JP6674344B2 - Water treatment material and method for producing the same - Google Patents
Water treatment material and method for producing the same Download PDFInfo
- Publication number
- JP6674344B2 JP6674344B2 JP2016136643A JP2016136643A JP6674344B2 JP 6674344 B2 JP6674344 B2 JP 6674344B2 JP 2016136643 A JP2016136643 A JP 2016136643A JP 2016136643 A JP2016136643 A JP 2016136643A JP 6674344 B2 JP6674344 B2 JP 6674344B2
- Authority
- JP
- Japan
- Prior art keywords
- water treatment
- treatment material
- water
- zeolite
- calcium silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 123
- 239000000463 material Substances 0.000 title claims description 92
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000010457 zeolite Substances 0.000 claims description 51
- 229910021536 Zeolite Inorganic materials 0.000 claims description 48
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 48
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 38
- 239000000378 calcium silicate Substances 0.000 claims description 37
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 37
- 229910052680 mordenite Inorganic materials 0.000 claims description 26
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 claims description 24
- 229910001603 clinoptilolite Inorganic materials 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 13
- 238000001354 calcination Methods 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 46
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 42
- 235000012241 calcium silicate Nutrition 0.000 description 34
- 229910021529 ammonia Inorganic materials 0.000 description 23
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 21
- 238000001179 sorption measurement Methods 0.000 description 19
- 239000000843 powder Substances 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 14
- 238000010304 firing Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 230000003139 buffering effect Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005469 granulation Methods 0.000 description 9
- 230000003179 granulation Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910001385 heavy metal Inorganic materials 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- QVMHUALAQYRRBM-UHFFFAOYSA-N [P].[P] Chemical compound [P].[P] QVMHUALAQYRRBM-UHFFFAOYSA-N 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000009360 aquaculture Methods 0.000 description 2
- 244000144974 aquaculture Species 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 235000010855 food raising agent Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- -1 zonotlite Chemical compound 0.000 description 2
- VRZJGENLTNRAIG-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]iminonaphthalen-1-one Chemical compound C1=CC(N(C)C)=CC=C1N=C1C2=CC=CC=C2C(=O)C=C1 VRZJGENLTNRAIG-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- FPWJLQXCGHQXLL-UHFFFAOYSA-N [P].OP(O)(O)=O Chemical compound [P].OP(O)(O)=O FPWJLQXCGHQXLL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- JLDKGEDPBONMDR-UHFFFAOYSA-N calcium;dioxido(oxo)silane;hydrate Chemical compound O.[Ca+2].[O-][Si]([O-])=O JLDKGEDPBONMDR-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000011381 foam concrete Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- IBIRZFNPWYRWOG-UHFFFAOYSA-N phosphane;phosphoric acid Chemical compound P.OP(O)(O)=O IBIRZFNPWYRWOG-UHFFFAOYSA-N 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 1
- 235000019976 tricalcium silicate Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、水処理材及びその製造方法に関する。詳細には、本発明は、観賞用又は養殖用の水生生物を飼育する水槽内の水を浄化処理するための水処理材及びその製造方法に関する。 The present invention relates to a water treatment material and a method for producing the same. More specifically, the present invention relates to a water treatment material for purifying water in an aquarium that breeds aquatic organisms for ornamental or aquaculture, and a method for producing the same.
観賞又は養殖を目的として魚、海老などの水生生物を水槽で飼育する場合、水生生物の排泄物、餌などによってアンモニア、リン酸などが生じ、水槽内の水質が低下する。
水槽内の水質を維持する方法としては、従来、バクテリアなどの微生物を担持させた多孔質の水処理材(「ろ過材」とも称される。)を用いて処理する方法が知られている。微生物は、水生生物が排泄したアンモニアを硝酸に酸化して処理することができる一方、硝酸の生成によって水槽内の水のpHが低下し、水生生物の飼育には適さなくなることがある。そのため、水のpHが低下した場合、水槽にpH上昇剤を投入したり、水替えを行ったりすることが行われている。しかしながら、pH上昇剤は、一時的に水のpHを上昇させることができるけれども、持続力がないという問題がある。また、水替えは、飼育管理に手間がかかるであるという問題がある。
When aquatic organisms such as fish and shrimp are bred in an aquarium for ornamental or aquaculture purposes, ammonia, phosphoric acid, and the like are generated by excretions and foods of the aquatic organisms, and the water quality in the aquarium decreases.
As a method for maintaining the water quality in an aquarium, a method for treating the water using a porous water treatment material (also referred to as “filter material”) carrying microorganisms such as bacteria has been known. Microorganisms can oxidize ammonia excreted by aquatic organisms to nitric acid and treat it, but the production of nitric acid lowers the pH of water in an aquarium and may not be suitable for aquatic breeding. For this reason, when the pH of water is lowered, a pH raising agent is put into a water tank, or water is changed. However, although the pH raising agent can temporarily raise the pH of water, there is a problem that it is not persistent. In addition, there is a problem that changing water requires a lot of labor for breeding management.
そこで、硝酸による水槽内の水のpH低下を抑制する機能(以下、「pH緩衝作用」という。)及びリン酸の吸着能力を有する水処理材として、ワラストナイト及びアノーサイトを含有する水処理材が提案されている(例えば、特許文献1)。この水処理材は、孔内に微生物を担持させることにより、アンモニアを処理することもできる。
しかしながら、この水処理材は、それ自体にアンモニアを吸着する能力(以下、「アンモニアの吸着能力」という。)がなく、孔内に担持させた微生物がアンモニアの処理を行うため、微生物が十分に繁殖していない段階(例えば、飼育の初期段階)においては、アンモニアを十分に処理することができない。
Therefore, a water treatment containing wollastonite and anorthite as a water treatment material having a function of suppressing a decrease in pH of water in a water tank due to nitric acid (hereinafter, referred to as a “pH buffering action”) and an ability to adsorb phosphoric acid. A material has been proposed (for example, Patent Document 1). This water treatment material can also treat ammonia by supporting microorganisms in the pores.
However, this water treatment material does not itself have the ability to adsorb ammonia (hereinafter, referred to as "ammonia adsorption ability"), and the microorganisms carried in the pores perform the treatment of ammonia. At the stage of non-breeding (for example, the initial stage of rearing), ammonia cannot be sufficiently treated.
他方、水中に含まれる窒素及びリンを吸着させる吸着剤として、ゼオライトと焼成した粘土とを含む吸着剤が知られている(例えば、特許文献2)。
しかしながら、この吸着剤は、植物の肥料成分として用いられるものであるため、水槽内の水を浄化処理するための水処理材として用いるのには適していない。すなわち、この吸着剤は粉体状であるため、水処理材として用いた場合、通水充填塔などにおいて目詰まりが発生し、通水状態を維持することができない。
On the other hand, as an adsorbent for adsorbing nitrogen and phosphorus contained in water, an adsorbent containing zeolite and calcined clay is known (for example, Patent Document 2).
However, since this adsorbent is used as a plant fertilizer component, it is not suitable for use as a water treatment material for purifying water in a water tank. That is, since this adsorbent is in a powder form, when used as a water treatment material, clogging occurs in a water-flow packed tower or the like, and the water-flow state cannot be maintained.
また、リン含有排水中からリンを除去する脱リン材として、石灰質原料及びゼオライトの反応生成物からなる脱リン材が知られている(例えば、特許文献3)
しかしながら、この脱リン材は、リン吸着能力及びpH緩衝作用が良好であるけれども、アンモニアの吸着能力はない。また、この脱リン材は強度が十分でないため、水処理材として用いた場合、使用時の水流などによって微粉化してしまう。その結果、通水充填塔などにおいて目詰まりが発生し、通水状態を維持することができない。
Further, as a dephosphorizing material for removing phosphorus from wastewater containing phosphorus, a dephosphorizing material composed of a reaction product of a calcareous raw material and a zeolite is known (for example, Patent Document 3).
However, although this phosphorus removing material has good phosphorus adsorption capacity and pH buffering action, it does not have ammonia adsorption capacity. Further, since the dephosphorizing material has insufficient strength, when used as a water treatment material, it is pulverized by a water flow at the time of use. As a result, clogging occurs in the water-flow packed tower or the like, and the water-flow state cannot be maintained.
本発明は、上記のような問題を解決するためになされたものであり、強度が高く、アンモニア及びリン酸の吸着能力、並びにpH緩衝作用に優れた水処理材及びその製造方法を提供することを目的とする。 The present invention has been made in order to solve the above problems, and provides a water treatment material having high strength, excellent ammonia and phosphoric acid adsorption capacity, and excellent pH buffering action, and a method for producing the same. With the goal.
本発明者らは、上記のような問題を解決すべく鋭意研究を行った結果、ゼオライトとケイ酸カルシウムとを含む水処理材において、ゼオライトの種類及び結晶子径、並びにゼオライトとケイ酸カルシウムとの質量比が、強度、アンモニア及びリン酸の吸着能力、並びにpH緩衝作用と密接な関係を有していることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, in a water treatment material containing zeolite and calcium silicate, the type and crystallite diameter of zeolite, and zeolite and calcium silicate Have been found to have a close relationship with the strength, the ability to adsorb ammonia and phosphoric acid, and the pH buffering action, and have completed the present invention.
すなわち、本発明は、以下の第(1)項〜第(3)項である。
(1)クリノプチロライト及びモルデナイトを含むゼオライトと、ケイ酸カルシウムとを含み、
前記クリノプチロライトの結晶子径が15〜26.5nm、前記モルデナイトの結晶子径が39〜48nmであり、
前記ゼオライトと前記ケイ酸カルシウムとの質量比が4.0:1〜1.1:1である
ことを特徴とする水処理材。
That is, the present invention includes the following items (1) to (3).
(1) a zeolite containing clinoptilolite and mordenite, and calcium silicate,
The crystallite size of the clinoptilolite is 15 to 26.5 nm, the crystallite size of the mordenite is 39 to 48 nm,
A water treatment material, wherein the mass ratio between the zeolite and the calcium silicate is from 4.0: 1 to 1.1: 1.
(2)クリノプチロライト及びモルデナイトを含むゼオライトと、ケイ酸カルシウムを与える材料とを50:50〜75:25の質量比で混合した後、700〜850℃の温度で焼成することを特徴とする水処理材の製造方法。
(3)前記ゼオライトと、前記ケイ酸カルシウムを与える材料との質量比が55:45〜75:25であることを特徴とする第(2)項に記載の水処理材の製造方法。
(2) A zeolite containing clinoptilolite and mordenite and a material giving calcium silicate are mixed at a mass ratio of 50:50 to 75:25, and then calcined at a temperature of 700 to 850 ° C. Manufacturing method of water treatment material.
(3) The method for producing a water treatment material according to (2), wherein the mass ratio of the zeolite to the material that provides the calcium silicate is 55:45 to 75:25.
本発明によれば、強度が高く、アンモニア及びリン酸の吸着能力、並びにpH緩衝作用に優れた水処理材及びその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the water treatment material which is high in intensity | strength, is excellent in the adsorption capacity of ammonia and phosphoric acid, and pH buffering action, and its manufacturing method can be provided.
本発明の水処理材は、ゼオライト及びケイ酸カルシウムを含む。
ゼオライトは、アルカリ金属又はアルカリ土類金属を含むアルミノケイ酸塩であり、一般に、天然ゼオライト、人工ゼオライト及び合成ゼオライトに分類される。その中でも、本発明の水処理材に用いられるゼオライトは、コスト面で天然ゼオライトが好ましい。
本発明の水処理材に用いられるゼオライトは、クリノプチロライト及びモルデナイトの両方を必須成分として含む。また、本発明の水処理材に用いられるゼオライトは、その他の種類のゼオライト(例えば、ローモンタイト、チャバザイト)をさらに含んでいてもよい。
The water treatment material of the present invention contains zeolite and calcium silicate.
Zeolites are aluminosilicates containing alkali metals or alkaline earth metals and are generally classified into natural zeolites, artificial zeolites and synthetic zeolites. Among them, the zeolite used for the water treatment material of the present invention is preferably a natural zeolite in terms of cost.
The zeolite used for the water treatment material of the present invention contains both clinoptilolite and mordenite as essential components. Further, the zeolite used in the water treatment material of the present invention may further include another type of zeolite (for example, rhomontite, chabazite).
クリノプチロライトは(Ca,Na2,K2)[Al2Si7O18]・6H2O、モルデナイトは(Ca,Na2,K2)[AlSi5O12]・7H2Oの化学式を有する。なお、本発明の水処理材は焼成することによって製造されるため、ゼオライトの結晶水は、一部又は全部が脱水している。
クリノプチロライトとモルデナイトとの質量割合は、特に限定されないが、モルデナイトよりもクリノプチロライトの質量割合が高い方が好ましい。
Clinoptilolite has the chemical formula of (Ca, Na 2 , K 2 ) [Al 2 Si 7 O 18 ] · 6H 2 O, and mordenite has the chemical formula of (Ca, Na 2 , K 2 ) [AlSi 5 O 12 ] · 7H 2 O Having. In addition, since the water treatment material of this invention is manufactured by baking, some or all of the crystallization water of zeolite is dehydrated.
The mass ratio between clinoptilolite and mordenite is not particularly limited, but it is preferable that the mass ratio of clinoptilolite be higher than that of mordenite.
本発明の水処理材において、クリノプチロライトは、15nm〜26.5nm(150Å〜265Å)、好ましくは15.5nm〜26.4nm(155Å〜264Å)、より好ましくは16nm〜26.2nm(160Å〜262Å)の結晶子径を有する。クリノプチロライトの結晶子径が15nm未満であると、リン酸の吸着能力が低下してしまう。一方、クリノプチロライトの結晶子径が26.5nm超過であると、アンモニア及びリン酸の両者の吸着能力が十分に得られない。
ここで、本明細書において「クリノプチロライトの結晶子径」とは、粉末X線回折におけるクリノプチロライトの2θ=30.0°(CuKα線)付近の(151)面の回折線プロファイルの半値幅(FWHM)からシェラーの式(I)によって求められるものを意味する。
D=K・λ/(β・cosθ) (I)
式中、Dは結晶子径(Å)であり、Kは定数(0.94)であり、λはX線の波長(Å)であり、βは半値幅(rad)であり、θは回折X線のブラッグ角(°)である
In the water treatment material of the present invention, clinoptilolite is 15 nm to 26.5 nm (150 ° to 265 °), preferably 15.5 nm to 26.4 nm (155 ° to 264 °), and more preferably 16 nm to 26.2 nm (160 °). 26262 °). If the crystallite diameter of clinoptilolite is less than 15 nm, the ability to adsorb phosphoric acid will decrease. On the other hand, when the crystallite diameter of clinoptilolite is more than 26.5 nm, the ability to adsorb both ammonia and phosphoric acid cannot be sufficiently obtained.
Here, in the present specification, the “crystallite diameter of clinoptilolite” refers to a diffraction line profile of a (151) plane near 2θ = 30.0 ° (CuKα ray) of clinoptilolite in powder X-ray diffraction. From the full width at half maximum (FWHM) of Eq. (I).
D = K · λ / (β · cos θ) (I)
In the formula, D is the crystallite diameter (Å), K is a constant (0.94), λ is the X-ray wavelength (Å), β is the half-width (rad), and θ is the diffraction. X-ray Bragg angle (°)
本発明の水処理材において、モルデナイトは、39nm〜48nm(390Å〜480Å)、好ましくは39.3nm〜48nm(393Å〜480Å)、より好ましくは39.5nm〜47.9nm(395Å〜479Å)の結晶子径を有する。モルデナイトの結晶子径が39nm未満であると、アンモニア及びリン酸の吸着能力が十分に得られない。一方、モルデナイトの結晶子径が48nm超過であると、水処理材の強度が十分に得られない。
ここで、本明細書において「モルデナイトの結晶子径」とは、粉末X線回折におけるモルデナイトの2θ=25.7°(CuKα線)付近の(202)面の回折線プロファイルの半値幅(FWHM)から上記のシェラーの式(I)によって求められるものを意味する。
In the water treatment material of the present invention, the mordenite has a crystal of 39 nm to 48 nm (390 ° to 480 °), preferably 39.3 nm to 48 nm (393 ° to 480 °), more preferably 39.5 nm to 47.9 nm (395 ° to 479 °). It has a diameter. If the crystallite diameter of mordenite is less than 39 nm, the ability to adsorb ammonia and phosphoric acid cannot be sufficiently obtained. On the other hand, if the crystallite diameter of mordenite exceeds 48 nm, sufficient strength of the water treatment material cannot be obtained.
Here, in the present specification, the “crystallite diameter of mordenite” refers to the half width (FWHM) of the diffraction line profile of the (202) plane near 2θ = 25.7 ° (CuKα ray) of mordenite in powder X-ray diffraction. Means the one determined by the above Scherrer's formula (I).
ケイ酸カルシウムは、pH緩衝作用を与える成分である。すなわち、ケイ酸カルシウムは、水処理材を水中に浸漬した際に、ケイ酸カルシウムに含まれているカルシウムが適度に水に溶出してpHの変動を抑制する。特に、ケイ酸カルシウムは、水の酸性化の程度に応じてカルシウムが水に溶出するため、水のpHを常に一定に維持することができる。
ケイ酸カルシウムは、CaOとSiO2とからなる複合酸化物(二元酸化物)である。ケイ酸カルシウムの例としては、特に限定されないが、ワラストナイト(CaO・SiO2)、ランキナイト(3CaO・2SiO2)、トリカルシウムシリケート(3CaO・SiO2)、ダイカルシウムシリケート(2CaO・SiO2)などが挙げられる。本発明の水処理材に含まれるケイ酸カルシウムは、単一の種類であっても、2種以上の混合物であってもよい。
Calcium silicate is a component that gives a pH buffering action. That is, when the water treatment material is immersed in water, the calcium contained in the calcium silicate is appropriately eluted into water to suppress the fluctuation of pH. In particular, calcium silicate elutes into water in accordance with the degree of acidification of water, so that the pH of water can always be kept constant.
Calcium silicate is a composite oxide (binary oxide) composed of CaO and SiO 2 . Examples of calcium silicate is not particularly limited, wollastonite (CaO · SiO 2), rankinite Night (3CaO · 2SiO 2), tricalcium silicate (3CaO · SiO 2), dicalcium silicate (2CaO · SiO 2 ). The calcium silicate contained in the water treatment material of the present invention may be a single type or a mixture of two or more types.
本発明の水処理材において、ゼオライトとケイ酸カルシウムとの質量比は、4.0:1〜1.1:1、好ましくは3.0:1〜1.5:1である。ゼオライトの割合が高すぎる場合、リン酸の吸着能力が低下してしまう。一方、ケイ酸カルシウムの割合が高すぎる場合、水処理材の強度が低下するため、使用期間が長くなると崩壊する懸念がある。 In the water treatment material of the present invention, the mass ratio of zeolite to calcium silicate is from 4.0: 1 to 1.1: 1, preferably from 3.0: 1 to 1.5: 1. If the proportion of zeolite is too high, the ability to adsorb phosphoric acid will decrease. On the other hand, if the proportion of calcium silicate is too high, the strength of the water treatment material is reduced, and there is a concern that the water treatment material will collapse when the use period is long.
上記のような特徴を有する本発明の水処理材は、クリノプチロライト及びモルデナイトを含むゼオライトと、ケイ酸カルシウムを与える材料とを所定の質量比で混合した後、所定の温度で焼成することによって製造される。
原料として用いられる、クリノプチロライト及びモルデナイトを含むゼオライトは、ケイ酸カルシウムを与える材料と混合させ易くする観点から、粉末状であることが好ましい。すなわち、原料として用いられるゼオライトの平均粒子径は、特に限定されないが、好ましくは500μm未満、より好ましくは100μm以下である。このような粉末状のゼオライトは、一般に市販されており、例えば、ジークライト株式会社製のSGW(平均粒子径10μm)、SGW−B4(平均粒子径18μm)などを用いることができる。
ここで、本明細書において「平均粒子径」とは、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。
The water treatment material of the present invention having the above-described characteristics is obtained by mixing a zeolite containing clinoptilolite and mordenite with a material that gives calcium silicate at a predetermined mass ratio, and then firing at a predetermined temperature. Manufactured by
The zeolite containing clinoptilolite and mordenite used as a raw material is preferably in a powder form from the viewpoint of facilitating mixing with a material giving calcium silicate. That is, the average particle size of the zeolite used as a raw material is not particularly limited, but is preferably less than 500 μm, and more preferably 100 μm or less. Such a powdery zeolite is generally commercially available, and for example, SGW (average particle diameter: 10 μm), SGW-B4 (average particle diameter: 18 μm), etc., manufactured by Siglite Co., Ltd. can be used.
Here, in the present specification, the “average particle size” means a particle size at an integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method.
ケイ酸カルシウムを与える化合物は、ケイ酸カルシウム、又は焼成によってケイ酸カルシウムを生成する化合物である。焼成によってケイ酸カルシウムを生成する化合物としては、特に限定されないが、トバモライト、ゾノトライト、ケイ酸カルシウム水和物(CSH)などが挙げられる。なお、これらの成分を含有する建設材料(例えば、軽量気泡コンクリート(ALC)の端材、生コンのスラッジなど)を原料として用いてもよい。ケイ酸カルシウムを与える化合物は、単一又は2種以上を組み合わせて用いることができる。なお、ケイ酸カルシウムを与える化合物が結晶水を含む場合、焼成時に結晶水の一部または全部が脱水される。 The compound that provides calcium silicate is calcium silicate or a compound that generates calcium silicate by firing. The compound that generates calcium silicate by firing is not particularly limited, and examples thereof include tobermorite, zonotlite, and calcium silicate hydrate (CSH). A construction material containing these components (for example, offcuts of lightweight cellular concrete (ALC), sludge of ready-mixed concrete, etc.) may be used as a raw material. Compounds that provide calcium silicate can be used alone or in combination of two or more. When the compound giving calcium silicate contains water of crystallization, part or all of the water of crystallization is dehydrated during firing.
ケイ酸カルシウムを与える化合物もまた、ゼオライトと混合させ易くする観点から、粉末状であることが好ましい。すなわち、ケイ酸カルシウムを与える化合物の平均粒径は、特に限定されないが、好ましくは500μm未満、より好ましくは100μm以下である。 The compound giving calcium silicate is also preferably in powder form from the viewpoint of facilitating mixing with zeolite. That is, the average particle size of the compound that provides calcium silicate is not particularly limited, but is preferably less than 500 μm, and more preferably 100 μm or less.
ゼオライトと、ケイ酸カルシウムを与える材料との混合割合は、質量比で50:50〜75:25、好ましくは55:45〜75:25、より好ましくは58:42〜72:28である。ゼオライトの混合割合が高すぎると、リン酸の吸着能力が十分に得られない。一方、ケイ酸カルシウムを与える材料の割合が高すぎると、混合物を成形することが難しくなる。特に、混合物を球状の成形体に成形する際に造粒性が低下する。
ゼオライトと、ケイ酸カルシウムを与える材料とを混合する場合、混合性及びその後の成形性を確保する観点から、水、1,3−ブタンジオールなどの溶剤を配合してもよい。混合方法としては、特に限定されず、当該技術分野において公知の混合機などを用いて行なえばよい。
The mixing ratio of the zeolite and the material providing calcium silicate is 50:50 to 75:25, preferably 55:45 to 75:25, more preferably 58:42 to 72:28 by mass. If the mixing ratio of the zeolite is too high, the phosphoric acid adsorption ability cannot be sufficiently obtained. On the other hand, if the proportion of the material giving calcium silicate is too high, it becomes difficult to form the mixture. In particular, when the mixture is formed into a spherical molded body, the granulation property is reduced.
When mixing the zeolite and the material giving calcium silicate, a solvent such as water or 1,3-butanediol may be blended from the viewpoint of ensuring the mixing property and the subsequent moldability. The mixing method is not particularly limited, and may be performed using a mixer or the like known in the art.
ゼオライトと、ケイ酸カルシウムを与える材料との混合物は、所望の製品形状に成形される。製品形状としては、特に限定されず、球状の他、円柱状、直方体状、筒状、ハニカム状などの公知の形状であり得る。
混合物を球状の成形体に成形する場合、造粒機などを用いて成形すればよい。また、混合物を円柱状、直方体状、筒状、ハニカム状などの成形体に成形する場合、押出成形機などを用いて成形すればよい。
The mixture of zeolite and the material giving calcium silicate is shaped into the desired product shape. The product shape is not particularly limited, and may be a known shape such as a columnar shape, a rectangular parallelepiped shape, a tubular shape, a honeycomb shape, etc., in addition to a spherical shape.
When the mixture is molded into a spherical molded body, the mixture may be molded using a granulator or the like. When the mixture is formed into a columnar, rectangular parallelepiped, tubular, or honeycomb molded body, the mixture may be molded using an extruder or the like.
成形体は直ぐに焼成してもよいが、クラックなどの発生を防止する観点から、必要に応じて焼成前に乾燥を行ってもよい。
成形体の焼成は、700℃〜850℃の温度で行われる。この温度範囲で焼成を行うことにより、ゼオライトの一部を溶融固化させて強度を高めると同時に、クリノプチロライト及びモルデナイトの結晶構造を保持させてアンモニア及びリン酸の吸着能力を高めることができる。焼成温度が700℃未満であると、ゼオライトの溶融が不十分となり、水処理材の強度が低下する。一方、焼成温度が850℃超過であると、モルデナイトの結晶構造が崩壊し始め、水処理材のアンモニア及びリン酸の吸着能力が低下してしまう。
焼成時間は、成形体の大きさなどに応じて適宜設定すればよく、特に限定されないが、一般に5分〜200分、好ましくは8分〜190分である。
The molded body may be fired immediately, but may be dried before firing, if necessary, from the viewpoint of preventing the occurrence of cracks and the like.
The firing of the molded body is performed at a temperature of 700C to 850C. By performing calcination in this temperature range, a part of the zeolite can be melted and solidified to increase the strength, and at the same time, the crystal structure of clinoptilolite and mordenite can be maintained to increase the adsorption capacity of ammonia and phosphoric acid. . If the firing temperature is lower than 700 ° C., the melting of the zeolite becomes insufficient, and the strength of the water treatment material decreases. On the other hand, if the firing temperature is higher than 850 ° C., the crystal structure of the mordenite starts to collapse, and the water and water treatment material's ability to adsorb ammonia and phosphoric acid decreases.
The firing time may be appropriately set according to the size of the molded body, and is not particularly limited, but is generally 5 minutes to 200 minutes, preferably 8 minutes to 190 minutes.
成形体の焼成方法としては、特に限定されず、当該技術分野において公知の焼成装置を用いて行うことができる。焼成装置としては、電気炉、バッチ炉、トンネル窯、ロータリーキルンなどを用いることができる。 The method for firing the molded body is not particularly limited, and the firing can be performed using a firing apparatus known in the art. As a firing device, an electric furnace, a batch furnace, a tunnel kiln, a rotary kiln, or the like can be used.
上記のようにして製造される本発明の水処理材は、強度が高く、アンモニア及びリン酸の吸着能力、並びにpH緩衝作用に優れている。また一般に、ゼオライトは、様々な金属を吸着する能力を有しているため、ゼオライトを含む本発明の水処理材は、様々な金属(例えば、重金属陽イオンなど)の吸着能力も有している。さらに、上記のような製造方法によれば、造粒性が良好であるため、球状の水処理材を容易に製造することができる。 The water treatment material of the present invention produced as described above has high strength, and is excellent in the ability to adsorb ammonia and phosphoric acid and the pH buffering action. In general, zeolite has the ability to adsorb various metals, and thus the water treatment material of the present invention containing zeolite also has the ability to adsorb various metals (for example, heavy metal cations). . Further, according to the above-described production method, since the granulation property is good, a spherical water treatment material can be easily produced.
以下、実施例及び比較例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。
以下の実施例及び比較例では、次の原料を用いて水処理材を作製した。
・ゼオライト:ジークライト株式会社製のSGW−B4(平均粒子径18μm)を用いた。このゼオライトは、粉末X線回折によってクリノプチロライト及びモルデナイトの両方を含むことを確認した。
・ケイ酸カルシウムを与える材料:ALCの端材を500μm未満に粉砕したもの(以下、「ALC粉末」という。)を用いた。ALC粉末の主成分は、ケイ酸カルシウム水和物の一種であるトバモライトである。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
In the following Examples and Comparative Examples, water treatment materials were produced using the following raw materials.
-Zeolite: SGW-B4 (average particle diameter: 18 m) manufactured by Sieglite was used. This zeolite was confirmed to contain both clinoptilolite and mordenite by powder X-ray diffraction.
A material that gives calcium silicate: ALC scraps pulverized to less than 500 μm (hereinafter referred to as “ALC powder”) were used. The main component of the ALC powder is tobermorite, a type of calcium silicate hydrate.
実施例及び比較例における各評価は、次のようにして行った。
<ゼオライトの種類の同定>
粉末X線回折装置(Bruker社製D8 Advance)を用い、電流350mA、電圧35kV、ステップサイズ0.02°、スキャンスピード0.13秒/ステップ、測定範囲10°〜65°の条件で、水処理材に含まれるゼオライトの種類の同定を行った。
Each evaluation in Examples and Comparative Examples was performed as follows.
<Identification of zeolite type>
Water treatment using a powder X-ray diffractometer (D8 Advance manufactured by Bruker) under the conditions of a current of 350 mA, a voltage of 35 kV, a step size of 0.02 °, a scan speed of 0.13 sec / step, and a measurement range of 10 ° to 65 °. The type of zeolite contained in the material was identified.
<クリノプチロライト及びモルデナイトの結晶子径の算出>
粉末X線回折装置(Bruker社製D8 Advance)を用い、CuKα線により、クリノプチロライトの2θ=30.0°付近の(151)面の回折線プロファイルの半値幅、モルデナイトの2θ=25.7°付近の(202)面の回折線プロファイルの半値幅を測定した後、上記のシェラーの式(I)によってクリノプチロライト及びモルデナイトの結晶子径を算出した。
<Calculation of crystallite diameter of clinoptilolite and mordenite>
Using a powder X-ray diffractometer (D8 Advance manufactured by Bruker), the half-width of the diffraction line profile of the (151) plane near 2θ = 30.0 ° of clinoptilolite and 2θ of mordenite was 25. After measuring the half width of the diffraction line profile of the (202) plane near 7 °, the crystallite diameters of clinoptilolite and mordenite were calculated by the above-mentioned Scherrer's formula (I).
<水処理材の摩耗(強度)の評価>
水道水100mL及び水処理材5gを内容積250mLのポリ容器に入れ、振とう器で3日間振とうした後、5mmの篩で篩分けした。その後、5mmの篩上に残留した水処理材を乾燥させ、乾燥後の重量を測定した。そして、水処理材の摩耗率(%)を以下の式によって算出した。
(振とう前の水処理材の重量−振とう後の水処理材の重量)/振とう前の水処理材の重量×100
<Evaluation of wear (strength) of water treatment material>
100 mL of tap water and 5 g of a water treatment material were put in a 250 mL plastic container, shaken with a shaker for 3 days, and then sieved with a 5 mm sieve. Thereafter, the water treatment material remaining on the 5 mm sieve was dried, and the weight after drying was measured. Then, the wear rate (%) of the water treatment material was calculated by the following equation.
(Weight of water treatment material before shaking−weight of water treatment material after shaking) / weight of water treatment material before shaking × 100
<水処理材のpH緩衝作用の評価>
水道水に硝酸を添加してpHを2.2となるように調整した模擬水100mL及び水処理材1.5gを内容積250mLのポリ容器に入れ、振とう器で3日間振とうした後、模擬水のpHを測定した。
<Evaluation of pH buffering action of water treatment material>
100 mL of simulated water and 1.5 g of water treatment material adjusted to pH 2.2 by adding nitric acid to tap water are placed in a 250 mL plastic container and shaken with a shaker for 3 days. The pH of the simulated water was measured.
<水処理材のアンモニア及びリン酸の吸着能力の評価>
リン酸水素二アンモニウム0.47gを蒸留水に加えた模擬水1Lを準備した。この模擬水において、アンモニア態窒素の濃度は100mg/L、リン酸態リンの濃度は110mg/Lである。この模擬水200mL及び水処理材0.5gを内容積250mLのポリ容器に入れ、振とう器で7日間振とうした後、水処理材を除去し、模擬水におけるアンモニア態窒素及びリン酸態リンの濃度を測定した。アンモニア態窒素の濃度は、インドフェノール青比色法を用いたパックテスト、リン酸態リンの濃度は、モリブデン青比色法を用いたパックテストによって測定した。
<Evaluation of ammonia and phosphoric acid adsorption capacity of water treatment materials>
1 L of simulated water obtained by adding 0.47 g of diammonium hydrogen phosphate to distilled water was prepared. In this simulated water, the concentration of ammonia nitrogen is 100 mg / L, and the concentration of phosphorous phosphorus is 110 mg / L. 200 mL of the simulated water and 0.5 g of the water treatment material were placed in a 250 mL plastic container and shaken for 7 days with a shaker. Thereafter, the water treatment material was removed, and the ammonia nitrogen and phosphoric acid phosphorus in the simulated water were removed. Was measured. The concentration of ammonia nitrogen was measured by a pack test using an indophenol blue colorimetric method, and the concentration of phosphate phosphorus was measured by a pack test using a molybdenum blue colorimetric method.
水処理材のアンモニアの吸着能力は、以下の式によってアンモニアの吸着率(%)を算出した。
(振とう前の模擬水におけるアンモニア態窒素の濃度−振とう後の模擬水におけるアンモニア態窒素の濃度)/振とう前の模擬水におけるアンモニア態窒素の濃度×100
同様に、水処理材のリン酸の吸着能力は、以下の式によってリン酸の吸着率(%)を算出した。
(振とう前の模擬水におけるリン酸態リンの濃度−振とう後の模擬水におけるリン酸態リンの濃度)/振とう前の模擬水におけるリン酸態リンの濃度×100
The ammonia adsorption capacity (%) of the water treatment material was calculated by the following equation.
(Concentration of ammonia nitrogen in simulated water before shaking−concentration of ammonia nitrogen in simulated water after shaking) / concentration of ammonia nitrogen in simulated water before shaking × 100
Similarly, the adsorption capacity (%) of phosphoric acid of the water treatment material was calculated by the following equation.
(Concentration of Phosphorus Phosphorus in Simulated Water Before Shaking—Concentration of Phosphorus Phosphorus in Simulated Water After Shaking) / Concentration of Phosphorus Phosphorus in Simulated Water Before Shaking × 100
<重金属の吸着能力の評価>
鉛濃度が1mg/Lとなるような模擬水を、蒸留水に硝酸鉛(特級試薬Pb(NO3)2)を加えることで調製した。この模擬水1L及び水処理材10gをポリプロピレン製容器に入れ、振とう器で7日間振とうした後、水処理材を除去し、模擬水における鉛濃度を測定した。鉛濃度は、ICP質量分析装置を用いて測定した。
水処理材の鉛の吸着能力は、以下の式によって算出した。
(振とう前の模擬水における鉛濃度−振とう後の模擬水における鉛濃度)/振とう前の模擬水における鉛濃度×100
<Evaluation of heavy metal adsorption capacity>
Simulated water having a lead concentration of 1 mg / L was prepared by adding lead nitrate (special grade reagent Pb (NO 3 ) 2 ) to distilled water. 1 L of the simulated water and 10 g of the water treatment material were placed in a polypropylene container, shaken for 7 days with a shaker, the water treatment material was removed, and the lead concentration in the simulated water was measured. The lead concentration was measured using an ICP mass spectrometer.
The lead adsorption capacity of the water treatment material was calculated by the following equation.
(Lead concentration in simulated water before shaking−lead concentration in simulated water after shaking) / lead concentration in simulated water before shaking × 100
(実施例1〜6及び比較例1〜3)
70質量部のゼオライト及び30質量部のALC粉末を混合した後、得られた混合物を直径が7mm〜10mmとなるようにパンペレタイザーを用いて水を噴霧しながら造粒した。得られた造粒物を乾燥した後、表1に示す温度及び時間で焼成することにより、球状の水処理材を得た。得られた水処理材について、上記の各評価を行った。なお、重金属の吸着能力の評価については、代表として実施例4のみ行った。各評価の結果を表1に示す。
(Examples 1 to 6 and Comparative Examples 1 to 3)
After mixing 70 parts by mass of zeolite and 30 parts by mass of ALC powder, the resulting mixture was granulated while spraying water with a pan pelletizer so that the diameter became 7 mm to 10 mm. After drying the obtained granules, they were fired at the temperature and time shown in Table 1 to obtain a spherical water treatment material. Each of the above evaluations was performed on the obtained water treatment material. In addition, about the evaluation of the adsorption capacity of heavy metal, only Example 4 was performed as a representative. Table 1 shows the results of each evaluation.
表1に示されているように、実施例1〜6の水処理材は、摩耗率が小さく(強度が高く)、pH緩衝作用を有すると共に、アンモニア及びリン酸の吸着能力が高かった。また、実施例4の水処理材は重金属の吸着能力を有しており、類似の鉱物組成を有する実施例1〜3及び実施例5〜6の水処理材についても重金属の吸着能力を有することが推認される。このような効果を有する実施例1〜6の水処理材は、クリノプチロライトの結晶子径が15〜26.5nm、モルデナイトの結晶子径が39〜48nm、ゼオライトとケイ酸カルシウムとの質量比が4.0:1〜1.1:1の範囲内であった。 As shown in Table 1, the water treatment materials of Examples 1 to 6 had a small wear rate (high strength), had a pH buffering action, and had high ammonia and phosphoric acid adsorption ability. Further, the water treatment material of Example 4 has a heavy metal adsorption ability, and the water treatment materials of Examples 1 to 3 and Examples 5 to 6 having similar mineral compositions also have heavy metal adsorption ability. Is inferred. The water treatment materials of Examples 1 to 6 having such effects have a clinoptilolite crystallite size of 15 to 26.5 nm, a mordenite crystallite size of 39 to 48 nm, and a mass of zeolite and calcium silicate. The ratio was in the range of 4.0: 1 to 1.1: 1.
これに対して比較例1の水処理材は、焼成温度が低すぎたために、モルデナイトの結晶子径が大きくなり過ぎてしまい、摩耗率が大きくなった(強度が低くなった)。また、比較例2の水処理材は、焼成温度が高すぎたために、モルデナイトの結晶子径が小さくなり過ぎてしまい、アンモニア及びリン酸の吸着能力が低くなった。さらに、比較例2と同じ焼成温度で焼成時間を長くすることによって作製した比較例3の水処理材は、クリノプチロライトの結晶子径が大きくなり過ぎてしまい、アンモニア及びリン酸の吸着能力が低くなった。 On the other hand, in the water treatment material of Comparative Example 1, the sintering temperature was too low, so that the crystallite diameter of mordenite was too large, and the wear rate was large (the strength was low). In the water treatment material of Comparative Example 2, the calcination temperature was too high, so that the crystallite size of mordenite was too small, and the ability to adsorb ammonia and phosphoric acid was low. Furthermore, in the water treatment material of Comparative Example 3 produced by extending the calcination time at the same calcination temperature as in Comparative Example 2, the crystallite diameter of clinoptilolite becomes too large, and the adsorption capacity of ammonia and phosphoric acid is increased. Became lower.
次に、ゼオライトとALC粉末との混合割合を変えて水処理材を作製し、上記の各評価(重金属の吸着能力の評価は除く)と共に造粒性の評価を行った。また、実施例4の水処理材についても同様の評価を行った。なお、造粒性の評価は目視にて行った。造粒性の評価において、パンペレタイザーによる造粒が容易であったものを◎、混合物の粘着性が低下したものの、パンペレタイザーによる造粒が可能であったものを○、混合物の粘着性が低く、パンペレタイザーによる造粒が困難であったものを△と表す。
(実施例7)
ゼオライトの配合量を60質量部、ALC粉末の配合量を40質量部に変えたこと以外は実施例4と同様にして水処理材を作製した。
Next, a water treatment material was prepared by changing the mixing ratio of zeolite and ALC powder, and the granulation properties were evaluated together with the above-described evaluations (excluding the evaluation of the ability to adsorb heavy metals). The same evaluation was performed for the water treatment material of Example 4. In addition, evaluation of granulation property was performed visually. In the evaluation of granulation properties, ◎ indicates that granulation was easy with a pump pelletizer, も の indicates that the mixture had reduced adhesiveness, but を indicates that granulation was possible with a pan pelletizer, 、 indicates that the mixture had low viscosity. , And those that were difficult to granulate with a pan pelletizer are denoted by △.
(Example 7)
A water treatment material was produced in the same manner as in Example 4, except that the amount of zeolite was changed to 60 parts by mass and the amount of ALC powder was changed to 40 parts by mass.
(実施例8)
ゼオライトの配合量を50質量部、ALC粉末の配合量を50質量部に変えたこと以外は実施例4と同様にして水処理材を作製した。
(比較例4)
ゼオライトの配合量を80質量部、ALC粉末の配合量を20質量部に変えたこと以外は実施例4と同様にして水処理材を作製した。
実施例4、7及び8、並びに比較例4の水処理材の各評価の結果を表2に示す。
(Example 8)
A water treatment material was produced in the same manner as in Example 4, except that the amount of zeolite was changed to 50 parts by mass and the amount of ALC powder was changed to 50 parts by mass.
(Comparative Example 4)
A water treatment material was produced in the same manner as in Example 4, except that the amount of zeolite was changed to 80 parts by mass and the amount of ALC powder was changed to 20 parts by mass.
Table 2 shows the results of each evaluation of the water treatment materials of Examples 4, 7, and 8, and Comparative Example 4.
表2に示されているように、実施例4、7及び8の水処理材は、摩耗率が小さく(強度が高く)、pH緩衝作用を有すると共に、アンモニア及びリン酸の吸着能力が高かったのに対し、比較例4の水処理材は、ゼオライトの配合割合が高すぎたために、リン酸の吸着能力が低くなった。また、ALC粉末の配合割合が高くなるにつれて、ゼオライトとALC粉末との混合物の粘性が低下し、ゼオライトとALC粉末がまとまり難くなったため、パンペレタイザーによる造粒が難しくなった。ただし、ALC粉末の配合割合が高くなっても、他の成形手段などを用いれば造粒可能であることは言うまでもない。 As shown in Table 2, the water treatment materials of Examples 4, 7, and 8 had a small wear rate (high strength), had a pH buffering action, and had high adsorption capacity for ammonia and phosphoric acid. On the other hand, in the water treatment material of Comparative Example 4, the adsorbing ability of phosphoric acid was low because the proportion of zeolite was too high. Further, as the blending ratio of the ALC powder increased, the viscosity of the mixture of the zeolite and the ALC powder decreased, and the zeolite and the ALC powder became difficult to cohere, so that granulation by a pan pelletizer became difficult. However, it goes without saying that granulation is possible even if the mixing ratio of the ALC powder is increased by using other molding means.
以上の結果からわかるように、本発明によれば、強度が高く、アンモニア及びリン酸の吸着能力、並びにpH緩衝作用に優れた水処理材及びその製造方法を提供することができる。 As can be seen from the above results, according to the present invention, it is possible to provide a water treatment material having high strength, excellent ammonia and phosphoric acid adsorption capacity, and excellent pH buffering action, and a method for producing the same.
Claims (3)
前記クリノプチロライトの結晶子径が15〜26.5nm、前記モルデナイトの結晶子径が39〜48nmであり、
前記ゼオライトと前記ケイ酸カルシウムとの質量比が4.0:1〜1.1:1である
ことを特徴とする水処理材。 A zeolite including clinoptilolite and mordenite, and calcium silicate,
The crystallite size of the clinoptilolite is 15 to 26.5 nm, the crystallite size of the mordenite is 39 to 48 nm,
Weight ratio of the calcium silicate and the zeolite is 4.0: 1 to 1.1: Ru 1 der
Water treatment material, wherein a call.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016136643A JP6674344B2 (en) | 2016-07-11 | 2016-07-11 | Water treatment material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016136643A JP6674344B2 (en) | 2016-07-11 | 2016-07-11 | Water treatment material and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018008180A JP2018008180A (en) | 2018-01-18 |
JP2018008180A5 JP2018008180A5 (en) | 2019-05-30 |
JP6674344B2 true JP6674344B2 (en) | 2020-04-01 |
Family
ID=60994657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016136643A Active JP6674344B2 (en) | 2016-07-11 | 2016-07-11 | Water treatment material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6674344B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019142946A1 (en) | 2018-01-22 | 2019-07-25 | 日本製鉄株式会社 | Bearing steel component, and steel bar for bearing steel component |
JP7287813B2 (en) * | 2019-03-27 | 2023-06-06 | 太平洋セメント株式会社 | Water purification material |
KR102404200B1 (en) * | 2021-12-27 | 2022-06-02 | (주)한덕인터네셔널 | It is a natural zeolite block to improve water quality and its manufacturing methods |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62286589A (en) * | 1986-06-03 | 1987-12-12 | Kankyo Kagaku Center:Kk | Simultaneous removal of phosphorus and ammonia |
JPS637734A (en) * | 1986-06-28 | 1988-01-13 | 森 利久 | Breeding of flat fish |
JPH06304552A (en) * | 1993-04-22 | 1994-11-01 | Hazama Gumi Ltd | Removing method of phosphorus and ammonia |
JP2951516B2 (en) * | 1993-08-27 | 1999-09-20 | 小野田エー・エル・シー株式会社 | Water treatment material and method for producing the same |
KR0146503B1 (en) * | 1995-07-31 | 1998-08-17 | 강박광 | Method for preparing multifunctional granular composite molecular sieve composition |
JP2000093947A (en) * | 1998-09-18 | 2000-04-04 | Toray Ind Inc | Packing for treating water and water treatment method |
JP2006159102A (en) * | 2004-12-08 | 2006-06-22 | Matsushita Electric Ind Co Ltd | Treatment method and treatment device for waste liquid |
JP2014008488A (en) * | 2012-07-02 | 2014-01-20 | Global Spirits Co Ltd | Filtration apparatus and water quality purification system |
JP6670534B2 (en) * | 2016-02-29 | 2020-03-25 | 小野田化学工業株式会社 | Phosphorus recovery material and method for producing the same |
-
2016
- 2016-07-11 JP JP2016136643A patent/JP6674344B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018008180A (en) | 2018-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102107930B (en) | Underground water nitrogen-fixation remediation filtering material and preparation method thereof | |
JP6674344B2 (en) | Water treatment material and method for producing the same | |
WO2009109529A1 (en) | Adsorbent granulate and method for the manufacture thereof | |
CN102838176A (en) | Aquatic products culturing method and purification activator of culture water used in the method | |
JPS60100504A (en) | Antibacterial composition and its production | |
JP2014171953A (en) | Granular-type environmental water treatment agent, and method for treating water contaminated with harmful substances by using the same | |
JP2010168239A (en) | Zeolite molding, vegetation base material and water treating agent | |
KR101721209B1 (en) | A cerami pellet for water purification | |
JP2005015276A (en) | Ceramic fired body and antibacterial ceramic and microorganism immobilization support using the same | |
JP6864452B2 (en) | Material for promoting algae growth | |
JP6198827B2 (en) | Method for producing water purification material, and method for purification of water quality in seafood farm | |
JP6391369B2 (en) | Floor soil | |
JPH0434479B2 (en) | ||
JP2909676B2 (en) | Antibacterial and antifungal ceramics and method for producing the same | |
JPWO2006054718A1 (en) | Zeolite-containing composition, and porous fired body and building material using the same | |
ES2255611T3 (en) | A NITROGENOUS FERTILIZER BASED ON UREA, COVERED WITH ZEOLITE. | |
JP2010137123A (en) | Mineral supplying agent and water treatment method using the same | |
JPS6236758B2 (en) | ||
JP2018162186A (en) | Porous concrete using zeolite | |
JP7009183B2 (en) | Granules for nutrient supply | |
JPH0716453A (en) | Ceramic adsorptive remover | |
JP4966519B2 (en) | Nitrogen fertilizer composition | |
JP7287813B2 (en) | Water purification material | |
JPH05285377A (en) | Raschig ring having antimicrobial property | |
CN114269450A (en) | filter material for water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190409 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200306 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6674344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |