[go: up one dir, main page]

JP6684185B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP6684185B2
JP6684185B2 JP2016160906A JP2016160906A JP6684185B2 JP 6684185 B2 JP6684185 B2 JP 6684185B2 JP 2016160906 A JP2016160906 A JP 2016160906A JP 2016160906 A JP2016160906 A JP 2016160906A JP 6684185 B2 JP6684185 B2 JP 6684185B2
Authority
JP
Japan
Prior art keywords
bonding layer
chip
semiconductor device
adherend
shaped component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016160906A
Other languages
Japanese (ja)
Other versions
JP2018029143A (en
Inventor
佐藤 義浩
義浩 佐藤
藤原 英道
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2016160906A priority Critical patent/JP6684185B2/en
Publication of JP2018029143A publication Critical patent/JP2018029143A/en
Application granted granted Critical
Publication of JP6684185B2 publication Critical patent/JP6684185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Die Bonding (AREA)

Description

本発明は、例えば、半導体チップ或は半導体チップを含む半導体パッケージ等のチップ状部品を、金属微粒子の分散溶液を用いて基板或は電極等の被着体と接合した、半導体デバイス及びその製造方法に関する。   The present invention relates to a semiconductor device in which a chip-shaped component such as a semiconductor chip or a semiconductor package including a semiconductor chip is bonded to an adherend such as a substrate or an electrode using a dispersion solution of metal fine particles, and a method for manufacturing the same. Regarding

金属微粒子の分散溶液が焼結して形成される焼結体においては、チップ状部品の直下が熱膨張差によってもっとも応力が集中する。このため、チップ状部品の直下領域の硬さがチップ状部品から離れた領域に比べて柔らかいと、このチップ状部品の直下領域が優先的に変形を起こしてしまい破断してしまう虞があった。   In a sintered body formed by sintering a dispersion solution of metal fine particles, the stress concentrates immediately below the chip-shaped component due to the difference in thermal expansion. For this reason, if the hardness of the region directly below the chip-shaped component is softer than the region away from the chip-shaped component, the region directly below this chip-shaped component may preferentially deform and break. .

これに対して、先行特許文献1には、鉛フリー半田にSbなどの添加元素を加えて、表面部分のみ半田を硬くする記載がある。しかしながら、この特許文献1に開示の技術は、半田フィレットの表面を硬くすることでクラックの進行を抑制することを目的とするものであり、チップ状部品と被着体との接合性の向上を目的としたものではない。   On the other hand, Japanese Patent Application Laid-Open No. 2004-242242 describes that an additive element such as Sb is added to lead-free solder to harden the solder only on the surface portion. However, the technique disclosed in Patent Document 1 aims to suppress the progress of cracks by hardening the surface of the solder fillet, and to improve the bondability between the chip-shaped component and the adherend. It wasn't intended.

特開2014−138065号公報JP, 2014-138065, A

しかしながら、金属微粒子の分散溶液を用いてチップ状部品と被着体とを接合する場合、チップ状部品の直下の熱膨張差によってチップ状部品の直下領域に破断が生じてしまうという課題があった。特にパワー半導体等発熱の大きい半導体チップにおいては、熱膨張係数の違いから、半導体チップと接合材との界面に大きな応力が発生する。そのため、半導体チップと接合材との界面に破壊が発生することが多く、信頼性を損なう原因になっていた。   However, when the chip-shaped component and the adherend are bonded using the dispersion solution of the metal fine particles, there is a problem that breakage occurs in the region directly below the chip-shaped component due to the difference in thermal expansion directly below the chip-shaped component. . Particularly in a semiconductor chip that generates a large amount of heat such as a power semiconductor, a large stress is generated at the interface between the semiconductor chip and the bonding material due to the difference in thermal expansion coefficient. Therefore, breakage often occurs at the interface between the semiconductor chip and the bonding material, which is a cause of impairing reliability.

そこで、本発明は、チップ状部品と被着体との接続の信頼性を向上することができる半導体デバイス及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a semiconductor device capable of improving the reliability of connection between a chip-shaped component and an adherend and a method for manufacturing the same.

上記課題を解決するため、本発明の半導体デバイスは、チップ状部品と被着体との間に接合層を有する半導体デバイスにおいて、チップ状部品と接合層との界面を基準として被着体に向かう厚さ30μmを含む範囲内における接合層の硬度D1が、被着体と接合層との界面を基準としてチップ状部品に向かう厚さ30μmを含む範囲内における接合層の硬度D2よりも大きい、ものである。   In order to solve the above-mentioned problems, a semiconductor device of the present invention is a semiconductor device having a bonding layer between a chip-shaped component and an adherend, and is directed toward the adherend based on the interface between the chip-shaped component and the bonding layer. The hardness D1 of the bonding layer in the range including the thickness of 30 μm is larger than the hardness D2 of the bonding layer in the range of including the thickness of 30 μm toward the chip-shaped component on the basis of the interface between the adherend and the bonding layer. Is.

すなわち、チップ状部品と被着体との間の接合層の強度が深さ方向で一定であると、応力に対する変形度合いは同じであるから、熱膨張係数の差から発生する応力による変形度合いは界面部分が一番大きくなる。一方、応力を被着体側に伝搬させて界面から離れた部分も変形させることができれば、応力を接合層全体で受けることができるため、応力集中度合いを減らすことができる。そのため、接合材のチップ界面付近の強度を上げて、応力で変形し難くし、界面から離れた部分に応力を伝搬させると共に、界面から離れた部分の強度を下げることによりその部分を変形させるようにする。このような接合材の強度分布とすることにより接合層全体として、応力を受けることができるのでチップ界面の応力集中が減り、チップ状部品と被着体との接合の信頼生を向上させることができる。   That is, when the strength of the bonding layer between the chip-shaped component and the adherend is constant in the depth direction, the degree of deformation with respect to stress is the same, so the degree of deformation due to stress generated from the difference in thermal expansion coefficient is The interface is the largest. On the other hand, if the stress can be propagated to the adherend side and the portion distant from the interface can be deformed, the stress can be received by the entire bonding layer, and the degree of stress concentration can be reduced. Therefore, the strength of the bonding material near the chip interface is increased to make it difficult to deform due to stress, and the stress is propagated to the part away from the interface, and the part away from the interface is deformed by lowering the strength. To With such a strength distribution of the bonding material, stress can be received as a whole bonding layer, so that stress concentration at the chip interface is reduced, and reliability of bonding between the chip-shaped component and the adherend can be improved. it can.

銅ナノ粒子を使った接合材では、銅ナノ粒子と活性剤との混合体を加熱し焼結させている。したがって、銅ナノ粒子と活性剤との混合比率により焼結体の状態を変えることができる。この際、活性剤の量が多くなるほど焼結が進み易く、機械強度が増す。逆に、活性剤の量が少くなるほど焼結が進み難く、機械強度も比較的大きくなり難い。この性質を利用し、接合層内で活性剤の多い部分と少ない部分とを作れば、接合層内で強度の分布を作ることができる。そこで、チップ状部品と接合層との界面付近の活性剤を多くし、逆の接合層と被着体との界面付近の活性剤を少なくすれば所望の構造を作ることができる。   In a bonding material using copper nanoparticles, a mixture of copper nanoparticles and an activator is heated and sintered. Therefore, the state of the sintered body can be changed depending on the mixing ratio of the copper nanoparticles and the activator. At this time, the larger the amount of the activator, the easier the sintering proceeds, and the mechanical strength increases. On the contrary, the smaller the amount of the activator, the more difficult it is for the sintering to proceed, and the relatively large mechanical strength. By utilizing this property and forming a portion having a large amount of activator and a portion having a small amount of activator in the bonding layer, a strength distribution can be formed in the bonding layer. Therefore, a desired structure can be formed by increasing the amount of the activator near the interface between the chip-shaped component and the bonding layer and decreasing the amount of the activator near the interface between the bonding layer and the adherend.

銅ナノを用いた接合層は、銅ナノ粒子と活性剤とを混合したペーストにより供給することができる。ただし、ペーストにおいては流動性を確保するために焼結時に必要な量よりも多い量の活性剤を含んでいる。したがって、印刷後の乾燥処理によって余分な溶媒を蒸発させる必要がある。これにより、乾燥処理後は、表面の溶媒量が少なく、内部に行く程に溶媒量が多くなる。このような条件を考慮して、被着体に接合する部分がペーストの表面となるように、つまりチップ状部品に印刷を行えばチップ状部品側に表面より多く活性剤が残ることになり、チップ状部品側の強度が高く、被着体側の強度が低い、接合層を作成することができる。   The bonding layer using copper nanoparticles can be supplied by a paste in which copper nanoparticles and an activator are mixed. However, the paste contains an activator in an amount larger than that required during sintering in order to ensure fluidity. Therefore, it is necessary to evaporate the excess solvent by a drying process after printing. As a result, after the drying treatment, the amount of solvent on the surface is small, and the amount of solvent increases toward the inside. In consideration of such conditions, the portion to be bonded to the adherend becomes the surface of the paste, that is, if the chip-shaped component is printed, the activator remains on the chip-shaped component side more than the surface, It is possible to form a bonding layer having high strength on the chip-shaped component side and low strength on the adherend side.

本発明の半導体デバイス及びその製造方法によれば、チップ状部品と被着体との接続の信頼性を向上することができる。   According to the semiconductor device and the method for manufacturing the same of the present invention, the reliability of the connection between the chip-shaped component and the adherend can be improved.

半導体デバイスの要部の断面図である。It is a sectional view of the important section of a semiconductor device.

次に、本発明の一実施形態に係る半導体デバイス及びその製造方法について、図面を参照して説明する。なお、以下に示す実施形態は本発明の半導体デバイス及びその製造方法における好適な具体例であり、技術的に好ましい種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。また、以下に示す実施形態における構成要素は適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組み合せを含む様々なバリエーションが可能である。したがって、以下に示す実施の形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。   Next, a semiconductor device and a method for manufacturing the same according to one embodiment of the present invention will be described with reference to the drawings. The embodiments described below are preferred specific examples of the semiconductor device and the manufacturing method thereof according to the present invention, and may have various technically preferable limitations. However, the technical scope of the present invention is Unless otherwise specified, the present invention is not limited to these embodiments. Further, the constituent elements in the embodiments described below can be appropriately replaced with existing constituent elements and the like, and various variations including a combination with other existing constituent elements are possible. Therefore, the description of the embodiments below does not limit the contents of the invention described in the claims.

次に、本発明の実施形態について以下で詳細に説明する。図1は、半導体デバイスの一例を示す。図1に示すように、半導体デバイス1は、チップ状部品としての半導体チップ2と、被着体としての基板3の間に接合層4を有する。なお、チップ状部品としては半導体チップ2のほか、半導体チップ2を含半導体パッケージ等でもよい。また、被着体としては基板3のほか、電極等の他でもよい。   Next, embodiments of the present invention will be described in detail below. FIG. 1 shows an example of a semiconductor device. As shown in FIG. 1, the semiconductor device 1 has a bonding layer 4 between a semiconductor chip 2 as a chip-shaped component and a substrate 3 as an adherend. The chip-shaped component may be the semiconductor chip 2 or a semiconductor package including the semiconductor chip 2 or the like. Further, the adherend may be other than the substrate 3, such as an electrode.

接合層4は、半導体チップ2との界面を基準として基板3に向かう厚さH1=30μmを含む範囲内における上部接合層4aの硬度D1が、基板3と接合層4との界面を基準として半導体チップ2に向かう厚さH2=30μmを含む範囲内における接合層4の硬度D2よりも大きい(D1>D2)ものである。   In the bonding layer 4, the hardness D1 of the upper bonding layer 4a within the range including the thickness H1 = 30 μm toward the substrate 3 with reference to the interface with the semiconductor chip 2 is a semiconductor with the interface between the substrate 3 and the bonding layer 4 as reference. The hardness D2 is greater than the hardness D2 of the bonding layer 4 within the range including the thickness H2 toward the chip 2 = 30 μm (D1> D2).

硬度D1と硬度D2とは、ナノインデンター硬度であり、0.50≦D2/D1≦0.88の範囲内にあるのが望ましい。なお、この数値限定に関する詳細は後述する。   The hardness D1 and the hardness D2 are nanoindenter hardness, and are preferably in the range of 0.50 ≦ D2 / D1 ≦ 0.88. Note that details regarding this numerical limitation will be described later.

接合層4は、平均一次粒子径が2nm〜500nmの銅ナノ粒子(P1)を含む金属粒子(P)と、3価のアルコール(A1a)含む有機分散媒(S)を含む金属粒子の分散溶液を加熱焼結して形成した金属多孔質体と、を含むのが望ましい。この際、金属粒子(P)は金属微粒子(P2)を含み、該金属微粒子(P2)は銅微粒子を含むのが好ましい。また、接合層4は、半導体チップ2と接合層4との界面を基準として基板3に向かう厚さH1=30μmを含む範囲内における上部接合層4aの銅ナノ粒子(P1)の濃度C1が、基板3と接合層4との界面を基準として半導体チップ2に向かう厚さH2=30μmを含む範囲内における下部接合層4bの銅ナノ粒子(P1)の濃度C2よりも低く、かつ、0.67≦C1/C2≦0.88の範囲内にあるのが望ましい。なお、この材料限定に関する詳細は後述する。   The bonding layer 4 is a dispersion solution of metal particles (P) containing copper nanoparticles (P1) having an average primary particle diameter of 2 nm to 500 nm and metal particles containing an organic dispersion medium (S) containing a trivalent alcohol (A1a). And a metal porous body formed by heating and sintering. At this time, it is preferable that the metal particles (P) include metal fine particles (P2), and the metal fine particles (P2) include copper fine particles. Further, the bonding layer 4 has a concentration C1 of the copper nanoparticles (P1) of the upper bonding layer 4a within a range including the thickness H1 = 30 μm toward the substrate 3 with the interface between the semiconductor chip 2 and the bonding layer 4 as a reference, It is lower than the concentration C2 of the copper nanoparticles (P1) of the lower bonding layer 4b within a range including the thickness H2 = 30 μm toward the semiconductor chip 2 on the basis of the interface between the substrate 3 and the bonding layer 4, and 0.67. It is desirable to be in the range of ≦ C1 / C2 ≦ 0.88. The details regarding this material limitation will be described later.

このような半導体デバイス1の基本構成において、半導体デバイス1の発熱する側(通常は半導体チップ側)の上部接合層4aの硬度を上げて高強度にし、その反対側である下部接合層4bは硬度を下げて熱歪から発生する応力を伝搬させることで、半導体デバイス1の接続に対する信頼性を向上することができる。   In such a basic configuration of the semiconductor device 1, the hardness of the upper bonding layer 4a on the heat generating side (usually the semiconductor chip side) of the semiconductor device 1 is increased to increase the strength, and the lower bonding layer 4b on the opposite side is hardened. By lowering the temperature to propagate the stress generated from the thermal strain, the reliability of the connection of the semiconductor device 1 can be improved.

特に、金属微粒子の分散溶液を発熱する側に印刷して、予備乾燥、加圧加熱焼結することにより信頼性の高い半導体デバイス1とすることができることが判明した。この際、硬度の高い上部接合層4aの硬度D1を基準としたときに、硬度の低い下部接合層4bの硬度D2が0.5〜0.88倍になることが好ましい。なお、硬度D2が0.88倍を超えると熱歪の伝搬が起こらずに信頼性が低くなる虞がある。また、硬度D2が0.5倍未満では下部接合層4bの強度が低すぎて信頼性の高い接合を行うことができない虞がある。   In particular, it has been found that the highly reliable semiconductor device 1 can be obtained by printing the dispersion solution of the metal fine particles on the side where heat is generated, predrying and sintering under pressure. At this time, it is preferable that the hardness D2 of the lower bonding layer 4b having a low hardness be 0.5 to 0.88 times, based on the hardness D1 of the upper bonding layer 4a having a high hardness. If the hardness D2 exceeds 0.88 times, thermal strain does not propagate and reliability may be reduced. If the hardness D2 is less than 0.5 times, the strength of the lower bonding layer 4b may be too low to perform reliable bonding.

〔1〕金属粒子の分散溶液
(1)金属粒子(P)
金属粒子(P)は、焼結性を有していることが必要である。また、金属粒子(P)は、平均一次粒子径が2〜500nmの銅ナノ粒子(P1)のみで構成する場合のほか、銅ナノ粒子(P1)に加えて、さらに平均一次粒径0.5μm超え50μm以下の金属微粒子(P2)を混合した混合粒子として構成してもよい。
[1] Dispersion solution of metal particles (1) Metal particles (P)
The metal particles (P) need to have sinterability. In addition to the case where the metal particles (P) are composed of only the copper nanoparticles (P1) having an average primary particle diameter of 2 to 500 nm, in addition to the copper nanoparticles (P1), the average primary particle diameter is 0.5 μm. You may comprise as mixed particles which mixed the metal fine particles (P2) of more than 50 micrometers or less.

(イ)銅ナノ粒子(P1)
銅ナノ粒子(P1)は、一次粒子の平均粒子径が2nm〜500nmの銅微粒子であれば特に制限されるものではない。銅ナノ粒子(P1)の一次粒子の平均粒子径が2nm未満のものは製造上の困難性を伴い、一方、一次粒子の平均粒子径が500nm以上では、焼結時に融点が下がらなくなり、焼結性が悪化するからである。銅ナノ粒子には不可避的不純物として、ホウ素(B)、カルシウム(Ca)、鉄(Fe)、カリウム(K)、ナトリウム(Na)、ニッケル(Ni)、鉛(Pb)、ストロンチウム(Sr)、亜鉛(Zn)、クロム(Cr)、マグネシウム(Mg)、ケイ素(Si)、リン(P)が、各30ppm以下程度含まれてもよい。
(A) Copper nanoparticles (P1)
The copper nanoparticles (P1) are not particularly limited as long as they are copper fine particles having an average primary particle diameter of 2 nm to 500 nm. If the average particle diameter of the primary particles of the copper nanoparticles (P1) is less than 2 nm, it is difficult to manufacture. On the other hand, if the average particle diameter of the primary particles is 500 nm or more, the melting point does not decrease during sintering and This is because the sex deteriorates. Inevitable impurities in the copper nanoparticles include boron (B), calcium (Ca), iron (Fe), potassium (K), sodium (Na), nickel (Ni), lead (Pb), strontium (Sr), Zinc (Zn), chromium (Cr), magnesium (Mg), silicon (Si), and phosphorus (P) may be contained at about 30 ppm or less each.

ここで「一次粒子径」とは、二次粒子を構成する個々の金属粒子の一次粒子の直径の意味である。この一次粒子径は、電子顕微鏡(SEM(scanning electron microscope))を用いて測定することができる。本発明では、SEM(日立ハイテクノロジーズ社製、装置名「SU8020」)を用いて、加速電圧3kV、倍率20万倍で観察しSEM画像を取得した。そして、その画像の中から任意の20個の粒子を選び、粒子径を測定すると共に、その平均を計算して平均粒径とした。また、「平均一次粒子径」とは、一次粒子の数平均粒子径を意味する。   Here, the "primary particle diameter" means the diameter of the primary particles of the individual metal particles constituting the secondary particles. The primary particle diameter can be measured by using an electron microscope (SEM (scanning electron microscope)). In the present invention, SEM (manufactured by Hitachi High-Technologies Corporation, device name "SU8020") was used to observe at an accelerating voltage of 3 kV and a magnification of 200,000 to obtain a SEM image. Then, arbitrary 20 particles were selected from the image, the particle diameter was measured, and the average thereof was calculated to obtain the average particle diameter. The "average primary particle size" means the number average particle size of primary particles.

(ロ)金属微粒子(P2)
金属微粒子(P2)は、一次粒子の平均粒子径0.5μm〜50μmをもち、金属粒子(P)を、銅ナノ粒子(P1)との混合粒子として構成する場合に用いられる。金属微粒子(P2)としては、特に制限はないが金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、タングステン(W)、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、タンタル(Ta)、ビスマス(Bi)、鉛(Pb)、インジウム(In)、錫(Sn)、亜鉛(Zn)、チタン(Ti)、及びアルミニウム(Al)から選択される1種もしくは2種以上の微粒子を使うことができ、特に銅が好ましい。
(B) Metal fine particles (P2)
The metal fine particles (P2) have an average particle size of primary particles of 0.5 μm to 50 μm, and are used when the metal particles (P) are constituted as mixed particles with the copper nanoparticles (P1). The metal fine particles (P2) are not particularly limited, but gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), tungsten (W), nickel (Ni), iron ( Fe, cobalt (Co), tantalum (Ta), bismuth (Bi), lead (Pb), indium (In), tin (Sn), zinc (Zn), titanium (Ti), and aluminum (Al). One kind or two or more kinds of fine particles can be used, and copper is particularly preferable.

平均一次粒子径が2nm〜500nmの銅ナノ粒子(P1)と、平均一次粒子径が0.5μm超え50μm以下の金属微粒子(P2)を共存させると、金属微粒子(P2)間に銅ナノ粒子(P1)が適度な分散状態で介在し、加熱処理する際に銅ナノ粒子(P1)の自由な移動を効果的に抑制することができ、前述の銅ナノ粒子(P1)の分散性と安定性を向上することができ、その結果、加熱焼成(焼結)でより均質な粒子径と空孔を有する多孔質体を形成することが可能になる。   When copper nanoparticles (P1) having an average primary particle diameter of 2 nm to 500 nm and metal fine particles (P2) having an average primary particle diameter of 0.5 μm or more and 50 μm or less coexist, copper nanoparticles (P2) are present between the metal nanoparticles (P2). P1) intervenes in a moderately dispersed state and can effectively suppress the free movement of the copper nanoparticles (P1) during the heat treatment, and thus the dispersibility and stability of the copper nanoparticles (P1) described above. As a result, it becomes possible to form a porous body having a more uniform particle size and pores by heating and firing (sintering).

金属微粒子(P2)の平均一次粒子径は、0.5μm超え50μm以下が好ましい。金属微粒子(P2)の平均一次粒子径が0.5μm以下では、金属微粒子(P2)の添加効果が発現せず、50μmを超えると焼成が困難になるおそれがある。なお「平均一次粒子径」は、レーザー回折式粒度分布計で測定し、累積頻度が50%の粒径と定義する。   The average primary particle diameter of the metal fine particles (P2) is preferably more than 0.5 μm and 50 μm or less. If the average primary particle diameter of the metal fine particles (P2) is 0.5 μm or less, the effect of adding the metal fine particles (P2) will not be exhibited, and if it exceeds 50 μm, firing may be difficult. The "average primary particle diameter" is defined as the particle diameter with a cumulative frequency of 50% measured by a laser diffraction type particle size distribution meter.

(2)有機分散媒(S)
本発明の金属粒子(P)の分散溶液は、金属粒子(P)を有機分散媒(S)に分散させて形成したものである。有機分散媒(S)は、活性剤である3価のアルコールが含まれている。そのほか、分子中に2以上の水酸基を有する1種または2種以上の多価アルコール(A1)が含まれることが好ましく、また、他の有機溶媒として、アミド基を有する化合物(A2)、アミン化合物(A3)、低沸点有機化合物(A4)等を含有させてもよい。
(2) Organic dispersion medium (S)
The dispersion solution of the metal particles (P) of the present invention is formed by dispersing the metal particles (P) in the organic dispersion medium (S). The organic dispersion medium (S) contains trivalent alcohol which is an activator. In addition, it is preferable to include one or more polyhydric alcohols (A1) having two or more hydroxyl groups in the molecule, and as the other organic solvent, a compound (A2) having an amide group and an amine compound. (A3), a low boiling point organic compound (A4) and the like may be contained.

(イ)3価のアルコール
3価のアルコールとしては、グリセリン(グリセロール)、1,1,1−トリスヒドロキシメチルエタン、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオールの中から選択される1種又は2種以上を含むことができ、中でもグリセリンが特に好ましい。
(A) Trihydric alcohol Trihydric alcohol includes glycerin (glycerol), 1,1,1-trishydroxymethylethane, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1, One or more selected from 2,4-butanetriol can be contained, and glycerin is particularly preferable.

(イ)多価アルコール(A1)
3価のアルコール以外の多価アルコール(A1)としては、分子中に2以上の水酸基を有する、エチレングリコ−ル、ジエチレングリコ−ル、1,2−プロパンジオ−ル、1,3−プロパンジオ−ル、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、1,4−ブタンジオ−ル、2−ブテン−1,4−ジオール、2,3−ブタンジオ−ル、ペンタンジオ−ル、ヘキサンジオ−ル、オクタンジオ−ル、トレイトール、エリトリト−ル、ペンタエリスリト−ル、ペンチト−ル、1−プロパノール、2−プロパノール、2−ブタノール、2−メチル2−プロパノール、キシリトール、リビトール、アラビトール、ヘキシト−ル、マンニトール、ソルビトール、ズルシトール、グリセリンアルデヒド、ジオキシアセトン、トレオース、エリトルロース、エリトロース、アラビノース、リボース、リブロース、キシロース、キシルロース、リキソース、グルコ−ス、フルクト−ス、マンノース、イドース、ソルボース、グロース、タロース、タガトース、ガラクトース、アロース、アルトロース、ラクト−ス、イソマルト−ス、グルコヘプト−ス、ヘプト−ス、マルトトリオース、ラクツロース、及びトレハロースの中から選択される1種又は2種以上を挙げることができる。
(A) Polyhydric alcohol (A1)
As the polyhydric alcohol (A1) other than the trihydric alcohol, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanedioyl having two or more hydroxyl groups in the molecule. 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediole. , Octandiol, threitol, erythritol, pentaerythritol, pentitol, 1-propanol, 2-propanol, 2-butanol, 2-methyl 2-propanol, xylitol, ribitol, arabitol, hexitol. Le, mannitol, sorbitol, dulcitol, glycerinaldehyde, dioxyacetone, threose, erythrough , Erythrose, arabinose, ribose, ribulose, xylose, xylulose, lyxose, glucose, fructose, mannose, idose, sorbose, growth, talose, tagatose, galactose, allose, altrose, lactose, isomaltose, One or more selected from glucoheptose, heptose, maltotriose, lactulose, and trehalose can be mentioned.

有機分散媒(S)中に前記多価アルコール(A1)を含有させることで、還元性を有するので金属微粒子(P)表面が還元され、更に加熱処理を行うことで多価アルコール(A1)が連続的に蒸発し、その液体および蒸気が存在する雰囲気で還元・焼成されると、金属粒子(P)の焼結を促進することができる。尚、金属粒子(P)の分散溶液を用いて形成され、接合層の加熱・焼結前の状態である加熱接合材料(M)の焼結性を考慮すると、多価アルコール(A1)が有機分散媒(S)中に40質量%以上含有されていることが好ましい。   By containing the polyhydric alcohol (A1) in the organic dispersion medium (S), since it has reducibility, the surface of the metal fine particles (P) is reduced, and the polyhydric alcohol (A1) is converted by further heat treatment. When the metal particles (P) are continuously evaporated and reduced / calcined in an atmosphere in which the liquid and vapor are present, the sintering of the metal particles (P) can be promoted. Considering the sinterability of the heat-bonding material (M), which is formed by using the dispersion solution of the metal particles (P) and is in the state before the heating / sintering of the bonding layer, the polyhydric alcohol (A1) is an organic compound. The dispersion medium (S) preferably contains 40% by mass or more.

(ロ)アミド基を有する化合物(A2)
アミド基を有する化合物(A2)としては、N−メチルアセトアミド、N−メチルホルムアミド、N−メチルプロパンアミド、ホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、2−ピロリドン、アルキル−2−ピロリドン、ε−カプロラクタム、及びアセトアミド、ポリビニルピロリドン、ポリアクリルアミド、及びN−ビニル−2−ピロリドンの中から選択される1種又は2種以上を例示することができる。アミド基を有する化合物(A2)は金属粒子表面を覆う有機修飾物として用いられる。アミド基を有する化合物(A2)は、有機分散媒(S)中で10〜80質量%となるように配合することが好ましい。
(B) A compound having an amide group (A2)
Examples of the compound (A2) having an amide group include N-methylacetamide, N-methylformamide, N-methylpropanamide, formamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 2-pyrrolidone, alkyl-2-pyrrolidone, ε-caprolactam, and acetamide, polyvinylpyrrolidone, polyacrylamide, and N-vinyl-2- One or more selected from pyrrolidone can be exemplified. The compound (A2) having an amide group is used as an organic modified product that covers the surface of metal particles. The compound (A2) having an amide group is preferably blended so as to be 10 to 80 mass% in the organic dispersion medium (S).

(ハ)アミン化合物(A3)
アミン化合物(A3)としては、脂肪族第一アミン、脂肪族第二アミン、脂肪族第三アミン、脂肪族不飽和アミン、脂環式アミン、芳香族アミン、及びアルカノールアミンの中から選択される1種又は2種以上のアミン化合物が挙げられ、その具体例としてはメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、n−プロピルアミン、ジ−n−プロピルアミン、トリ−n−プロピルアミン、n−ブチルアミン、ジ−n−ブチルアミン、トリ−n−ブチルアミン、t−プロピルアミン、t−ブチルアミン、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、テトラメチルプロピレンジアミン、ペンタメチルジエチレントリアミン、モノ−n−オクチルアミン、モノ−2エチルヘキシルアミン、ジ−n−オクチルアミン、ジ−2エチルヘキシルアミン、トリ−n−オクチルアミン、トリ−2エチルヘキシルアミン、トリイソブチルアミン、トリヘキシルアミン、トリイソオクチルアミン、トリイソノニルアミン、トリフェニルアミン、ジメチルココナットアミン、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルベヘニルアミン、ジラウリルモノメチルアミン、ジイソプロピルエチルアミン、メタノールアミン、ジメタノールアミン、トリメタノールアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、プロパノールアミン、イソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ブタノールアミン、N−メチルエタノールアミン、N−メチルジエタノールアミン、N,N−ジメチルエタノールアミン、N−エチルエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、N−n−ブチルエタノールアミン、N−n−ブチルジエタノールアミン、及び2−(2−アミノエトキシ)エタノールの中から選択される1種又は2種以上を挙げることができる。アミン化合物(A3)は有機分散媒(S)中で0.3〜30質量%となるように配合することが好ましい。
(C) Amine compound (A3)
The amine compound (A3) is selected from an aliphatic primary amine, an aliphatic secondary amine, an aliphatic tertiary amine, an aliphatic unsaturated amine, an alicyclic amine, an aromatic amine, and an alkanolamine. One or more amine compounds may be mentioned, and specific examples thereof include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-propylamine. , N-butylamine, di-n-butylamine, tri-n-butylamine, t-propylamine, t-butylamine, ethylenediamine, propylenediamine, tetramethylenediamine, tetramethylpropylenediamine, pentamethyldiethylenetriamine, mono-n-octylamine , Mono-2 Etchi Hexylamine, di-n-octylamine, di-2ethylhexylamine, tri-n-octylamine, tri-2ethylhexylamine, triisobutylamine, trihexylamine, triisooctylamine, triisononylamine, triphenylamine , Dimethyl coconut amine, dimethyl octyl amine, dimethyl decyl amine, dimethyl lauryl amine, dimethyl myristyl amine, dimethyl palmityl amine, dimethyl stearyl amine, dimethyl behenyl amine, dilauryl monomethyl amine, diisopropyl ethyl amine, methanol amine, dimethanol amine, Trimethanolamine, ethanolamine, diethanolamine, triethanolamine, propanolamine, isopropanolamine, diisopropanol Ruamine, triisopropanolamine, butanolamine, N-methylethanolamine, N-methyldiethanolamine, N, N-dimethylethanolamine, N-ethylethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, Nn -Butyl ethanolamine, Nn-butyl diethanol amine, and 1 type (s) or 2 or more types selected from 2- (2-aminoethoxy) ethanol can be mentioned. The amine compound (A3) is preferably mixed in the organic dispersion medium (S) so as to be 0.3 to 30% by mass.

(ニ)低沸点有機化合物(A4)
低沸点有機化合物(A4)は、常圧における沸点が60〜120℃(沸点は常圧における沸点をいう。以下同じ)で、比較的沸点の低い有機化合物である。低沸点有機化合物(A4)としては、分子中に1つのヒドロキシル基を有するアルコール、エーテル、及びケトンから選択される1種又は2種以上が好ましい。
(D) Low boiling point organic compound (A4)
The low boiling point organic compound (A4) has a boiling point of 60 to 120 ° C. under normal pressure (boiling point refers to a boiling point under normal pressure; the same applies hereinafter), and is a relatively low boiling point organic compound. The low boiling point organic compound (A4) is preferably one or more selected from alcohols, ethers and ketones having one hydroxyl group in the molecule.

前記分子中に1つのヒドロキシル基を有するアルコールとしては、メタノール(64.7℃)、エタノール(78.0℃)、1−プロパノール(97.15℃)、2−プロパノール(82.4℃)、2−ブタノール(100℃)、2−メチル2−プロパノール(83℃)の中から選択される1種又は2種以上を例示することができる。前記エーテルとしては、ジエチルエーテル(35℃)、メチルプロピルエーテル(31℃)、ジプロピルエーテル(89℃)、ジイソプロピルエーテル(68℃)、メチル−t−ブチルエーテル(55.3℃)、t−アミルメチルエーテル(85℃)、ジビニルエーテル(28.5℃)、エチルビニルエーテル(36℃)、アリルエーテル(94℃)の中から選択される1種又は2種以上を例示することができる。また、前記ケトンとしては、アセトン(56.5℃)、メチルエチルケトン(79.5℃)、ジエチルケトン(100℃)の中から選択される1種又は2種以上を例示することができる。   As the alcohol having one hydroxyl group in the molecule, methanol (64.7 ° C.), ethanol (78.0 ° C.), 1-propanol (97.15 ° C.), 2-propanol (82.4 ° C.), One or two or more kinds selected from 2-butanol (100 ° C.) and 2-methyl 2-propanol (83 ° C.) can be exemplified. Examples of the ether include diethyl ether (35 ° C), methylpropyl ether (31 ° C), dipropyl ether (89 ° C), diisopropyl ether (68 ° C), methyl-t-butyl ether (55.3 ° C), t-amyl. One or more selected from methyl ether (85 ° C.), divinyl ether (28.5 ° C.), ethyl vinyl ether (36 ° C.) and allyl ether (94 ° C.) can be exemplified. Moreover, as said ketone, 1 type (s) or 2 or more types selected from acetone (56.5 degreeC), methyl ethyl ketone (79.5 degreeC), and diethyl ketone (100 degreeC) can be illustrated.

有機分散媒(S)中に低沸点有機化合物(A4)が含まれることで、有機分散媒(S)の粘度を調整してパターン形成の精度を向上することができる。有機分散媒(S)中の低沸点有機化合物(A4)の含有割合は1〜30質量%の範囲で配合することが好ましい。   By including the low boiling point organic compound (A4) in the organic dispersion medium (S), it is possible to adjust the viscosity of the organic dispersion medium (S) and improve the accuracy of pattern formation. The content of the low boiling point organic compound (A4) in the organic dispersion medium (S) is preferably 1 to 30% by mass.

〔2〕接合構造体の製造方法
次に、本発明に従う金属粒子の分散溶液を用いて製造するのに好適な接合構造体について、その製造方法の例を以下で説明する。本発明に従う接合構造体の製造方法は、上記した金属粒子の分散溶液を用い、第1の被着体と第2の被着体の間に、金属粒子の分散溶液を配置する第1工程と、該分散溶液を110℃で乾燥させて加熱接合材料とする第2工程と、該加熱接合材料を焼結させる第3工程とを備える。本発明に従う接合構造体の製造方法は、例えば、加熱接合材料を半導体チップ2と基板3との間に配置し、その後この被処理体を真空中でプレス可能な装置に導入することによって行なうことができる。加熱接合材料がペースト状材料の場合には、接合される面の一方に塗布や印刷法を用いることにより、焼結後に接合層を形成することによって接合構造体を製造することができる。
[2] Method for Manufacturing Bonded Structure Next, an example of a method for manufacturing a bonded structure suitable for manufacturing using the dispersion solution of metal particles according to the present invention will be described below. A method for producing a bonded structure according to the present invention includes a first step of using the above-mentioned dispersed solution of metal particles and disposing the dispersed solution of metal particles between a first adherend and a second adherend. A second step of drying the dispersion solution at 110 ° C. to obtain a heat-bonding material, and a third step of sintering the heat-bonding material. The method for manufacturing a bonded structure according to the present invention is performed, for example, by disposing a heating bonding material between the semiconductor chip 2 and the substrate 3 and then introducing this object to be processed into a device that can be pressed in vacuum. You can When the heat-bonding material is a paste-like material, the bonding structure can be manufactured by forming a bonding layer after sintering by using a coating method or a printing method on one of the surfaces to be bonded.

(1)第1工程
第1工程は、半導体チップ2(或は半導体チップを含む半導体パッケージ等のチップ状部品)と、基板3(或は電極等の被着体)との間に、金属粒子の分散溶液を配置するための工程である。
(1) First Step In the first step, metal particles are provided between the semiconductor chip 2 (or a chip-like component such as a semiconductor package including a semiconductor chip) and the substrate 3 (or an adherend such as an electrode). Is a step for arranging the dispersion solution of.

加熱接合材料(M)を形成するのに用いられる金属粒子の分散溶液は、有機分散媒(S)/金属粒子(P)の割合(質量比)が、パターニングと焼結性を考慮し、安定した接合力を得るためには10/90〜70/30が望ましいが、シート形状の加熱接合成形体(T1)、又は加熱接合ペースト状物(T2)のいずれを選択するかによって、その割合が決定される。   The dispersion solution of the metal particles used to form the heat bonding material (M) has a stable organic dispersion medium (S) / metal particle (P) ratio (mass ratio) in consideration of patterning and sinterability. 10/90 to 70/30 is preferable to obtain the bonding force, but the ratio is determined depending on whether the sheet-shaped heat-bonded molded product (T1) or the heat-bonded paste-like material (T2) is selected. It is determined.

なお、有機分散媒(S)/金属粒子(P)の割合が10/90よりも有機分散媒が少ないと、加熱接合材料(M)を形成したときに金属粒子(P)が粉状のままで存在する傾向があり、ペーストにすることは不可能である。また、70/30よりも有機分散媒が多いと、印刷後の形状安定性がなく、印刷が不可能になる傾向があるからである。この割合の好ましい範囲は印刷用では、ペーストは20/80〜60/40、シート状に加工する場合では10/90〜30/70である。   When the ratio of organic dispersion medium (S) / metal particles (P) is less than 10/90, the metal particles (P) remain powdery when the heating bonding material (M) is formed. It tends to exist in and is impossible to paste. Further, if the organic dispersion medium is more than 70/30, there is no shape stability after printing, and printing tends to be impossible. The preferable range of this ratio is 20/80 to 60/40 for printing and 10/90 to 30/70 for processing into a sheet.

金属粒子の分散溶液は、公知の混合機、捏和機等を使用して、金属粒子(P)を有機分散媒(S)に分散させることにより得ることができる。   The dispersion solution of metal particles can be obtained by dispersing the metal particles (P) in the organic dispersion medium (S) using a known mixer, kneader, or the like.

(2)第2工程
第2工程は、第1工程の後、分散溶液を(予備)乾燥させて加熱接合材料を形成する工程である。
(2) Second Step The second step is a step of (preliminarily) drying the dispersion solution after the first step to form a heat bonding material.

加熱接合材料(M)は、金属粒子(P)が有機分散媒(S)中に分散している、加熱接合用ペースト状物(T2)とすることができる。また、加熱接合材料(M)は、被接合面(例えば、半導体チップの表面)に、加熱接合材料(M)からなるパターン化物を配置することができる。この場合、このパターン化物上に基板3を配置して、焼結する温度の範囲に金属粒子(P)を加熱すると、3価のアルコール(A1a)が銅ナノ粒子(P1)表面を還元して活性化し、金属粒子(P)同士の焼結が促進される。その結果、ナノサイズの金属微粒子を含むペースト状物を用いた場合と同様に、電極と基板3とを電気的、機械的に接合することが可能になる。尚、加熱接合材料(M)を加熱焼結する際に、有機分散媒(S)は、分解、蒸発等により除去される。   The heating bonding material (M) can be a heating bonding paste (T2) in which the metal particles (P) are dispersed in the organic dispersion medium (S). Further, as the heat bonding material (M), a patterned product made of the heat bonding material (M) can be arranged on the surface to be bonded (for example, the surface of the semiconductor chip). In this case, when the substrate 3 is placed on this patterned product and the metal particles (P) are heated in a sintering temperature range, the trivalent alcohol (A1a) reduces the surface of the copper nanoparticles (P1). It is activated and the sintering of the metal particles (P) is promoted. As a result, it becomes possible to electrically and mechanically bond the electrode and the substrate 3 as in the case of using a paste-like material containing nano-sized metal fine particles. When the heat bonding material (M) is heated and sintered, the organic dispersion medium (S) is removed by decomposition, evaporation or the like.

なお、本発明では、乾燥温度は110℃とした。なお、乾燥時間は、乾燥後に形成される加熱接合材料(M)中の銅濃度が、65〜95質量%になるように調整できる時間であればよく、特に限定するものではないが、例えば5〜60分間程度とすることが好ましい。   In the present invention, the drying temperature was 110 ° C. The drying time is not particularly limited as long as it can be adjusted so that the copper concentration in the heat-bonding material (M) formed after drying is 65 to 95% by mass. It is preferably about 60 minutes.

(3)第3工程
第3工程は、乾燥した加熱接合用ペースト状物(T2)からなる加熱接合材料を焼結して、被着体同士を接合する接合層を有する接合構造体を形成する工程である。
(3) Third Step In the third step, the heating bonding material made of the dried paste material (T2) for heating bonding is sintered to form a bonding structure having a bonding layer for bonding adherends. It is a process.

焼結方法としては、例えば、ヒータを内蔵したプレス板で被処理体を挟み、その後、真空引きを行って十分に減圧にする。このとき、絶対圧には大気圧分の圧力が加えられているので、それを考慮したゲージ圧にて油圧や空圧により圧力を加える。加熱(焼結)温度は、190〜400℃程度とすることが好ましく、加熱保持時間は、1分間〜120分間程度とすることが好ましい。   As a sintering method, for example, the object to be processed is sandwiched between press plates having a built-in heater, and then vacuuming is performed to sufficiently reduce the pressure. At this time, since the atmospheric pressure is applied to the absolute pressure, the gauge pressure in consideration of it is applied by hydraulic pressure or pneumatic pressure. The heating (sintering) temperature is preferably about 190 to 400 ° C., and the heating and holding time is preferably about 1 minute to 120 minutes.

その後、必要に応じて、大気ないしは不活性雰囲気、水素等の還元雰囲気下で190〜400℃の温度で1時間〜30時間程度のアニール処理を施してもよい。このアニール処理により、接合層における歪みや残留応力が除去され、更に信頼性が向上する。   Then, if necessary, annealing treatment may be performed at a temperature of 190 to 400 ° C. for about 1 to 30 hours in the atmosphere, an inert atmosphere, or a reducing atmosphere such as hydrogen. By this annealing treatment, strain and residual stress in the bonding layer are removed, and reliability is further improved.

上記の接合構造体の製造方法により、加熱接合材料が焼結されて金属粒子の分散溶液の焼結体からなる接合層4が形成され、基板3と半導体チップ2とが接合層4によって接合された半導体デバイス(接合構造体)1を得ることができる。このように、基板3と加熱接合材料、及び加熱接合材料と半導体チップ2とをそれぞれ接触させた状態で、これらを、無加圧または加圧下で加熱することにより、加熱接合材料(M)中の金属粒子(P)が焼結されて、多孔質状の接合層が形成され、基板3及び半導体チップ2が互いに接合される。   According to the above-described method for manufacturing a bonded structure, the heating bonding material is sintered to form the bonding layer 4 made of a sintered body of a dispersion solution of metal particles, and the substrate 3 and the semiconductor chip 2 are bonded by the bonding layer 4. The semiconductor device (junction structure) 1 can be obtained. In this way, in the state where the substrate 3 and the heat bonding material are in contact with each other, and the heat bonding material and the semiconductor chip 2 are in contact with each other, these are heated without pressure or under pressure, so that The metal particles (P) are sintered to form a porous bonding layer, and the substrate 3 and the semiconductor chip 2 are bonded to each other.

本方法により形成される接合層(L)の厚みは、5〜500μmの範囲であることが好ましい。この厚みが5μm未満では、半導体チップ(K)の凹凸よりペースト厚が薄くなり、一部ペーストで覆われない部分が発生し、接合信頼性が低下する傾向があるからである。一方、前記厚みが500μmを超えると、熱抵抗が大きくなりすぎるため好ましくない。したがって、本実施形態における接合層(L)の厚みは、5〜500μmの範囲内の数値とすることが好ましい。   The thickness of the bonding layer (L) formed by this method is preferably in the range of 5 to 500 μm. This is because if the thickness is less than 5 μm, the paste thickness becomes thinner than the unevenness of the semiconductor chip (K), a part not covered with the paste occurs, and the bonding reliability tends to decrease. On the other hand, if the thickness exceeds 500 μm, the thermal resistance becomes too large, which is not preferable. Therefore, the thickness of the bonding layer (L) in the present embodiment is preferably a numerical value within the range of 5 to 500 μm.

本発明の実施形態を以下の実施例に基づき、さらに詳細に説明する。尚、本発明はこれらの実施例に限定されるものではない。   Embodiments of the present invention will be described in more detail based on the following examples. The present invention is not limited to these examples.

(1)銅ナノ粒子
銅ナノ粒子(P1)として、有機保護膜付き銅ナノ粒子を使用した。
有機保護膜付き銅ナノ粒子は、特開2011−074476号公報の実施例に記載されている方法に倣い、以下の手順で作製した。まず、高分子分散剤であり、有機保護膜の原料となるポリビニルピロリドン(PVP、数平均分子量約3500)10gを蒸留水1979.3mlに溶解させた水溶液に、銅ナノ粒子(P1)の原料として粒度範囲が0.1〜100μmである水酸化第二銅(Cu(OH)2)29.268gを添加した。次に、液温を20℃に調整し、窒素ガス雰囲気中で攪拌しながら水素化ホウ素ナトリウム150mmolと水酸化ナトリウム480mmolを含む水溶液20.73mlを滴下した後、45分間よく攪拌しながら還元反応を行った。尚、還元反応の終了は、反応系からの水素ガスの発生が終了した時点とした。上記還元反応により、有機保護膜(高分子分散剤)で少なくとも一部が覆われた銅ナノ粒子(P1)が水溶液中に分散している銅ナノ粒子(P1)の水溶液が得られた。その後、この水溶液に、抽出剤としてクロロホルム66mlを加えて、銅ナノ粒子(P1)を沈降させてから、遠心分離により固液分離を行い、メタノールを投入して攪拌後、さらに遠心分離により固液分離を行い粒子の洗浄を行った。そして、洗浄を数回行ったのち、有機保護膜付きの銅ナノ粒子(P1)を得た。有機保護膜(F1)の厚さを、銅ナノ粒子(P1)全体に占める質量比率として炭素・硫黄濃度分析装置を使用して測定したところ、0.6質量%であった。また銅ナノ粒子(P1)の平均一次粒子径は50nmであった。なお、SEM(日立ハイテクノロジーズ社製、装置名「SU8020」)を用いて、加速電圧3kV、倍率20万倍で観察しSEM画像を取得した。そして、その画像の中から任意の20個の一次粒子を選んで粒径を測定すると共に、それらの粒径の測定値から算出した平均値を平均一次粒子径とした。
(1) Copper nanoparticles As the copper nanoparticles (P1), copper nanoparticles with an organic protective film were used.
The copper nanoparticles with an organic protective film were produced by the following procedure in accordance with the method described in the example of JP2011-074476A. First, 10 g of polyvinylpyrrolidone (PVP, number average molecular weight of about 3500), which is a polymer dispersant and is a raw material for an organic protective film, was dissolved in 1979.3 ml of distilled water to prepare an aqueous solution of copper nanoparticles (P1). 29.268 g of cupric hydroxide (Cu (OH) 2) with a particle size range of 0.1-100 μm was added. Next, the liquid temperature was adjusted to 20 ° C., 20.73 ml of an aqueous solution containing 150 mmol of sodium borohydride and 480 mmol of sodium hydroxide was added dropwise while stirring in a nitrogen gas atmosphere, and then the reduction reaction was carried out while stirring well for 45 minutes. went. The reduction reaction was completed at the time when the generation of hydrogen gas from the reaction system was completed. By the reduction reaction, an aqueous solution of copper nanoparticles (P1) in which the copper nanoparticles (P1) at least partially covered with the organic protective film (polymer dispersant) are dispersed in the aqueous solution was obtained. Then, 66 ml of chloroform as an extractant was added to this aqueous solution to precipitate the copper nanoparticles (P1), and solid-liquid separation was performed by centrifugation. After methanol was added and stirred, solid-liquid separation was performed by centrifugation. The particles were separated and washed. Then, after washing several times, copper nanoparticles (P1) with an organic protective film were obtained. The thickness of the organic protective film (F1) was 0.6 mass% when measured using a carbon / sulfur concentration analyzer as a mass ratio occupying the entire copper nanoparticles (P1). The average primary particle diameter of the copper nanoparticles (P1) was 50 nm. An SEM image was obtained by observing with an SEM (manufactured by Hitachi High-Technologies Corporation, device name “SU8020”) at an acceleration voltage of 3 kV and a magnification of 200,000 times. Then, arbitrary 20 primary particles were selected from the image to measure the particle size, and the average value calculated from the measured values of the particle sizes was taken as the average primary particle size.

(2)金属粒子(P)の分散溶液の調製
金属粒子(P)の分散溶液は、銅ナノ粒子(P1)と金属微粒子(P2)とグリセリンを配合した。また、銅濃度が60重量%になるように配合した。
(2) Preparation of Dispersion Solution of Metal Particles (P) The dispersion solution of metal particles (P) was prepared by blending copper nanoparticles (P1), metal fine particles (P2) and glycerin. Also, the copper concentration was adjusted to 60% by weight.

(3)評価方法
半導体チップ側にペースト厚400umで印刷を行い、110℃の乾燥雰囲気下で銅濃度が65〜95%以上になるように乾燥した。その後、銅基板3の上に半導体チップ2を搭載し、真空下300℃で20分、10MPaで加圧加熱焼結を行った。さらにその後、−55〜200℃の冷熱衝撃試験(メーカ:エスペック 型番:TSE−11−A)を行い、100回毎に取り出し、界面をSAT観察し、剥離面積が10%を超えた時点で故障とした。下記の表1に示す今回の評価では、700回未満で故障が発生していた場合、例えば、半導体デバイスの適用例として自動車用インバータ等を考えた場合、信頼性が不十分である。したがって、信頼性判断の基準として、上記の条件を満たす700回以上を○、より信頼性が高い基準として1000回以上を◎として評価した。また、断面の硬度測定は焼結サンプルの中心が観察できるように断面出しを行い、界面から30um以内の場所をナノインデンターで20箇所の硬度測定を行い、最も低い硬度から3点と最も高い硬度2点を削除した15点の平均値を求めた。なお、P2粒子はナノ粒子由来の物質ではないので、ナノ粒子からなる部分を選んで測定した。
(3) Evaluation method Printing was performed on the semiconductor chip side with a paste thickness of 400 um, and the paste was dried in a dry atmosphere at 110 ° C so that the copper concentration was 65 to 95% or more. After that, the semiconductor chip 2 was mounted on the copper substrate 3, and pressure heating and sintering were performed under vacuum at 300 ° C. for 20 minutes at 10 MPa. After that, a thermal shock test (manufacturer: Espec model number: TSE-11-A) at −55 to 200 ° C. is performed, and it is taken out every 100 times, SAT observation of the interface is performed, and failure occurs when the peeled area exceeds 10%. And In this evaluation shown in Table 1 below, the reliability is insufficient when a failure occurs less than 700 times, for example, when an automotive inverter is considered as an application example of a semiconductor device. Therefore, 700 times or more satisfying the above conditions were evaluated as ◯, and 1000 times or more were evaluated as ⊚ as a criterion for higher reliability. In addition, the hardness of the cross section is measured so that the center of the sintered sample can be observed, and the hardness is measured at 20 points within 30 μm from the interface with a nano indenter. The average value of 15 points with 2 points of hardness deleted was obtained. Since P2 particles are not a substance derived from nanoparticles, the portion consisting of nanoparticles was selected and measured.

なお、断面出しは下記の手法により行った。
(1)サンプルを樹脂包埋し、チップの中心部が現れるように切断し、研磨する。
(2)cp(ケミカルボリッシャ:Arプラズマで断面を出す装置 メーカ:日本電子 型番:SM−09010)に入るおおきさに断面サンプルを切断したのち、cpで断面を出す。
(3)ナノインデンターに入るようにサンプルの大きさを調節する。
(4)ナノインデンター(メーカ:HALCYONICS MOD−1MP Plus)で測定する。
(5)圧子はバーコビッチ圧子(三角錐圧子)を用いた。
この手法を取ることにより、研磨時にできる表面変質層の影響を受けることなく、断面の硬度測定が可能になる。
The cross-section was obtained by the following method.
(1) A sample is embedded in a resin, cut so that the central portion of the chip appears, and polished.
(2) After cutting a cross-section sample into a space that fits into cp (Chemical Bollicer: Ar plasma cross-section device manufacturer: JEOL model number: SM-09010), the cross-section is taken out with cp.
(3) Adjust the size of the sample so that it enters the nano indenter.
(4) Measure with a nano indenter (manufacturer: HALCYONICS MOD-1MP Plus).
(5) A Berkovich indenter (triangular pyramid indenter) was used as the indenter.
By adopting this method, the hardness of the cross section can be measured without being affected by the surface-altered layer formed during polishing.

また、予備乾燥後の膜の銅濃度の測定は以下に示すとおりで行った。予備乾燥後の銅濃度の深さ方向分布は液体窒素で−140℃に冷却しながらFIB加工を行い、そのままFIB装置内に設置してあるEDXにより炭素と銅の定量分析を行い、炭素と銅の比率を求め、そこから銅濃度を求めた。   The copper concentration of the film after preliminary drying was measured as follows. The distribution of copper concentration in the depth direction after predrying was performed by FIB processing while cooling to -140 ° C with liquid nitrogen, and quantitative analysis of carbon and copper was performed by EDX installed in the FIB device as it was. Was calculated, and the copper concentration was calculated therefrom.

なお、銅濃度は
銅濃度(%)=EDX測定での銅の重量(%)/(EDX測定での銅の重量(%)+EDX測定での炭素の重量(%))
として求めた。なお、銅粒子の周りに修飾しているPVPの量は別の測定(粒子状態で測定した全炭素量測定)により1重量%以下とわかっており、今回の測定には影響を与えないことは確認している。
The copper concentration is the copper concentration (%) = copper weight (%) in EDX measurement / (copper weight (%) in EDX measurement + carbon weight (%) in EDX measurement)
Sought as. The amount of PVP modified around the copper particles was found to be 1 wt% or less by another measurement (measurement of total carbon amount measured in the particle state), and it does not affect this measurement. I'm confirming.

結果を下記表1に示す。比較例では半導体チップ側の硬度が低く信頼性に乏しい。一方、実施例では半導体チップ側の硬度が高く信頼性が良好である結果となった。   The results are shown in Table 1 below. In the comparative example, the hardness on the semiconductor chip side is low and the reliability is poor. On the other hand, in the example, the result is that the hardness of the semiconductor chip side is high and the reliability is good.

Figure 0006684185
Figure 0006684185

このように、本発明の半導体デバイス及びその製造方法にあっては、チップ状部品と被着体との接続の信頼性を向上することができるという効果を備え、半導体チップ或は半導体チップを含む半導体パッケージ等のチップ状部品を、金属微粒子の分散溶液を用いて基板或は電極等の被着体と接合した、半導体デバイス及びその製造方法全般に適用することができる。   As described above, the semiconductor device and the method of manufacturing the same according to the present invention have the effect of improving the reliability of the connection between the chip-shaped component and the adherend, and include a semiconductor chip or a semiconductor chip. The present invention can be applied to a semiconductor device in which a chip-shaped component such as a semiconductor package is bonded to an adherend such as a substrate or an electrode using a dispersion solution of metal fine particles, and a manufacturing method thereof.

1…半導体デバイス
2…半導体チップ(チップ状部品)
3…基板(被着体)
4…接合層
4a…上部接合層(硬度D1)
4b…下部接合層(硬度D2)
1 ... Semiconductor device 2 ... Semiconductor chip (chip-shaped component)
3 ... Substrate (adherend)
4 ... Bonding layer 4a ... Upper bonding layer (hardness D1)
4b ... Lower bonding layer (hardness D2)

Claims (6)

チップ状部品と被着体との間に金属粒子の焼結体からなる接合層を有する半導体デバイスにおいて、
前記チップ状部品と前記接合層との界面を基準として前記被着体に向かう厚さ30μmを含む範囲内における前記接合層の硬度D1が、前記被着体と前記接合層との界面を基準として前記チップ状部品に向かう厚さ30μmを含む範囲内における前記接合層の硬度D2よりも大きく、
前記硬度D1と前記硬度D2とは、ナノインデンター硬度であり、0.50≦D2/D1≦0.88の範囲内にある、半導体デバイス。
In a semiconductor device having a bonding layer made of a sintered body of metal particles between the chip-shaped component and the adherend,
The hardness D1 of the bonding layer within a range including the thickness of 30 μm toward the adherend with reference to the interface between the chip-shaped component and the bonding layer is based on the interface between the adherend and the bonding layer. the much larger than the hardness D2 of the bonding layer in a range including the thickness 30μm toward the chip-like component,
The semiconductor device in which the hardness D1 and the hardness D2 are nanoindenter hardness and are within a range of 0.50 ≦ D2 / D1 ≦ 0.88 .
前記接合層は、平均一次粒子径が2nm〜500nmの銅ナノ粒子(P1)を含む金属粒子(P)と、3価のアルコール含む有機分散媒(S)を含む金属粒子分散溶液を加熱焼結して形成した金属多孔質体と、を含む、ことを特徴とする請求項1に記載の半導体デバイス。 The bonding layer is formed by heating and sintering a metal particle dispersion solution containing a metal particle (P) containing copper nanoparticles (P1) having an average primary particle diameter of 2 nm to 500 nm and an organic dispersion medium (S) containing a trivalent alcohol. the semiconductor device of claim 1 in which the metal containing porous and body, and it is characterized in that to form. 前記金属粒子(P)は金属微粒子(P2)を含み、該金属微粒子(P2)は銅微粒子を含む、ことを特徴とする請求項に記載の半導体デバイス。 The semiconductor device according to claim 2 , wherein the metal particles (P) include metal fine particles (P2), and the metal fine particles (P2) include copper fine particles. 前記接合層は、前記チップ状部品と前記接合層との界面を基準として前記被着体に向かう厚さ30μmを含む範囲内における銅ナノ粒子(P1)の濃度C1が、前記被着体と前記接合層との界面を基準として前記チップ状部品に向かう厚さ30μmを含む範囲内における銅ナノ粒子(P1)の濃度C2よりも低く、かつ、0.67≦C1/C2≦0.88の範囲内にある、ことを特徴とする請求項又は請求項に記載の半導体デバイス。 In the bonding layer, the concentration C1 of the copper nanoparticles (P1) within a range including a thickness of 30 μm toward the adherend on the basis of the interface between the chip-shaped component and the bonding layer is the same as that of the adherend. The concentration is lower than the concentration C2 of the copper nanoparticles (P1) within a range including a thickness of 30 μm toward the chip-shaped component based on the interface with the bonding layer, and the range is 0.67 ≦ C1 / C2 ≦ 0.88 The semiconductor device according to claim 2 or 3 , wherein the semiconductor device is inside. 前記チップ状部品が半導体チップである、請求項1〜請求項のいずれか1の請求項に記載の半導体デバイス。 The semiconductor device according to any one of claims 1 to 4 , wherein the chip-shaped component is a semiconductor chip. 請求項1〜請求項のいずれか1の請求項に記載の半導体デバイスの製造方法であって、
チップ状部品の片面に金属粒子分散溶液を塗布して予備乾燥させた後に、被着体と接触させて加熱接合する、半導体デバイスの製造方法。
A method of manufacturing a semiconductor device according to any one of claims 1 to 5 , comprising:
A method for manufacturing a semiconductor device, which comprises applying a metal particle dispersion solution to one surface of a chip-shaped component, pre-drying it, and then contacting it with an adherend and performing heat bonding.
JP2016160906A 2016-08-18 2016-08-18 Semiconductor device and manufacturing method thereof Expired - Fee Related JP6684185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160906A JP6684185B2 (en) 2016-08-18 2016-08-18 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160906A JP6684185B2 (en) 2016-08-18 2016-08-18 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018029143A JP2018029143A (en) 2018-02-22
JP6684185B2 true JP6684185B2 (en) 2020-04-22

Family

ID=61249192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160906A Expired - Fee Related JP6684185B2 (en) 2016-08-18 2016-08-18 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6684185B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6632589B2 (en) * 2017-10-25 2020-01-22 株式会社豊田中央研究所 Joint structure and manufacturing method thereof
JP7198479B2 (en) * 2018-08-31 2023-01-04 学校法人早稲田大学 Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent
JP7231734B2 (en) * 2019-06-27 2023-03-01 京セラ株式会社 ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE
JP7391678B2 (en) * 2020-01-24 2023-12-05 大陽日酸株式会社 Bonding material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127537A (en) * 2012-12-26 2014-07-07 Hitachi Power Semiconductor Device Ltd Semiconductor device using conductive bonding material and method of manufacturing semiconductor device
JP5718536B2 (en) * 2013-02-22 2015-05-13 古河電気工業株式会社 Connection structure and semiconductor device

Also Published As

Publication number Publication date
JP2018029143A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6684185B2 (en) Semiconductor device and manufacturing method thereof
KR101709302B1 (en) Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP6423416B2 (en) Sintered paste with silver oxide coated on precious and non-precious metal surfaces that are difficult to sinter
KR20180004853A (en) Binding material, binding body, and binding method
Tay et al. Addition of cobalt nanoparticles into Sn‐3.8 Ag‐0.7 Cu lead‐free solder by paste mixing
US20090180914A1 (en) Interconnect material and interconnect formation method
JP6265688B2 (en) Connection structure
JP2013041884A (en) Semiconductor device
JPWO2011114751A1 (en) Conductive connection member and method for producing conductive connection member
JP6789794B2 (en) Dispersion solution of metal particles
CN107743425A (en) Metal glue and its use for connecting components
JP6372978B2 (en) Conductive paste
KR101522117B1 (en) Precious metal paste for bonding semiconductor element
JP6178850B2 (en) Connection structure and semiconductor device
KR20180127313A (en) Conductive adhesive
JP6622971B2 (en) Heat bonding material, bonding structure, method for manufacturing heat bonding material, and bonding method using the heat bonding material
JP2020038896A (en) Junction structure and method for manufacturing the same
JP2012138349A (en) Method for forming conductive pattern
JP6053386B2 (en) Bonding method of electronic parts
JP2018111872A (en) Material for joining metal, and junction structure
JP5804838B2 (en) Ceramic joint
JP6928507B2 (en) Material for metal bonding
JP6053360B2 (en) Bonding method of electronic parts
WO2018101471A1 (en) Electroconductive bonding material and method for manufacturing semiconductor device
JP6284510B2 (en) Dispersion solution of metal particles and manufacturing method of bonded structure

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R151 Written notification of patent or utility model registration

Ref document number: 6684185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees