本発明の実施の形態にかかるポンプは、液体を吸入する吸入口が形成された吸入路と、吸入された液体を吐出する吐出口が形成された吐出路と、を有するポンプ本体と、前記ポンプ本体内に形成されたポンプ室に収容される羽根車と、前記羽根車を回転自在に支持する軸と、を備えている。
また、前記ポンプ本体内には、前記吸入口から前記吐出口に至るポンプ流路が形成されている。
前記ポンプ流路は、前記吸入路と、前記羽根車内に形成され、前記吸入路内の液体が導入される羽根車流路と、前記羽根車の径方向外側に形成され、前記羽根車流路内の液体が導入されるボリュート部と、前記ボリュート部内の液体が導入される前記吐出路と、を備えている。
そして、前記ポンプ流路内には、当該ポンプ流路内を流れる液体が剥離してしまうのを抑制する液体剥離抑制構造が設けられている。
これにより、ポンプ流路内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができ、より確実にポンプ効率が低下してしまうのを抑制することができるようになる。
また、前記ボリュート部の径方向内側には、前記羽根車流路の径方向外側に形成された吐出口と対向する開口が形成されている。また、前記ボリュート部の内面には、前記開口側の端縁から径方向外側に向かうにつれて前記ボリュート部の軸方向長さが長くなるように傾斜する傾斜面が形成されている。そして、前記液体剥離抑制構造が前記傾斜面を含んでいる。
これにより、ボリュート部に導入された液体を傾斜面に沿って流すことが可能となり、液体をよりスムーズにボリュート部内に導入することができるようになる。その結果、ボリュート部内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することが可能となる。
また、前記傾斜面は、前記ボリュート部の径方向断面が直線となるように形成されている。
これにより、ボリュート部の軸方向長さが、開口側の端縁から径方向外側に向けて線形に増加することとなる。その結果、羽根車流路内の液体をよりスムーズにボリュート部内に導入させることができ、液体が剥離してしまったり、滞留してしまったりすることをより確実に抑制することができるようになる。
また、前記ポンプ流路は、前記羽根車流路と前記ボリュート部との間に形成された整流部を備えており、前記液体剥離抑制構造が前記整流部を含んでいる。
これにより、羽根車流路から吐出された液体は、整流部で整流されてからボリュート部に導入されることとなって、液体が剥離してしまったり、滞留してしまったりすることをより確実に抑制することができるようになる。
また、前記整流部は、径方向断面が径方向に延びる直線となるように形成されている。
これにより、羽根車流路から吐出された液体を、ボリュート部への導入方向である径方向に整流させることができるようになる。
また、前記吐出路は、当該吐出路の流路断面の輪郭形状が、前記ボリュート部の終点側から前記吐出口に向かうにつれて徐々に真円となるように形成されており、前記液体剥離抑制構造が前記吐出路を含んでいる。
これにより、吐出路内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、前記吐出路の流路断面積が前記ボリュート部の終点側から前記吐出口にかけて線形に増加している。
これにより、吐出路内の液体をよりスムーズに吐出口に向けて流すことができ、液体が剥離してしまったり、滞留してしまったりすることをより確実に抑制することができるようになる。
また、前記羽根車は、回転遠心力により液体を増圧する複数枚の羽根部と、前記羽根部の軸方向一方側を覆う第1のシュラウドと、前記羽根部の軸方向他方側を覆う第2のシュラウドと、を備えている。
そして、前記羽根車流路は、互いに隣り合う2枚の前記羽根部、前記第1のシュラウドおよび前記第2のシュラウドで画成され、径方向内側に導入口が形成されるとともに径方向外側に吐出口が形成された遠心流路を備えている。さらに、羽根車流路は、前記遠心流路の径方向内側に形成され、前記吸入路から液体が導入されるとともに、導入された液体を前記導入口から前記遠心流路内に導入する導入路を備えている。
ここで、前記導入路は、前記第1のシュラウド側が上流側、前記第2のシュラウド側が下流側となっており、前記遠心流路は、前記第2のシュラウド側の内面が径方向に延在する面となっている。
また、前記導入路内に導入される際に液体が主として流れる方向と、前記導入路から前記遠心流路内に導入する際に液体が主として流れる方向と、が交差している。
また、前記導入路内には、先端が先細りとなるように形成され、液体の流れを変える流向変更部が、先端が上流側を向いた状態で配置されており、前記流向変更部の表面は、径方向断面視で中心側に凸の円弧線となるように形成されている。
そして、前記流向変更部は、前記円弧線の仮想延長線が、前記遠心流路の前記第2のシュラウド側の内面に接するように、前記導入路内に配置されており、前記液体剥離抑制構造が、前記流向変更部の表面を含んでいる。
これにより、吸入路から導入路内に導入された液体の流向をよりスムーズに変化させることができ、導入路内の液体を遠心流路内に導入させやすくすることができる。その結果、羽根車流路内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、前記羽根車は、回転遠心力により液体を増圧する複数枚の羽根部と、前記羽根部の軸方向一方側を覆う第1のシュラウドと、前記羽根部の軸方向他方側を覆う第2のシュラウドと、を備えている。
そして、前記羽根車流路は、互いに隣り合う2枚の前記羽根部、前記第1のシュラウドおよび前記第2のシュラウドで画成され、径方向内側に導入口が形成されるとともに径方向外側に吐出口が形成された遠心流路を備えている。さらに、羽根車流路は、前記遠心流路の径方向内側に形成され、前記吸入路から液体が導入されるとともに、導入された液体を前記導入口から前記遠心流路内に導入する導入路を備えている。
ここで、前記導入路は、前記第1のシュラウド側が上流側、前記第2のシュラウド側が下流側となっており、前記導入路内に導入される際に液体が主として流れる方向と、前記遠心流路の吐出口から吐出する際に液体が主として流れる方向と、が交差している。
また、前記遠心流路の前記第1のシュラウド側の内面が、径方向断面視で前記第2のシュラウド側に凸の輪郭線となるように形成されている。
そして、前記輪郭線は、前記遠心流路の導入口側の端縁における接線の方向が前記導入路内に導入される際に液体が主として流れる方向となっている。さらに、前記輪郭線は、前記遠心流路の吐出口側の端縁における接線の方向が前記遠心流路の吐出口から吐出する際に液体が主として流れる方向となっている。
そして、前記液体剥離抑制構造が、前記遠心流路の前記第1のシュラウド側の内面を含んでいる。
これにより、遠心流路内を流れる液体の流向をよりスムーズに変化させることができるようになり、遠心流路内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、前記羽根車は、回転遠心力により液体を増圧する複数枚の羽根部と、前記羽根部の軸方向一方側を覆う第1のシュラウドと、前記羽根部の軸方向他方側を覆う第2のシュラウドと、を備えている。
ここで、前記羽根車流路は、互いに隣り合う2枚の前記羽根部、前記第1のシュラウドおよび前記第2のシュラウドで画成され、径方向内側に導入口が形成されるとともに径方向外側に吐出口が形成された遠心流路を備えている。
そして、前記遠心流路の流路断面積が当該遠心流路の導入口側から吐出口にかけて線形に増加しており、前記液体剥離抑制構造が、前記遠心流路を含んでいる。
これにより、遠心流路内の液体をよりスムーズに流すことができるようになり、遠心流路内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、前記羽根車は、径方向内側から外側に向けて延在するように設けられ、回転遠心力により液体を増圧する複数枚の羽根部を備えている。
そして、前記羽根部は、径方向内側の端部が先細りとなるように形成されており、前記液体剥離抑制構造は、前記羽根部を含んでいる。
これにより、導入路から遠心流路内に導入される液体が羽根部の径方向内側の端部と干渉してしまうのを抑制することができ、よりスムーズに液体を遠心流路内に導入することができるようになる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。また、以下の説明では、羽根車の回転軸方向を前後方向と規定し、当該回転軸方向における吸入口側を前側と規定して説明する。
また、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。
(実施の形態1)
本実施の形態1にかかるポンプ1は、図1および図2に示すように、外郭を構成するポンプ本体10と、ポンプ本体10内に形成された回転体収納室510に収納される回転体20と、を備えている。
ポンプ本体10は、後方に開口するポンプ室330が形成されたケーシング30と、前方に開口する収納部450が形成された駆動ブロック40とで構成されている(図2参照)。すなわち、駆動ブロック40は、ケーシング30の後方に位置している。
そして、駆動ブロック40の後述する収納部450はケーシング30のポンプ室330に通じており、収納部450とポンプ室330とで回転体20全体を収納する回転体収納室510が形成されている。
駆動ブロック40は、図3に示すように、分離板410、磁気駆動部460、制御部470、および外郭をなすモールド樹脂480を有している。
分離板410は合成樹脂製であって、例えば、ポリフェニレンサルファイド(PPS)樹脂によって形成することができる。なお、磁気駆動に影響を及ぼさない金属を用いて分離板を形成することも可能である。
この分離板410は、前方に開口する有底円筒の容器状に形成されており、底部420と、底部420の外周から前方に向けて延設された周壁部430と、周壁部430の前縁部から径外方向に突出したフランジ部440と、で構成されている。なお、本実施の形態1では、フランジ部440は、周壁部430の周方向全周に亘って形成されている。
そして、底部420と周壁部430とで、前面が開口するとともに後面が底部420により閉塞された収納部450が画成されている。
このように、本実施の形態1では、ケーシング30と分離板410とで、回転体20を収納する回転体収納室510が形成されたハウジング50を構成している。
収納部450の底部420の中央(収納部450内の奥部中央)には、前方に向けて突出する筒状のリブ(後軸固定部:軸支持部)421が形成されており、この筒状のリブ421内には、回転体20を回転自在に支持する軸60の後端部が挿入される。この軸60は、例えば、セラミックスで形成することができる。
なお、軸60は、分離板410に回転不能に保持されている。本実施の形態1では、図2に示すように、軸60の後端部の輪郭形状がD字状になっており、筒状のリブ421の内部には、軸60の後端部と対応するD字状部(図示せず)を設けている。そして、軸60のD字状の後端部を筒状のリブ421内に嵌め込むことで、軸60を分離板410に回転不能に保持させている。
磁気駆動部460としては、例えば、電磁鋼板で形成されたステータコア461と、ステータコア461に巻き付けられたコイル462と、ステータコア461とコイル462とを絶縁する絶縁部463とを有するステータを用いることができる。この磁気駆動部460は、周壁部430の外周に、周壁部430を囲むように設けられている。
制御部470は、磁気駆動部460を制御する制御基板であって、分離板410および磁気駆動部460の後方に位置している。この制御部470は、磁気駆動部460のコイル462に電気的に接続されている。そして、制御部470により磁気駆動部460のコイル462に通電がなされると、磁気駆動部460には、回転体20の後述する磁気従動部80を回転させる磁界が発生する。
モールド樹脂480は、例えば、不飽和ポリエステル樹脂によって形成することができ、分離板410の外側に位置して、分離板410、磁気駆動部460、および制御部470を一体的に包含している。このモールド樹脂480は、磁気駆動部460や制御部470で発生した熱を外部に放熱する機能を有している。また、モールド樹脂480は、磁気駆動部460および制御部470を保護する機能も有している。
回転体20は、前部に設けられたポンプ部としての羽根車70と、羽根車70の後部に設けられた磁気従動部80とを有している。本実施の形態1では、羽根車70と磁気従動部80とが首部(接続部)90を介して接続されている(図2および図24参照)。そして、本実施の形態1では、羽根車70、磁気従動部80および首部(接続部)90が一体的に形成されている。すなわち、羽根車70が磁気従動部80の前部(軸60方向の一端側)に一体的に設けられている。
そして、回転体20の磁気従動部80が収納部450に収納されており、羽根車70がポンプ室330に収納されている。なお、本実施の形態1では、ポンプ室330は、羽根車70を収容する平面視で円形状の羽根車収容室340と、羽根車収容室340の外周に形成されて液体に増圧効果を与える平面視で渦巻形状のボリュート部350とで構成されている。
磁気従動部80は、収納部450に収納されるとともに、軸60により回転自在に軸支されたロータである。
この磁気従動部80は、合成樹脂製の固定部材810と、固定部材810の外周側に固定されたマグネット部820と、固定部材810の内周側に固定された軸受け830とで構成されている。なお、固定部材810は、例えば、ポリフェニレンエーテル(PPE)樹脂を用いて形成することができる。また、マグネット部820は、フェライト製もしくはSmFe製などの永久磁石を用いて形成することができる。そして、軸受け830は、カーボン含有の樹脂製摺動材やセラミック等を用いて形成することができる。
また、本実施の形態1では、固定部材810は、図3に示すように、首部(接続部)90および後面シュラウド(第2のシュラウド)730と一体に形成されている。
また、マグネット部820は、マグネット本体821と、マグネット本体821の外面を被覆するステンレス製のマグネットカバー822とで形成されている。なお、マグネットカバー822を設けず、磁気従動部(ロータ)80の外周に、マグネット部本体821の外周面が露出するようにしてもよい。
そして、軸受け830の中央には貫通孔831が形成されており、この貫通孔831に軸60を挿通させることで、回転体20が回転自在に支持されるようにしている。
このとき、磁気従動部(ロータ)80は、マグネット部820が、分離板410の周壁部430を介して磁気駆動部460と対向するように配置される。なお、マグネット部820と周壁部430との間には、磁気従動部80の回転を許容するための隙間d1が形成されている。
磁気従動部80の前方に位置するポンプ部としての羽根車70は、羽根車70の周方向に略等間隔で複数設けられ、回転遠心力により液体を増圧する羽根部710を備えている。さらに、羽根車70は、各羽根部710の前側(軸方向一方側)を覆う前面シュラウド(第1のシュラウド)720と、各羽根部710の後側(軸方向他方側)を覆う後面シュラウド(第2のシュラウド)730と、を備えている。
本実施の形態1では、前面シュラウド720は、前部に向かうにつれて縮径する前面シュラウド本体部721と、後端722bが前面シュラウド本体部721の前端(内周側端部723)に接続されて、前方に突出するように形成された円筒部722とで構成されている。
一方、後面シュラウド730は、略円板状に形成されており、後面シュラウド730の中央部には、貫通孔730aが形成されている。そして、後面シュラウド730の貫通孔730aの周縁部、すなわち、後面シュラウド730の内周側端部731には、首部(接続部)90を介して固定部材810が接続されている。また、本実施の形態1では、後面シュラウド730の前面(後述する遠心流路760の第2のシュラウド側の内面)733は、径方向に延在する平坦面となっている。
さらに、本実施の形態1では、後面シュラウド730および磁気従動部80はインサート成形により形成されている。すなわち、マグネット部820および軸受け830を金型(図示せず)に挿入した状態で、金型内に樹脂を充填させ、後面シュラウド730、首部(接続部)90および固定部材810を形成することで、後面シュラウド730および磁気従動部80を一体に形成している。
各羽根部710は、略板状をしており、板厚を軸方向と交差させた状態で、前面シュラウド本体部721の後面(後述する遠心流路760の第1のシュラウド側の内面)725に一体に設けられている。さらに、本実施の形態1では、各羽根部720は、回転方向の前方側が凸となる緩やかな弧状に形成されている。
そして、各羽根部710は、前面シュラウド本体部721の内周側端部723から前面シュラウド本体部721の外周側端部724に至るまでの範囲に設けられている。
一方、各羽根部710の後端は、後面シュラウド730の前面(遠心流路760の第2のシュラウド側の内面)733に取り付けられており、各羽根部710は、後面シュラウド730の内周側端部731から後面シュラウド730の外周側端部732に至るまでの範囲に設けられている。
また、本実施の形態1では、前面シュラウド本体部721の内周縁(前面シュラウド本体部721の内周側端部722)と後面シュラウド730の内周縁(後面シュラウド730の内周側端部731)は、羽根車70のラジアル方向において同位置に配置されている。
すなわち、前面シュラウド本体部721および後面シュラウド730は、軸方向から視た状態で、前面シュラウド本体部721の内周縁(前面シュラウド本体部721の内周側端部722)と後面シュラウド730の内周縁(後面シュラウド730の内周側端部731)とが略一致するように形成されている。
一方、前面シュラウド本体部721の外周縁(前面シュラウド本体部721の外周側端部723)と後面シュラウド730の外周縁(後面シュラウド730の外周側端部732)も、羽根車70のラジアル方向において同位置に配置されている。
すなわち、前面シュラウド本体部721および後面シュラウド730は、軸方向から視た状態で、前面シュラウド本体部721の外周縁(前面シュラウド本体部721の外周側端部723)と後面シュラウド730の外周縁(後面シュラウド730の外周側端部732)とが略一致するように形成されている。
そして、前面シュラウド本体部721の内周側端部722と後面シュラウド730の内周側端部721の間には隙間が形成されており、前面シュラウド本体部721の外周側端部723と後面シュラウド730の外周側端部732の間にも隙間が形成されている。
このように、本実施の形態1では、前面シュラウド本体部721と後面シュラウド730との間には、互いに隣り合う2枚の羽根部710,710と、前面シュラウド720と、後面シュラウド730とで画成され、径方向内側および径方向外側が開口した空間部が周方向に複数形成されている。
そして、複数の空間部のそれぞれが、羽根車70内に形成された羽根車流路740の一部をなす遠心流路760となっている。なお、各遠心流路760は、径方向内側の開口が導入口761となっており、径方向外側の開口が吐出口762となっている。
そして、遠心流路760の径方向内側には、羽根車流路740の一部をなす導入路750が形成されている。
本実施の形態1では、導入路750は、円筒部722の前端722a側から後面シュラウド730の貫通孔730aにかけて、軸方向に延在するように形成されており、各遠心流路760の導入口761が導入路750に連通している。
このような構成の羽根車70を回転させると、導入路750から導入口761を介して遠心流路760内に導入された液体が、回転する羽根車70の遠心力により増圧されて、吐出口762から径方向外側に吐出される。
そして、吐出口762から羽根車70の外周側に吐出された液体は、ボリュート部350に導入され、このボリュート部350において増圧されるようになっている。
ケーシング30は、合成樹脂製であって、例えば、ポリフェニレンサルファイド(PPS)樹脂によって形成することができる。なお、ケーシング30を金属製とすることも可能である。
このケーシング30は、図5に示すように、天壁310と、天壁310の周縁から後方に突出する周壁320と、を備えており、後方に開口する容器状に形成されている。そして、天壁310の内面311および周壁320の内面321で上述したポンプ室330が画成されている。
また、本実施の形態1では、ケーシング30の周壁320は、分離板410の周壁部430よりも外側に位置しており、ポンプ室330の外周部は収納部450よりも径外方向に膨出している。そして、この膨出部分には、磁気従動部80よりも径外方向に突出した羽根車70の外周部が配置されている。このとき、羽根車70は、外周部の後面(後面シュラウド720の外周側の後面)がフランジ部440の内周部の前面に対向するように配置されている。
そして、本実施の形態1では、周壁320の後面をフランジ部440の前面の外周側に当接させることで、収納部450とケーシング30のポンプ室330とを連通させている。
なお、ケーシング30は、複数のビス130により駆動ブロック40の外周部に周壁320を取り付けることで、駆動ブロック40に取り付けられている。
具体的には、周壁320に形成された貫通孔322と、分離板410のフランジ部440に形成された貫通孔442bと、モールド樹脂480に形成されたねじ孔481を連通させた状態で、ビス130を前側から挿入することで、ケーシング30と駆動ブロック40とを固定している。
このとき、ケーシング30とフランジ部440との結合部分には、パッキン等のシール材100を介在させており、回転体収納室510の水密性を確保できるようにしている。
本実施の形態1では、フランジ部440に段差が形成されており、フランジ部440が、内周側フランジ部441と、内周側フランジ部441よりも後方に位置する外周側フランジ部442と、を備えるようにしている。そして、外周側フランジ部442の内周側(段差の外側)に、シール材100を収容する溝部442aを形成している。
また、周壁320には、溝部442a内に収容したシール材100を押圧する押圧突起323を形成している。
そして、ケーシング30を駆動ブロック40に固定した際には、溝部442aに収容したシール材100が周壁320に形成された押圧突起323によって押圧されるようにしている。
こうすることで、ハウジング50内(ポンプ本体10内)に形成された回転体収納室510の水密性を確保している。
さらに、本実施の形態1では、ケーシング30を駆動ブロック40に固定した際には、周壁320の後面が内周側フランジ部441の外周部にも当接するようになっている。すなわち、ポンプ室330の外周縁が、内周側フランジ部441の外周縁よりも内側に位置するようにしている。そして、ボリュート部350の後部が、内周側フランジ部441の前面441aによって画成されるようにしている。
また、ケーシング30の天壁310の中央部には、図示せぬ配管等に接続される吸入管380が形成されており、吸入管380の内部には、液体をポンプ室330内に導入する吸入路381が形成されている。一方、ケーシング30の周壁320には、図示せぬ配管等に接続される吐出管390が形成されており、吐出管390の内部には、ポンプ室330内の液体を外部(接続された配管等)に吐出する吐出路391が形成されている。
吸入管380は、天壁310の中央部から前方に延在するように突設されており、この吸入管380の先端には、前方に開口して液体を吸入路381内に吸入する吸入口381aが形成されている。吸入路381は、上流側に形成された吸入口381aを介して、吸入管380に接続された配管等の流路に連通している。
また、本実施の形態1では、羽根車70をポンプ室330に配置させた状態で、吸入路381が羽根車流路740の導入路750に連通するようにしている。
具体的には、吸入管380の後端部380aをポンプ室330内に突出させ、突出させた後端部380aに後方に開口する流出口381bを形成している。そして、後端部380aの流出口381bを導入路750内に挿入することで、吸入路381を導入路750に連通させている。なお、吸入路381の流出口381bは、導入路750の導入口にもなっている。
さらに、本実施の形態1では、ポンプ室330内に突出させた後端部380aの外周には、円環状の溝部312が形成されており、円筒部722の前端722aを溝部312内に挿入することで、羽根車70の回転がガイドされるようにしている。
そして、本実施の形態1では、吸入路381および導入路750は、ともに前後方向に延在するように配置されている。したがって、吸入路381内の液体および導入路750内の液体は、主として軸方向の前方から後方に向けて流れることとなる。すなわち、吸入路381および導入路750は、軸方向前方が上流側、軸方向後方が下流側となっている。
一方、吐出管390は、周壁320の側部から外方に延在するように突設されており、この吐出管390の先端には、外方に開口し、液体を吐出路391から外部に吐出する吐出口391bが形成されている。吐出路391は、下流側に形成された吐出路391bを介して、吐出管390に接続された配管等の流路に連通している。
吐出路391は、上流側に導入口391aが形成されており、この導入口391aを介してボリュート部350の終点350bに連通されている。なお、吐出口391bは、軸方向に対して交差する方向(本実施の形態1では垂直な方向)に開口している。
そして、本実施の形態1では、吐出路391は、渦巻き状に形成されたボリュート部350の終点350bの近傍における接線方向に延在するように形成されている。すなわち、吐出路391内の液体は、主としてボリュート部350の終点350bの近傍における接線方向に流れることとなる。
このように、ボリュート部350の終点350bに連通する吐出路391を、ボリュート部350の終点350bの近傍における接線方向に延在させることで、ケーシング30の周壁320におけるボリュート部350の終点350bの近傍に、舌部324が形成される。この舌部324は、ボリュート部350と吐出路391とを分岐させるものであり、舌部324の先端と羽根車70の外周との間には、ボリュート部350の始点350aが形成されている。
また、ケーシング30には、回転体収納室510の中央部に位置する前軸固定部(軸支持部)370が設けられており、この前軸固定部370の後部には軸60の前端部が固定されている。
ところで、軸60は、上述したように、分離板410に回転不能に保持されており、ケーシング30と分離板410とがビス130により固定されている。そのため、軸60の前端部をケーシング30に回転不能に保持させなくても、ケーシング30に対する軸60の相対回転を規制することができる。したがって、軸60の前端部をケーシング30に回転不能に保持させる必要はない。ただし、軸60の前端部をケーシング30に回転不能に保持させることも可能である。
前軸固定部370は、本実施の形態1では、ケーシング30の天壁310の内面311側に位置する後端部380aからポンプ室330に向けて延設された複数の支持リブ373を介してケーシング30と一体に形成されている。そして、前軸固定部370は、前部に向かって突出するコーン状の突出部371と、突出部371の後部に接続されて軸60の前端部を支持する筒状の軸受け部372とで構成されている。
なお、図3中の符号110は、軸受け830にかかるスラスト方向の荷重を受ける軸受板である。この軸受板110は、磁気従動部80を回転させた際に、ケーシング30の磁気従動部80と対向する部位(筒状の軸受け部372の後端)が磨耗してしまうのを抑制するものである。また、図23中の符号120は、軸60の振動等を吸収する緩衝材である。
そして、本実施の形態1では、コーン状の突出部371は、羽根車70をポンプ室330に配置させた状態で、羽根車流路740の導入路750内に配置されるようになっている。このとき、突出部371は、先細り状に形成された先端が上流側を向いており、導入路750内に導入された液体は、この突出部371によって流路が変更されるようになっている。
このように、突出部371は、液体の流れる方向を変える機能を有しており、本実施の形態1では、この突出部371が流向変更部に相当している。
ところで、本実施の形態1では、羽根車流路740は、軸方向前方から流入する液体を径方向外方に向けて吐出させるように形成されている。
すなわち、導入路750内に導入される際に液体が主として流れる方向(軸方向)と、遠心流路760の吐出口762から吐出する際に液体が主として流れる方向(径方向)と、が交差している。
そのため、本実施の形態1では、導入路750内に流向変更部としての突出部371を配置し、この突出部371によって、軸方向に流れる液体の流向をより径方向に近くなるように変更させるようにしている。こうすることで、よりスムーズに導入口761から遠心流路760内に液体を導入させることができるようになる。
かかる構成をしたポンプ1の駆動は、制御部470によってコイル462に通電することにより行われる。コイル462に電流が流れると、磁気駆動部460において磁界が発生する。すると、磁気駆動部460に対して回転体20が有するマグネット部820が吸引・反発して磁気従動部80が軸60を中心に、図4の矢印a方向(回転方向前方)に回転し、これにより羽根車70が前後に延在する軸60回りに回転する。
そして、羽根車70が回転すると、吸込口381bから吸入路381を介して羽根車流路750内に導入された液体が、吐出口762から羽根車70の外周側に吐出される。そして、羽根車70の外周側に吐出された液体は、基本的に、ボリュート部350に導入されて、このボリュート部350において増圧される。この後、液体は、ボリュート部350において増圧された状態で、吐出路391内に導入されて、吐出口391bを経てポンプ1の外部に吐出される。
このように、ポンプ本体10の内部には、吸入口381aから吐出口391bに至るポンプ流路Fが形成されており、吸入口381aからポンプ本体10内に吸入された液体は、ポンプ流路F内を流れて吐出口391bから吐出されるようになっている。
本実施の形態1では、このポンプ流路Fは、上述した、吸入路381、羽根車流路750(導入路750および遠心流路760)、ボリュート部350および吐出路391を備えている。
ここで、本実施の形態1では、ポンプ効率が低下してしまうのをより確実に抑制することができるようにしている。
具体的には、ポンプ流路F内に、当該ポンプ流路F内を流れる液体が剥離してしまうのを抑制する液体剥離抑制構造を設けることで、ポンプ効率が低下してしまうのをより確実に抑制することができるようにしている。
以下、ポンプ流路F内に設けた液体剥離抑制構造の具体的な構造について説明する。
まず、ボリュート部350に設けた液体剥離抑制構造について説明する。
ボリュート部350は、上述したように、羽根車70をポンプ室330に配置させた状態で、羽根車70の外周側に、当該羽根車70を周回するように形成されている。
そして、羽根車流路740の径方向外側(遠心流路760の径方向外側)に形成された吐出口762から吐出された液体がボリュート部350内に導入されるようになっている。すなわち、ボリュート部350の径方向内側には、羽根車流路740の径方向外側に形成された吐出口762と対向する開口356が形成されている。本実施の形態1では、この開口356は、ボリュート部350の始点350aから終点350bに至るまでの範囲(ボリュート部350の全体)に形成されている。
また、ボリュート部350は、軸方向後側が分離板410の内周側フランジ部441の前面441aによって画成されている。本実施の形態1では、内周側フランジ部441の前面441aは、径方向に延在する平坦面となっている。
そして、ボリュート部350の外周側(径方向外側)が周壁320の内面321によって画成されており、軸方向前側が天壁310の内面311によって画成されている。
このように、本実施の形態1では、径方向内側に開口した空間部がボリュート部350となっている。
そして、ボリュート部350内に導入された液体は、始点350aから終点350bに向けて周方向に流れ、終点350bから導入口391aを介して吐出路391内に導入されるようになっている。
本実施の形態1では、ボリュート部350は、上流側から下流側に向かうにつれて(始点350aから終点350bに向かうにつれて)、幅(径方向の長さ)が徐々に広くなるように構成されている。すなわち、ボリュート部350は、上流側から下流側に向かうにつれて流路断面積が徐々に大きくなるように形成されている。
かかる構成とすることで、ボリュート部350内を流れる液体が、ボリュート部350において増圧された状態で、吐出路391内に導入されるようにしている。
ここで、本実施の形態1では、ボリュート部350の内面357に、開口356側の端縁357aから径方向外側に向かうにつれてボリュート部350の軸方向長さが長くなるように傾斜する傾斜面358を形成している。
具体的には、図10に示すように、ボリュート部350の径方向断面(径方向および軸方向に沿った断面)の輪郭線351が、径方向内側端352aから径方向外側端352bに向かうにつれて前側となるように傾斜した傾斜辺としての直線部352を有するようにしている。この直線部352は、傾斜面358の径方向断面線である。したがって、本実施の形態1では、傾斜面358は、ボリュート部350の径方向断面が直線となるように形成されている。
なお、本実施の形態1では、ボリュート部350の径方向断面の輪郭線351は、直線部352と、湾曲線353と、縦線部354と、水平線355とで構成されるようにしている。
ここで、縦線部354は、径方向外側に位置し、前側端354aから後側端354bに向けて軸方向に延在する直線である。
そして、湾曲線353は、直線部352の径方向外側端352bと縦線部354の前側端354aとを滑らかに連結する円弧線である。直線部352の径方向外側端352bと縦線部354の前側端354aとを円弧線で滑らかに連結する方法としては、例えば、径方向外側端352bにおける円弧線の接線が直線部352となるとともに、前側端354aにおける円弧線の接線が縦線部354となるようにする方法があげられる。
なお、本実施の形態1では、直線部352、湾曲線353および縦線部354は、ケーシング30に形成されたポンプ室330を画成する内面311,321のうち、ボリュート部350の前側および径方向外側を画成する面の径方向断面線である。一方、水平線355は、ボリュート部350の軸方向後側を画成する内周側フランジ部441の前面441aの径方向断面線である。
このように、本実施の形態1では、ボリュート部350の形状を、径方向断面視で、径方向外側に向かうにつれて前方に滑らかに拡がる略扇形の断面形状が軸方向前側に形成された形状となるようにしている。
そして、本実施の形態1では、傾斜面358が液体剥離抑制構造としての機能有するようにしている。
具体的には、開口356からボリュート部350内に導入された液体がスムーズに傾斜面358上を流れるように、傾斜面358の水平方向となす角(仰角)を約20°としている。
傾斜面358の水平方向となす角(仰角)が大きくなりすぎると、開口356からボリュート部350内に導入された液体が傾斜面358上を流れずに剥離してしまうおそれがあるためである。
したがって、傾斜面358の水平方向とのなす角(仰角)は、45°以下となるように設定するのが好ましい。
また、傾斜面358は、図6〜図8に示すように、上流側から下流側に向かうにつれて径方向の長さが長くなるように形成されている。
このとき、ボリュート部350の流路断面積が、図9に示すように、始点350aから終点350bにかけて略線形に増加するように、各地点における傾斜面358の径方向の長さを設定するのが好ましい。なお、図9のa1,S1は、図8の左側に示すボリュート部350、a2,S2は、図7の左側に示すボリュート部350、a3,S3は、図8の右側に示すボリュート部350、a4,S4は、図7の右側に示すボリュート部350に対応している。
また、本実施の形態1では、羽根車70の外径を約40mmとし、羽根車70の吐出口762の高さ(軸方向長さ)を約3.5mmとしている。
一方、ボリュート部350の羽根車70の中心(軸60の中心)からの径は、最小径(始点350aにおける径)が約45mm、最大径(終点350bにおける径)が約58mmとなっている。
また、ボリュート部350の最小高さ(軸方向長さ)を約5.25mmとしている。本実施の形態1では、ボリュート部350は、径方向内側に形成された開口356における高さが最小高さとなっている。
このように、本実施の形態1では、ボリュート部350の開口356の高さのほうが、羽根車70の吐出口762の高さよりも大きくなっている。そして、羽根車70は、吐出口762の前端から後端までの全体が開口356と対向した状態で、羽根車70がポンプ室330に配置されるようにしている。こうすることで、吐出口762から吐出した液体をより効率よくボリュート部350内に導入させることができるようにしている。
なお、本実施の形態1では、直線部352の径方向外側端352bと縦線部354の前側端354aとを湾曲線353によって滑らかに連結している。こうすることで、ボリュート部350の径方向外側の前部において、液体が剥離したり滞留したりしてしまうことを抑制できるようにしている。
さらに、本実施の形態1では、羽根車流路740とボリュート部350との間に整流部360を設けている。
整流部360は、遠心流路760とボリュート部350の間に形成され、遠心流路760の吐出口762から吐出した液体を整流させてからボリュート部350に導入させるために設けたものであり、この整流部360もポンプ流路Fの一部を構成している。
本実施の形態1では、整流部360は、径方向内側から径方向外側に向けて略水平に延在しており、径方向外側でボリュート部350に連通している。すなわち、整流部360は、径方向断面が径方向に延びる直線となるように形成されている。
具体的には、整流部360は、ボリュート部350の径方向内側端縁(径方向内側端352a)から、径方向内側に向けて水平に延在する水平面361によって前方が画成されている。本実施の形態1では、この水平面361は、天壁310の内面311に形成されており、傾斜面358に連続するように形成されている。
一方、整流部360の後方は、水平に延在する内周側フランジ部441の前面441aによって画成されている。したがって、整流部360は、後方側においても、ボリュート部350の内面357に連続するように形成されている。
このように、本実施の形態1では、整流部360は、吐出口762の径外方向に、液体の吐出方向(径方向)に沿うように形成されている。さらに、整流部360は、略一定の高さ(軸方向長さ)となっており、ボリュート部350に連続するように形成されている。
そして、この整流部360が液体剥離抑制構造としての機能を有するようにしている。なお、本実施の形態1では、整流部360の長さ(径方向長さ)を約1.5mmとしている。
次に、吐出路391に設けた液体剥離抑制構造について説明する。
本実施の形態1では、吐出路391の流路断面の輪郭形状が、ボリュート部350の終点350b側から吐出口391bに向かうにつれて徐々に真円となるように、吐出路391を形成している。
具体的には、吐出路391は、導入口391a側では、導入口391aがボリュート部350の終点350bに連通しているため流路断面の輪郭形状は略台形状をしている。一方、吐出口391b側では、配管等に接続されるため、一般的な配管内流路の輪郭形状である円形とするのが好ましい。
このとき、吐出路391の途中で、流路断面の輪郭形状を急激に変化させると、吐出路391内を流れる液体に生じる抵抗が大きくなってしまう。
そこで、本実施の形態1では、図14〜図21に示すように、吐出路391の流路断面の輪郭形状が、ボリュート部350の終点350b側から吐出口391bに向かうにつれて徐々に真円となるようにし、液体が吐出路391内をよりスムーズに流れるようにした。
こうすることで、吐出路391が、液体剥離抑制構造としての機能を有するようにしている。
さらに、本実施の形態1では、図22に示すように、吐出路391の流路断面積が、ボリュート部350の終点350b側から吐出口391bにかけて線形に増加するようにした。ここで、図22のE〜Lは、図13に示す各断面線(吐出路391を等間隔に切断したそれぞれの断面線)に対応しており、SE〜SLは、各断面線で切断した吐出路391の流路断面積を示している。
なお、上述した吐出路391の形状は、例えば、導入口391aから吐出口391bに至る1本または複数本の基準線を設定し、導入口391aから吐出口391bまでの各地点で、基準線を通りながら、真円に近づくとともに断面積が増加するような輪郭形状を設定することで得ることができる。
また、本実施の形態1では、ボリュート部350の終点350bにおける流路断面積を約50mm2としており、吐出口391bの直径を約14.5mmとし、吐出口391bの流路断面積を約165mm2としている。
そして、ボリュート部350の終点350bから吐出口391bまでの線分長さを約50mmとしている。
次に、流向変更部としてのコーン状の突出部371に設けた液体剥離抑制構造について説明する。
上述したように、羽根車流路740は、導入路750内に導入される際に液体が主として流れる方向(軸方向)と、導入路750から遠心流路760内に導入する際に液体が主として流れる方向(軸方向よりも径方向に傾いた方向、略径方向)と、が交差している。
そのため、導入路750内に流向変更部としての突出部371を配置し、この突出部371によって、軸方向に流れる液体の流向をより径方向に近くなるように変更させるようにしている。
ここで、本実施の形態1では、突出部(流向変更部)371の表面371aを、径方向内側に凹む凹面状に形成している。すなわち、突出部(流向変更部)371の表面371aが、径方向断面視で中心側に凸の円弧線371bとなるようにしている。
さらに、本実施の形態1では、円弧線371bの仮想延長線(仮想円弧線)C1が、後面シュラウド730の前面(遠心流路760の第2のシュラウド側の内面)733に接するように、突出部(流向変更部)371を導入路740内に配置した。
具体的には、後面シュラウド730の前面(遠心流路760の第2のシュラウド側の内面)733は、径方向に延在する平坦面となっている。そして、この平坦面の内周側端縁(後面シュラウド730の内周側端部731)と外周側端縁(後面シュラウド730の外周側端部732)との間に、接点T1が形成されるようにしている。
ところで、突出部(流向変更部)371は、よりスムーズに導入口761から遠心流路760内に液体を導入させることができるようにするために設けたものである。そのため、接点T1は、内周側端部731に近い位置に形成されるようにするのが好ましい。また、図23に示すように、突出部(流向変更部)371は、表面371aの外周側端縁が、後面シュラウド730の前面(遠心流路760の第2のシュラウド側の内面)733よりも軸方向前方に位置するように配置するのが好ましい。
こうすることで、突出部(流向変更部)371の表面371aが、液体剥離抑制構造としての機能を有するようにしている。
なお、本実施の形態1では、後面シュラウド730の前面(遠心流路760の第2のシュラウド側の内面)733を基準として、突出部(流向変更部)371の先端までの高さを約8.5mmとしている。また、突出部(流向変更部)371の最大外周径を約14.8mmとしている。そして、円弧線371bの曲率半径を約7.4mmとしている。
次に、遠心流路760に設けた液体剥離抑制構造について説明する。
上述したように、羽根車流路740は、導入路750内に導入される際に液体が主として流れる方向(軸方向)と、遠心流路760の吐出口762から吐出する際に液体が主として流れる方向(径方向)と、が交差している。
すなわち、羽根車流路740内に導入された液体は、流れる方向を軸方向から径方向へと変化させながら流れることとなる。
そこで、本実施の形態1では、前面シュラウド本体部721の後面(遠心流路760の第1のシュラウド側の内面)725を、径方向断面視で、後面シュラウド(第2のシュラウド)730側に凸の輪郭線726となるように形成した。
具体的には、図26に示すように、輪郭線726は、上流側の第1の円弧線727と下流側の第2の円弧線728とを滑らかに連結させた形状をしている。
そして、輪郭線726を、第1の円弧線727の始端(遠心流路760の導入口761側の端縁)727aにおける接線の方向が軸方向(導入路750内に導入される際に液体が主として流れる方向)となるようにしている。
さらに、輪郭線726を、第2の円弧線728の終端(遠心流路760の吐出口762側の端縁)728bにおける接線の方向が径方向(遠心流路760の吐出口762から吐出する際に液体が主として流れる方向)となるようにしている。
なお、第1の円弧線727と第2の円弧線728とは、第1の円弧線727の終端727bにおける接線と第2の円弧線728の始端728aにおける接線とが、共通の接線となるようにすることで、滑らかに連結されている。
こうすることで、羽根車流路740内に導入された液体の流れる方向を、軸方向から径方向へとよりスムーズに変化させることができる。
すなわち、前面シュラウド本体部721の後面(遠心流路760の第1のシュラウド側の内面)725が、液体剥離抑制構造としての機能を有するようにしている。
本実施の形態1では、前面シュラウド本体部721の内径側開口径を約19mmとし、外径側開口径を約40mmとしている。また、第1の円弧線727の曲率半径を2.0mmとし、第2の円弧線728の曲率半径を25mmとしている。
なお、前面シュラウド本体部721の後面(遠心流路760の第1のシュラウド側の内面)725の輪郭線726は、2つの円弧線を滑らかに連結した形状に限られるものではない。例えば、図28に示す形状とすることもできる。この図28では、前面シュラウド本体部721の後面(遠心流路760の第1のシュラウド側の内面)725の輪郭線を1つの円弧線で形成している。この円弧線の曲率半径は、例えば、25mmとすることができる。
また、輪郭線726の途中に直線部分が存在していてもよい。この場合、輪郭線726と、輪郭線726の両端を結ぶ直線で囲まれる領域が凸集合となるようにするのが好ましい。
また、本実施の形態1では、遠心流路760の流路断面積が当該遠心流路760の導入口761側から吐出口762にかけて線形に増加するようにしている。
こうすることで、遠心流路760が液体剥離抑制構造としての機能を有するようにしている。
なお、本実施の形態1では、各羽根部710の内径側の高さ(径方向内側端部711の軸方向の長さ)を約5.8mmとし、外形側の高さ(径方向外側端部712の軸方向の長さ)を約3.5mmとしている。さらに、各羽根部710は、板厚が約1.2mmとなっている。また、各羽根部710は、内径側羽根角度(径方向内側端部711の先端711aにおける後面シュラウド730の内周側端部731の接線と羽根部710とがなす角)が約35°となるように配置されている。また、各羽根部710は、外径側羽根角度(径方向外側端部712の先端712aにおける後面シュラウド730の外周側端部731の接線と羽根部710とがなす角)が約35°となるように配置されている。
次に、羽根部710に設けた液体剥離抑制構造について説明する。
本実施の形態1では、各羽根部710は、径方向内側端部711の先端711aが先細りとなるように形成されている。
このように、径方向内側端部711の先端711aを先鋭化させることで、径方向内側端部711の先端711aに向けて流れてきた液体をよりスムーズに当該羽根部710の両側に分岐させることができるようになる。
こうすることで、各羽根部710が、液体剥離抑制構造としての機能を有するようにしている。
本実施の形態1では、各羽根部710における径方向内側端部711の先端711aの曲率半径を0.1mm以下となるようにしている。
なお、本実施の形態1では、各羽根部710は、径方向外側端部712の先端712aも先細りとなるように形成されている。
以上、説明したように、本実施の形態1にかかるポンプ1は、液体を吸入する吸入口381aが形成された吸入路381と、吸入された液体を吐出する吐出口391bが形成された吐出路391と、を有するポンプ本体10を備えている。さらに、ポンプ1は、ポンプ本体10内に形成されたポンプ室330に収容される羽根車70と、羽根車70を回転自在に支持する軸60と、を備えている。
また、ポンプ本体10内には、吸入口381aから吐出口391bに至るポンプ流路Fが形成されている。
このポンプ流路Fは、吸入路381と、羽根車70内に形成され、吸入路381内の液体が導入される羽根車流路740と、羽根車70の径方向外側に形成され、羽根車流路740内の液体が導入されるボリュート部350と、ボリュート部350内の液体が導入される吐出路391と、を備えている。
そして、ポンプ流路F内には、当該ポンプ流路F内を流れる液体が剥離してしまうのを抑制する液体剥離抑制構造が設けられている。
これにより、ポンプ流路F内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができ、より確実にポンプ効率が低下してしまうのを抑制することができるようになる。
また、ボリュート部350の径方向内側には、羽根車流路740の径方向外側に形成された吐出口762と対向する開口356が形成されている。また、ボリュート部350の内面357には、開口356側の端縁357aから径方向外側に向かうにつれてボリュート部350の軸方向長さが長くなるように傾斜する傾斜面358が形成されている。そして、液体剥離抑制構造がこの傾斜面358を含んでいる。
これにより、ボリュート部350に導入された液体を傾斜面358に沿って流すことが可能となり、液体をよりスムーズにボリュート部350内に導入することができるようになる。その結果、ボリュート部350内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することが可能となる。
また、傾斜面358は、ボリュート部350の径方向断面が直線となるように形成されている。
これにより、ボリュート部350の軸方向長さが、開口356側の端縁357aから径方向外側に向けて線形に増加することとなる。その結果、羽根車流路740内の液体をよりスムーズにボリュート部350内に導入させることができ、液体が剥離してしまったり、滞留してしまったりすることをより確実に抑制することができるようになる。
また、ポンプ流路Fは、羽根車流路740とボリュート部350との間に形成された整流部360を備えており、液体剥離抑制構造がこの整流部360を含んでいる。
これにより、羽根車流路740から吐出された液体は、整流部360で整流されてからボリュート部350に導入されることとなって、液体が剥離してしまったり、滞留してしまったりすることをより確実に抑制することができるようになる。
また、整流部360は、径方向断面が径方向に延びる直線となるように形成されている。
これにより、羽根車流路360から吐出された液体を、ボリュート部350への導入方向である径方向に整流させることができるようになる。
また、吐出路391は、当該吐出路391の流路断面の輪郭形状が、ボリュート部350の終点350b側から吐出口391bに向かうにつれて徐々に真円となるように形成されており、液体剥離抑制構造がこの吐出路391を含んでいる。
これにより、吐出路391内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、吐出路391の流路断面積がボリュート部350の終点350b側から吐出口391bにかけて線形に増加している。
これにより、吐出路391内の液体をよりスムーズに吐出口391bに向けて流すことができ、液体が剥離してしまったり、滞留してしまったりすることをより確実に抑制することができるようになる。
また、羽根車70は、回転遠心力により液体を増圧する複数枚の羽根部710と、羽根部710の前側(軸方向一方側)を覆う前面シュラウド(第1のシュラウド)720と、羽根部710の後側(軸方向他方側)を覆う後面シュラウド(第2のシュラウド)730と、を備えている。
そして、羽根車流路740は、互いに隣り合う2枚の羽根部710,710、前面シュラウド(第1のシュラウド)720および後面シュラウド(第2のシュラウド)730で画成され、径方向内側に導入口761が形成されるとともに径方向外側に吐出口762が形成された遠心流路760を備えている。さらに、羽根車流路740は、遠心流路760の径方向内側に形成され、吸入路381から液体が導入されるとともに、導入された液体を導入口761から遠心流路760内に導入する導入路750を備えている。
ここで、導入路750は、前側(前面シュラウド720側)が上流側、後側(後面シュラウド730側)が下流側となっており、遠心流路760は、後面シュラウド730の前面(遠心流路760の第2のシュラウド側の内面)733が径方向に延在する面となっている。
また、導入路750内に導入される際に液体が主として流れる方向(軸方向)と、導入路750から遠心流路760内に導入する際に液体が主として流れる方向(軸方向よりも径方向に傾いた方向、略径方向)と、が交差している。
また、導入路750内には、先端が先細りとなるように形成され、液体の流れを変える突出部(流向変更部)371が、先端が上流側を向いた状態で配置されており、突出部(流向変更部)371の表面371aは、径方向断面視で中心側に凸の円弧線371bとなるように形成されている。
そして、突出部(流向変更部)371は、円弧線371bの仮想延長線C1が、後面シュラウド730の前面(遠心流路760の第2のシュラウド側の内面)733に接するように、導入路740内に配置されており、液体剥離抑制構造が、この突出部(流向変更部)371の表面371aを含んでいる。
これにより、吸入路381から導入路750内に導入された液体の流向をよりスムーズに変化させることができ、導入路750内の液体を遠心流路760内に導入させやすくすることができる。その結果、羽根車流路740内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、羽根車70は、回転遠心力により液体を増圧する複数枚の羽根部710と、羽根部710の前側(軸方向一方側)を覆う前面シュラウド(第1のシュラウド)720と、羽根部710の後側(軸方向他方側)を覆う後面シュラウド(第2のシュラウド)730と、を備えている。
そして、羽根車流路740は、互いに隣り合う2枚の羽根部710,710、前面シュラウド(第1のシュラウド)720および後面シュラウド(第2のシュラウド)730で画成され、径方向内側に導入口761が形成されるとともに径方向外側に吐出口762が形成された遠心流路760を備えている。さらに、羽根車流路740は、遠心流路760の径方向内側に形成され、吸入路381から液体が導入されるとともに、導入された液体を導入口761から遠心流路760内に導入する導入路750を備えている。
ここで、導入路750は、前側(前面シュラウド720側)が上流側、後側(後面シュラウド730側)が下流側となっており、導入路750内に導入される際に液体が主として流れる方向(軸方向)と、遠心流路760の吐出口762から吐出する際に液体が主として流れる方向(径方向)と、が交差している。
また、前面シュラウド本体部721の後面(遠心流路760の第1のシュラウド側の内面)725が、径方向断面視で後面シュラウド(第2のシュラウド)730側に凸の輪郭線726となるように形成されている。
そして、輪郭線726は、第1の円弧線727の始端(遠心流路760の導入口761側の端縁)727aにおける接線の方向が軸方向(導入路750内に導入される際に液体が主として流れる方向)となっている。
さらに、輪郭線726は、第2の円弧線728の終端(遠心流路760の吐出口762側の端縁)728bにおける接線の方向が径方向(遠心流路760の吐出口762から吐出する際に液体が主として流れる方向)となっている。
そして、液体剥離抑制構造が、この前面シュラウド本体部721の後面(遠心流路760の第1のシュラウド側の内面)725を含んでいる。
これにより、遠心流路760内を流れる液体の流向をよりスムーズに変化させることができるようになり、遠心流路760内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、羽根車70は、回転遠心力により液体を増圧する複数枚の羽根部710と、羽根部710の前側(軸方向一方側)を覆う前面シュラウド(第1のシュラウド)720と、羽根部710の後側(軸方向他方側)を覆う後面シュラウド(第2のシュラウド)730と、を備えている。
ここで、羽根車流路740は、互いに隣り合う2枚の羽根部710,710、前面シュラウド(第1のシュラウド)720および後面シュラウド(第2のシュラウド)730で画成され、径方向内側に導入口761が形成されるとともに径方向外側に吐出口762が形成された遠心流路760を備えている。
そして、遠心流路760の流路断面積が当該遠心流路760の導入口761側から吐出口762にかけて線形に増加しており、液体剥離抑制構造が、この遠心流路760を含んでいる。
これにより、遠心流路760内の液体をよりスムーズに流すことができるようになり、遠心流路760内を流れる液体が剥離してしまったり、滞留してしまったりすることを抑制することができるようになる。
また、羽根車70は、径方向内側から外側に向けて延在するように設けられ、回転遠心力により液体を増圧する複数枚の羽根部710を備えている。
そして、羽根部710は、径方向内側端部711(径方向内側の端部)の先端711aが先細りとなるように形成されており、液体剥離抑制構造は、この羽根部710を含んでいる。
これにより、導入路750から遠心流路760内に導入される液体が、羽根部710の径方向内側端部711(径方向内側の端部)の先端711aと干渉してしまうのを抑制することができ、よりスムーズに液体を遠心流路760内に導入することができるようになる。
(実施の形態2)
本実施の形態2にかかるポンプ1Aは、図29〜図35に示すように、基本的に上記実施の形態1で示したポンプ1と同様の構成をしている。
すなわち、ポンプ1Aは、液体を吸入する吸入口381aが形成された吸入路381と、吸入された液体を吐出する吐出口391bが形成された吐出路391と、を有するポンプ本体10を備えている。さらに、ポンプ1Aは、ポンプ本体10内に形成されたポンプ室330に収容される羽根車70と、羽根車70を回転自在に支持する軸60と、を備えている。
また、ポンプ本体10内には、吸入口381aから吐出口391bに至るポンプ流路Fが形成されている。
このポンプ流路Fは、吸入路381と、羽根車70内に形成され、吸入路381内の液体が導入される羽根車流路740と、羽根車70の径方向外側に形成され、羽根車流路740内の液体が導入されるボリュート部350と、ボリュート部350内の液体が導入される吐出路391と、を備えている。
そして、ポンプ流路F内には、当該ポンプ流路F内を流れる液体が剥離してしまうのを抑制する液体剥離抑制構造が設けられている。
ここで、本実施の形態2にかかるポンプ1Aが上記第1実施形態のポンプ1と主に異なる点は、羽根車流路740とボリュート部350との間に整流部360が形成されていない点にある。
すなわち、吐出口762から羽根車70の外周側に吐出された液体は、直接ボリュート部350に導入され、このボリュート部350において増圧されるようになっている。
なお、ポンプ1Aは、上記実施の形態1で示した整流部以外の液体剥離抑制構造を有している。
かかる構成をしたポンプ1Aによっても、上記実施の形態1と同様の作用、効果を奏することができる。
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。
例えば、上記各実施の形態では、複数の液体剥離抑制構造を備えるものを例示したが、これらの液体剥離抑制構造は、少なくとも1つ備えていればよい。すなわち、複数の液体剥離抑制構造の一部のみを有するポンプとすることが可能である。
また、ケーシングや駆動ブロック、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。