[go: up one dir, main page]

JP6680628B2 - Laser scanner - Google Patents

Laser scanner Download PDF

Info

Publication number
JP6680628B2
JP6680628B2 JP2016118884A JP2016118884A JP6680628B2 JP 6680628 B2 JP6680628 B2 JP 6680628B2 JP 2016118884 A JP2016118884 A JP 2016118884A JP 2016118884 A JP2016118884 A JP 2016118884A JP 6680628 B2 JP6680628 B2 JP 6680628B2
Authority
JP
Japan
Prior art keywords
unit
light
distance measuring
laser
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016118884A
Other languages
Japanese (ja)
Other versions
JP2017223541A (en
Inventor
古平 純一
純一 古平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2016118884A priority Critical patent/JP6680628B2/en
Publication of JP2017223541A publication Critical patent/JP2017223541A/en
Application granted granted Critical
Publication of JP6680628B2 publication Critical patent/JP6680628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、測距光を回転照射し、3次元の点群データを取得するレーザスキャナに関するものである。   TECHNICAL FIELD The present invention relates to a laser scanner that irradiates a distance measuring light and acquires three-dimensional point cloud data.

従来より、短時間に測定対象物の多数の3次元データ(3Dデータ、3次元点群データ)を取得する為の測量装置として、3次元レーザスキャナが知られている。   Conventionally, a three-dimensional laser scanner has been known as a surveying device for acquiring a large number of three-dimensional data (3D data, three-dimensional point cloud data) of a measurement target in a short time.

3次元レーザスキャナは三脚上に設置され、走査部を介してパルス光を回転照射し、測定対象物を走査して、パルス光毎に測距、測角を行うことで、測定対象物の3次元データを取得している。   The three-dimensional laser scanner is installed on a tripod, rotates and irradiates the pulsed light through the scanning unit, scans the measuring object, and performs distance measurement and angle measurement for each pulsed light, thereby measuring the object to be measured. Obtaining dimensional data.

然し乍ら、3次元レーザスキャナは、走査部を高速で回転させながらパルス光を回転照射する構成である為、測設点の指示等、特定の1点を指し示すことは困難である。   However, since the three-dimensional laser scanner is configured to rotate and irradiate the pulsed light while rotating the scanning unit at a high speed, it is difficult to indicate a specific one point such as an instruction of a measurement setting point.

従って、3次元点群データを取得し、測定対象物の形状を測定すると共に、測設作業を行う場合には、3次元レーザスキャナの他に、レーザポインタ光を照射して測設点を指示するトータルステーション等の測量装置が必要であった。   Therefore, in addition to acquiring the 3D point cloud data and measuring the shape of the measurement object, in addition to the 3D laser scanner, the laser pointer light is emitted to indicate the measurement point when performing the measurement work. A surveying device such as a total station was needed.

特開2015−125099号公報JP, 2015-125099, A

本発明は、3次元の点群データ取得の測定作業と測設作業とを共に実行可能なレーザスキャナを提供するものである。   The present invention provides a laser scanner capable of performing both measurement work and measurement work for three-dimensional point cloud data acquisition.

本発明は、測距光を射出する測距発光部と、反射測距光の受光結果に基づき測距を行う測距部と、前記測距光と既知の関係でレーザポインタ光を照射するポインタ光発光部と、前記測距光の射出方向を検出する測角部と、前記測距発光部、前記測距部、前記ポインタ光発光部を含み水平方向、鉛直方向に回転可能な望遠鏡部、該望遠鏡部を回転させる回転駆動部と、既知の座標系を有する図面データが格納された記憶部を有する制御演算部とを具備し、該制御演算部は、前記測距光を所要の範囲で回転照射し、該測距光毎の測距結果と方向角検出結果に基づき3次元の点群データを取得し、該3次元の点群データと前記図面データとに共通した点の測定結果を基に前記3次元の点群データを前記図面データとマッチングさせ、該図面データ上で指定された測設点に対して前記レーザポインタ光を照射させる様構成されたレーザスキャナに係るものである。   The present invention relates to a distance measuring light emitting unit that emits distance measuring light, a distance measuring unit that performs distance measurement based on the reception result of reflected distance measuring light, and a pointer that emits laser pointer light in a known relationship with the distance measuring light. A light emitting unit, an angle measuring unit for detecting the emitting direction of the distance measuring light, a distance measuring light emitting unit, the distance measuring unit, a telescope unit including the pointer light emitting unit, which is rotatable in a horizontal direction and a vertical direction, A rotation driving unit for rotating the telescope unit and a control calculation unit having a storage unit in which drawing data having a known coordinate system are stored, and the control calculation unit controls the distance measuring light within a required range. Irradiate in rotation, acquire three-dimensional point cloud data based on the distance measurement result and direction angle detection result for each of the distance measurement lights, and display the measurement results of points common to the three-dimensional point cloud data and the drawing data. Based on the drawing data, the three-dimensional point cloud data is matched with the drawing data. Those of the laser scanner that is configured as to irradiate the laser pointer light for a given survey setting point.

又本発明は、前記レーザポインタ光は前記測距光と同軸であり、前記望遠鏡部は鉛直回転され、前記制御演算部は前記測距光の光軸が前記測設点と一致した時に前記レーザポインタ光が照射される様前記ポインタ光発光部を制御するレーザスキャナに係るものである。   Further, according to the present invention, the laser pointer light is coaxial with the distance measuring light, the telescope unit is rotated vertically, and the control calculation unit is configured to operate the laser when the optical axis of the distance measuring light coincides with the measuring point. The present invention relates to a laser scanner that controls the pointer light emitting unit so that pointer light is emitted.

又本発明は、前記レーザポインタ光は前記測距光と同軸であり、前記望遠鏡部は上下方向に揺動され、前記制御演算部は前記測距光の光軸が前記測設点と一致した時に前記レーザポインタ光が照射される様前記ポインタ光発光部を制御するレーザスキャナに係るものである。   According to the present invention, the laser pointer light is coaxial with the distance measuring light, the telescope unit is vertically swung, and the control calculation unit has an optical axis of the distance measuring light coincident with the measuring point. The present invention relates to a laser scanner that controls the pointer light emitting section so that the laser pointer light is sometimes emitted.

又本発明は、前記制御演算部は、前記測距光の照射による前記3次元の点群データの取得と、前記測距光の光軸が前記測設点と一致した時の前記レーザポインタ光の照射を同時に実行するレーザスキャナに係るものである。   Further, according to the present invention, the control calculation unit obtains the three-dimensional point cloud data by irradiating the distance measuring light and the laser pointer light when the optical axis of the distance measuring light coincides with the measuring point. The present invention relates to a laser scanner that simultaneously executes the irradiation of the.

更に又本発明は、前記レーザポインタ光、前記測距光と同軸な撮像光軸上に設けられた撮像部を更に具備し、該撮像部により前記レーザポインタ光の照射点を含む背景画像を取得可能としたレーザスキャナに係るものである。   Furthermore, the present invention further comprises an imaging unit provided on an imaging optical axis coaxial with the laser pointer light and the distance measuring light, and the imaging unit acquires a background image including an irradiation point of the laser pointer light. The present invention relates to a possible laser scanner.

本発明によれば、測距光を射出する測距発光部と、反射測距光の受光結果に基づき測距を行う測距部と、前記測距光と既知の関係でレーザポインタ光を照射するポインタ光発光部と、前記測距光の射出方向を検出する測角部と、前記測距発光部、前記測距部、前記ポインタ光発光部を含み水平方向、鉛直方向に回転可能な望遠鏡部、該望遠鏡部を回転させる回転駆動部と、既知の座標系を有する図面データが格納された記憶部を有する制御演算部とを具備し、該制御演算部は、前記測距光を所要の範囲で回転照射し、該測距光毎の測距結果と方向角検出結果に基づき3次元の点群データを取得し、該3次元の点群データと前記図面データとに共通した点の測定結果を基に前記3次元の点群データを前記図面データとマッチングさせ、該図面データ上で指定された測設点に対して前記レーザポインタ光を照射させる様構成されたので、測定作業と測設作業の両方を行うことができ、汎用性及び作業性の向上を図ることができるという優れた効果を発揮する。   According to the present invention, the distance measuring light emitting unit that emits the distance measuring light, the distance measuring unit that measures the distance based on the reception result of the reflected distance measuring light, and the laser pointer light is irradiated in a known relationship with the distance measuring light. A pointer light emitting section, an angle measuring section for detecting the emission direction of the distance measuring light, and a telescope which includes the distance measuring light emitting section, the distance measuring section, and the pointer light emitting section and is rotatable in the horizontal and vertical directions. Section, a rotation driving section for rotating the telescope section, and a control calculation section having a storage section in which drawing data having a known coordinate system is stored, and the control calculation section requires the distance measuring light. Rotate and irradiate in a range, obtain three-dimensional point cloud data based on the distance measurement result and direction angle detection result for each distance measurement light, and measure points common to the three-dimensional point cloud data and the drawing data. Based on the result, the three-dimensional point cloud data is matched with the drawing data, and the drawing data is matched. Since the laser pointer light is radiated to the designated measurement point on the computer, both measurement work and measurement work can be performed, and versatility and workability can be improved. It has an excellent effect that it can.

本発明の第1の実施例に係るレーザスキャナの概略図である。1 is a schematic diagram of a laser scanner according to a first embodiment of the present invention. 該レーザスキャナの概略構成図である。It is a schematic block diagram of this laser scanner. 該レーザスキャナに於ける望遠鏡部の光学系を示す構成図である。It is a block diagram which shows the optical system of the telescope part in this laser scanner. 本発明の第1の実施例に係る測設点の指示処理を説明するフローチャートである。It is a flowchart explaining the instruction | indication process of the survey setting point which concerns on the 1st Example of this invention. 本発明の第2の実施例に係る望遠鏡部の光学系を示す構成図である。It is a block diagram which shows the optical system of the telescope part which concerns on the 2nd Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、図1により、本発明の第1の実施例に係るレーザスキャナ1の概略について説明する。   First, an outline of a laser scanner 1 according to the first embodiment of the present invention will be described with reference to FIG.

所定の位置に三脚2を設置し、該三脚2に整準部3が設けられ、該整準部3に基盤部4が設けられている。該基盤部4に水平回転駆動部5が収納されている。該水平回転駆動部5は鉛直に延びる水平回転軸6を有し、該水平回転軸6の上端に水平回転部である托架部7が取付けられている。   A tripod 2 is installed at a predetermined position, a leveling section 3 is provided on the tripod 2, and a base section 4 is provided on the leveling section 3. A horizontal rotation drive unit 5 is housed in the base unit 4. The horizontal rotation drive unit 5 has a horizontal rotation shaft 6 extending vertically, and a suspension unit 7 which is a horizontal rotation unit is attached to an upper end of the horizontal rotation shaft 6.

該托架部7は凹部8を有し、該凹部8には鉛直回転部である望遠鏡部9が収納されている。該望遠鏡部9は鉛直回転軸10を介して、前記托架部7に回転自在に支持されている。前記望遠鏡部9には、測距光軸を有する望遠鏡(レンズユニット)11が設けられ、又前記望遠鏡部9には測距部16(図2参照)等が収納されている。   The frame 7 has a recess 8 in which a telescope unit 9 which is a vertical rotating unit is housed. The telescope unit 9 is rotatably supported by the frame unit 7 via a vertical rotation shaft 10. The telescope unit 9 is provided with a telescope (lens unit) 11 having a distance measuring optical axis, and the telescope unit 9 houses a distance measuring unit 16 (see FIG. 2).

前記托架部7には鉛直回転駆動部12が収納され、該鉛直回転駆動部12は水平軸心を有する前記鉛直回転軸10に連結されている。前記鉛直回転駆動部12によって前記望遠鏡部9が鉛直方向に全周回転される様になっている。前記鉛直回転軸10には鉛直角検出器13が設けられ、該鉛直角検出器13により前記鉛直回転軸10の回転角が検出され、更に該鉛直回転軸10の鉛直角が検出される様になっている。又、前記托架部7には制御演算部17が収納されている。   A vertical rotation drive unit 12 is housed in the suspension unit 7, and the vertical rotation drive unit 12 is connected to the vertical rotation shaft 10 having a horizontal axis. The vertical rotation drive unit 12 rotates the telescope unit 9 around the entire circumference in the vertical direction. A vertical angle detector 13 is provided on the vertical rotary shaft 10, and the vertical angle detector 13 detects the rotation angle of the vertical rotary shaft 10 and further detects the vertical angle of the vertical rotary shaft 10. Has become. Further, a control calculation unit 17 is housed in the suspension unit 7.

前記水平回転駆動部5は、鉛直軸心を有する前記水平回転軸6に連結され、前記托架部7は前記水平回転駆動部5によって水平方向に全周回転される様になっている。又、前記水平回転軸6には水平角検出器14が設けられ、該水平角検出器14により前記托架部7の回転角が検出され、更に該托架部7の水平角が検出される様になっている。前記鉛直角検出器13、前記水平角検出器14によって、方向角検出器が構成される。   The horizontal rotation drive unit 5 is connected to the horizontal rotation shaft 6 having a vertical axis, and the support unit 7 is rotated by the horizontal rotation drive unit 5 in the entire horizontal direction. Further, a horizontal angle detector 14 is provided on the horizontal rotation shaft 6, and the horizontal angle detector 14 detects the rotation angle of the suspension section 7, and further detects the horizontal angle of the suspension section 7. It has become like. The vertical angle detector 13 and the horizontal angle detector 14 constitute a direction angle detector.

而して、前記水平回転駆動部5、前記鉛直回転駆動部12が構成する回転駆動部により、前記望遠鏡部9が鉛直、水平の2方向に所要の状態で回転される。又、前記鉛直角検出器13、前記水平角検出器14によって、鉛直角、水平角がリアルタイムで検出される。   Thus, the telescope unit 9 is rotated in two directions, vertical and horizontal, in a desired state by the rotary drive unit constituted by the horizontal rotary drive unit 5 and the vertical rotary drive unit 12. The vertical angle and horizontal angle are detected by the vertical angle detector 13 and the horizontal angle detector 14 in real time.

次に、図2に於いて、前記レーザスキャナ1の構成の概略を説明する。   Next, referring to FIG. 2, an outline of the configuration of the laser scanner 1 will be described.

図2中、17は制御演算部、18は測角部、19は記憶部、21は操作部、22は表示部を示している。   In FIG. 2, 17 is a control calculation unit, 18 is an angle measurement unit, 19 is a storage unit, 21 is an operation unit, and 22 is a display unit.

前記望遠鏡部9には、前記望遠鏡11、測距発光部24、反射測距光25を受光する前記測距部16、レーザポインタ光26を発するポインタ光発光部27を有している。前記測距発光部24は測距光軸上に測距光(パルスレーザ光線)23を発し、前記望遠鏡11を介して照射される。又、前記ポインタ光発光部27は測距光軸上に前記レーザポインタ光26を発し、前記望遠鏡11を介して照射される。   The telescope unit 9 includes the telescope 11, a distance measuring light emitting unit 24, the distance measuring unit 16 that receives reflected distance measuring light 25, and a pointer light emitting unit 27 that emits laser pointer light 26. The distance measuring light emitting unit 24 emits a distance measuring light (pulse laser beam) 23 on the distance measuring optical axis, and the distance measuring light 23 is irradiated through the telescope 11. Further, the pointer light emitting section 27 emits the laser pointer light 26 on the distance measuring optical axis, and the laser pointer light 26 is emitted through the telescope 11.

前記測距発光部24は、前記制御演算部17により発光が制御され、前記測距光23を発光する。前記測距部16は、測定点或は測定対象物から反射された前記反射測距光25を受光した際の受光信号に基づき、1パルス毎にパルス光の往復時間を求めて測定点の測距を行う(Time Of Flight)。又、前記測距部16は、測定対象物を再帰反射体(例えばプリズム)としたプリズム測定、或は測定対象物を自然物としたノンプリズム測定が可能となっている。又、前記ポインタ光発光部27は、例えば所定のタイミングで前記レーザポインタ光26をパルス発光する。   Light emission of the distance measuring light emitting unit 24 is controlled by the control calculating unit 17, and the distance measuring light 23 is emitted. The distance measuring unit 16 obtains the round-trip time of the pulsed light for each pulse based on the light receiving signal when the reflected distance measuring light 25 reflected from the measuring point or the measuring object is received, and measures the measuring point. Distance (Time Of Flight). Further, the distance measuring unit 16 can perform prism measurement using a retroreflector (for example, prism) as the measurement target or non-prism measurement using the measurement target as a natural object. Further, the pointer light emitting section 27 emits a pulse of the laser pointer light 26 at a predetermined timing, for example.

前記鉛直角検出器13からの鉛直角検出信号は前記測角部18に入力され、該測角部18は鉛直角検出信号に基づき前記鉛直回転軸10の鉛直角を演算する。又、前記水平角検出器14からの水平角検出信号は前記測角部18に入力され、該測角部18は水平角検出信号に基づき前記托架部7の水平角を演算する。前記測距光23による測距毎に鉛直角、水平角が求められ、鉛直角、水平角によって、前記レーザスキャナ1を基準とした各測定点毎の方向角が求められる。   The vertical angle detection signal from the vertical angle detector 13 is input to the angle measuring unit 18, and the angle measuring unit 18 calculates the vertical angle of the vertical rotary shaft 10 based on the vertical angle detection signal. The horizontal angle detection signal from the horizontal angle detector 14 is input to the angle measuring unit 18, and the angle measuring unit 18 calculates the horizontal angle of the frame unit 7 based on the horizontal angle detection signal. A vertical angle and a horizontal angle are obtained for each distance measurement by the distance measuring light 23, and a direction angle at each measurement point with respect to the laser scanner 1 is obtained from the vertical angle and the horizontal angle.

前記制御演算部17は、前記鉛直回転駆動部12により前記望遠鏡部9を所定の速度で且つ高速回転で、鉛直方向に全周回転させる。又、前記制御演算部17は、前記水平回転駆動部5により前記望遠鏡部9の鉛直回転に同期させ、前記托架部7を所定の速度で水平回転させる。鉛直回転と水平回転との協働により、所要範囲のレーザスキャンが実行され、所要範囲の3次元の点群データが取得できる。更に、前記制御演算部17は、スキャン速度及びパルス発光の繰返し周波数を設定することで、測定ピッチ(測定点間の間隔)を設定できると共に、前記ポインタ光発光部27による前記レーザポインタ光26の発光のタイミングを設定できる。   The control calculation unit 17 causes the vertical rotation drive unit 12 to rotate the telescope unit 9 at a predetermined speed and at a high speed in the vertical direction all around. Further, the control calculation unit 17 causes the horizontal rotation drive unit 5 to synchronize with the vertical rotation of the telescope unit 9 to horizontally rotate the support unit 7 at a predetermined speed. The laser scanning of the required range is performed by the cooperation of the vertical rotation and the horizontal rotation, and the three-dimensional point cloud data of the required range can be acquired. Further, the control calculation unit 17 can set the measurement pitch (interval between measurement points) by setting the scan speed and the repetition frequency of pulsed light emission, and at the same time, the pointer light emission unit 27 can change the laser pointer light 26. You can set the timing of light emission.

前記記憶部19には、前記レーザスキャナ1を作動させる為の各種プログラムが格納されている。例えば、測距、測角を実行する為の測定プログラム、前記水平回転駆動部5、前記鉛直回転駆動部12の駆動を制御する為の駆動制御プログラム、前記測距発光部24による前記測距光23の発光を制御する為の測距光制御プログラム、前記ポインタ光発光部27による前記レーザポインタ光26の発光を制御する為のレーザポインタ光制御プログラム、測定ピッチを設定する測定ピッチ設定プログラム、前記レーザポインタ光26の発光のタイミングを設定するタイミング設定プログラム、測定結果と設計図面データとをマッチングさせるマッチングプログラム、前記表示部22に各種情報を表示させる為の表示プログラム等が格納されている。   Various programs for operating the laser scanner 1 are stored in the storage unit 19. For example, a measurement program for performing distance measurement and angle measurement, a drive control program for controlling the drive of the horizontal rotation drive unit 5 and the vertical rotation drive unit 12, the distance measurement light by the distance measurement light emitting unit 24. 23, a distance measurement light control program for controlling the light emission of 23, a laser pointer light control program for controlling the light emission of the laser pointer light 26 by the pointer light emitting section 27, a measurement pitch setting program for setting a measurement pitch, A timing setting program for setting the emission timing of the laser pointer light 26, a matching program for matching the measurement result with the design drawing data, a display program for displaying various information on the display unit 22 and the like are stored.

又、前記記憶部19には、測定データ、絶対座標等既知の座標系を有する設計図面データ(以下図面データ)等の各種データを格納する為のデータ格納領域が設けられている。   Further, the storage unit 19 is provided with a data storage area for storing various data such as measurement data and design drawing data (hereinafter referred to as drawing data) having a known coordinate system such as absolute coordinates.

前記操作部21からは、測定範囲、測定密度等の測定条件が入力され、測設点の位置データ(例えば3次元データ)が前記制御演算部17に入力され、或は測定開始、測定停止等の指令が入力される。尚、測設点の位置データについては、図面データに基づき予め設定し、図面データと共に前記記憶部19に記憶させてもよい。   Measurement conditions such as measurement range and measurement density are input from the operation unit 21, position data (for example, three-dimensional data) of measurement setting points is input to the control calculation unit 17, or measurement start, measurement stop, etc. Is input. The position data of the measurement setting points may be preset based on the drawing data and stored in the storage unit 19 together with the drawing data.

前記表示部22には、測定範囲等の測定条件、測定状態が表示され、或は測定結果等が表示される。   The display unit 22 displays the measurement conditions such as the measurement range, the measurement state, or the measurement result.

次に、図3に於いて、前記望遠鏡部9の光学系について説明する。   Next, referring to FIG. 3, the optical system of the telescope unit 9 will be described.

前述した様に、前記望遠鏡部9には、前記レンズユニット(望遠鏡)11、前記測距発光部24、前記測距部16、前記ポインタ光発光部27、内部参照光路28等が収納されている。   As described above, the telescope unit 9 houses the lens unit (telescope) 11, the distance measuring light emitting unit 24, the distance measuring unit 16, the pointer light emitting unit 27, the internal reference optical path 28, and the like. .

前記測距発光部24は、発光部29と、ハーフミラーやビームスプリッタ等の光路分割部材31と、第1ビームスプリッタ32とを有している。前記発光部29は、例えば半導体レーザ等であり、前記測距光23として測距光軸上に不可視光である赤外光のレーザ光線を発する。   The distance measuring light emitting unit 24 has a light emitting unit 29, an optical path splitting member 31 such as a half mirror and a beam splitter, and a first beam splitter 32. The light emitting unit 29 is, for example, a semiconductor laser or the like, and emits a laser beam of infrared light which is invisible light on the distance measuring optical axis as the distance measuring light 23.

又、前記光路分割部材31は、前記測距光23の一部を反射し、内部参照光33として前記内部参照光路28へと導く様になっている。更に、前記第1ビームスプリッタ32は、不可視光の前記測距光23を反射し、可視光の前記レーザポインタ光26を透過する光学特性を有している。前記測距発光部24は、所要の光強度、所要のパルス間隔等、所要の状態で前記測距光23を発光する様、前記制御演算部17に制御される。   Further, the optical path dividing member 31 reflects a part of the distance measuring light 23 and guides it as the internal reference light 33 to the internal reference light path 28. Further, the first beam splitter 32 has an optical characteristic of reflecting the distance measuring light 23 of invisible light and transmitting the laser pointer light 26 of visible light. The distance measuring light emitting unit 24 is controlled by the control calculating unit 17 so as to emit the distance measuring light 23 in a required state such as a required light intensity and a required pulse interval.

又、前記測距部16は、第2ビームスプリッタ34と、光路結合部35と、受光素子36とを有している。前記第2ビームスプリッタ34は、例えばハーフミラーであり、可視光の前記レーザポインタ光26と不可視光の前記測距光23の一部を反射し、前記反射測距光25の一部を透過させる光学特性を有している。前記光路結合部35は、前記第2ビームスプリッタ34を透過した前記反射測距光25と、前記内部参照光路28を通過した前記内部参照光33とを結合させ、前記受光素子36に受光させる様になっている。   Further, the distance measuring unit 16 has a second beam splitter 34, an optical path coupling unit 35, and a light receiving element 36. The second beam splitter 34 is, for example, a half mirror, reflects a part of the laser pointer light 26 of visible light and the distance measuring light 23 of invisible light, and transmits a part of the reflected distance measuring light 25. It has optical characteristics. The optical path combining unit 35 combines the reflected distance measuring light 25 that has passed through the second beam splitter 34 and the internal reference light 33 that has passed through the internal reference light path 28 so that the light receiving element 36 receives the light. It has become.

該受光素子36は、受光した前記反射測距光25と、前記内部参照光33とを、反射光受光信号と内部光受光信号へと変換し、前記制御演算部17へと送出す様になっている。該制御演算部17は、前記測距光23毎に反射光受光信号と内部光受光信号との受光時間差を求め、前記内部参照光33と前記反射測距光25との受光時間差に基づき測距光照射点(測定点)迄の距離を測定する様になっている。   The light receiving element 36 converts the received reflected distance measuring light 25 and the internal reference light 33 into a reflected light receiving signal and an internal light receiving signal, and sends them to the control calculation section 17. ing. The control calculation unit 17 obtains a light receiving time difference between the reflected light receiving signal and the internal light receiving signal for each of the distance measuring lights 23, and measures the distance based on the light receiving time difference between the internal reference light 33 and the reflected distance measuring light 25. It is designed to measure the distance to the light irradiation point (measurement point).

前記ポインタ光発光部27は、例えば発光ダイオード(LED)であり、可視光の前記レーザポインタ光26を発する。前記制御演算部17は、前記水平回転駆動部5の駆動、前記鉛直回転駆動部12の駆動、前記鉛直角検出器13と前記水平角検出器14の検出結果に基づき、前記レーザポインタ光26の発光のタイミングを制御する様になっている。   The pointer light emitting unit 27 is, for example, a light emitting diode (LED) and emits the laser pointer light 26 of visible light. The control calculation unit 17 drives the horizontal rotation drive unit 5, drives the vertical rotation drive unit 12, and detects the laser pointer light 26 based on the detection results of the vertical angle detector 13 and the horizontal angle detector 14. It is designed to control the timing of light emission.

測定作業を行う際に、前記発光部29より前記測距光23が射出されると、該測距光23の一部(大部分)は前記光路分割部材31を透過し、前記第1ビームスプリッタ32に入射する。前記測距光23の残部は前記内部参照光33として前記光路分割部材31により反射され、前記内部参照光路28を介して前記測距部16へと導かれる。   When the distance measuring light 23 is emitted from the light emitting unit 29 during the measurement work, a part (most part) of the distance measuring light 23 passes through the optical path splitting member 31 and the first beam splitter. It is incident on 32. The rest of the distance measuring light 23 is reflected by the optical path dividing member 31 as the internal reference light 33, and is guided to the distance measuring unit 16 via the internal reference light path 28.

前記第1ビームスプリッタ32で反射された前記測距光23は、前記第2ビームスプリッタ34に入射し、該第2ビームスプリッタ34により前記測距光23の一部が反射され、投光レンズ等のレンズ群から構成された前記レンズユニット11へと導かれる。尚、前記第1ビームスプリッタ32、前記第2ビームスプリッタ34を透過した前記測距光23は、図示しない反射防止部材により吸収される。   The distance measuring light 23 reflected by the first beam splitter 32 is incident on the second beam splitter 34, a part of the distance measuring light 23 is reflected by the second beam splitter 34, and a projection lens or the like is used. It is guided to the lens unit 11 composed of the lens group. The distance measuring light 23 transmitted through the first beam splitter 32 and the second beam splitter 34 is absorbed by an antireflection member (not shown).

前記レンズユニット11により平行光束とされた前記測距光23は、図示しない測定範囲或は測定対象物へと照射される。又、前記望遠鏡部9が前記鉛直回転軸10を中心に回転されることで、前記測距光23は鉛直面内に回転照射される。又、前記水平回転駆動部5が前記托架部7を水平方向に回転させることで、前記測距光23は前記水平回転軸6を中心に水平方向に回転照射される。従って、前記望遠鏡部9の鉛直方向の回転と、前記托架部7の水平方向の回転の協働により、測定範囲の所定範囲或は全域を前記測距光23により走査できる。   The distance measuring light 23 made into a parallel light flux by the lens unit 11 is applied to a measurement range or an object to be measured (not shown). Further, when the telescope unit 9 is rotated about the vertical rotation shaft 10, the distance measuring light 23 is rotatably irradiated in the vertical plane. Further, the horizontal rotation drive unit 5 rotates the frame unit 7 in the horizontal direction, so that the distance measuring light 23 is rotated and irradiated in the horizontal direction about the horizontal rotation shaft 6. Therefore, by the cooperation of the vertical rotation of the telescope unit 9 and the horizontal rotation of the support unit 7, a predetermined range or the entire measurement range can be scanned by the distance measuring light 23.

該測距光23は、前記測定範囲内に走査され、該測定範囲内に存在する測定対象物により反射される。前記反射測距光25は、前記レンズユニット11へ入射し、前記第2ビームスプリッタ34を一部が透過し、前記測距部16へと導かれる。   The distance measuring light 23 is scanned within the measurement range and is reflected by the measuring object existing in the measurement range. The reflected distance measuring light 25 enters the lens unit 11, partially passes through the second beam splitter 34, and is guided to the distance measuring unit 16.

前記第2ビームスプリッタ34を透過した前記反射測距光25は、前記光路結合部35を経て、前記受光素子36に受光される。又、前記内部参照光路28を経た前記内部参照光33が、前記光路結合部35を介して前記受光素子36で受光される。   The reflected distance measuring light 25 that has passed through the second beam splitter 34 is received by the light receiving element 36 via the optical path coupling section 35. Further, the internal reference light 33 that has passed through the internal reference light path 28 is received by the light receiving element 36 via the optical path coupling portion 35.

前記制御演算部17は、反射光受光信号と、内部光受光信号との受光時間差に基づき、測距光照射点(測定点)迄の距離を測定する。又、測定点迄の距離と、前記測距光23毎の前記鉛直角検出器13により検出された鉛直角と、前記水平角検出器14により検出された水平角とに基づき、前記制御演算部17が測定点の3次元座標を演算する。前記測距光23毎に測定点の3次元座標値が記録されることで、測定範囲の全域に関する、或は測定対象物に対する3次元の点群データを得ることができる。   The control calculation unit 17 measures the distance to the distance measurement light irradiation point (measurement point) based on the light reception time difference between the reflected light reception signal and the internal light reception signal. The control calculation unit is based on the distance to the measurement point, the vertical angle detected by the vertical angle detector 13 for each of the distance measuring lights 23, and the horizontal angle detected by the horizontal angle detector 14. 17 calculates the three-dimensional coordinates of the measurement point. By recording the three-dimensional coordinate value of the measurement point for each of the distance measuring lights 23, it is possible to obtain three-dimensional point cloud data for the entire measurement range or for the measurement object.

又、前記ポインタ光発光部27から発せられた前記レーザポインタ光26は、前記第1ビームスプリッタ32を透過し、前記第2ビームスプリッタ34に反射される。これにより、前記レーザポインタ光26の光軸は前記測距光23の光軸と合致し、前記レーザポインタ光26は前記測距光23と同軸で照射される。更に、前記レーザポインタ光26は、前記望遠鏡部9の鉛直方向の回転、前記托架部7の水平方向の回転の協働により、前記測定範囲の全域の任意の位置に照射される。   Further, the laser pointer light 26 emitted from the pointer light emitting section 27 passes through the first beam splitter 32 and is reflected by the second beam splitter 34. As a result, the optical axis of the laser pointer light 26 matches the optical axis of the distance measuring light 23, and the laser pointer light 26 is emitted coaxially with the distance measuring light 23. Further, the laser pointer light 26 is applied to any position in the entire measurement range by the cooperation of the vertical rotation of the telescope unit 9 and the horizontal rotation of the support unit 7.

測定作業終了後、測設作業を行う為には、指定した測設点を前記レーザポインタ光26により照射し続け、作業者に測設点を指示する必要がある。   In order to perform the surveying work after the measurement work is completed, it is necessary to continue to irradiate the designated surveying point with the laser pointer light 26 and to instruct the operator about the surveying point.

次に、図4のフローチャートを用い、前記レーザスキャナ1を用いた3次元の点群データの取得、測設点の指示処理について説明する。   Next, with reference to the flow chart of FIG. 4, acquisition of three-dimensional point cloud data using the laser scanner 1 and instruction processing of measurement points will be described.

STEP:01 先ず、前記レーザスキャナ1を任意の位置に設置、前記整準部3により整準を行う。   STEP: 01 First, the laser scanner 1 is installed at an arbitrary position, and the leveling unit 3 performs leveling.

STEP:02 次に、前記水平回転駆動部5により前記托架部7を水平回転させ、前記鉛直回転駆動部12により前記望遠鏡部9を鉛直回転させ、前記レーザスキャナ1により測定範囲を走査し、測定対象物の3次元の点群データを取得する。   STEP: 02 Next, the frame 7 is horizontally rotated by the horizontal rotation drive unit 5, the telescope unit 9 is vertically rotated by the vertical rotation drive unit 12, and the measurement range is scanned by the laser scanner 1. Acquiring three-dimensional point cloud data of the measurement target.

STEP:03 3次元の点群データが取得されると、前記制御演算部17は、測定結果の中から既知の点に設けられたプリズム、或は配管のボルト孔等の既知の座標を有する測定点等を選択し、既知点の測定結果を基に測定対象物に対する前記レーザスキャナ1の設置位置を既知化する。又、既知点の測定結果を基に図面データの座標系(図面座標系)に於ける前記レーザスキャナ1の位置を演算する。   STEP: 03 When the three-dimensional point cloud data is acquired, the control calculation unit 17 performs measurement with a known coordinate such as a prism provided at a known point in the measurement result or a bolt hole of a pipe. A point or the like is selected, and the installation position of the laser scanner 1 with respect to the measurement object is made known based on the measurement result of the known point. Further, the position of the laser scanner 1 in the coordinate system of drawing data (drawing coordinate system) is calculated based on the measurement result of known points.

尚、該レーザスキャナ1が直交する2の壁面に近接して設けられている場合は、前記レーザスキャナ1を水平方向に全周回転させて壁面を走査し、該レーザスキャナ1と各壁面との距離をそれぞれ求め、該距離を基に図面座標系に於ける前記レーザスキャナ1の位置を演算してもよい。又、該レーザスキャナ1を既知の座標を有する基準点に設置する場合には、STEP:03の工程は省略することができる。   When the laser scanner 1 is provided close to two orthogonal wall surfaces, the laser scanner 1 is rotated in the horizontal direction over the entire circumference to scan the wall surface, and the laser scanner 1 and each wall surface are scanned. It is also possible to obtain each distance and calculate the position of the laser scanner 1 in the drawing coordinate system based on the distance. Further, when the laser scanner 1 is installed at a reference point having known coordinates, the step of STEP: 03 can be omitted.

STEP:04 前記制御演算部17は、前記レーザスキャナ1の図面座標系に於ける位置に基づき、点群データを図面データとマッチングさせ、点群データの座標を図面座標系へと変換する。   STEP: 04 The control calculation unit 17 matches the point cloud data with the drawing data based on the position of the laser scanner 1 in the drawing coordinate system, and converts the coordinates of the point cloud data into the drawing coordinate system.

STEP:05 図面データを基に所定の測設点が指定されると、前記制御演算部17は、測設点の図面座標系の座標を点群データの座標系に座標変換する。前記制御演算部17は、前記水平回転駆動部5を駆動し、前記托架部7を水平回転させ前記望遠鏡部9を指示された測設点へと向ける。該望遠鏡部9の水平方向が前記測設点と一致すると、前記水平回転駆動部5を停止し、停止状態を維持する。次に、前記制御演算部17は、前記鉛直回転駆動部12を駆動させ、前記望遠鏡部9を高速で鉛直回転させると共に、前記ポインタ光発光部27に前記レーザポインタ光26をパルス発光させる。尚、この場合の回転速度は、前記レーザポインタ光26を視認した場合に残像が維持される程度以上とするのが好ましい。   STEP: 05 When a predetermined survey setting point is designated based on the drawing data, the control calculation unit 17 transforms the coordinates of the survey setting point in the drawing coordinate system into the coordinate system of the point cloud data. The control calculation unit 17 drives the horizontal rotation drive unit 5 to horizontally rotate the frame unit 7 and directs the telescope unit 9 to the designated measurement setting point. When the horizontal direction of the telescope unit 9 coincides with the measurement setting point, the horizontal rotation drive unit 5 is stopped and the stopped state is maintained. Next, the control calculation unit 17 drives the vertical rotation drive unit 12 to rotate the telescope unit 9 vertically at high speed, and causes the pointer light emitting unit 27 to emit the laser pointer light 26 in a pulsed manner. In this case, it is preferable that the rotation speed is equal to or higher than a level at which an afterimage is maintained when the laser pointer light 26 is visually recognized.

ここで、前記望遠鏡部9を鉛直回転させた際の該望遠鏡部9の鉛直角は、前記鉛直角検出器13により常時検出されている。前記制御演算部17は、前記鉛直角検出器13の検出結果に基づき、測距光軸と測設点の座標とが一致した時に前記レーザポインタ光26が照射される様、前記ポインタ光発光部27による前記レーザポインタ光26の発光のタイミングを制御する。   Here, the vertical angle of the telescope unit 9 when the telescope unit 9 is rotated vertically is always detected by the vertical angle detector 13. Based on the detection result of the vertical angle detector 13, the control calculation unit 17 causes the pointer light emitting unit to irradiate the laser pointer light 26 when the distance measurement optical axis and the coordinates of the measurement point match. The timing of emission of the laser pointer light 26 by 27 is controlled.

従って、前記レーザポインタ光26は、指定された測設点に対してのみ照射される。更に、前記望遠鏡部9が高速で鉛直回転されるので、前記レーザポインタ光26は測設点を連続的に照射している様に認識される。   Therefore, the laser pointer light 26 is applied only to the designated surveying point. Further, since the telescope unit 9 is vertically rotated at high speed, the laser pointer light 26 is recognized as continuously irradiating the measuring point.

上述の様に、本実施例では、前記レーザスキャナ1により、前記レーザポインタ光26を測設点に対して連続的に照射し、作業者に測設点を指示することで、前記レーザスキャナ1を用いての測設(レイアウト)作業を行うことが可能となる。   As described above, in the present embodiment, the laser scanner 1 continuously irradiates the laser pointer light 26 to the measuring point, and the operator is informed of the measuring point. It is possible to perform measurement work (layout) work using the.

更に、点群データの取得と測設点の指示とを同時に行うことも可能である。この場合、点群データを取得しつつ、測距光軸が測設点の座標と一致した時に前記レーザポインタ光26を発光させる。   Further, it is also possible to simultaneously obtain the point cloud data and instruct the measurement setting point. In this case, the laser pointer light 26 is emitted when the distance measuring optical axis coincides with the coordinates of the measurement point while acquiring the point cloud data.

従って、前記レーザスキャナ1単体で、測定作業と測設作業の両方を行うことができるので、該レーザスキャナ1の汎用性を高めることができ、作業性を向上させることができる。   Therefore, since the laser scanner 1 alone can perform both the measurement work and the measurement work, the versatility of the laser scanner 1 can be improved and the workability can be improved.

又、測設点に前記レーザポインタ光26を照射する為、前記レーザスキャナ1を測設点指示装置として使用すれば、トータルステーション等の測量装置を別途設ける必要がなく、作業コストを低減させることができる。   Further, since the laser pointer light 26 is irradiated to the survey setting point, if the laser scanner 1 is used as a survey setting point indicating device, it is not necessary to separately provide a surveying device such as a total station, and the work cost can be reduced. it can.

更に、前記レーザスキャナ1単体で測定作業と測設作業が行えることで、トータルステーションと前記レーザスキャナ1とを併用した時の様に、トータルステーションの座標系と前記レーザスキャナ1の座標系とのマッチングが不要となるので、処理時間の短縮、作業性の向上を図ることができる。   Further, since the measurement work and the measurement work can be performed by the laser scanner 1 alone, the coordinate system of the total station and the coordinate system of the laser scanner 1 can be matched like the case where the total station and the laser scanner 1 are used together. Since it is unnecessary, the processing time can be shortened and the workability can be improved.

尚、本実施例では、測設点に前記レーザポインタ光26を照射する際に、前記望遠鏡部9を高速で鉛直回転させているが、該望遠鏡部9を上下方向に揺動させる様にしてもよい。該望遠鏡部9を上下方向に揺動させる場合も、鉛直回転させる場合と同様、前記制御演算部17により前記測距光23の光軸が測設点の座標と一致した時に前記レーザポインタ光26を照射する様前記ポインタ光発光部27の発光が制御される。   In the present embodiment, the telescope unit 9 is rotated vertically at a high speed when the laser pointer light 26 is irradiated to the measurement setting point, but the telescope unit 9 is swung in the vertical direction. Good. Even when the telescope unit 9 is vertically swung, the laser pointer light 26 is used when the optical axis of the distance measuring light 23 coincides with the coordinates of the measuring point by the control calculation unit 17, as in the case of vertically rotating the telescope unit 9. The emission of the pointer light emitting section 27 is controlled so as to illuminate.

又、本実施例では、前記ポインタ光発光部27を設け、不可視光の前記測距光23と同軸で可視光の前記レーザポインタ光26を照射しているが、前記測距光23を可視光とする場合には、該測距光23を測設点を指定するレーザポインタ光として使用できるので、前記ポインタ光発光部27は省略することができる。   Further, in the present embodiment, the pointer light emitting section 27 is provided and the laser pointer light 26 of visible light is emitted coaxially with the distance measuring light 23 of invisible light. In this case, since the distance measuring light 23 can be used as a laser pointer light for designating a measuring point, the pointer light emitting section 27 can be omitted.

又、前記測距光23の光軸と前記レーザポインタ光26の光軸との間の距離Dが既知である場合には、前記測距光23と前記レーザポインタ光26とは同軸でなくてもよい。この場合、図面座標系から点群データの座標系に変換する際に、距離Dだけ測距光軸を変更させる。   Further, when the distance D between the optical axis of the distance measuring light 23 and the optical axis of the laser pointer light 26 is known, the distance measuring light 23 and the laser pointer light 26 are not coaxial. Good. In this case, the distance measurement optical axis is changed by the distance D when the drawing coordinate system is converted to the point cloud data coordinate system.

次に、図5に於いて、本発明の第2の実施例について説明する。尚、図5中、図3中と同等のものには同符号を付し、その説明を省略する。   Next, referring to FIG. 5, a second embodiment of the present invention will be described. 5 that are the same as those in FIG. 3 are assigned the same reference numerals and explanations thereof are omitted.

第2の実施例では、第2ビームスプリッタ34と光路結合部35との間に第3ビームスプリッタ37を設け、該第3ビームスプリッタ37の反射光軸(撮像光軸)上に撮像部38を設けている。即ち、撮像光軸は、測距光23の光軸、レーザポインタ光26の光軸と同軸となっている。又、前記第3ビームスプリッタ37は、不可視光の前記測距光23及び反射測距光25のみを透過し、可視光の反射レーザポインタ光及び背景光を反射する。   In the second embodiment, a third beam splitter 37 is provided between the second beam splitter 34 and the optical path coupling unit 35, and an image pickup unit 38 is provided on the reflection optical axis (imaging optical axis) of the third beam splitter 37. It is provided. That is, the imaging optical axis is coaxial with the optical axis of the distance measuring light 23 and the optical axis of the laser pointer light 26. Further, the third beam splitter 37 transmits only the distance measuring light 23 and the reflected distance measuring light 25 which are invisible light, and reflects the reflected laser pointer light and the background light of visible light.

前記撮像部38は撮像素子39を有している。該撮像素子39はデジタル画像信号を出力するものであり、例えばCCDやCMOSセンサ等、画素(ピクセル)の集合体で構成されたものであり、各画素は、前記撮像素子39内での位置が特定できる様になっている。   The image pickup section 38 has an image pickup element 39. The image pickup device 39 outputs a digital image signal, and is composed of an aggregate of pixels such as CCD and CMOS sensor. Each pixel has a position within the image pickup device 39. It can be specified.

ポインタ光発光部27から照射された前記レーザポインタ光26は、測定範囲或は測定対象物で反射され、反射レーザポインタ光は背景光と共にレンズユニット11へ入射し、前記第2ビームスプリッタ34を一部が透過し、前記第3ビームスプリッタ37により反射され、前記撮像素子39に受光される。該撮像素子39から出力されるデジタル画像信号により、前記レーザポインタ光26の照射点を含む2次元の背景画像が取得される。   The laser pointer light 26 emitted from the pointer light emitting unit 27 is reflected by the measurement range or the measurement object, and the reflected laser pointer light is incident on the lens unit 11 together with the background light, and the second beam splitter 34 is separated. The light is transmitted through a portion, is reflected by the third beam splitter 37, and is received by the image pickup element 39. A two-dimensional background image including the irradiation point of the laser pointer light 26 is acquired by the digital image signal output from the image pickup device 39.

従って、前記レーザポインタ光26の照射位置を画像上で認識することができるので、測設点の位置確認、測設点の指定を視覚的に容易に行うことができる。   Therefore, since the irradiation position of the laser pointer light 26 can be recognized on the image, it is possible to easily visually confirm the position of the measurement setting point and specify the measurement setting point.

尚、第1の実施例、第2の実施例では、レーザスキャナ1は測距光23をパルス光とし、TOF方式で測距を行ったが、前記レーザスキャナ1の前記測距光23を変調した連続光とし、射出光と反射光との位相差を求め、該位相差に基づき距離測定を行う様にしてもよい。   In the first and second embodiments, the laser scanner 1 uses the distance measuring light 23 as pulsed light to measure the distance by the TOF method, but the distance measuring light 23 of the laser scanner 1 is modulated. Alternatively, the phase difference between the emitted light and the reflected light may be obtained, and the distance may be measured based on the phase difference.

1 レーザスキャナ
5 水平回転駆動部
7 托架部
9 望遠鏡部
12 鉛直回転駆動部
13 鉛直角検出器
14 水平角検出器
16 測距部
17 制御演算部
19 記憶部
23 測距光
24 測距発光部
25 反射測距光
26 レーザポインタ光
27 ポインタ光発光部
38 撮像部
DESCRIPTION OF SYMBOLS 1 Laser scanner 5 Horizontal rotation drive section 7 Frame section 9 Telescope section 12 Vertical rotation drive section 13 Vertical angle detector 14 Horizontal angle detector 16 Distance measuring section 17 Control calculation section 19 Memory section 23 Distance measuring light 24 Distance measuring light emitting section 25 reflected distance measuring light 26 laser pointer light 27 pointer light emitting section 38 imaging section

Claims (5)

測距光を射出する測距発光部と、反射測距光の受光結果に基づき測距を行う測距部と、前記測距光と既知の関係でレーザポインタ光を照射するポインタ光発光部と、前記測距光の射出方向を検出する測角部と、前記測距発光部、前記測距部、前記ポインタ光発光部を含み水平方向、鉛直方向に回転可能な望遠鏡部、該望遠鏡部を回転させる回転駆動部と、既知の座標系を有する図面データが格納された記憶部を有する制御演算部とを具備し、該制御演算部は、前記測距光を所要の範囲で回転照射し、該測距光毎の測距結果と方向角検出結果に基づき3次元の点群データを取得し、該3次元の点群データと前記図面データとに共通した点の測定結果を基に前記3次元の点群データを前記図面データとマッチングさせ、該図面データ上で指定された測設点に対して前記レーザポインタ光を照射させる様構成されたレーザスキャナ。   A distance measuring light emitting unit that emits distance measuring light, a distance measuring unit that performs distance measurement based on the reception result of reflected distance measuring light, and a pointer light emitting unit that emits laser pointer light in a known relationship with the distance measuring light. An angle measuring unit for detecting the emitting direction of the distance measuring light; a telescope unit including the distance measuring light emitting unit, the distance measuring unit, and the pointer light emitting unit, which is rotatable in the horizontal direction and the vertical direction; and the telescope unit. A rotation driving unit for rotating and a control calculation unit having a storage unit in which drawing data having a known coordinate system is stored, and the control calculation unit irradiates the distance measuring light with rotation within a required range, Three-dimensional point cloud data is acquired based on the distance measurement result and the direction angle detection result for each of the distance measurement lights, and the three-dimensional point cloud data is obtained based on the common measurement result of the three-dimensional point cloud data and the drawing data. Dimensional point cloud data is matched with the drawing data and specified on the drawing data. Laser scanner configured as to irradiate the laser pointer light to the survey setting point. 前記レーザポインタ光は前記測距光と同軸であり、前記望遠鏡部は鉛直回転され、前記制御演算部は前記測距光の光軸が前記測設点と一致した時に前記レーザポインタ光が照射される様前記ポインタ光発光部を制御する請求項1に記載のレーザスキャナ。   The laser pointer light is coaxial with the distance measuring light, the telescope unit is rotated vertically, and the control calculation unit is irradiated with the laser pointer light when the optical axis of the distance measuring light coincides with the measuring point. The laser scanner according to claim 1, wherein the pointer light emitting unit is controlled so that the pointer light emitting unit is controlled. 前記レーザポインタ光は前記測距光と同軸であり、前記望遠鏡部は上下方向に揺動され、前記制御演算部は前記測距光の光軸が前記測設点と一致した時に前記レーザポインタ光が照射される様前記ポインタ光発光部を制御する請求項1に記載のレーザスキャナ。   The laser pointer light is coaxial with the distance measuring light, the telescope unit is swung in the vertical direction, and the control calculation unit causes the laser pointer light to move when the optical axis of the distance measuring light coincides with the measuring point. The laser scanner according to claim 1, wherein the pointer light emitting section is controlled so as to be irradiated with. 前記制御演算部は、前記測距光の照射による前記3次元の点群データの取得と、前記測距光の光軸が前記測設点と一致した時の前記レーザポインタ光の照射を同時に実行する請求項2又は請求項3に記載のレーザスキャナ。   The control calculation unit simultaneously executes acquisition of the three-dimensional point cloud data by irradiation of the distance measuring light and irradiation of the laser pointer light when the optical axis of the distance measuring light coincides with the measuring point. The laser scanner according to claim 2 or 3. 前記レーザポインタ光、前記測距光と同軸な撮像光軸上に設けられた撮像部を更に具備し、該撮像部により前記レーザポインタ光の照射点を含む背景画像を取得可能とした請求項2〜請求項4のうちいずれか1項に記載のレーザスキャナ。   3. A background image including an irradiation point of the laser pointer light can be acquired by further comprising an imaging unit provided on an imaging optical axis coaxial with the laser pointer light and the distance measuring light. ~ The laser scanner according to claim 4.
JP2016118884A 2016-06-15 2016-06-15 Laser scanner Active JP6680628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118884A JP6680628B2 (en) 2016-06-15 2016-06-15 Laser scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118884A JP6680628B2 (en) 2016-06-15 2016-06-15 Laser scanner

Publications (2)

Publication Number Publication Date
JP2017223541A JP2017223541A (en) 2017-12-21
JP6680628B2 true JP6680628B2 (en) 2020-04-15

Family

ID=60688084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118884A Active JP6680628B2 (en) 2016-06-15 2016-06-15 Laser scanner

Country Status (1)

Country Link
JP (1) JP6680628B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362272A (en) * 2018-01-11 2018-08-03 昆山苏熙旺卡投资管理有限公司 A kind of civil engineering with can convenient storage measuring instrument
JP2021117041A (en) * 2020-01-23 2021-08-10 株式会社竹中工務店 Building structure surveying system, surveying method, and surveying control program
JP7448397B2 (en) * 2020-03-30 2024-03-12 株式会社トプコン Surveying equipment and surveying systems
JP7421438B2 (en) 2020-07-27 2024-01-24 株式会社トプコン surveying equipment
JP7421437B2 (en) 2020-07-27 2024-01-24 株式会社トプコン surveying equipment
CN115342790B (en) * 2022-10-19 2023-01-17 远洋装饰工程股份有限公司 Architectural decoration on-site surveying and mapping installation device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4351081B2 (en) * 2004-02-02 2009-10-28 大成建設株式会社 Construction management system and construction management method
JP4716175B2 (en) * 2005-07-13 2011-07-06 株式会社日立プラントテクノロジー Construction support method and construction support system
JP5456532B2 (en) * 2010-03-25 2014-04-02 株式会社トプコン Rotating laser device and rotating laser system
JP5838638B2 (en) * 2011-08-02 2016-01-06 株式会社大林組 Survey method
EP2620746A1 (en) * 2012-01-30 2013-07-31 Hexagon Technology Center GmbH Surveying device with scan functionality and single-point measuring mode
JP2013190272A (en) * 2012-03-13 2013-09-26 Kyushu Univ Three-dimensional laser measuring apparatus and three-dimensional laser measuring method
JP6346427B2 (en) * 2013-10-30 2018-06-20 キヤノン株式会社 Image processing apparatus and image processing method
JP6253973B2 (en) * 2013-12-27 2017-12-27 株式会社トプコン Surveying equipment

Also Published As

Publication number Publication date
JP2017223541A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6680628B2 (en) Laser scanner
JP6966184B2 (en) Surveying system
US10634791B2 (en) Laser scanner system and registration method of point cloud data
US10767991B2 (en) Laser scanner
US10488196B2 (en) Laser scanner system and registration method of point cloud data
JP2013190272A (en) Three-dimensional laser measuring apparatus and three-dimensional laser measuring method
US9106805B2 (en) Image measuring system
JP2019039795A (en) Surveying system
US11644575B2 (en) Surveying device and surveying method
JP7313955B2 (en) Surveying instrument, surveying method and surveying program
JP6713847B2 (en) Surveying system
US11415723B2 (en) Projector with three-dimensional measurement device
JP6786325B2 (en) Surveying equipment and measuring method
JP2009276150A (en) Laser radar and method for adjusting direction of installation of the laser radar
US20210018316A1 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP7314447B2 (en) Scanner system and scanning method
JP2013152224A (en) Optical system
JP7240834B2 (en) surveying equipment
US20140125997A1 (en) Device and method for calibrating the direction of a polar measurement device
CN111308485A (en) Measuring device and photogrammetry method
JP7001800B2 (en) Surveying system
JP7289252B2 (en) Scanner system and scanning method
JP6749191B2 (en) Scanner and surveying equipment
JP2017058142A (en) Projection device and projection system
US20210080577A1 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200319

R150 Certificate of patent or registration of utility model

Ref document number: 6680628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250