JP6660776B2 - Method for producing tantalum nitride (Ta3N5) - Google Patents
Method for producing tantalum nitride (Ta3N5) Download PDFInfo
- Publication number
- JP6660776B2 JP6660776B2 JP2016050360A JP2016050360A JP6660776B2 JP 6660776 B2 JP6660776 B2 JP 6660776B2 JP 2016050360 A JP2016050360 A JP 2016050360A JP 2016050360 A JP2016050360 A JP 2016050360A JP 6660776 B2 JP6660776 B2 JP 6660776B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- metal
- xrd analysis
- nitriding
- tantalum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 title claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 238000005121 nitriding Methods 0.000 claims description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 18
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 17
- 229910052715 tantalum Inorganic materials 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 238000000634 powder X-ray diffraction Methods 0.000 description 22
- 238000004458 analytical method Methods 0.000 description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 20
- 239000001301 oxygen Substances 0.000 description 20
- 229910052760 oxygen Inorganic materials 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000002131 composite material Substances 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、Ta3N5の製造方法に関する。 The present invention relates to a method for producing Ta 3 N 5 .
Ta3N5は、誘電体や超電導体などとして使用される金属窒化物である。さらに、近年では炭酸ガス排出削減、再生可能エネルギーの観点から、太陽光エネルギーを利用して、光触媒により水を分解して、水素や酸素を製造する技術に注目が集まっており、Ta3N5は光触媒として利用可能である。
一方で、光触媒に含まれる酸素は忌避成分となり、水素の発生を阻害する。そこで、酸素を含まない高純度のTa3N5が求められている。
Ta 3 N 5 is a metal nitride used as a dielectric or a superconductor. Furthermore, carbon dioxide emissions in recent years, from the viewpoint of renewable energy by utilizing solar energy, and by the photocatalytic decomposing water, and attention is paid to a technology for producing hydrogen and oxygen, Ta 3 N 5 Can be used as a photocatalyst.
On the other hand, oxygen contained in the photocatalyst becomes a repellent component and inhibits generation of hydrogen. Therefore, high-purity Ta 3 N 5 containing no oxygen is required.
非特許文献1では、塩化タンタル(TaCl5)を液体アンモニアで処理し、得られたTa(NH2)2Cl3を、アンモニア気流中で650〜750℃で分解することでTa3N5が得られている。特許文献1では、酸化タンタル(Ta2O5)をアンモニア気流中、850℃で25時間窒化することでTa3N5が得られている。
また特許文献2では、Ta基板を用い、真空紫外光を照射して親水化した後、フラックス水溶液(NaClとNa2CO3がモル比で4:1)を塗布し、100℃で乾燥させ、乾燥後、Ta基板をアンモニア気流中850℃、1時間加熱した。その後、アンモニア気流中で300℃まで、300℃から室温まで窒素気流中で冷却した。冷却後、残存するフラックスを温水中で除去することでTa3N5を得ている。さらに、特許文献3では、タンタル金属を窒素ガスによって窒化タンタルを製造する方法が開示されている。一次窒化として、窒化炉にタンタル金属を仕込み、炉内温度を600〜800℃になるように窒素流量を制御しながら窒化を行っている。得られた窒化物の窒素含有量は6.1%であった。得られた窒化物は1500℃で二次窒化し、窒素含有量は7.1%となっている。
In Non-Patent Document 1, Ta 3 N 5 is obtained by treating tantalum chloride (TaCl 5 ) with liquid ammonia and decomposing the obtained Ta (NH 2 ) 2 Cl 3 at 650 to 750 ° C. in an ammonia gas flow. Have been obtained. In Patent Document 1, Ta 3 N 5 is obtained by nitriding tantalum oxide (Ta 2 O 5 ) at 850 ° C. for 25 hours in an ammonia gas flow.
Further, in Patent Document 2, a Ta substrate is used to irradiate it with vacuum ultraviolet light to make it hydrophilic, and then a flux aqueous solution (NaCl and Na 2 CO 3 at a molar ratio of 4: 1) is applied and dried at 100 ° C. After drying, the Ta substrate was heated at 850 ° C. for 1 hour in an ammonia stream. Thereafter, the mixture was cooled to 300 ° C. in an ammonia gas flow and from 300 ° C. to room temperature in a nitrogen gas flow. After cooling, the remaining flux is removed in warm water to obtain Ta 3 N 5 . Further, Patent Document 3 discloses a method for producing tantalum nitride from tantalum metal using nitrogen gas. As primary nitriding, tantalum metal is charged into a nitriding furnace, and nitriding is performed while controlling the flow rate of nitrogen so that the temperature in the furnace becomes 600 to 800 ° C. The nitrogen content of the obtained nitride was 6.1%. The obtained nitride was subjected to secondary nitriding at 1500 ° C., and the nitrogen content was 7.1%.
しかしながら、非特許文献1記載の方法では、750℃で6日間もの長時間を要する。特許文献1記載の方法では、酸化物を原料とするため、Ta3N5中に酸素が残ってしまう。特許文献2記載の方法では、工程数が長く工業的ではなく、親水化しフラックス水溶液を塗布させることで、Ta基板を酸化させTa2O5としている。また、特許文献3で得られる窒化物はTaNであり、Ta3N5ではない。 However, the method described in Non-Patent Document 1 requires as long as 6 days at 750 ° C. In the method described in Patent Document 1, oxygen is used as a raw material, so that oxygen remains in Ta 3 N 5 . In the method described in Patent Document 2, the number of steps is long and not industrial, and the Ta substrate is oxidized to Ta 2 O 5 by applying a flux aqueous solution after hydrophilization. The nitride obtained in Patent Document 3 is TaN, not Ta 3 N 5 .
従って、本発明の課題は、酸素含有量の少ないTa3N5の工業的な製造方法を提供することにある。 Therefore, an object of the present invention is to provide an industrial method for producing Ta 3 N 5 having a low oxygen content.
そこで本発明者は、前記課題を解決すべく検討した結果、酸素量の少ない金属タンタルを原料とし、特定の温度範囲で、アンモニアガスで窒化すれば、酸素量の少ない高純度のTa3N5が得られることを見出し、本発明を完成した。 The present inventor has studied to solve the above problem, and as a result, using a metal tantalum having a low oxygen content as a raw material and nitriding with ammonia gas in a specific temperature range, a high-purity Ta 3 N 5 having a low oxygen content is obtained. Were obtained, and the present invention was completed.
すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。 That is, the present invention provides the following [1] to [3].
〔1〕金属タンタルを800〜950℃で、アンモニアガス下窒化することを特徴とする窒化タンタル(Ta3N5)の製造方法。
〔2〕アンモニアガス流量が金属タンタル1gに対して0.03L/min以上0.5L/min以下で窒化する〔1〕記載の製造方法。
〔3〕用いる金属タンタルが、最大粒子径が50μm以下になるように粉砕されたものである〔1〕又は〔2〕記載の製造方法。
[1] A method for producing tantalum nitride (Ta 3 N 5 ), comprising nitriding metal tantalum at 800 to 950 ° C. under ammonia gas.
[2] The production method according to [1], wherein the nitriding is performed at an ammonia gas flow rate of 0.03 L / min or more and 0.5 L / min or less per 1 g of metal tantalum.
[3] The production method according to [1] or [2], wherein the metal tantalum used is pulverized so that the maximum particle size is 50 μm or less.
本発明方法によれば、高純度で酸素量の少ないTa3N5が工業的に有利に製造できる。 According to the method of the present invention, Ta 3 N 5 having high purity and a small amount of oxygen can be industrially advantageously produced.
本発明のTa3N5の製造方法は、金属タンタルを800〜950℃で、アンモニアガス下窒化することを特徴とする。 The method for producing Ta 3 N 5 according to the present invention is characterized in that metal tantalum is nitrided at 800 to 950 ° C. under ammonia gas.
本発明に用いる原料は、金属タンタルである。金属タンタルは、細かい粒子を用いるのが窒化温度を低くできる点から好ましく、金属タンタルの最大粒子径は50μm以下が好ましく、30μm以下がより好ましく、20μm以下がさらに好ましく、10μm以下がさらに好ましい。また、平均粒子径(D50)が20μm以下のものを用いるのが好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、5μm以下がさらに好ましい。 The raw material used in the present invention is metal tantalum. It is preferable to use fine particles of metal tantalum from the viewpoint that the nitriding temperature can be lowered, and the maximum particle diameter of metal tantalum is preferably 50 μm or less, more preferably 30 μm or less, further preferably 20 μm or less, and still more preferably 10 μm or less. Further, it is preferable to use those having an average particle diameter (D 50 ) of 20 μm or less, more preferably 15 μm or less, further preferably 10 μm or less, and still more preferably 5 μm or less.
このような微細化金属タンタルは、市販の金属タンタルを粉砕することにより得られる。粉砕装置としては遊星ボールミル、振動ミル、アトライターミル等を用いることが可能である。粉砕方法は、乾式または湿式のどちらでも良い。湿式の場合の粉砕助剤としては、エタノール、トリエチルアミン、ヘキサン等が利用できる。
粉砕時間は、10分以上2時間以下が好ましく、さらに好ましくは20分以上1時間以下である。
Such fine metal tantalum is obtained by pulverizing commercially available metal tantalum. As a pulverizing device, a planetary ball mill, a vibration mill, an attritor mill, or the like can be used. The pulverization method may be either dry or wet. Ethanol, triethylamine, hexane and the like can be used as a grinding aid in the case of a wet method.
The grinding time is preferably from 10 minutes to 2 hours, more preferably from 20 minutes to 1 hour.
窒化する温度(窒化温度)は、800℃以上950℃以下が好ましい。800℃以下の場合、窒化が進行しない。950℃以上の場合、Ta3N5から窒素が放出され金属Taとなるため高純度のTa3N5が得られない。 The nitriding temperature (nitriding temperature) is preferably 800 ° C. or more and 950 ° C. or less. If the temperature is lower than 800 ° C., nitriding does not proceed. When the temperature is 950 ° C. or higher, high-purity Ta 3 N 5 cannot be obtained because nitrogen is released from Ta 3 N 5 to become metal Ta.
窒化する際のアンモニア流量は、単相のTa3N5を得る点、アンモニウムガスの過剰使用を防止する点から、原料の金属タンタル1gに対し0.03L/min以上0.5L/min以下が好ましい。さらに好ましくは、原料の金属Ta 1gに対し0.05L/min以上0.3L/min以下である。 From the viewpoint of obtaining single-phase Ta 3 N 5 and preventing excessive use of ammonium gas, the ammonia flow rate during nitriding is preferably 0.03 L / min or more and 0.5 L / min or less per 1 g of metal tantalum as a raw material. preferable. More preferably, it is 0.05 L / min or more and 0.3 L / min or less with respect to 1 g of metal Ta as a raw material.
反応装置は、1000℃程度の熱に耐えられる装置であればよく、例えば、管状炉、電気炉、バッチ式キルン、ロータリーキルンを用いれば良い。反応時間は、10時間以上48時間以下が好ましく15時間以上30時間以下がさらに好ましい。 The reaction apparatus may be an apparatus that can withstand heat of about 1000 ° C., and for example, a tubular furnace, an electric furnace, a batch kiln, and a rotary kiln may be used. The reaction time is preferably from 10 hours to 48 hours, more preferably from 15 hours to 30 hours.
上記の反応により、反応容器中には高純度Ta3N5のみが残存するので回収が容易である。得られるTa3N5の純度は90%以上であり、95%以上であるのがより好ましい。また、得られるTa3N5中の酸素量は1.0mass%以下であるのが好ましく、0.7mass%以下であるのがより好ましい。 Due to the above reaction, only high-purity Ta 3 N 5 remains in the reaction vessel, so that it is easy to recover. The purity of the obtained Ta 3 N 5 is 90% or more, and more preferably 95% or more. Further, the amount of oxygen in the obtained Ta 3 N 5 is preferably 1.0 mass% or less, more preferably 0.7 mass% or less.
次に実施例を挙げて本発明を詳細に説明する。 Next, the present invention will be described in detail with reference to examples.
実施例1
グローブボックス内にて炉心管(内径50mm、長さ600mm)に金属Ta3gを入れ、シリコンキャップで密閉した。グローブボックスから取り出した炉心管を管状炉にセットした。その後、アンモニアガスを1L/min雰囲気下で、反応温度900℃、20時間で窒化した。原料の金属Taの最大粒子径は47.8μm、D50は14.9μmであった。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図1)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.2mass%であり理論量(11.43mass%)から算出した純度は98.0%であった。また、O量は0.5mass%と低かった。得られた合成物の最大粒子径は29.9μm、D50は9.8μmであった。
Example 1
In a glove box, 3 g of metal Ta was put into a core tube (
Powder XRD analysis of the obtained synthesized product showed single-phase Ta 3 N 5 (FIG. 1). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 11.2 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 98.0%. Further, the O content was as low as 0.5 mass%. Maximum particle size of the resulting composite is 29.9μm, D 50 was 9.8 .mu.m.
実施例2
反応温度を850℃とした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図2)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.0mass%であり理論量(11.43mass%)から算出した純度は96.2%であった。また、O量は0.6mass%と低かった。
Example 2
The same operation as in Example 1 was performed except that the reaction temperature was 850 ° C.
XRD analysis of the obtained composite product by powder XRD showed that it was a single-phase Ta 3 N 5 (FIG. 2). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 11.0 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 96.2%. Also, the O content was as low as 0.6 mass%.
実施例3
窒化時間を30時間とした以外は、実施例2と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図3)。
得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.2mass%であり理論量(11.43mass%)から算出した純度は98.0%であった。また、O量は0.4mass%と低かった。
Example 3
The same operation as in Example 2 was performed except that the nitriding time was changed to 30 hours.
The obtained composite was subjected to powder XRD analysis, and was found to be single-phase Ta 3 N 5 (FIG. 3).
When the obtained Ta 3 N 5 was quantified with a nitrogen and oxygen simultaneous analyzer, the N amount was 11.2 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 98.0%. Also, the O content was as low as 0.4 mass%.
実施例4
窒化時間を10時間とした以外は、実施例2と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図4)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は10.9mass%であり理論量(11.43mass%)から算出した純度は95.4%であった。また、O量は0.7mass%と低かった。
Example 4
The same operation as in Example 2 was performed except that the nitriding time was changed to 10 hours.
Powder XRD analysis of the obtained composite showed single-phase Ta 3 N 5 (FIG. 4). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 10.9 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 95.4%. Further, the O content was as low as 0.7 mass%.
実施例5
窒化時間を48時間とした以外は、実施例2と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図5)。
得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.1mass%であり理論量(11.43mass%)から算出した純度は97.1%であった。またO量は0.6mass%と低かった。
Example 5
The same operation as in Example 2 was performed except that the nitriding time was changed to 48 hours.
Powder XRD analysis of the obtained synthesized product showed single-phase Ta 3 N 5 (FIG. 5).
When the obtained Ta 3 N 5 was quantified with a nitrogen and oxygen simultaneous analyzer, the N amount was 11.1 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 97.1%. The O content was as low as 0.6 mass%.
実施例6
金属Ta10gにアンモニアガスを0.3L/minとした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図6)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.0mass%であり理論量(11.43mass%)から算出した純度は96.2%であった。また、O量は0.6mass%と低かった。
Example 6
The same operation as in Example 1 was performed, except that 10 g of metal Ta was changed to 0.3 L / min of ammonia gas.
Powder XRD analysis of the obtained synthesized product showed single-phase Ta 3 N 5 (FIG. 6). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 11.0 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 96.2%. Also, the O content was as low as 0.6 mass%.
実施例7
金属Ta10gにアンモニアガスを3L/minとした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図7)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.1mass%であり理論量(11.43mass%)から算出した純度は97.1%であった。また、O量は0.5mass%と低かった。
Example 7
The same operation as in Example 1 was performed, except that ammonia gas was changed to 3 L / min for 10 g of metal Ta.
The obtained composite was subjected to powder XRD analysis, and was found to be single-phase Ta 3 N 5 (FIG. 7). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 11.1 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 97.1%. Further, the O content was as low as 0.5 mass%.
実施例8
金属Ta10gにアンモニアガス流量を、5L/minとした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図8)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.2mass%であり理論量(11.43mass%)から算出した純度は98.0%であった。また、O量は0.7mass%と低かった。
Example 8
The same operation as in Example 1 was performed, except that the flow rate of ammonia gas was set to 5 L / min for 10 g of metal Ta.
XRD analysis of the obtained synthesized product showed single-phase Ta 3 N 5 (FIG. 8). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 11.2 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 98.0%. Further, the O content was as low as 0.7 mass%.
実施例9
グローブボックス内にて金属Ta10gをジルコニア製粉砕容器(500mL)に仕込み、粉砕助剤としてトリエチルアミンを数滴入れ、遊星ボールミル装置にて350rpm、30分粉砕した。粉砕した金属Taはグローブボックス内で取り出した。粉砕した金属Taの粒度は粒子径分布測定装置で測定したところ、最大粒子径は8.0μm、D50は2.3μmであった。
粉砕した金属Taを出発原料として、反応温度800℃以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図9)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.3mass%であり理論量(11.43mass%)から算出した純度は98.9%であった。また、O量は0.5mass%と低かった。得られた合成物の最大粒子径は16.0μm、D50は4.5μmであった。
Example 9
In a glove box, 10 g of metal Ta was charged into a pulverizing container (500 mL) made of zirconia, and several drops of triethylamine were added as a pulverizing aid, and pulverized by a planetary ball mill at 350 rpm for 30 minutes. The crushed metal Ta was taken out in the glove box. The particle size of the milled metal Ta is as measured by particle size distribution measurement device, a maximum particle size 8.0 .mu.m, D 50 was 2.3 .mu.m.
The same operation as in Example 1 was performed using pulverized metal Ta as a starting material except for the reaction temperature of 800 ° C.
Powder XRD analysis of the obtained synthesized product showed single-phase Ta 3 N 5 (FIG. 9). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 11.3 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 98.9%. Further, the O content was as low as 0.5 mass%. Maximum particle size of the resulting composite is 16.0 .mu.m, D 50 was 4.5 [mu] m.
比較例1
反応温度を700℃とした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ金属のTaであった(図10)。
Comparative Example 1
The same operation as in Example 1 was performed except that the reaction temperature was 700 ° C.
XRD analysis of the obtained composite product by powder XRD showed metallic Ta (FIG. 10).
比較例2
反応温度を1000℃とした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところTa3N5と金属Taの混合相であった(図11)。
Comparative Example 2
The same operation as in Example 1 was performed except that the reaction temperature was changed to 1000 ° C.
XRD analysis of the powder of the obtained synthesized product showed a mixed phase of Ta 3 N 5 and metal Ta (FIG. 11).
比較例3
出発原料を酸化タンタル(Ta2O5)とした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa3N5であった(図12)。得られたTa3N5を窒素酸素同時分析計で定量したところ、N量は11.3mass%であり理論量(11.43mass%)から算出した純度は98.9%であった。しかし、O量は1.1mass%と高かった。
Comparative Example 3
The same operation as in Example 1 was performed except that the starting material was tantalum oxide (Ta 2 O 5 ).
Powder XRD analysis of the obtained synthesized product showed single-phase Ta 3 N 5 (FIG. 12). When the obtained Ta 3 N 5 was quantified by a nitrogen and oxygen simultaneous analyzer, the N amount was 11.3 mass%, and the purity calculated from the theoretical amount (11.43 mass%) was 98.9%. However, the O content was as high as 1.1 mass%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016050360A JP6660776B2 (en) | 2016-03-15 | 2016-03-15 | Method for producing tantalum nitride (Ta3N5) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016050360A JP6660776B2 (en) | 2016-03-15 | 2016-03-15 | Method for producing tantalum nitride (Ta3N5) |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017165605A JP2017165605A (en) | 2017-09-21 |
JP6660776B2 true JP6660776B2 (en) | 2020-03-11 |
Family
ID=59912718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016050360A Active JP6660776B2 (en) | 2016-03-15 | 2016-03-15 | Method for producing tantalum nitride (Ta3N5) |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6660776B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7005394B2 (en) * | 2018-03-13 | 2022-01-21 | 太平洋セメント株式会社 | photocatalyst |
CN108640092B (en) * | 2018-04-18 | 2021-11-05 | 南京大学 | A method for preparing metal nitride thin film by oxygen-containing compound-assisted one-step nitridation method |
-
2016
- 2016-03-15 JP JP2016050360A patent/JP6660776B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017165605A (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Granados-Correa et al. | Combustion synthesis process for the rapid preparation of high-purity SrO powders | |
Boonchom | Kinetic and thermodynamic studies of MgHPO 4· 3H 2 O by non-isothermal decomposition data | |
Zhai et al. | Abnormal phase transition in BiNbO4 powders prepared by a citrate method | |
JP6745164B2 (en) | Method for producing tantalum nitride (Ta3N5) | |
CN109928763B (en) | Tantalum-based oxynitride nano powder and preparation method thereof | |
CN108751148A (en) | A kind of tantalum nitride oxide (TaOxNy) and/or tantalum nitride (Ta3N5) nano-photocatalyst preparation method | |
WO2015156080A1 (en) | Nickel powder | |
CN109437203A (en) | A kind of preparation method of high-purity one dimension SiC nano material | |
JP6660776B2 (en) | Method for producing tantalum nitride (Ta3N5) | |
CN101357763A (en) | Preparation method of high-purity ultrafine SiC powder | |
CN105271142A (en) | A kind of irregular rod-shaped g-C3N4 material and its preparation method and application | |
Manouchehri et al. | Facile synthesis of Co3O4/CoO nanoparticles by thermal treatment of ball-milled precursors | |
CN103624269B (en) | A kind of nano-tungsten powder and employing collosol and gel hydrogen reduction method thereof prepare the method for nano-tungsten powder | |
JP6279638B2 (en) | Hexagonal boron nitride powder, method for producing the same, and cosmetics | |
CN104016668A (en) | Preparation method of mullite ceramic powder | |
CN107522178A (en) | A kind of method for preparing boron nitride nano-tube | |
RU2639244C1 (en) | Method of producing zirconium tungstate powder | |
JP6610929B2 (en) | Fine particle production method, sintered body crushing method | |
Yan et al. | Using ethanol for preparation of nanosized TiO2 by gaseous detonation | |
JP6039474B2 (en) | Method for producing alkaline earth metal imide | |
KR101409182B1 (en) | Manufacturing method of high purity aluminium nitride | |
JP2747916B2 (en) | Potassium titanate long fiber and method for producing titania fiber using the same | |
Shahsavari et al. | Cryomilling-Assisted Synthesis of Nanostructured Silicon | |
CN105836718A (en) | Sol-gel method for preparing submicron-order titanium nitride powdery material | |
US20140227158A1 (en) | Method for synthesis of boron suboxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6660776 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |