JP6678669B2 - Double-layer three-way catalyst with improved aging stability - Google Patents
Double-layer three-way catalyst with improved aging stability Download PDFInfo
- Publication number
- JP6678669B2 JP6678669B2 JP2017529066A JP2017529066A JP6678669B2 JP 6678669 B2 JP6678669 B2 JP 6678669B2 JP 2017529066 A JP2017529066 A JP 2017529066A JP 2017529066 A JP2017529066 A JP 2017529066A JP 6678669 B2 JP6678669 B2 JP 6678669B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- layer
- cerium
- zirconium
- lanthanum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9468—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0248—Coatings comprising impregnated particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2061—Yttrium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2063—Lanthanum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Description
本発明は、重なり合って配置された触媒活性層で構成され、燃焼機関からの排気ガス浄化に好適である、三元触媒に関する。 TECHNICAL FIELD The present invention relates to a three-way catalyst which is composed of catalyst active layers arranged one above another and is suitable for purifying exhaust gas from a combustion engine.
三元触媒は、本質的に化学量論的に運転される燃焼機関からの排気ガス浄化に用いられる。化学量論的運転において、機関へ供給される空気の量は、燃料の完全燃焼に必要な量に正確に対応している。この場合、空燃比λ(空気比とも呼ばれる)は、正確に1である。λ=1前後で、三元触媒は、炭化水素、一酸化炭素、及び窒素酸化物を、無害な化合物に同時に変換できる。 Three-way catalysts are used for purifying exhaust gases from combustion engines that are operated essentially stoichiometrically. In stoichiometric operation, the amount of air supplied to the engine exactly corresponds to the amount required for complete combustion of the fuel. In this case, the air-fuel ratio λ (also called the air ratio) is exactly 1. At around λ = 1, the three-way catalyst can simultaneously convert hydrocarbons, carbon monoxide, and nitrogen oxides into harmless compounds.
一般的に、白金族金属が触媒活性材料として用いられ、特に、白金、パラジウム、及びロジウムは、例えば、担体材料としてのλ型酸化アルミニウム上に存在する。加えて、三元触媒は、酸素吸蔵材料、例えば、セリウム/ジルコニウム混合酸化物を含む。後者の場合、セリウム酸化物(酸化セリウム)は、希土類金属酸化物であって、酸素吸蔵に必須の成分を構成する。酸化ジルコニウム及び酸化セリウムについて、これらの材料が、希土類金属酸化物又はアルカリ土類酸化物などの付加的な成分を含んでもよい。酸素吸蔵材料は、白金族金属などの触媒活性材料を適用することによって活性化され、それ故、白金族金属の担体材料としての役割も果たす。 In general, platinum group metals are used as catalytically active materials, in particular platinum, palladium and rhodium, for example, are present on λ-type aluminum oxide as carrier material. In addition, the three-way catalyst includes an oxygen storage material, for example, a cerium / zirconium mixed oxide. In the latter case, cerium oxide (cerium oxide) is a rare earth metal oxide and constitutes a component essential for oxygen storage. For zirconium oxide and cerium oxide, these materials may include additional components such as rare earth metal oxides or alkaline earth oxides. The oxygen storage material is activated by applying a catalytically active material, such as a platinum group metal, and thus also serves as a support material for the platinum group metal.
三元触媒の成分は、不活性触媒担体上の単一のコーティング層中に存在してもよく、例えば、欧州特許第1541220(A1)号を参照されたい。 The components of the three-way catalyst may be present in a single coating layer on the inert catalyst support, see, for example, EP 1 154 220 (A1).
しかし、多くの場合に用いられるのは二重層触媒であり、異なる触媒プロセスの分離を促進し、それ故、2層中の触媒効果の最適調整を可能とする。後者の種類の触媒は、例えば、国際公開第95/35152(A1)号、同第2008/000449(A2)号、欧州特許第0885650(A2)号、同第1046423(A2)号、同第1726359(A1)号、及び同第1974809(A1)号に開示されている。 However, it is often the case that bilayer catalysts are used, which facilitate the separation of different catalytic processes and thus allow for an optimal adjustment of the catalytic effect in the two layers. Catalysts of the latter type are described, for example, in WO 95/35152 (A1), WO 2008/000449 (A2), EP 0 885 650 (A2), EP 1046423 (A2) and EP 1 726 359. No. (A1) and No. 1974809 (A1).
欧州特許第1974809(A1)号には、両層中にセリウム/ジルコニウム混合酸化物を含む二重層三元触媒(複数)が開示されており、セリウム/ジルコニウム混合酸化物が上層中に、下層中よりも高い割合のジルコニウムをそれぞれに有する。 EP 1974809 (A1) discloses double-layer three-way catalysts containing a cerium / zirconium mixed oxide in both layers, wherein the cerium / zirconium mixed oxide is in the upper layer and in the lower layer. Each has a higher proportion of zirconium.
欧州特許第1900416(A2)号には、両層中にセリウム、ジルコニウム、及びニオブの混合酸化物、並びに付加的に、下層中にCeZrYLaアルミニウム酸化物粒子を含む、二重層三元触媒(複数)が開示されている。 EP 1900146 (A2) discloses double layer three-way catalysts comprising mixed oxides of cerium, zirconium and niobium in both layers and, in addition, CeZrYLa aluminum oxide particles in the lower layer. Is disclosed.
欧州特許第1726359(A1)号には、両層中にジルコニウム含有量80モル%超のセリウム/ジルコニウム/ランタン/ネオジム混合酸化物を含む二重層三元触媒(複数)が開示されており、セリウム/ジルコニウム/ランタン/ネオジム混合酸化物が上層中に、下層中よりも高い割合のジルコニウムをそれぞれに有してもよい。 EP 1 726 359 (A1) discloses double-layer three-way catalysts containing a cerium / zirconium / lanthanum / neodymium mixed oxide having a zirconium content of more than 80 mol% in both layers. The mixed oxide / zirconium / lanthanum / neodymium oxide may each have a higher proportion of zirconium in the upper layer than in the lower layer.
国際公開第2008/000449(A2)号にはまた、両層中にセリウム/ジルコニウム混合酸化物を含み、上層中の混合酸化物が、これまたより高い割合のジルコニウムを有する、二重層三元触媒(複数)が開示されている。セリウム/ジルコニウム混合酸化物は、ある程度までは、セリウム/ジルコニウム/ランタン/ネオジム混合酸化物又はセリウム/ジルコニウム/ランタン/イットリウム混合酸化物に置き換えることもできる。 WO 2008/000449 (A2) also discloses a double layer three-way catalyst comprising a cerium / zirconium mixed oxide in both layers, wherein the mixed oxide in the upper layer also has a higher proportion of zirconium (Plural) are disclosed. The cerium / zirconium mixed oxide can to some extent be replaced by a cerium / zirconium / lanthanum / neodymium mixed oxide or a cerium / zirconium / lanthanum / yttrium mixed oxide.
国際公開第2009/012348(A1)号には更に、中間層及び上層のみが酸素吸蔵材料を含む、三元触媒(複数)が開示されている。 WO 2009/012348 (A1) further discloses three-way catalysts in which only the middle and upper layers contain an oxygen storage material.
燃焼機関からの排出低減の要求は一貫して高まっており、触媒の更なる継続的開発が必要になっている。欧州において、耐久性の要件は排出ガス規制ユーロ5で、160,000kmまで上げられた。米国では更に、耐久性の要件が最大で150,000マイルである。それ故、触媒の経時劣化安定性は、更に一層重要となっている。経時劣化後の活性のカギとなる指標は、一方では触媒による汚染物質変換の始動温度であり、他方では、そのダイナミック変換能力である。汚染物質に対しての始動温度は、その汚染物質が例えば50%超変換されていく、温度を指す。この温度が低いほど、冷間始動後、汚染物質を、より速やかに変換できる。全負荷で、最高1,050℃の排気ガス温度が、モーター出力で直接に生じる場合がある。触媒の温度安定性が良好であるほど、触媒を機関のより近くに配置できる。これによりまた、冷間始動後の排気ガス浄化が改善される。 The demand for reduced emissions from combustion engines is constantly increasing, necessitating further continuous development of catalysts. In Europe, the endurance requirement has been raised to 160,000 km with emission regulations Euro 5. In the United States, further, durability requirements are up to 150,000 miles. Therefore, the aging stability of the catalyst is even more important. The key indicator of activity after aging is, on the one hand, the starting temperature of pollutant conversion by the catalyst, and, on the other hand, its dynamic conversion capacity. The starting temperature for a contaminant refers to the temperature at which the contaminant is being converted, for example, by more than 50%. The lower this temperature, the sooner the contaminants can be converted after a cold start. At full load, exhaust gas temperatures up to 1,050 ° C. may occur directly at the motor output. The better the temperature stability of the catalyst, the closer it can be placed to the engine. This also improves exhaust gas purification after a cold start.
排出ガス規制ユーロ6cが2017年9月に施行されると、欧州排出規制により、実際の運転条件化での排気ガス測定が規定される。運転条件により、このことは、特に一酸化炭素及び窒素酸化物のダイナミック変換に関して、触媒にはるかに厳しい要件が課されることを意味することもある。触媒は、強度の経時劣化後もなおこれらの厳しい要件に適合する必要がある。同じくこの理由のため、三元触媒の経時劣化安定性を更に強める必要がある。 When the emission regulations Euro 6c came into force in September 2017, European emission regulations stipulate emissions measurement under actual operating conditions. Depending on the operating conditions, this may mean that the catalyst has much more stringent requirements, especially with regard to the dynamic conversion of carbon monoxide and nitrogen oxides. The catalyst must still meet these stringent requirements even after aging of strength. Also for this reason, it is necessary to further enhance the aging stability of the three-way catalyst.
前述の従来技術による触媒は、始動温度及び経時劣化後のダイナミック変換能力に関して、非常に良好な特性を有する。しかし、法的要件が厳しくなるため、更により良好な触媒の検討が必要になっている。 The above-mentioned prior art catalysts have very good properties with regard to the starting temperature and the dynamic conversion capacity after aging. However, the stricter legal requirements require that even better catalysts be considered.
この理由のため、本発明の課題は、そのより高い温度安定性により、従来技術の触媒と比べ、更に一層低い始動温度及び改善された経時劣化後ダイナミック変換能力を有する触媒を提供することであった。 For this reason, it was an object of the present invention to provide a catalyst which, due to its higher temperature stability, has an even lower starting temperature and an improved post-aging dynamic conversion capacity compared to prior art catalysts. Was.
驚くべきことに、この課題は、酸素吸蔵材料の成分として存在する希土類元素、並びに場合により白金族金属が二重層三元触媒の2層上に特定の方法で分配された場合に、解決できることが見出された。 Surprisingly, this problem can be solved if the rare earth element present as a component of the oxygen storage material, and optionally the platinum group metal, is distributed in a particular way on the two layers of the double-layer three-way catalyst. Was found.
それ故、本発明の対象は、不活性触媒担体上に2層を含む触媒であって、
層Aが、少なくとも1つの白金族金属、並びにセリウム/ジルコニウム/SE混合酸化物を含み、
層Aに適用された層Bが、少なくとも1つの白金族金属、並びにセリウム/ジルコニウム/SE混合酸化物を含み、
(ここで、SEは、セリウム以外の希土類金属を表す)
それぞれにセリウム/ジルコニウム/SE混合酸化物に対する重量%で計算して、層Aのセリウム/ジルコニウム/SE混合酸化物中のSE酸化物の割合が、層Bのセリウム/ジルコニウム/SE混合酸化物中のSE酸化物の割合より小さいことを特徴とする、触媒である。
The object of the present invention is therefore a catalyst comprising two layers on an inert catalyst support,
Layer A comprises at least one platinum group metal, and a cerium / zirconium / SE mixed oxide;
The layer B applied to the layer A comprises at least one platinum group metal, as well as a cerium / zirconium / SE mixed oxide;
(Where SE represents a rare earth metal other than cerium)
The percentage of SE oxide in the cerium / zirconium / SE mixed oxide of layer A is calculated as the percentage by weight in cerium / zirconium / SE mixed oxide in layer B, respectively. Is smaller than the ratio of SE oxides.
層A及び層Bは、互いに独立して、白金族金属として、特に白金、パラジウム、ロジウム、又はこれらの白金族金属のうち少なくとも2つの混合物を含む。 Layer A and layer B comprise, independently of one another, as platinum group metal, in particular platinum, palladium, rhodium or a mixture of at least two of these platinum group metals.
本発明の複数実施形態において、層Aは、白金、パラジウム、又は、白金とパラジウム、を含み、層Bは、パラジウム、ロジウム、又は、パラジウムとロジウム、を含む。 In some embodiments of the present invention, layer A includes platinum, palladium, or platinum and palladium, and layer B includes palladium, rhodium, or palladium and rhodium.
本発明の更なる実施形態において、本発明による触媒は白金を含まない。 In a further embodiment of the invention, the catalyst according to the invention does not contain platinum.
特に、層Aはパラジウムを含み、層Bは、ロジウム、又は、パラジウムとロジウム、を含む。 In particular, layer A contains palladium and layer B contains rhodium or palladium and rhodium.
セリウム/ジルコニウム/SE混合酸化物は、層A中及び/又は層B中、白金族金属の担体材料としての役割を果たすことができる。更にまた、層A中及び/又は層B中、それらの全部又は一部が、活性酸化アルミニウムを担体とすることができる。 The cerium / zirconium / SE mixed oxide can serve as a support material for the platinum group metal in layer A and / or layer B. Furthermore, in the layer A and / or the layer B, all or a part thereof can use activated aluminum oxide as a carrier.
それ故、本発明の複数実施形態において、層A及び層Bは、活性酸化アルミニウムを含む。活性酸化アルミニウムが特に酸化ランタンでドーピングすることによって安定化されていることが、特に好ましい。好ましい活性酸化アルミニウムは、1〜6重量%、特に3〜4重量%の酸化ランタン(La2O3)を含む。 Therefore, in embodiments of the present invention, layer A and layer B include active aluminum oxide. It is particularly preferred that the active aluminum oxide is stabilized, in particular by doping with lanthanum oxide. Preferred active aluminum oxide, containing from 1 to 6 wt.%, Particularly 3-4% by weight of lanthanum oxide (La 2 O 3).
用語「活性酸化アルミニウム」は、当業者には公知である。特に、それは、活性酸化アルミニウム表面100〜200m2/gのλ型酸化アルミニウムを指し、文献中、何度も記載されており、市販されている。 The term "activated aluminum oxide" is known to those skilled in the art. In particular, it refers to λ-type aluminum oxide with an active aluminum oxide surface of 100 to 200 m 2 / g, which has been described many times in the literature and is commercially available.
用語「セリウム/ジルコニウム/SE混合酸化物」は、本発明で意味する範囲内で、酸化セリウム、酸化ジルコニウム、及びSE酸化物の物理的混合物を除く。実際に、「セリウム/ジルコニウム/SE混合酸化物」は、ほぼ均一な、三次元結晶構造を特徴とし、理想的には酸化セリウム、酸化ジルコニウム、又はSE酸化物からの相を含まない。しかし、生産プロセスにより、完全に均一な生成物を得ることができ、一般的に全く不都合なく用いることができる。 The term “cerium / zirconium / SE mixed oxide” excludes, within the meaning of the invention, a physical mixture of cerium oxide, zirconium oxide and SE oxide. In fact, "cerium / zirconium / SE mixed oxides" are characterized by a substantially uniform, three-dimensional crystal structure, ideally free of phases from cerium oxide, zirconium oxide or SE oxides. However, depending on the production process, a completely homogeneous product can be obtained and can generally be used without any inconvenience.
例えば、酸化ランタン、酸化イットリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、及びこれらの金属酸化物のうちの1つ以上の混合物を、セリウム/ジルコニウム/SE混合酸化物中の希土類金属酸化物として考慮してもよい。 For example, lanthanum oxide, yttrium oxide, praseodymium oxide, neodymium oxide, samarium oxide, and mixtures of one or more of these metal oxides are considered as rare earth metal oxides in cerium / zirconium / SE mixed oxides. You may.
酸化ランタン、酸化イットリウム、酸化プラセオジム、及びこれらの金属酸化物のうちの1つ以上の混合物が好ましい。特に好ましいのは、酸化ランタン、及び酸化イットリウムであり、酸化ランタンと酸化イットリウムとの混合物がとりわけ特に好ましい。 Preferred are lanthanum oxide, yttrium oxide, praseodymium oxide, and mixtures of one or more of these metal oxides. Particularly preferred are lanthanum oxide and yttrium oxide, with mixtures of lanthanum oxide and yttrium oxide being particularly preferred.
本発明によれば、それぞれにセリウム/ジルコニウム/SE混合酸化物に対する重量%で計算して、層Aのセリウム/ジルコニウム/SE混合酸化物中のSE酸化物の割合が、層Bのセリウム/ジルコニウム/SE混合酸化物中のSE酸化物の割合より小さい。 According to the invention, the percentage of SE oxide in the cerium / zirconium / SE mixed oxide of layer A is calculated as the percentage by weight of cerium / zirconium / SE mixed oxide in layer B, respectively, / SE is smaller than the ratio of the SE oxide in the mixed oxide.
層A中のSE酸化物の割合は、各々の場合のセリウム/ジルコニウム/SE混合酸化物に対し、特に、1〜12重量%、好ましくは3〜10重量%、更により好ましくは6〜9重量%である。 The proportion of SE oxide in layer A is in particular 1 to 12% by weight, preferably 3 to 10% by weight, still more preferably 6 to 9% by weight, based on the cerium / zirconium / SE mixed oxide in each case. %.
層B中のSE酸化物の割合は、各々の場合のセリウム/ジルコニウム/SE混合酸化物に対し、特に、2〜25重量%、好ましくは10〜20重量%、更により好ましくは14〜18重量%である。 The proportion of SE oxide in layer B is, in particular, from 2 to 25% by weight, preferably from 10 to 20% by weight, even more preferably from 14 to 18% by weight, based on the cerium / zirconium / SE mixed oxide in each case. %.
本発明によれば、セリウム/ジルコニウム/SE混合酸化物中の、酸化セリウムの酸化ジルコニウムに対する比は、広く変更できる。層A中、比は例えば、0.1〜1.0、好ましくは0.2〜0.7、更により好ましくは0.3〜0.5である。 According to the present invention, the ratio of cerium oxide to zirconium oxide in the cerium / zirconium / SE mixed oxide can vary widely. In the layer A, the ratio is, for example, 0.1 to 1.0, preferably 0.2 to 0.7, and still more preferably 0.3 to 0.5.
層B中、比は例えば、0.1〜1.0、好ましくは0.2〜0.7、更により好ましくは0.3〜0.5である。 In the layer B, the ratio is, for example, 0.1 to 1.0, preferably 0.2 to 0.7, and still more preferably 0.3 to 0.5.
本発明におけるセリウム/ジルコニウム/SE混合酸化物は、特に、酸化アルミニウムを含まない。 The cerium / zirconium / SE mixed oxide in the present invention does not particularly contain aluminum oxide.
本発明の複数実施形態において、一方の層又は両方の層が、酸化バリウム又は硫酸バリウムなどのアルカリ土類化合物を含む。好ましい実施形態は、層A中に硫酸バリウムを含む。硫酸バリウム量の量は特に、不活性触媒担体の体積に対し5〜20g/Lである。 In embodiments of the present invention, one or both layers include an alkaline earth compound such as barium oxide or barium sulfate. A preferred embodiment includes barium sulfate in layer A. The amount of barium sulfate is in particular from 5 to 20 g / L, based on the volume of the inert catalyst support.
本発明の更なる実施形態において、一方の層又は両方の層は、付加的に、希土類系化合物、例えば酸化ランタン、及び/又は、結着剤、例えばアルミニウム化合物、などの添加剤を含む。これらの添加剤は、広く変更できる量で用いられ、当業者が特定の場合に簡単に判断できる。 In a further embodiment of the invention, one or both layers additionally comprise additives such as rare earth compounds, for example lanthanum oxide, and / or binders, for example aluminum compounds. These additives are used in widely variable amounts and can be easily determined by the skilled person in a particular case.
本発明の一実施形態は、不活性触媒担体上に2層を含む触媒であって、
層Aが、パラジウム、活性酸化アルミニウム、並びにセリウム/ジルコニウム/ランタン/イットリウム混合酸化物を含み、
層Aに適用された層Bが、ロジウム、又は、パラジウムとロジウム、活性酸化アルミニウム、並びにセリウム/ジルコニウム/ランタン/イットリウム混合酸化物を含み、
それぞれにセリウム/ジルコニウム/ランタン/イットリウム酸化物に対する重量%で計算して、層Aのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物中の酸化ランタンと酸化イットリウムとの合計割合が、層Bのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物中の酸化ランタンと酸化イットリウムとの合計割合より小さいことを特徴とする触媒に関する。
One embodiment of the present invention is a catalyst comprising two layers on an inert catalyst support,
Layer A comprises palladium, activated aluminum oxide, and a cerium / zirconium / lanthanum / yttrium mixed oxide;
Layer B applied to layer A comprises rhodium or palladium and rhodium, activated aluminum oxide, and a mixed oxide of cerium / zirconium / lanthanum / yttrium;
The total percentage of lanthanum oxide and yttrium oxide in the cerium / zirconium / lanthanum / yttrium mixed oxide of layer A is calculated as the weight percentage of cerium / zirconium / lanthanum / yttrium oxide in each case. The present invention relates to a catalyst characterized by being smaller than the total ratio of lanthanum oxide and yttrium oxide in a zirconium / lanthanum / yttrium mixed oxide.
この場合、酸化ランタンと酸化イットリウムとの合計割合は、各々の場合にセリウム/ジルコニウム/ランタン/イットリウム混合酸化物に対する重量%で計算して、層Aのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物中、層Aのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物に対し、6〜9重量%であり、層Bのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物中、層Bのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物に対し、14〜18重量%であることが好ましい。 In this case, the total proportion of lanthanum oxide and yttrium oxide, calculated in each case as a percentage by weight relative to the cerium / zirconium / lanthanum / yttrium mixed oxide, is calculated as 6 to 9% by weight based on the cerium / zirconium / lanthanum / yttrium mixed oxide of the layer A, and in the cerium / zirconium / lanthanum / yttrium mixed oxide of the layer B, The content is preferably 14 to 18% by weight based on the mixed oxide.
本発明の更なる実施形態において、層Aは、不活性触媒担体上に直接設けられ、すなわち、不活性触媒担体と層Aとの間に付加的な層もアンダーコートも無い。 In a further embodiment of the invention, layer A is provided directly on the inert catalyst support, ie there are no additional layers or undercoat between the inert catalyst support and layer A.
本発明の更なる実施形態において、層Bは排気ガス流と直接接触し、すなわち、層B上に付加的な層もオーバーコートも無い。 In a further embodiment of the invention, layer B is in direct contact with the exhaust gas stream, ie there are no additional layers or overcoats on layer B.
本発明の更なる実施形態において、本発明による触媒は、不活性触媒担体上の層A及び層Bから構成される。このことは、層Aが不活性触媒担体上に直接設けられ、層Bが排気ガス流と直接接触し、かつ、他の層が存在しないことを意味する。 In a further embodiment of the invention, the catalyst according to the invention is composed of layers A and B on an inert catalyst support. This means that layer A is provided directly on the inert catalyst support, layer B is in direct contact with the exhaust gas stream, and that no other layers are present.
セラミック又は金属から作製され、体積Vを有するハニカム体は、燃焼機関の排気ガスの並流路を有しており、触媒に不活性の触媒担体として特に好適である。それらは、いわゆるフロースルー型ハニカム体、又はウォールフロー型フィルタのいずれかであってもよい。 A honeycomb body made of ceramic or metal and having a volume V has a parallel flow path of exhaust gas of a combustion engine, and is particularly suitable as a catalyst carrier inert to a catalyst. They may be either so-called flow-through type honeycomb bodies or wall-flow type filters.
本発明によれば、流路の壁面(ウォール)領域は、2つの触媒層A及びBでコーティングされている。層Aにより触媒担体をコーティングするため、この層に提供される固形分は水中懸濁され、触媒担体のそうして得られたコーティング懸濁液を用いコーティングされる。コーティング懸濁液を用いてこのプロセスを繰り返し、層Bに提供される固形分が水中懸濁される。好ましくは、層A及び層Bの両方が、不活性触媒担体の全長に沿ってコーティングされる。このことは、層Bが層Aを完全に被覆し、結果として層Bのみが排気ガス流と直接接触するようになることを意味する。 According to the invention, the wall region of the channel is coated with two catalyst layers A and B. To coat the catalyst support with layer A, the solids provided in this layer are suspended in water and coated using the coating suspension thus obtained of the catalyst support. This process is repeated with the coating suspension and the solids provided for Layer B are suspended in water. Preferably, both layers A and B are coated along the entire length of the inert catalyst support. This means that layer B completely covers layer A, so that only layer B comes into direct contact with the exhaust gas stream.
以下の実施例1〜3、及び比較例1において、二重層触媒を、セル数93/cm2及び壁厚0.09mm、並びに直径11.8cm及び長さ10.5cmの寸法のセラミックから作製したフロースルー型ハニカム体を2回コーティングすることによって、製造した。この目的のため、2つの異なる懸濁液を、それぞれ層A用、及び層B用に製造した。次に、担体を層A用懸濁液によってまずコーティングし、次に空気中500℃で4時間焼成した。その後、層Aでコーティングした担体を、層B用懸濁液によってコーティングし、次に層Aについてと同じ条件で焼成した。 In the following Examples 1 to 3 and Comparative Example 1, the double-layer catalyst was made from a ceramic having a cell number of 93 / cm 2 and a wall thickness of 0.09 mm, and dimensions of 11.8 cm in diameter and 10.5 cm in length. It was manufactured by coating the flow-through type honeycomb body twice. For this purpose, two different suspensions were prepared for layer A and for layer B, respectively. Next, the carrier was first coated with the suspension for Layer A and then calcined at 500 ° C. in air for 4 hours. Thereafter, the carrier coated with layer A was coated with the suspension for layer B and then calcined under the same conditions as for layer A.
実施例1
2つの懸濁液をまず製造することによって、二重層触媒を製造した。層A用の第1の懸濁液の組成は(触媒担体の体積に対して)次のとおりであった。
40g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
40g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(25重量%のCeO2、67.5重量%のZrO2、3.5重量%のLa2O3、及び4重量%のY2O3)、
5g/LのBaSO4、
3.178g/LのPd。
層B用の第2の懸濁液の組成は(触媒担体の体積に対して)次のとおりであった。
60g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
47g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(24重量%のCeO2、60重量%のZrO2、3.5重量%のLa2O3、及び12.5重量%のY2O3)、
0.177g/LのPd、
0.177g/LのRh。
Example 1
A double layer catalyst was prepared by first preparing two suspensions. The composition of the first suspension for layer A was (relative to the volume of the catalyst support) as follows:
40 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
40 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (25 wt% CeO 2 , 67.5 wt% ZrO 2 , 3.5 wt% La 2 O 3 , and 4 wt% Y 2 O 3 ),
5 g / L BaSO 4 ,
3.178 g / L Pd.
The composition of the second suspension for layer B was (relative to the volume of the catalyst support) as follows:
60 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
47 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (24 wt% CeO 2 , 60 wt% ZrO 2 , 3.5 wt% La 2 O 3 , and 12.5 wt% Y 2 O 3 ),
0.177 g / L Pd,
0.177 g / L Rh.
実施例2
実施例1と同様にして二重層触媒を製造した。層A用の第1の懸濁液の組成は次のとおりであった。
40g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
40g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(20.5重量%のCeO2、67.5重量%のZrO2、4.5重量%のLa2O3、及び7.5重量%のY2O3)、
5g/LのBaSO4、
3.178g/LのPd。
層B用の第2の懸濁液の組成は次のとおりであった。
60g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
47g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(20重量%のCeO2、60重量%のZrO2、5重量%のLa2O3、及び15重量%のY2O3)、
0.177g/LのPd、
0.177g/LのRh。
Example 2
A double-layer catalyst was produced in the same manner as in Example 1. The composition of the first suspension for Layer A was as follows.
40 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
40 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (20.5 wt% CeO 2 , 67.5 wt% ZrO 2 , 4.5 wt% La 2 O 3 , and 7.5 wt% Y 2 O 3 ),
5 g / L BaSO 4 ,
3.178 g / L Pd.
The composition of the second suspension for Layer B was as follows.
60 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
47 g / L of cerium / zirconium / lanthanum / yttrium mixed oxide (20 wt% of CeO 2, 60 wt% of ZrO 2, 5 wt% La 2 O 3, and 15 wt% of Y 2 O 3),
0.177 g / L Pd,
0.177 g / L Rh.
実施例3
実施例1と同様にして二重層触媒を製造した。層A用の第1の懸濁液の組成は次のとおりであった。
40g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
40g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(20.5重量%のCeO2、67.5重量%のZrO2、4.5重量%のLa2O3、及び7.5重量%のY2O3)、
5g/LのBaSO4、
3.178g/LのPd。
層B用の第2の懸濁液の組成は次のとおりであった。
60g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
47g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(15重量%のCeO2、60重量%のZrO2、7重量%のLa2O3、及び18重量%のY2O3)、
0.177g/LのPd、
0.177g/LのRh。
Example 3
A double-layer catalyst was produced in the same manner as in Example 1. The composition of the first suspension for Layer A was as follows.
40 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
40 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (20.5 wt% CeO 2 , 67.5 wt% ZrO 2 , 4.5 wt% La 2 O 3 , and 7.5 wt% Y 2 O 3 ),
5 g / L BaSO 4 ,
3.178 g / L Pd.
The composition of the second suspension for Layer B was as follows.
60 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
47 g / L of cerium / zirconium / lanthanum / yttrium mixed oxide (15 wt% of CeO 2, 60 wt% of ZrO 2, 7 wt% La 2 O 3, and 18 wt% of Y 2 O 3),
0.177 g / L Pd,
0.177 g / L Rh.
比較例1
実施例1と同様にして二重層触媒を製造した。層A用の第1の懸濁液の組成は次のとおりであった。
40g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
40g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(25重量%のCeO2、67.5重量%のZrO2、3.5重量%のLa2O3、及び4重量%のY2O3)、
5g/LのBaSO4、
3.178g/LのPd。
層B用の第2の懸濁液の組成は次のとおりであった。
60g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
47g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(25重量%のCeO2、67.5重量%のZrO2、3.5重量%のLa2O3、及び4重量%のY2O3)、
0.177g/LのPd、
0.177g/LのRh。
Comparative Example 1
A double-layer catalyst was produced in the same manner as in Example 1. The composition of the first suspension for Layer A was as follows.
40 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
40 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (25 wt% CeO 2 , 67.5 wt% ZrO 2 , 3.5 wt% La 2 O 3 , and 4 wt% Y 2 O 3 ),
5 g / L BaSO 4 ,
3.178 g / L Pd.
The composition of the second suspension for Layer B was as follows.
60 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
47 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (25 wt% CeO 2 , 67.5 wt% ZrO 2 , 3.5 wt% La 2 O 3 , and 4 wt% Y 2 O 3 ),
0.177 g / L Pd,
0.177 g / L Rh.
実施例1及び比較例1を、エンジン(機関)試験ベンチでの経時劣化プロセスにおいて、経時劣化させた。経時劣化プロセスは、触媒入口(最高1,030℃の床温)の前方における排気ガス温度950℃の惰性走行燃料遮断による経時劣化からなる。経時劣化時間を76時間とした。 Example 1 and Comparative Example 1 were aged in an aging process on an engine (engine) test bench. The aging process consists of aging due to inertia fuel cutoff at 950 ° C exhaust gas temperature in front of the catalyst inlet (bed temperature up to 1,030 ° C). The aging deterioration time was set to 76 hours.
始動性能について、エンジン試験ベンチで、平均空燃比λ一定として試験し、ダイナミック変換について、λを変化させて試験した。 The starting performance was tested on an engine test bench at an average air-fuel ratio of λ constant, and the dynamic conversion was tested by changing λ.
表1に、検討した成分のそれぞれ50%が変換された温度T50を記載する。そのようにして、化学量論的な排気ガス組成(λ=0.999、±3.4%の振れ幅)による始動性能を求めた。 Table 1 describes the temperature T 50, which represents 50% of the components discussed are converted. In this way, the starting performance based on the stoichiometric exhaust gas composition (λ = 0.999, ± 3.4% swing) was determined.
ダイナミック変換性能について、λが0.99〜1.01の範囲で、510℃の一定温度にて求めた。その際、λの振れ幅は±3.4%であった。表2に、CO及びNOxの変換曲線の交点での変換率、並びに関連するHCの変換率を記載する。 The dynamic conversion performance was determined at a constant temperature of 510 ° C. with λ in the range of 0.99 to 1.01. At this time, the swing width of λ was ± 3.4%. Table 2 lists the conversions at the intersection of the CO and NOx conversion curves, and the associated HC conversions.
本発明による実施例1は、始動性能、及び経時劣化後のCO/NOxダイナミック変換において、顕著な改善を示している。 Example 1 according to the present invention shows a remarkable improvement in the starting performance and the dynamic conversion of CO / NOx after aging.
以下の実施例4及び5、並びに比較例2において、二重層触媒を、セル数93/cm2及び壁厚0.1mm、並びに直径10.2cm及び長さ15.2cmの寸法のセラミックから作製したフロースルー型ハニカム体を2回コーティングすることによって、製造した。この目的のため、2つの異なる懸濁液を、それぞれ層A用、及び層B用に製造した。次に、担体を層A用懸濁液によってまずコーティングし、次に空気中500℃で4時間焼成した。その後、層Aでコーティングした担体を、層B用懸濁液によってコーティングし、次に層Aについてと同じ条件で焼成した。 In Examples 4 and 5 below and Comparative Example 2, the double-layer catalyst was made from a ceramic having a cell number of 93 / cm 2 and a wall thickness of 0.1 mm, and dimensions of 10.2 cm in diameter and 15.2 cm in length. It was manufactured by coating the flow-through type honeycomb body twice. For this purpose, two different suspensions were prepared for layer A and for layer B, respectively. Next, the carrier was first coated with the suspension for Layer A and then calcined at 500 ° C. in air for 4 hours. Thereafter, the carrier coated with layer A was coated with the suspension for layer B and then calcined under the same conditions as for layer A.
実施例4
2つの懸濁液をまず製造することによって、二重層触媒を製造した。層A用の第1の懸濁液の組成は(触媒担体の体積に対して)次のとおりであった。
70g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
50g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(39重量%のCeO2、51重量%のZrO2、3重量%のLa2O3、及び7重量%のY2O3)、
5g/LのBaSO4、
1.483g/LのPd。
層B用の第2の懸濁液の組成は(触媒担体の体積に対して)次のとおりであった。
70g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
65g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(24重量%のCeO2、60重量%のZrO2、3.5重量%のLa2O3、及び12.5重量%のY2O3)、
0.177g/LのPd、
0.177g/LのRh。
Example 4
A double layer catalyst was prepared by first preparing two suspensions. The composition of the first suspension for layer A was (relative to the volume of the catalyst support) as follows:
70 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
50 g / L of cerium / zirconium / lanthanum / yttrium mixed oxide (39 wt% CeO 2, 51 wt% of ZrO 2, 3 wt% La 2 O 3, and 7 wt% of Y 2 O 3),
5 g / L BaSO 4 ,
1.483 g / L Pd.
The composition of the second suspension for layer B was (relative to the volume of the catalyst support) as follows:
70 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
65 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (24 wt% CeO 2 , 60 wt% ZrO 2 , 3.5 wt% La 2 O 3 , and 12.5 wt% Y 2 O 3 ),
0.177 g / L Pd,
0.177 g / L Rh.
実施例5
実施例4と同様にして二重層触媒を製造した。層A用の第1の懸濁液の組成は次のとおりであった。
70g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
50g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(25重量%のCeO2、67.5重量%のZrO2、3.5重量%のLa2O3、及び4重量%のY2O3)、
5g/LのBaSO4、
1.483g/LのPd。
層B用の第2の懸濁液の組成は次のとおりであった。
70g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
65g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(24重量%のCeO2、60重量%のZrO2、3.5重量%のLa2O3、及び12.5重量%のY2O3)、
0.177g/LのPd、
0.177g/LのRh。
Example 5
A double-layer catalyst was produced in the same manner as in Example 4. The composition of the first suspension for Layer A was as follows.
70 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
50 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (25 wt% CeO 2 , 67.5 wt% ZrO 2 , 3.5 wt% La 2 O 3 , and 4 wt% Y 2 O 3 ),
5 g / L BaSO 4 ,
1.483 g / L Pd.
The composition of the second suspension for Layer B was as follows.
70 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
65 g / L cerium / zirconium / lanthanum / yttrium mixed oxide (24 wt% CeO 2 , 60 wt% ZrO 2 , 3.5 wt% La 2 O 3 , and 12.5 wt% Y 2 O 3 ),
0.177 g / L Pd,
0.177 g / L Rh.
比較例2
実施例4と同様にして二重層触媒を製造した。層A用の第1の懸濁液の組成は次のとおりであった。
70g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
50g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(39重量%のCeO2、51重量%のZrO2、3重量%のLa2O3、及び7重量%のY2O3)、
5g/LのBaSO4、
1.483g/LのPd。
層B用の第2の懸濁液の組成は次のとおりであった。
70g/Lの活性酸化アルミニウムを4重量%のLa2O3で安定化したもの、
65g/Lのセリウム/ジルコニウム/ランタン/イットリウム混合酸化物(22重量%のCeO2、68重量%のZrO2、2重量%のLa2O3、5重量%のNd2O3、及び3重量%のY2O3)、
0.177g/LのPd、
0.177g/LのRh。
Comparative Example 2
A double-layer catalyst was produced in the same manner as in Example 4. The composition of the first suspension for Layer A was as follows.
70 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
50 g / L of cerium / zirconium / lanthanum / yttrium mixed oxide (39 wt% CeO 2, 51 wt% of ZrO 2, 3 wt% La 2 O 3, and 7 wt% of Y 2 O 3),
5 g / L BaSO 4 ,
1.483 g / L Pd.
The composition of the second suspension for Layer B was as follows.
70 g / L of activated aluminum oxide stabilized with 4% by weight of La 2 O 3 ,
65 g / L of cerium / zirconium / lanthanum / yttrium mixed oxide (22 wt% CeO 2, 68 wt% of ZrO 2, 2 weight% of La 2 O 3, 5 wt% of Nd 2 O 3, and 3 weight % Y 2 O 3 ),
0.177 g / L Pd,
0.177 g / L Rh.
実施例4及び5、並びに比較例2を、エンジン試験ベンチでの経時劣化プロセスにおいて、経時劣化させた。経時劣化プロセスは、触媒入口(最高1,030℃の床温)の前方における排気ガス温度950℃の惰性走行燃料遮断による経時劣化からなる。経時劣化時間を76時間とした。 Examples 4 and 5 and Comparative Example 2 were aged over time in an aged deterioration process on an engine test bench. The aging process consists of aging due to inertia fuel cutoff at 950 ° C exhaust gas temperature in front of the catalyst inlet (bed temperature up to 1,030 ° C). The aging deterioration time was set to 76 hours.
始動性能について、エンジン試験ベンチで、平均空燃比λ一定として試験し、ダイナミック変換について、λを変化させて試験した。 The starting performance was tested on an engine test bench at an average air-fuel ratio of λ constant, and the dynamic conversion was tested by changing λ.
表3に、検討した成分のそれぞれ50%が変換された温度T50を記載する。そのようにして、化学量論的な排気ガス組成(λ=0.999、±3.4%の振れ幅)、及びわずかにリーンな排気ガス組成(λ=1.05、振れ幅無し)による始動性能を求めた。 Table 3 lists the temperature T50 at which 50% of each of the components studied was converted. As such, due to stoichiometric exhaust gas composition (λ = 0.999, ± 3.4% swing) and slightly lean exhaust gas composition (λ = 1.05, no swing) The starting performance was determined.
ダイナミック変換性能について、λが0.99〜1.01の範囲で、510℃の一定温度にて求めた。その際、λの振れ幅は±3.4%であった。表4に、CO及びNOxの変換曲線の交点での変換率、並びに関連するHCの変換率を記載する。 The dynamic conversion performance was determined at a constant temperature of 510 ° C. with λ in the range of 0.99 to 1.01. At this time, the swing width of λ was ± 3.4%. Table 4 lists the conversions at the intersection of the CO and NOx conversion curves, and the associated HC conversions.
本発明による実施例4及び5は、始動性能、及び経時劣化後のCO/NOxダイナミック変換において、顕著な改善を示し、実施例5がとりわけ高い活性を示している。 Examples 4 and 5 according to the invention show a marked improvement in the starting performance and in the dynamic conversion of CO / NOx after aging, with Example 5 showing a particularly high activity.
更なる実施例を、実施例5と同様に、相違点として、表5に特定した希土類金属酸化物(SExOy)をセリウム/ジルコニウム/希土類金属混合酸化物中に用い、調製した。 A further embodiment, similarly to Embodiment 5, the difference that certain rare earth metal oxides (SE x O y) used in the cerium / zirconium / rare earth metal mixed oxides in Table 5 were prepared.
Claims (13)
層Aが、少なくとも1つの白金族金属、並びにセリウム/ジルコニウム/SE混合酸化物を含み、
層Aに適用された層Bが、少なくとも1つの白金族金属、並びにセリウム/ジルコニウム/SE混合酸化物を含み、
(ここで、SEは、セリウム以外の希土類金属を表す)
それぞれに前記セリウム/ジルコニウム/SE混合酸化物に対する重量%で計算して、層Aの前記セリウム/ジルコニウム/SE混合酸化物中のSE酸化物の割合が、層Bの前記セリウム/ジルコニウム/SE混合酸化物中の前記SE酸化物の割合より小さく、
層A及び層Bが、活性酸化アルミニウムを含み、
層A及び層Bの少なくとも一つにおける前記セリウム/ジルコニウム/SE混合酸化物中の前記SE酸化物が、酸化ランタン、酸化イットリウム、酸化プラセオジム、酸化サマリウム、又はこれらの金属酸化物のうちの1つ以上の混合物であることを特徴とする、触媒。 A three-way catalyst comprising two layers on an inert catalyst support,
Layer A comprises at least one platinum group metal, and a cerium / zirconium / SE mixed oxide;
The layer B applied to the layer A comprises at least one platinum group metal, as well as a cerium / zirconium / SE mixed oxide;
(Where SE represents a rare earth metal other than cerium)
The percentage of SE oxide in the cerium / zirconium / SE mixed oxide of layer A is calculated as the percentage by weight of the cerium / zirconium / SE mixed oxide in layer A, respectively. rather smaller than the proportion of the SE oxide in the oxide,
Layer A and layer B comprise active aluminum oxide;
The SE oxide in the cerium / zirconium / SE mixed oxide in at least one of Layer A and Layer B is lanthanum oxide, yttrium oxide, praseodymium oxide, samarium oxide, or one of these metal oxides A catalyst , which is a mixture of the above .
層Aが、パラジウム、活性酸化アルミニウム、並びにセリウム/ジルコニウム/ランタン/イットリウム混合酸化物を含み、
層Aに適用された層Bが、ロジウム、又はパラジウムとロジウム、活性酸化アルミニウム、並びにセリウム/ジルコニウム/ランタン/イットリウム混合酸化物を含み、
それぞれにセリウム/ジルコニウム/ランタン/イットリウム酸化物に対する重量%で計算して、層Aの前記セリウム/ジルコニウム/ランタン/イットリウム混合酸化物中の酸化ランタンと酸化イットリウムとの合計割合が、層Bの前記セリウム/ジルコニウム/ランタン/イットリウム混合酸化物中の酸化ランタンと酸化イットリウムとの合計割合より小さいことを特徴とする、触媒。 The catalyst according to any one of claims 1 to 10 , comprising two layers on an inert catalyst support,
Layer A comprises palladium, activated aluminum oxide, and a cerium / zirconium / lanthanum / yttrium mixed oxide;
Layer B applied to Layer A comprises rhodium, or palladium and rhodium, activated aluminum oxide, and cerium / zirconium / lanthanum / yttrium mixed oxide;
The total percentage of lanthanum oxide and yttrium oxide in the cerium / zirconium / lanthanum / yttrium mixed oxide of layer A is calculated as the percentage by weight based on cerium / zirconium / lanthanum / yttrium oxide, respectively. A catalyst characterized by being smaller than the total ratio of lanthanum oxide and yttrium oxide in a cerium / zirconium / lanthanum / yttrium mixed oxide.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15151583.0 | 2015-01-19 | ||
EP15151583.0A EP3045226B1 (en) | 2015-01-19 | 2015-01-19 | Double layer three-way catalytic converter with improved ageing resistance |
PCT/EP2016/050718 WO2016116356A1 (en) | 2015-01-19 | 2016-01-15 | Double-layer three-way catalyst with improved ageing stability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018508337A JP2018508337A (en) | 2018-03-29 |
JP6678669B2 true JP6678669B2 (en) | 2020-04-08 |
Family
ID=52354820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017529066A Active JP6678669B2 (en) | 2015-01-19 | 2016-01-15 | Double-layer three-way catalyst with improved aging stability |
Country Status (9)
Country | Link |
---|---|
US (1) | US10413886B2 (en) |
EP (2) | EP3045226B1 (en) |
JP (1) | JP6678669B2 (en) |
KR (1) | KR102496070B1 (en) |
CN (2) | CN111514891A (en) |
BR (1) | BR112017014624B1 (en) |
DE (1) | DE202016008848U1 (en) |
PL (1) | PL3247493T3 (en) |
WO (1) | WO2016116356A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3045226B1 (en) * | 2015-01-19 | 2024-08-21 | Umicore AG & Co. KG | Double layer three-way catalytic converter with improved ageing resistance |
US10933373B2 (en) * | 2017-03-23 | 2021-03-02 | Umicore Ag & Co. Kg | Catalytically active particulate filter |
CN107649127A (en) * | 2017-09-25 | 2018-02-02 | 艾科卡特催化器丹阳有限公司 | A kind of motor cycle catalyst and preparation method thereof |
EP3501648B1 (en) | 2017-12-19 | 2023-10-04 | Umicore Ag & Co. Kg | Catalytically active particle filter |
EP3505245B1 (en) | 2017-12-19 | 2019-10-23 | Umicore Ag & Co. Kg | Catalytically active particle filter |
EP3505246B1 (en) | 2017-12-19 | 2019-10-23 | Umicore Ag & Co. Kg | Catalytically active particle filter |
US20190353067A1 (en) | 2018-05-18 | 2019-11-21 | Umicore Ag & Co. Kg | Exhaust treatment systems and methods involving oxygen supplementation and hydrocarbon trapping |
WO2020200398A1 (en) | 2019-03-29 | 2020-10-08 | Umicore Ag & Co. Kg | Catalytically active particulate filter |
DE102020101876A1 (en) | 2020-01-27 | 2021-07-29 | Umicore Ag & Co. Kg | Double-layer three-way catalyst with further improved aging stability |
CN112076740A (en) * | 2020-09-17 | 2020-12-15 | 有研稀土新材料股份有限公司 | Element gradient distributed cerium-zirconium based composite oxide and preparation method thereof |
CN113304745B (en) * | 2021-06-04 | 2022-08-12 | 中自环保科技股份有限公司 | Pt-Pd-Rh ternary catalyst and preparation method thereof |
DE102021118802A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas cleaning system for cleaning exhaust gases from gasoline engines |
DE102021118803A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas cleaning system for cleaning exhaust gases from gasoline engines |
DE102021118801A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas cleaning system for cleaning exhaust gases from gasoline engines |
WO2023198569A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Ammonia-blocking catalyst for stoichiometric internal combustion engines |
DE102023101763A1 (en) | 2022-04-11 | 2023-10-12 | Umicore Ag & Co. Kg | Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions |
DE102022130469A1 (en) | 2022-11-17 | 2024-05-23 | Umicore Ag & Co. Kg | Method and device for producing a substrate for an exhaust gas aftertreatment device |
DE102023107627A1 (en) | 2023-03-27 | 2024-10-02 | Umicore Ag & Co. Kg | substrate monolith comprising a reforming catalyst |
DE102022134540A1 (en) | 2022-12-22 | 2024-06-27 | Umicore Ag & Co. Kg | Reforming catalyst |
WO2024133611A1 (en) | 2022-12-22 | 2024-06-27 | Umicore Ag & Co. Kg | Substrate monolith including a reforming catalyst |
DE102023117464A1 (en) | 2023-07-03 | 2025-01-09 | Umicore Ag & Co. Kg | Method and device for producing a substrate for an exhaust gas aftertreatment device |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10501737A (en) | 1994-06-17 | 1998-02-17 | エンゲルハード・コーポレーシヨン | Layered catalyst composite |
CA2225510A1 (en) * | 1995-06-16 | 1997-01-03 | Patrick Euzen | Silicon-containing catalysts for use in hydrocarbon conversion reactions |
DE19726322A1 (en) | 1997-06-20 | 1998-12-24 | Degussa | Exhaust gas cleaning catalytic converter for internal combustion engines with two catalytically active layers on a support body |
EP1046423B8 (en) | 1999-04-23 | 2007-11-21 | Umicore AG & Co. KG | Layered noble metal-containing exhaust gas catalyst and its preparation |
JP4015328B2 (en) * | 1999-09-14 | 2007-11-28 | ダイハツ工業株式会社 | Exhaust gas purification catalyst |
US6777370B2 (en) * | 2001-04-13 | 2004-08-17 | Engelhard Corporation | SOx tolerant NOx trap catalysts and methods of making and using the same |
JP3845274B2 (en) * | 2001-06-26 | 2006-11-15 | ダイハツ工業株式会社 | Exhaust gas purification catalyst |
US7875250B2 (en) | 2003-12-11 | 2011-01-25 | Umicore Ag & Co. Kg | Exhaust treatment device, and methods of making the same |
JP2006263582A (en) * | 2005-03-24 | 2006-10-05 | Mazda Motor Corp | Exhaust gas purification catalyst |
JP4648089B2 (en) | 2005-05-27 | 2011-03-09 | 株式会社キャタラー | Exhaust gas purification catalyst |
KR100713298B1 (en) * | 2005-09-08 | 2007-05-04 | 한화석유화학 주식회사 | Metal oxide with excellent heat resistance and its manufacturing method |
JP4687389B2 (en) * | 2005-10-26 | 2011-05-25 | マツダ株式会社 | Exhaust gas purification catalyst |
KR20090045214A (en) * | 2006-06-29 | 2009-05-07 | 우미코레 아게 운트 코 카게 | Ternary catalyst |
US7550124B2 (en) * | 2006-08-21 | 2009-06-23 | Basf Catalysts Llc | Layered catalyst composite |
US7758834B2 (en) * | 2006-08-21 | 2010-07-20 | Basf Corporation | Layered catalyst composite |
JP4760625B2 (en) * | 2006-09-06 | 2011-08-31 | マツダ株式会社 | Exhaust gas purification catalyst device |
ATE439903T1 (en) * | 2006-10-06 | 2009-09-15 | Umicore Ag & Co Kg | NITROGEN OXIDE STORAGE CATALYST WITH LOWERED DESULFULIZATION TEMPERATURE |
KR101405826B1 (en) * | 2007-02-01 | 2014-06-11 | 엔.이. 켐캣 가부시키가이샤 | Catalyst system used in an exhaust gas purifying apparatus for an automobile, exhaust gas purifying apparatus using the same, and exhaust gas purifying method |
EP1974809B1 (en) | 2007-03-19 | 2010-09-29 | Umicore AG & Co. KG | Double layer three-way catalytic converter |
US8007750B2 (en) * | 2007-07-19 | 2011-08-30 | Basf Corporation | Multilayered catalyst compositions |
US8038951B2 (en) * | 2007-08-09 | 2011-10-18 | Basf Corporation | Catalyst compositions |
DE102007046158B4 (en) * | 2007-09-27 | 2014-02-13 | Umicore Ag & Co. Kg | Use of a catalytically active particulate filter for the removal of particles from the exhaust gas of combustion engines operated with predominantly stoichiometric air / fuel mixture |
JP5359298B2 (en) * | 2008-02-19 | 2013-12-04 | マツダ株式会社 | Exhaust gas purification catalyst |
JP5538237B2 (en) * | 2008-12-03 | 2014-07-02 | 第一稀元素化学工業株式会社 | Exhaust gas purification catalyst, exhaust gas purification device using the same, and exhaust gas purification method |
CN101745375B (en) * | 2008-12-15 | 2013-01-09 | 比亚迪股份有限公司 | Cerium zirconium aluminum based multiple oxide material and preparing method thereof |
US7981390B2 (en) * | 2008-12-23 | 2011-07-19 | Basf Corporation | Small engine palladium catalyst article and method of making |
EP2412437B1 (en) * | 2009-03-25 | 2017-12-06 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyst for saddle type vehicle |
CN102448606B (en) * | 2009-05-27 | 2014-03-26 | 株式会社科特拉 | Catalyst for purification of exhaust gas |
EP2496887B1 (en) | 2009-11-05 | 2013-06-26 | MAG Aerospace Industries, Inc. | Steam oven with water delivery and drain valve system and method in an aircraft |
US8833064B2 (en) * | 2009-11-06 | 2014-09-16 | Basf Corporation | Small engine layered catalyst article and method of making |
CN101940921A (en) * | 2010-05-27 | 2011-01-12 | 山东梁山凯特新材料有限公司 | Bilayer structured oxygen storage material and preparation method thereof |
US8617496B2 (en) * | 2011-01-19 | 2013-12-31 | Basf Corporation | Three way conversion catalyst with alumina-free rhodium layer |
EP2858751B1 (en) * | 2012-06-06 | 2020-02-19 | Umicore Ag & Co. Kg | Start-up catalyst for use upstream of a gasoline particulate filter |
CN103861577A (en) * | 2012-12-14 | 2014-06-18 | 上海郎特汽车净化器有限公司 | Preparation method of oxygen storage material |
US9266092B2 (en) * | 2013-01-24 | 2016-02-23 | Basf Corporation | Automotive catalyst composites having a two-metal layer |
CN104968430B (en) * | 2013-01-31 | 2018-05-08 | 优美科触媒日本有限公司 | Exhaust gas purification catalyst and the exhaust gas purifying method using the catalyst |
CN103143351B (en) * | 2013-03-15 | 2015-04-29 | 无锡威孚环保催化剂有限公司 | Ternary catalyst |
CN104661749B (en) * | 2013-05-27 | 2017-03-15 | 马自达汽车株式会社 | Exhaust gas catalytic conversion and preparation method thereof |
US9744529B2 (en) * | 2014-03-21 | 2017-08-29 | Basf Corporation | Integrated LNT-TWC catalyst |
EP3045226B1 (en) * | 2015-01-19 | 2024-08-21 | Umicore AG & Co. KG | Double layer three-way catalytic converter with improved ageing resistance |
WO2016127012A1 (en) * | 2015-02-06 | 2016-08-11 | Johnson Matthey Public Limited Company | Three-way catalyst and its use in exhaust systems |
-
2015
- 2015-01-19 EP EP15151583.0A patent/EP3045226B1/en active Active
-
2016
- 2016-01-15 CN CN202010472357.5A patent/CN111514891A/en active Pending
- 2016-01-15 DE DE202016008848.4U patent/DE202016008848U1/en active Active
- 2016-01-15 US US15/544,091 patent/US10413886B2/en active Active
- 2016-01-15 PL PL16700724T patent/PL3247493T3/en unknown
- 2016-01-15 EP EP16700724.4A patent/EP3247493B1/en active Active
- 2016-01-15 CN CN201680006289.5A patent/CN107107037B/en active Active
- 2016-01-15 WO PCT/EP2016/050718 patent/WO2016116356A1/en active Application Filing
- 2016-01-15 JP JP2017529066A patent/JP6678669B2/en active Active
- 2016-01-15 BR BR112017014624-0A patent/BR112017014624B1/en active IP Right Grant
- 2016-01-15 KR KR1020177022969A patent/KR102496070B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107107037A (en) | 2017-08-29 |
CN107107037B (en) | 2020-08-04 |
EP3247493B1 (en) | 2020-05-27 |
CN111514891A (en) | 2020-08-11 |
DE202016008848U1 (en) | 2020-02-10 |
US20170368536A1 (en) | 2017-12-28 |
JP2018508337A (en) | 2018-03-29 |
KR102496070B1 (en) | 2023-02-06 |
EP3247493A1 (en) | 2017-11-29 |
PL3247493T3 (en) | 2020-11-16 |
EP3045226B1 (en) | 2024-08-21 |
BR112017014624A2 (en) | 2018-02-06 |
EP3045226A1 (en) | 2016-07-20 |
KR20170106419A (en) | 2017-09-20 |
US10413886B2 (en) | 2019-09-17 |
BR112017014624B1 (en) | 2021-08-31 |
WO2016116356A1 (en) | 2016-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6678669B2 (en) | Double-layer three-way catalyst with improved aging stability | |
JP6386449B2 (en) | Start-up catalyst for use upstream of a gasoline particulate filter | |
JP5210306B2 (en) | Three-way catalyst | |
KR101337934B1 (en) | Two-layer three-way catalyst | |
CN111491715B (en) | Catalytically active particulate filter | |
US9475004B2 (en) | Rhodium-iron catalysts | |
JP6246192B2 (en) | Three-way catalyst system | |
US9707545B2 (en) | Three-way catalyst | |
US8975204B2 (en) | Exhaust-gas-purifying catalyst | |
KR101521744B1 (en) | Exhaust gas purification catalyst | |
JP6440771B2 (en) | Exhaust gas purification catalyst device | |
KR20220128670A (en) | Double-layer three-way catalyst with further improved aging stability | |
US9433899B2 (en) | Method for removing carbon monoxide and hydrocarbons from the exhaust gas of lean-burn internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6678669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |