充電時間、及び、内部メモリに記憶されている図2に示される関係を示すデータに基づいて、蓄電装置150の充電中の素子特性の変化度合い(α1)を求める。   After vehicle 100A stops on power transmission device 200A, control device 250A receives data indicating SOC of power storage device 150 obtained from vehicle 100 via communication unit 240, and power reception unit 110 during charging of power storage device 150. The time required for charging the power storage device 150 is estimated according to the data indicating the received power (target value). Then, the control device 250A receives the detection result of the temperature sensor 160 acquired from the vehicle 100 via the communication unit 240, the estimated charging time, and the data indicating the relationship shown in FIG. 2 stored in the internal memory. Based on the above, the degree of change (α1) in the element characteristics during charging of the power storage device 150 is obtained.

制御装置250Aは、求められたα1及び内部メモリに記憶されている図3に示される関係を示すデータに基づいて、非接触電力伝送の可否判定に用いられる所定範囲を修正するためのマージンβ1を求める。制御装置250Aは、求められたβ1に従って所定範囲の上限値と下限値とを修正する。その後、制御装置250Aは、微弱電力を送電するように送電部210を制御する。制御装置250Aは、通信部240を介して微弱電力の受電電力の大きさを示す情報を車両100から取得し、取得された情報に基づいて受電効率を算出する。制御装置250Aは、算出された受電効率が修正後の所定範囲に含まれているか否かを判定することによって、非接触電力伝送が可能か否かを判定する。   The control device 250A sets a margin β1 for correcting a predetermined range used for determining whether or not contactless power transmission is possible, based on the obtained α1 and the data indicating the relationship shown in FIG. 3 stored in the internal memory. Ask. The controller 250A corrects the upper limit value and the lower limit value of the predetermined range according to the obtained β1. After that, the control device 250A controls the power transmission unit 210 to transmit the weak power. 250 A of control apparatuses acquire the information which shows the magnitude | size of the received electric power of weak electric power from the vehicle 100 via the communication part 240, and calculate a power receiving efficiency based on the acquired information. Control device 250A determines whether non-contact power transmission is possible by determining whether the calculated power reception efficiency is included in the corrected predetermined range.

以上のように、制御装置250Aは、受電部110による受電効率(所定パラメータ)が所定範囲内に収まっているか否かに従って、送電部210による送電の可否を判定する。そして、制御装置250Aは、蓄電装置150の充電に要する時間及び外気温の少なくとも一方に従って所定範囲を修正する。これにより、送電装置200によれば、非接触電力伝送の可否判定において受電部110及び送電部210に含まれる素子の特性変化が考慮されるため、非接触電力伝送の開始後に受電部110が十分に受電できなくなる可能性を低減することができる。   As described above, control device 250A determines whether power transmission by power transmission unit 210 is possible or not, depending on whether the power reception efficiency (predetermined parameter) by power reception unit 110 is within a predetermined range. Then, control device 250A corrects the predetermined range in accordance with at least one of the time required to charge power storage device 150 and the outside air temperature. Thereby, according to the power transmission device 200, the characteristic change of the elements included in the power reception unit 110 and the power transmission unit 210 is taken into consideration in the determination as to whether or not the non-contact power transmission is performed. It is possible to reduce the possibility that power cannot be received.

なお、上記実施の形態1,2においては、所定パラメータとして受電効率が用いられた。しかしながら、所定パラメータは、必ずしも受電効率に限定されない。たとえば、受電部110によって目標電力が受電されるように送電部210が制御される非接触電力伝送システム1,1Aにおいて、送電部210の送電コイルの電流値が所定パラメータとされてもよいし、送電部210のインバータの電流値が所定パラメータとされてもよい。また、受電部110の受電コイルと送電部210の送電コイルとの結合係数を推定し、推定された結合係数が所定パラメータとされてもよい。すなわち、所定パラメータは、受電部110,110Aによる受電効率と相関を有するパラメータであればよい。   In the first and second embodiments, the power reception efficiency is used as the predetermined parameter. However, the predetermined parameter is not necessarily limited to the power reception efficiency. For example, in the contactless power transmission system 1, 1A in which the power transmission unit 210 is controlled such that the target power is received by the power reception unit 110, the current value of the power transmission coil of the power transmission unit 210 may be set as the predetermined parameter, The current value of the inverter of the power transmission unit 210 may be used as the predetermined parameter. Further, the coupling coefficient between the power receiving coil of power receiving section 110 and the power transmitting coil of power transmitting section 210 may be estimated, and the estimated coupling coefficient may be used as the predetermined parameter. That is, the predetermined parameter may be a parameter having a correlation with the power receiving efficiency of the power receiving units 110 and 110A.

また、上記実施の形態1,2においては、蓄電装置150の充電時間、及び、外気温の双方を参照することによって、非接触電力伝送の可否を判定するための所定範囲が修正された。しかしながら、所定範囲の修正には、必ずしも充電時間及び外気温の双方が用いられる必要はなく、たとえば、充電時間及び外気温の一方だけが用いられてもよい。この場合であっても、所定範囲が全く修正されない場合と比較すれば、送電部210及び受電部110に含まれる素子の特性が考慮されるため、車両100,100Aが非接触電力伝送の途中で十分に受電できなくなる可能性を低減することができる。   Further, in the first and second embodiments, the predetermined range for determining the possibility of non-contact power transmission is modified by referring to both the charging time of power storage device 150 and the outside temperature. However, both the charging time and the outside air temperature do not necessarily have to be used to correct the predetermined range, and only one of the charging time and the outside air temperature may be used, for example. Even in this case, as compared with the case where the predetermined range is not corrected at all, the characteristics of the elements included in the power transmission unit 210 and the power reception unit 110 are taken into consideration, so that the vehicles 100 and 100A are in the middle of non-contact power transmission. It is possible to reduce the possibility that the power cannot be sufficiently received.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.

1 非接触電力伝送システム、100 車両、110 受電部、115 受電コイル、120,240 通信部、140 ECU、150 蓄電装置、160 温度センサ、200 送電装置、210 送電部、215 送電コイル、220 撮像装置、250 制御装置、300 系統電源。   1 Non-contact power transmission system, 100 vehicle, 110 power receiving unit, 115 power receiving coil, 120, 240 communication unit, 140 ECU, 150 power storage device, 160 temperature sensor, 200 power transmission device, 210 power transmission unit, 215 power transmission coil, 220 imaging device , 250 controller, 300 power supply.

Claims (4)

送電装置から非接触で受電するように構成された受電コイルと、
前記受電コイルによって受電された電力を蓄えるように構成された蓄電装置と、
前記受電コイルによる受電効率と相関を有するパラメータが所定範囲内に収まっているか否かに従って、前記受電コイルによる受電の可否を判定するように構成された制御装置とを備え、
前記制御装置は、前記受電コイルにより受電された電力を用いた前記蓄電装置の充電に要する時間及び外気温の少なくとも一方に従って前記所定範囲を修正する、受電装置。
A power receiving coil configured to receive power from the power transmitting device in a non-contact manner,
A power storage device configured to store the electric power received by the power receiving coil,
According to whether or not a parameter having a correlation with the power reception efficiency by the power receiving coil is within a predetermined range, a control device configured to determine whether or not power reception by the power receiving coil is possible,
The power receiving device, wherein the control device corrects the predetermined range in accordance with at least one of a time required to charge the power storage device using the electric power received by the power receiving coil and an outside air temperature.
前記制御装置は、前記受電装置および前記送電装置の温度の上昇による特性の変化を考慮して前記所定範囲を補正する、請求項1に記載の受電装置。The power reception device according to claim 1, wherein the control device corrects the predetermined range in consideration of a change in characteristics of the power reception device and the power transmission device due to a rise in temperature. 受電装置に非接触で送電するように構成された送電コイルと、
前記受電装置による受電効率と相関を有するパラメータが所定範囲内に収まっているか否かに従って、前記送電コイルによる送電の可否を判定するように構成された制御装置とを備え、
前記受電装置は、
前記送電コイルから非接触で受電するように構成された受電コイルと、
前記受電コイルによって受電された電力を蓄えるように構成された蓄電装置とを備え、
前記制御装置は、前記受電コイルにより受電された電力を用いた前記蓄電装置の充電に要する時間及び外気温の少なくとも一方に従って前記所定範囲を修正する、送電装置。
A power transmission coil configured to transmit power to a power receiving device in a contactless manner;
A control device configured to determine whether or not power transmission by the power transmission coil is possible depending on whether or not a parameter having a correlation with the power reception efficiency by the power receiving device falls within a predetermined range,
The power receiving device,
A power receiving coil configured to receive power from the power transmitting coil in a non-contact manner,
A power storage device configured to store the power received by the power receiving coil,
The control device corrects the predetermined range according to at least one of a time required to charge the power storage device using the electric power received by the power receiving coil and an outside air temperature.
前記制御装置は、前記受電装置および前記送電装置の温度の上昇による特性の変化を考慮して前記所定範囲を補正する、請求項3に記載の送電装置。The power transmission device according to claim 3, wherein the control device corrects the predetermined range in consideration of a change in characteristics of the power reception device and the power transmission device due to a rise in temperature.
JP2017018267A 2017-02-03 2017-02-03 Power receiving device and power transmitting device Expired - Fee Related JP6686922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018267A JP6686922B2 (en) 2017-02-03 2017-02-03 Power receiving device and power transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018267A JP6686922B2 (en) 2017-02-03 2017-02-03 Power receiving device and power transmitting device

Publications (2)

Publication Number Publication Date
JP2018126018A JP2018126018A (en) 2018-08-09
JP6686922B2 true JP6686922B2 (en) 2020-04-22

Family

ID=63111757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018267A Expired - Fee Related JP6686922B2 (en) 2017-02-03 2017-02-03 Power receiving device and power transmitting device

Country Status (1)

Country Link
JP (1) JP6686922B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917335B (en) * 2019-03-29 2021-04-20 北京经纬恒润科技股份有限公司 Method and device for calibrating received signal strength
CN112644288B (en) * 2020-12-25 2022-04-12 中国第一汽车股份有限公司 Vehicle energy recovery and distribution method and device, vehicle and storage medium
CN112606694B (en) * 2020-12-25 2022-06-28 中国第一汽车股份有限公司 Vehicle energy recovery and distribution method and device, vehicle and storage medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507759B2 (en) * 2000-03-27 2004-03-15 シャープ株式会社 Non-contact power and signal transmission device
KR101168970B1 (en) * 2008-09-25 2012-07-27 도요타 지도샤(주) Feeding system and electric vehicle
JP5359184B2 (en) * 2008-10-22 2013-12-04 トヨタ自動車株式会社 Power supply system
EP2620960B1 (en) * 2010-09-21 2019-11-27 Panasonic Intellectual Property Management Co., Ltd. Contactless power feeding apparatus
WO2013088488A1 (en) * 2011-12-12 2013-06-20 トヨタ自動車株式会社 Non-contact electrical transmission and reception system, vehicle, and electrical transmission device
EP2800241A4 (en) * 2011-12-27 2015-07-01 Chugoku Electric Power Contactless power supply system, power supply device, and method for controlling contactless power supply system
JPWO2015015635A1 (en) * 2013-08-02 2017-03-02 株式会社日立製作所 Non-contact power transmission device and non-contact power transmission system
EP3039770B1 (en) * 2013-08-14 2020-01-22 WiTricity Corporation Impedance tuning
KR101535038B1 (en) * 2014-08-27 2015-07-08 현대자동차주식회사 Method for wireless charging vehicles

Also Published As

Publication number Publication date
JP2018126018A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
EP3876334B1 (en) Battery management apparatus and method
US10008883B2 (en) Noise reducing power feed device, power reception device and power feed method
EP3048694B1 (en) Method and apparatus estimating state of battery
EP2555375B1 (en) Voltage detector, malfunction detecting device, contactless power transmitting device, contactless power receiving device, and vehicle
JP4586832B2 (en) Electric vehicle
JP6686922B2 (en) Power receiving device and power transmitting device
JPWO2012086051A1 (en) Non-contact power supply system, vehicle, power supply facility, and non-contact power supply system control method
CN103620432A (en) Battery state estimation device and method
JP6589904B2 (en) vehicle
US20120253715A1 (en) Electric charging system
KR20150058395A (en) Electricity storage system
US10141781B2 (en) Contactless power transfer system, power receiving device, and power transmission device
KR102085737B1 (en) System for predicting soc of the battery and method for thereof
JP5862478B2 (en) Power storage system and control method
KR20160022179A (en) Device, system and method for wireless power relay, recording medium for performing the method
US12105153B2 (en) System and method for battery management
US11097625B2 (en) Vehicle
JP7040400B2 (en) vehicle
JP2022132800A (en) Storage cell control device, power storage device, charging system, charging voltage control method
US11128181B2 (en) Contactless power feeding system and contactless power transfer system
JP6766664B2 (en) Power receiving device
JP6825395B2 (en) Vehicle charge control device
US12117494B2 (en) System and method for battery management
JP2018113745A (en) vehicle
JP2017139854A (en) Power receiving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R151 Written notification of patent or utility model registration

Ref document number: 6686922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees