JP6654793B2 - Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof - Google Patents
Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof Download PDFInfo
- Publication number
- JP6654793B2 JP6654793B2 JP2014146396A JP2014146396A JP6654793B2 JP 6654793 B2 JP6654793 B2 JP 6654793B2 JP 2014146396 A JP2014146396 A JP 2014146396A JP 2014146396 A JP2014146396 A JP 2014146396A JP 6654793 B2 JP6654793 B2 JP 6654793B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- secondary battery
- electrolyte secondary
- aqueous electrolyte
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 131
- 239000000203 mixture Substances 0.000 claims description 133
- 229910052744 lithium Inorganic materials 0.000 claims description 123
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 121
- 229910044991 metal oxide Inorganic materials 0.000 claims description 119
- 150000004706 metal oxides Chemical class 0.000 claims description 119
- 239000002245 particle Substances 0.000 claims description 60
- 239000011164 primary particle Substances 0.000 claims description 55
- 238000007600 charging Methods 0.000 claims description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 35
- 239000007774 positive electrode material Substances 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 23
- 239000007773 negative electrode material Substances 0.000 claims description 23
- 239000011230 binding agent Substances 0.000 claims description 19
- 229910002804 graphite Inorganic materials 0.000 claims description 15
- 239000010439 graphite Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000012752 auxiliary agent Substances 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052789 astatine Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 89
- 239000003575 carbonaceous material Substances 0.000 description 66
- 238000000034 method Methods 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 24
- 239000002131 composite material Substances 0.000 description 24
- 239000011572 manganese Substances 0.000 description 24
- 230000001965 increasing effect Effects 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 16
- 238000011049 filling Methods 0.000 description 16
- -1 lithium hydroxide) Chemical class 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- 229910013716 LiNi Inorganic materials 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 229910000838 Al alloy Inorganic materials 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000011246 composite particle Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000008187 granular material Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 235000019241 carbon black Nutrition 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000002612 dispersion medium Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910013733 LiCo Inorganic materials 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 3
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002296 pyrolytic carbon Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229910011458 Li4/3 Ti5/3O4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910015608 LiNi0.82Co0.15Al0.03O2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- ZOZLFBZFMZKVFW-UHFFFAOYSA-N aluminum;zinc Chemical compound [Al+3].[Zn+2] ZOZLFBZFMZKVFW-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000011532 electronic conductor Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229920005546 furfural resin Polymers 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010278 pulse charging Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、優れた充放電サイクル特性を有する非水電解質二次電池、前記非水電解質二次電池を構成するための正極、および前記非水電解質二次電池を有するシステムに関するものである。 The present invention relates to a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics, a positive electrode for constituting the nonaqueous electrolyte secondary battery, and a system including the nonaqueous electrolyte secondary battery.
リチウムイオン二次電池などの非水電解質二次電池は、高電圧、高エネルギー密度であることから、携帯機器などの駆動電源などとして需要が増大傾向にある。現在、この非水電解質二次電池の正極活物質としては、容量が大きく、可逆性もよいコバルト酸リチウムが主に用いられている。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have a high voltage and a high energy density. Therefore, demands for drive power sources for portable devices and the like are increasing. At present, as a positive electrode active material of the nonaqueous electrolyte secondary battery, lithium cobalt oxide having a large capacity and good reversibility is mainly used.
現在、非水電解質二次電池には、適用される機器の改良に伴って、より高容量であることが要求されている。しかし、コバルト酸リチウムを使用した電池においては、その電池容量は、ほぼ限界に近いところまできている。 At present, non-aqueous electrolyte secondary batteries are required to have higher capacities in accordance with improvements in applied equipment. However, in a battery using lithium cobalt oxide, the battery capacity has almost reached the limit.
こうしたことから、非水電解質二次電池の更なる高容量化を図るべく、LiNiO2のような、より容量の大きな正極活物質の使用も検討されているが、例えばLiNiO2は結晶構造の可逆性が低いことから、これを用いた電池では充放電サイクル特性が低いといった問題もある。 For these reasons, in order to achieve a further high capacity of the non-aqueous electrolyte secondary battery, such as LiNiO 2, but it has also been studied the use of large electrode active material of more capacity, for example LiNiO 2 reversible crystal structure Because of its low performance, there is also a problem that the battery using this has low charge / discharge cycle characteristics.
一方、特許文献1には、Ni、MnおよびMgを必須元素とし、更にNb、Mo、Ga、WおよびVよりなる群から選択される少なくとも1種の元素を含み、かつNi、MnおよびMgの平均価数が特定値にあるリチウム含有複合酸化物を正極活物質として用いることで、高容量であり、かつ充放電サイクル特性に優れた非水電解質二次電池などの電気化学素子の提供を可能とした技術が提案されている。
On the other hand,
ところで、近年では、非水電解質二次電池の高容量化の要請に対し、充電時の上限電圧を従来よりも高めることで、これに対応しようとする検討がなされている。しかし、その一方で、非水電解質二次電池の充電電圧を高めると、正極活物質が劣化して、非水電解質二次電池の充放電サイクル特性の低下を引き起こすといった問題もある。 By the way, in recent years, it has been studied to respond to the demand for higher capacity of the non-aqueous electrolyte secondary battery by increasing the upper limit voltage at the time of charging as compared with the related art. However, on the other hand, when the charging voltage of the non-aqueous electrolyte secondary battery is increased, there is also a problem that the positive electrode active material is deteriorated and the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery are reduced.
本発明は、前記事情に鑑みてなされたものであり、その目的は、充電時の上限電圧を高めても、優れた充放電サイクル特性を発揮し得る非水電解質二次電池、前記非水電解質二次電池を構成するための正極、および前記非水電解質二次電池を有するシステムを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery capable of exhibiting excellent charge / discharge cycle characteristics even when the upper limit voltage during charging is increased, and the non-aqueous electrolyte. It is an object of the present invention to provide a positive electrode for constituting a secondary battery and a system having the nonaqueous electrolyte secondary battery.
前記目的を達成し得た本発明の非水電解質二次電池用正極は、正極、負極、セパレータおよび非水電解質を有する非水電解質二次電池に使用されるものであって、正極活物質、導電助剤およびバインダを含有する正極合剤層を有しており、前記正極合剤層は、前記正極活物質として、下記一般式(1)で表され、かつ一次粒子径が0.5μm以上の粒子を50質量%以上含むリチウム含有金属酸化物(A)を含有しており、前記正極合剤層が含有する正極活物質の全量を100質量%としたとき、前記リチウム含有金属酸化物(A)の含有量が、5〜80質量%であることを特徴とするものである。 The positive electrode for a non-aqueous electrolyte secondary battery of the present invention that has achieved the object is a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, and a positive electrode active material. It has a positive electrode mixture layer containing a conductive auxiliary and a binder, and the positive electrode mixture layer is represented by the following general formula (1) as the positive electrode active material, and has a primary particle diameter of 0.5 μm or more. Containing the lithium-containing metal oxide (A) containing 50% by mass or more of the particles of the lithium-containing metal oxide (A) when the total amount of the positive electrode active material contained in the positive electrode mixture layer is 100% by mass. The content of A) is 5 to 80% by mass.
LiaNi1−b−c−dCobMncM1 dMgeO2 (1) Li a Ni 1-b-c -d Co b Mn c M 1 d Mg e O 2 (1)
前記一般式(1)中、M1は、Li、Ni、CoおよびMn以外の金属元素であって、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.1≦b≦0.2、0≦c≦0.2、0.1≦b+c≦0.25、0.003≦d≦0.06、および0≦e≦0.003である。 In the general formula (1), M 1 is a metal element other than Li, Ni, Co and Mn, and is at least one selected from the group consisting of Al, Ti, Sr, Zr, Nb, Ag and Ba. 0.9 ≦ a ≦ 1.10, 0.1 ≦ b ≦ 0.2, 0 ≦ c ≦ 0.2, 0.1 ≦ b + c ≦ 0.25, 0.003 ≦ d ≦ 0 .06 and 0 ≦ e ≦ 0.003.
また、本発明の非水電解質二次電池は、正極、負極、セパレータおよび非水電解質を有するものであって、前記正極が、本発明の非水電解質二次電池用正極であることを特徴とするものである。 The non-aqueous electrolyte secondary battery of the present invention has a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, wherein the positive electrode is a positive electrode for a non-aqueous electrolyte secondary battery of the present invention. Is what you do.
更に、本発明の非水電解質二次電池のシステムは、本発明の非水電解質二次電池と充電装置とを備え、前記非水電解質二次電池に対し、4.3V以上の電圧を上限とする充電を行うことを特徴とするものである。 Furthermore, the non-aqueous electrolyte secondary battery system of the present invention includes the non-aqueous electrolyte secondary battery of the present invention and a charging device, and has a voltage of 4.3 V or more with respect to the non-aqueous electrolyte secondary battery as an upper limit. It is characterized by performing charging.
本発明によれば、充電時の上限電圧を高めても、優れた充放電サイクル特性を発揮し得る非水電解質二次電池、前記非水電解質二次電池を構成するための正極、および前記非水電解質二次電池を有するシステムを提供することができる。 According to the present invention, a non-aqueous electrolyte secondary battery capable of exhibiting excellent charge / discharge cycle characteristics even when the upper limit voltage during charging is increased, a positive electrode for constituting the non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte A system having a water electrolyte secondary battery can be provided.
本発明の非水電解質二次電池用正極(以下、単に「正極」という)は、正極活物質、導電助剤およびバインダを含有する正極合剤層を有しており、例えば、前記正極合剤層が集電体の片面または両面に形成された構造を有している。 The positive electrode for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, simply referred to as “positive electrode”) has a positive electrode mixture layer containing a positive electrode active material, a conductive auxiliary, and a binder. It has a structure in which a layer is formed on one side or both sides of the current collector.
本発明の正極は、正極活物質として、前記一般式(1)で表され、かつ特定の粒度を有するリチウム含有金属酸化物(A)を使用する。これにより、本発明の正極では、充電時の上限電圧を高めても、優れた充放電サイクル特性〔特に高温(40〜60℃程度)下での充放電サイクル特性〕を発揮し得る非水電解質二次電池を構成可能としている。 The positive electrode of the present invention uses a lithium-containing metal oxide (A) represented by the general formula (1) and having a specific particle size as a positive electrode active material. Thereby, the positive electrode of the present invention can exhibit excellent charge / discharge cycle characteristics (particularly, charge / discharge cycle characteristics at high temperatures (about 40 to 60 ° C.)) even when the upper limit voltage during charging is increased. A secondary battery can be configured.
リチウム含有金属酸化物(A)は、Ni、Co、Mnおよび元素M1の全元素量を1としたときに、Coの割合bおよびMnの割合cを、それぞれ、0.1≦b≦0.2、0≦c≦0.2とし、かつ0.1≦b+c≦0.25として、その結晶格子中に、Coを存在させるか、または、CoおよびMnを存在させている。これにより、Liの脱離および挿入によってリチウム含有金属酸化物(A)の相転移が起こる際に、構造変化による不可逆反応がCoやMnの作用によって緩和されることから、空間群R3−mとして表されるリチウム含有金属酸化物(A)の層状の結晶構造の可逆性が向上する。 The lithium-containing metal oxide (A) has a ratio b of Co and a ratio c of Mn of 0.1 ≦ b ≦ 0 when the total amount of Ni, Co, Mn and the element M1 is 1 , respectively. .2, 0 ≦ c ≦ 0.2 and 0.1 ≦ b + c ≦ 0.25, Co is present in the crystal lattice, or Co and Mn are present. Thereby, when the phase transition of the lithium-containing metal oxide (A) occurs due to the elimination and insertion of Li, the irreversible reaction due to the structural change is alleviated by the action of Co and Mn. The reversibility of the layered crystal structure of the lithium-containing metal oxide (A) represented is improved.
また、リチウム含有金属酸化物(A)において、Coは、特に上限電圧を4.3V以上とする充電時において高温下での充放電サイクル特性向上に寄与する成分である。前記一般式(1)において、Coの量bは、前記の各効果を良好に確保する観点から、0.1以上、好ましくは0.12以上である。ただし、リチウム含有金属酸化物(A)中のCoの量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(1)におけるCoの量bは、0.2以下である。 In addition, in the lithium-containing metal oxide (A), Co is a component that contributes to the improvement of the charge-discharge cycle characteristics at high temperatures, particularly during charging at an upper limit voltage of 4.3 V or more. In the general formula (1), the amount b of Co is 0.1 or more, preferably 0.12 or more, from the viewpoint of ensuring the above effects. However, if the amount of Co in the lithium-containing metal oxide (A) is too large, the amount of other elements becomes small, and the effect of these elements cannot be secured well. Is not more than 0.2.
更に、リチウム含有金属酸化物(A)にはMnを含有させなくてもよいが、含有させる場合には、前記の効果を良好に確保する観点から、前記一般式(1)におけるMnの量cは、0.005以上であることが好ましい。ただし、リチウム含有金属酸化物(A)中のMnの量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(1)におけるMnの量bは、0.2以下であり、0.15以下であることが好ましい。 Further, Mn may not be contained in the lithium-containing metal oxide (A), but when it is contained, the amount c of Mn in the general formula (1) is preferably from the viewpoint of ensuring the above-mentioned effects. Is preferably 0.005 or more. However, if the amount of Mn in the lithium-containing metal oxide (A) is too large, the amount of other elements decreases, and the effect of these elements cannot be secured satisfactorily. Is 0.2 or less, preferably 0.15 or less.
また、リチウム含有金属酸化物(A)は、元素M1として、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含有しており、これらの元素を含有することによっても、その安定性を高めて、充放電サイクル特性や安全性が高い電池を構成可能な正極を得ることができる。元素M1によるこのような効果を良好に確保する観点から、前記一般式(1)における元素M1の量dは、0.003以上、好ましくは0.01以上である。ただし、リチウム含有金属酸化物(A)中の元素M1の量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(1)における元素M1の量dは、0.06以下であり、0.04以下であることが好ましい。 Further, the lithium-containing metal oxide (A) as the element M 1, Al, Ti, Sr , Zr, Nb, contains at least one element selected from the group consisting of Ag and Ba, of By containing the element, the stability can be enhanced, and a positive electrode capable of forming a battery having high charge / discharge cycle characteristics and high safety can be obtained. Such effect element M 1 from the viewpoint of satisfactorily ensuring the amount d of the element M 1 in the general formula (1) is 0.003 or more, preferably 0.01 or more. However, lithium-containing metal oxide as the amount of the element M 1 in (A) is too large, becomes small amounts of other elements, for these by effects not satisfactorily ensured, the general formula (1) the amount d of the element M 1 in is 0.06 or less, preferably 0.04 or less.
更に、リチウム含有金属酸化物(A)は、Niを含有している。リチウム含有金属酸化物(A)の結晶格子中にNiを存在させると、電池の充放電でのLiの脱離および挿入がしやすくなり、リチウム含有金属酸化物(A)の容量を高めることができる。 Further, the lithium-containing metal oxide (A) contains Ni. When Ni is present in the crystal lattice of the lithium-containing metal oxide (A), desorption and insertion of Li during charging and discharging of the battery become easy, and the capacity of the lithium-containing metal oxide (A) can be increased. it can.
リチウム含有金属酸化物(A)を表す前記一般式(1)において、Niの量は、Coの量b、Mnの量cおよび元素M1の量dを用いて「1−b−c−d」で表されるが、このNiの量「1−b−c−d」は、具体的には、0.69以上であることが好ましく、また、0.897以下であることが好ましい。 The general formula representing the lithium-containing metal oxide (A) (1), the amount of Ni, the amount of Co b, using the amounts c and amount of the element M 1 d of Mn "1-b-c-d The Ni amount “1-b-cd” is, specifically, preferably 0.69 or more, and more preferably 0.897 or less.
また、リチウム含有金属酸化物(A)はMgを含有していてもよいが、Mgはリチウム含有金属酸化物(A)の容量減少を引き起こす作用が他の金属元素よりも強いため、その量を制限することが好ましい。具体的には、リチウム含有金属酸化物(A)を表す前記一般式(1)において、Mgの量eは、0.003以下であり、0.002以下であることが好ましい。また、リチウム含有金属酸化物(A)はMgを含有していなくてもよいため、前記一般式(1)におけるMgの量eの下限値は0である。 The lithium-containing metal oxide (A) may contain Mg. However, since Mg has a stronger effect of reducing the capacity of the lithium-containing metal oxide (A) than other metal elements, the amount of Mg is reduced. It is preferable to limit. Specifically, in the general formula (1) representing the lithium-containing metal oxide (A), the amount e of Mg is 0.003 or less, and preferably 0.002 or less. In addition, since the lithium-containing metal oxide (A) does not need to contain Mg, the lower limit of the amount e of Mg in the general formula (1) is 0.
リチウム含有金属酸化物(A)は、特に化学量論比に近い組成のときに、真密度と可逆性とを高めて、より高容量の材料とすることが可能となる。よって、リチウム含有金属酸化物(A)を表す前記一般式(1)において、Liの量aは、0.9以上1.10以下であり、これにより、リチウム含有金属酸化物(A)の真密度と可逆性とを高めることができる。 When the composition of the lithium-containing metal oxide (A) is particularly close to the stoichiometric ratio, the true density and the reversibility are enhanced, and a material having a higher capacity can be obtained. Therefore, in the general formula (1) representing the lithium-containing metal oxide (A), the amount a of Li is 0.9 or more and 1.10 or less, whereby the true value of the lithium-containing metal oxide (A) is reduced. Density and reversibility can be increased.
リチウム含有金属酸化物(A)は、その全量100質量%中に、一次粒子径が0.5μm以上の粒子を50質量%以上、好ましくは70質量%以上、特に好ましくは100質量%含んでいる。一次粒子径が前記のように比較的大きな粒子を前記の量で含むリチウム含有金属酸化物(A)を使用することで、電池の高温下での充放電サイクル特性を高めることができる。なお、本発明の正極の製造に供されるリチウム含有金属酸化物(A)は、一次粒子径が0.5μm以上の粒子を前記特定量で含んでいれば、一次粒子の状態であってもよく、一次粒子が凝集した二次粒子の状態であってもよく、一次粒子と二次粒子とが混在した状態であってもよい。 The lithium-containing metal oxide (A) contains 50% by mass or more, preferably 70% by mass or more, particularly preferably 100% by mass, of particles having a primary particle size of 0.5 μm or more, based on the total amount of 100% by mass. . By using the lithium-containing metal oxide (A) containing the particles having a relatively large primary particle size in the above-described amount, the charge / discharge cycle characteristics of the battery at a high temperature can be improved. The lithium-containing metal oxide (A) used for producing the positive electrode of the present invention may be in the form of primary particles as long as it contains particles having a primary particle diameter of 0.5 μm or more in the specific amount. The primary particles may be in a state of secondary particles in which the primary particles are aggregated, or may be in a state in which primary particles and secondary particles are mixed.
ただし、リチウム含有金属酸化物(A)の一次粒子径が大きすぎると、負荷特性が悪くなり、容量が低下する虞があることから、リチウム含有金属酸化物(A)中に含まれる粒子(一次粒子)のうちの、粒子径の最大値(一次粒子径の最大値)は、5μmであることが好ましい。 However, if the primary particle diameter of the lithium-containing metal oxide (A) is too large, the load characteristics may deteriorate and the capacity may decrease. Of the particles, the maximum value of the particle diameter (the maximum value of the primary particle diameter) is preferably 5 μm.
本明細書でいうリチウム含有金属酸化物(A)の一次粒子径は、以下の方法(a)によって測定される値である。 The primary particle diameter of the lithium-containing metal oxide (A) referred to in this specification is a value measured by the following method (a).
(a)正極合剤層内に存在するリチウム含有金属酸化物(A)の一次粒子径の測定方法
イオンミリングによって加工した正極(正極合剤層)の断面について、EDX装置を備えた走査型電子顕微鏡を用い、観察倍率500倍の条件でEDX装置によりマッピングを行い、Ni濃度の高い粒子について、更に元素分析によってリチウム含有金属酸化物(A)であることを特定する。そして、その視野に存在するリチウム含有金属酸化物(A)の粒子について、倍率5000倍の条件で拡大したときに、一次粒子の短径(一次粒子中の最大径となる部分に直交する部分の径)の長さを測定することによって一次粒子径を求める。ここで、リチウム含有金属酸化物(A)中の一次粒子径が0.5μm以上である粒子の割合は、前述の方法で測定したリチウム含有金属酸化物(A)の0.5μm以上の粒子の個数を、視野中の一次粒子の総個数で割ったものを百分率で表わして求め、また、一次粒子径の最大値は、その中で最も大きい一次粒子の径とする。なお、後述する実施例では、前記の走査型電子顕微鏡として日立ハイテクノロジーズ社製「S−3400N型走査電子顕微鏡」を用い、マッピング時の加速電圧を15kVとし、視野中のリチウム含有金属酸化物(A)の粒子の倍率5000倍での観察時の加速電圧を2kVとして、正極合剤層中のリチウム含有金属酸化物(A)の一次粒子径を求めた。
(A) Method for measuring primary particle diameter of lithium-containing metal oxide (A) present in positive electrode mixture layer Regarding the cross section of the positive electrode (positive electrode mixture layer) processed by ion milling, a scanning electron microscope equipped with an EDX device Using a microscope, mapping is performed by an EDX device under the condition of an observation magnification of 500 times, and the particles having a high Ni concentration are further identified as a lithium-containing metal oxide (A) by elemental analysis. Then, when the particles of the lithium-containing metal oxide (A) present in the visual field are enlarged under the condition of 5,000 times magnification, the minor axis of the primary particle (the part orthogonal to the part having the maximum diameter in the primary particle) The primary particle diameter is determined by measuring the length of the diameter. Here, the proportion of the particles having a primary particle diameter of 0.5 μm or more in the lithium-containing metal oxide (A) is the proportion of the particles of 0.5 μm or more of the lithium-containing metal oxide (A) measured by the method described above. The number is obtained by dividing the number by the total number of primary particles in the visual field and expressed as a percentage, and the maximum value of the primary particle diameter is the diameter of the largest primary particle. In the examples described below, an “S-3400N scanning electron microscope” manufactured by Hitachi High-Technologies Corporation was used as the scanning electron microscope, the acceleration voltage during mapping was set to 15 kV, and the lithium-containing metal oxide ( The primary particle diameter of the lithium-containing metal oxide (A) in the positive electrode mixture layer was determined by setting the accelerating voltage at the time of observation of the particles of A) at 5,000 times to 2 kV.
なお、一次粒子径が0.5μm以上の粒子を50質量%以上含むリチウム含有金属酸化物(A)や、更には一次粒子径の最大値が前記好適値を満たすリチウム含有金属酸化物(A)を含有する正極合剤層は、下記(b)の方法により測定される一次粒子径が0.5μm以上の粒子を50質量%以上含むリチウム含有金属酸化物(A)や、更には下記(b)の方法により測定される一次粒子径の最大値が前記好適値を満たすリチウム含有金属酸化物(A)を使用することで、形成することができる。 In addition, a lithium-containing metal oxide (A) containing 50% by mass or more of particles having a primary particle size of 0.5 μm or more, and a lithium-containing metal oxide (A) having a maximum primary particle size satisfying the preferred value described above Of the lithium-containing metal oxide (A) containing 50% by mass or more of particles having a primary particle diameter of 0.5 μm or more measured by the method of (b) below, and the following (b) )) Can be formed by using the lithium-containing metal oxide (A) whose maximum value of the primary particle diameter measured by the method of (1) satisfies the preferred value.
(b)正極合剤層の形成に使用するリチウム含有金属酸化物(A)の一次粒子径
リチウム含有金属酸化物(A)の粉体を一次粒子になるまで解砕し、レーザー回折散乱式粒度分布測定装置を用いて粒度分布を測定することにより、正極合剤層の形成に使用するリチウム含有金属酸化物(A)中の一次粒子径が0.5μm以上である粒子の割合、およびリチウム含有金属酸化物(A)の一次粒子径の最大値を求める。なお、後述する実施例では、レーザー回折散乱式粒度分布測定装置として日揮装社製の「マイクロトラックHRA」を使用し、リチウム含有金属酸化物(A)の粉体の解砕回数は、誤差を低減するために20回とした。
(B) Primary particle size of lithium-containing metal oxide (A) used for forming positive electrode mixture layer Powder of lithium-containing metal oxide (A) is crushed into primary particles, and a laser diffraction scattering particle size is obtained. By measuring the particle size distribution using a distribution measuring device, the proportion of particles having a primary particle diameter of 0.5 μm or more in the lithium-containing metal oxide (A) used for forming the positive electrode mixture layer, The maximum value of the primary particle diameter of the metal oxide (A) is determined. In the examples described later, “Microtrack HRA” manufactured by JGC Co., Ltd. was used as a laser diffraction / scattering type particle size distribution analyzer. The number was set to 20 times to reduce the number.
リチウム含有金属酸化物(A)は、Li含有化合物(水酸化リチウムなど)、Ni含有化合物(硫酸ニッケルなど)、Co含有化合物(硫酸コバルトなど)、Mn含有化合物(硫酸マンガンなど)、元素M1やMgを含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、この原料混合物を焼成するなどして製造することができる。 The lithium-containing metal oxide (A) includes a Li-containing compound (such as lithium hydroxide), a Ni-containing compound (such as nickel sulfate), a Co-containing compound (such as cobalt sulfate), a Mn-containing compound (such as manganese sulfate), and an element M 1. And Mg-containing compounds (oxides, hydroxides, sulfates, etc.) are mixed, and this raw material mixture is calcined.
なお、より高い純度でリチウム含有金属酸化物(A)を合成するには、Ni、Co、Mn、元素M1およびMgのうちの複数の元素を含む複合化合物(水酸化物、酸化物など)と、他の原料化合物(Li含有化合物など)とを混合し、この原料混合物を焼成することが好ましい。 Incidentally, the synthesized lithium-containing metal oxide (A) at a higher purity, Ni, Co, Mn, complex compound containing a plurality of elements selected from the elements M 1 and Mg (hydroxides, such as an oxide) And another raw material compound (such as a Li-containing compound), and then firing the raw material mixture.
リチウム含有金属酸化物(A)を合成するための原料混合物の焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。 The firing conditions of the raw material mixture for synthesizing the lithium-containing metal oxide (A) can be, for example, 800 to 1050 ° C. for 1 to 24 hours, but once lower than the firing temperature (for example, 250 to 250 ° C.). (850 ° C.), and preheating is performed by maintaining the temperature at that temperature, and then the temperature is preferably raised to the firing temperature to allow the reaction to proceed. The preheating time is not particularly limited, but may be generally about 0.5 to 30 hours. The atmosphere during firing may be an atmosphere containing oxygen (that is, in the air), a mixed atmosphere of an inert gas (argon, helium, nitrogen, or the like) and oxygen gas, an oxygen gas atmosphere, or the like. In this case, the oxygen concentration (by volume) is preferably 15% or more, and more preferably 18% or more.
なお、リチウム含有金属酸化物(A)は、Niの含有量が多いことから、混入するアルカリ成分〔リチウム含有金属酸化物(A)の合成原料であるアルカリ成分のうちの未反応物やリチウム含有金属酸化物(A)の合成時に副生するアルカリ成分〕も多く、これが高温下や充電時に分解してガスを発生させ、電池を膨れさせて容量低下や高温下での充放電サイクル特性の低下を引き起こす虞がある。よって、本発明の正極においては、正極合剤層が含有する正極活物質の全量を100質量%としたとき、リチウム含有金属酸化物(A)の含有量が、80質量%以下、好ましくは40質量%以下であり、これにより、正極に含まれる前記のアルカリ成分の総量を減らして、高温下での充放電サイクル特性や容量の低下を抑えることを可能としている。 Since the lithium-containing metal oxide (A) has a high Ni content, the alkali component to be mixed [unreacted material or lithium-containing alkali component among the alkali components which are the raw materials for synthesizing the lithium-containing metal oxide (A)] is used. Alkali component by-produced during the synthesis of the metal oxide (A)], which decomposes at high temperatures or during charging to generate gas, swells the battery, lowers capacity and lowers charge-discharge cycle characteristics at high temperatures. May be caused. Therefore, in the positive electrode of the present invention, when the total amount of the positive electrode active material contained in the positive electrode mixture layer is 100% by mass, the content of the lithium-containing metal oxide (A) is 80% by mass or less, preferably 40% by mass or less. % By mass or less, whereby the total amount of the alkali components contained in the positive electrode is reduced, thereby making it possible to suppress a decrease in charge / discharge cycle characteristics and capacity at high temperatures.
また、本発明の正極においては、正極合剤層が含有する正極活物質の全量を100質量%としたとき、リチウム含有金属酸化物(A)の含有量が、5質量%以上、好ましくは10質量%以上であり、これにより、リチウム含有金属酸化物(A)の使用による前記の効果を良好に確保している。 In the positive electrode of the present invention, when the total amount of the positive electrode active material contained in the positive electrode mixture layer is 100% by mass, the content of the lithium-containing metal oxide (A) is 5% by mass or more, preferably 10% by mass or more. % By mass or more, whereby the above-described effect due to the use of the lithium-containing metal oxide (A) is well ensured.
本発明の正極において、リチウム含有金属酸化物(A)と併用する正極活物質としては、LiCoO2などのリチウムコバルト酸化物;LiMnO2、Li2MnO3などのリチウムマンガン酸化物;リチウムニッケル酸化物〔前記一般式(1)で表されるもの、および前記一般式(1)で表されるものと、Ni含有量が同等以上のものを除く〕;LiMn2O4、Li4/3Ti5/3O4などのスピネル構造のリチウム含有複合酸化物;LiFePO4などのオリビン構造のリチウム含有金属酸化物;前記の酸化物を基本組成とし各種元素で置換した酸化物;などが挙げられる。 In the positive electrode of the present invention, the positive electrode active material used in combination with the lithium-containing metal oxide (A) includes lithium cobalt oxide such as LiCoO 2 ; lithium manganese oxide such as LiMnO 2 and Li 2 MnO 3 ; lithium nickel oxide [Excluding those represented by the general formula (1) and those represented by the general formula (1) having a Ni content equal to or more than that]; LiMn 2 O 4 , Li 4/3 Ti 5 / 3 O 4 and other lithium-containing composite oxides; olivine-structured lithium-containing metal oxides such as LiFePO 4 ; and oxides obtained by substituting the above-described oxides with the basic composition and various elements.
このような正極活物質の中でも、下記一般式(2)で表されるリチウム含有金属酸化物(B)を、リチウム含有金属酸化物(A)と併用することが好ましい。リチウム含有金属酸化物(A)と下記一般式(2)で表されるリチウム含有金属酸化物(B)とを正極活物質として併用した正極を用いた非水電解質二次電池であれば、リチウム含有金属酸化物(A)を単独で使用した場合や、リチウム含有金属酸化物(B)を単独で使用した場合に比べて、上限電圧を4.3V以上とした場合の高温下での充放電サイクル特性が特に良好となる。 Among such positive electrode active materials, it is preferable to use the lithium-containing metal oxide (B) represented by the following general formula (2) together with the lithium-containing metal oxide (A). A non-aqueous electrolyte secondary battery using a positive electrode in which a lithium-containing metal oxide (A) and a lithium-containing metal oxide (B) represented by the following general formula (2) are used in combination as a positive electrode active material is lithium. Charge and discharge at a high temperature when the upper limit voltage is set to 4.3 V or more as compared with the case where the metal oxide containing metal (A) is used alone or the case where the metal oxide containing lithium (B) is used alone. The cycle characteristics become particularly good.
LifCo1−g−hM2 gM3 hO2 (2) Li f Co 1-g-h M 2 g M 3 h O 2 (2)
前記一般式(2)中、M2は、Al、MgおよびErよりなる群から選択される少なくとも1種の元素で、M3は、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Mo、V、Sn、Ta、NbおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦f≦1.10、0.010≦g≦0.1、0≦h≦0.05、g+h≦0.12である。 In the general formula (2), M 2 is at least one element selected from the group consisting of Al, Mg and Er, and M 3 is Zr, Ti, Ni, Mn, Na, Bi, Ca, F , P, Sr, W, Ba, Mo, V, Sn, Ta, Nb and Zn, at least one element selected from the group consisting of 0.9 ≦ f ≦ 1.10 and 0.010 ≦ g. ≦ 0.1, 0 ≦ h ≦ 0.05, and g + h ≦ 0.12.
リチウム含有金属酸化物(B)において、元素M2であるAl、MgおよびErは、電池の充放電に伴うCoの溶出を抑制して、特に上限電圧を4.3V以上とする充電時において高温下での充放電サイクル特性向上に寄与する成分である。リチウム含有金属酸化物(B)は、元素M2としてAl、MgおよびErのうちの少なくとも1種を含有していればよいが、複数種含有していてもよい。 In the lithium-containing metal oxide (B), an element M 2 Al, Mg and Er are hot during charging to suppress the elution of Co due to the charge and discharge of the battery, especially the upper limit voltage 4.3V or more It is a component that contributes to improving the charge / discharge cycle characteristics below. Lithium-containing metal oxide (B) is, Al as the element M 2, it is sufficient only to contain at least one of Mg and Er, may contain plural kinds.
元素M2による前記の効果を良好に確保する観点から、前記一般式(2)における元素M2の量gは、0.010以上であることが好ましく、0.014以上であることがより好ましい。ただし、リチウム含有金属酸化物(B)中の元素M2の量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(2)における元素M2の量gは、0.1以下であることが好ましく、0.05以下であることがより好ましい。 The effect of the by elements M 2 from the viewpoint of satisfactorily ensuring the amount g of elements M 2 in the formula (2) is preferably 0.010 or more, and more preferably 0.014 or more . However, since the amount of the element M 2 in the lithium-containing metal oxide (B) is too large, becomes small amounts of other elements, not be satisfactorily secured them due to the effect, the general formula (2) the amount g of elements M 2 in is preferably 0.1 or less, and more preferably 0.05 or less.
また、リチウム含有金属酸化物(B)には、元素M3として、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Mo、V、Sn、Ta、NbおよびZnよりなる群から選択される少なくとも1種の元素を含有させることもできる。これらの元素M3も、特に上限電圧を4.3V以上とする充電時において高温下での充放電サイクル特性向上に寄与する。 Further, the lithium-containing metal oxide (B), as the element M 3, Zr, Ti, Ni , Mn, Na, Bi, Ca, F, P, Sr, W, Ba, Mo, V, Sn, Ta, At least one element selected from the group consisting of Nb and Zn may be contained. These elements M 3 also contributes to the charge-discharge cycle characteristics improve at a high temperature, particularly in the time of charging to the upper limit voltage or 4.3 V.
ただし、リチウム含有金属酸化物(B)中の元素M3の量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(2)における元素M3の量hは、0.05以下であることが好ましく、0.01以下であることがより好ましい。なお、リチウム含有金属酸化物(B)は元素M3を含有していなくてもよいが、これらを含有させる場合には、元素M3による前記の効果をより良好に確保する観点からは、前記一般式(2)における元素M3の量hは、0.0005以上であることが好ましい。 However, since the amount of the element M 3 in the lithium-containing metal oxide (B) is too large, becomes small amounts of other elements, not be satisfactorily secured them due to the effect, the general formula (2) the amount h of the element M 3 in is preferably 0.05 or less, more preferably 0.01 or less. Incidentally, the lithium-containing metal oxide (B) may not contain an element M 3, but in case of containing these, from the viewpoint of better ensuring the effect of the by elemental M 3, wherein the amount h of the element M 3 in the general formula (2) is preferably 0.0005 or more.
また、リチウム含有金属酸化物(B)において、Coは容量向上に寄与する成分であるため、元素M2や元素M3の量を制限し十分な量のCoを含有できるようにして、リチウム含有金属酸化物(B)の容量を大きく保つ観点から、前記一般式(2)における元素M2の量gと元素M3の量hとの合計g+hは、0.12以下であることが好ましい。 In addition, in the lithium-containing metal oxide (B), Co is a component that contributes to capacity improvement. Therefore, the amount of the element M 2 or the element M 3 is limited so that a sufficient amount of Co can be contained so that the lithium-containing metal oxide (B) can be contained. from the viewpoint of maintaining a large volume of metal oxide (B), the sum g + h and the amount h of the amount g and the element M 3 element M 2 in the formula (2) is preferably 0.12 or less.
リチウム含有金属酸化物(B)もリチウム含有金属酸化物(A)と同様に、特に化学量論比に近い組成のときに、真密度と可逆性とを高めて、より高容量の材料とすることが可能となる。よって、リチウム含有金属酸化物(B)を表す前記一般式(2)において、Liの量fは、0.9以上1.10以下であることが好ましく、これにより、リチウム含有金属酸化物(B)の真密度と可逆性とを高めることができる。 Similarly to the lithium-containing metal oxide (A), the lithium-containing metal oxide (B) increases the true density and the reversibility, particularly when the composition is close to the stoichiometric ratio, to provide a higher capacity material. It becomes possible. Therefore, in the general formula (2) representing the lithium-containing metal oxide (B), the amount f of Li is preferably 0.9 or more and 1.10 or less, whereby the lithium-containing metal oxide (B) ) Can be improved.
リチウム含有金属酸化物(B)は、Li含有化合物(水酸化リチウムなど)、Co含有化合物(硫酸コバルトなど)、および元素M2や元素M3を含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、この原料混合物を焼成するなどして製造することができる。 Lithium-containing metal oxide (B) is, Li-containing compound (lithium hydroxide, etc.), Co-containing compound (such as cobalt sulfate), and the element M 2 and the element M 3 compounds containing (oxides, hydroxides, sulfate Salt, etc.) and baking the raw material mixture.
なお、より高い純度でリチウム含有金属酸化物(B)を合成するには、Co、元素M2および元素M3のうちの複数の元素を含む複合化合物(水酸化物、酸化物など)と、他の原料化合物(Li含有化合物など)とを混合し、この原料混合物を焼成することが好ましい。 Note that in order to synthesize a lithium-containing metal oxide (B) at a higher purity, Co, composite compound containing a plurality of elements selected from the elements M 2 and the element M 3 (the hydroxides, oxides, etc.), It is preferable to mix the mixture with another raw material compound (such as a Li-containing compound) and calcine the raw material mixture.
リチウム含有金属酸化物(B)を合成するための原料混合物の焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。 The firing conditions of the raw material mixture for synthesizing the lithium-containing metal oxide (B) can be, for example, 800 to 1,050 ° C. for 1 to 24 hours, but once lower than the firing temperature (for example, 250 to 250 ° C.). (850 ° C.), and preheating is performed by maintaining the temperature at that temperature, and then the temperature is preferably raised to the firing temperature to allow the reaction to proceed. The preheating time is not particularly limited, but may be generally about 0.5 to 30 hours. The atmosphere during firing may be an atmosphere containing oxygen (that is, in the air), a mixed atmosphere of an inert gas (argon, helium, nitrogen, or the like) and oxygen gas, an oxygen gas atmosphere, or the like. In this case, the oxygen concentration (by volume) is preferably 15% or more, and more preferably 18% or more.
正極合剤層における正極活物質の含有量は、94〜98質量%であることが好ましい。 The content of the positive electrode active material in the positive electrode mixture layer is preferably from 94 to 98% by mass.
正極の導電助剤には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類;炭素繊維;などの炭素材料を用いることが好ましく、また、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などを用いることもできる。 Examples of the conductive assistant for the positive electrode include graphites such as natural graphite (such as flake graphite) and artificial graphite; and carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black. It is preferable to use carbon materials such as carbon fibers; conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; A conductive metal oxide such as titanium oxide; an organic conductive material such as a polyphenylene derivative; and the like can also be used.
正極合剤層における導電助剤の含有量は、充電時における正極でのリチウムイオンの脱離スピードを抑制して、負極でのリチウムイオンの受け入れスピードとのバランスをより良好にし、電池の充放電に伴う負極表面でのリチウムデンドライトの発生を高度に抑制して、電池の充放電サイクル特性をより高める観点から、2.0質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。ただし、正極合剤層中の導電助剤の量が少なすぎると、正極合剤層中の導電性が低下して、電池の容量低下などを引き起こす虞があることから、正極合剤層における導電助剤の含有量は、0.5質量%を超えていることが好ましく、1.0質量%以上であることがより好ましい。 The content of the conductive auxiliary agent in the positive electrode mixture layer suppresses the speed of lithium ion desorption at the positive electrode during charging, improves the balance with the speed of lithium ion reception at the negative electrode, and improves the charge and discharge of the battery. It is preferably 2.0% by mass or less, and more preferably 1.5% by mass or less from the viewpoint of highly suppressing the generation of lithium dendrite on the negative electrode surface due to the above, and further enhancing the charge / discharge cycle characteristics of the battery. Is more preferred. However, if the amount of the conductive auxiliary agent in the positive electrode mixture layer is too small, the conductivity in the positive electrode mixture layer may be reduced, and the capacity of the battery may be reduced. The content of the assistant is preferably more than 0.5% by mass, more preferably 1.0% by mass or more.
正極のバインダとしては、例えば、アクリロニトリル、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2エチルヘキシルなど)およびメタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなど)よりなる群から選択される少なくとも1種のモノマーを含む2種以上のモノマーにより形成されるコポリマー;水素化ニトリルゴム;PVDF;フッ化ビニリデン−テトラフルオロエチレンコポリマー(VDF−TFE);フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンコポリマー(VDF−HFP−TFE);フッ化ビニリデン−クロロトリフルオロエチレンコポリマー(VDF−CTFE);などが挙げられ、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。 Examples of the binder for the positive electrode include acrylonitrile, acrylates (eg, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate) and methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate). A copolymer formed by two or more monomers including at least one monomer selected from the group consisting of: hydrogenated nitrile rubber; PVDF; vinylidene fluoride-tetrafluoroethylene copolymer (VDF-TFE); Hexafluoropropylene-tetrafluoroethylene copolymer (VDF-HFP-TFE); vinylidene fluoride-chlorotrifluoroethylene copolymer (VDF-CTFE); and only one of these. May be used, it may be used in combination of two or more thereof.
正極合剤層におけるバインダの含有量は、正極合剤層における正極活物質や導電助剤を良好に結着できるようにして、これらの正極合剤層からの脱離を防止し、この正極が用いられる電池の信頼性をより良好に高める観点から、1質量%以上であることが好ましい。ただし、正極合剤層中のバインダの量が多すぎると、正極活物質の量や導電助剤の量が少なくなって、高容量化の効果が小さくなる虞がある。よって、正極合剤層におけるバインダの含有量は、1.6質量%以下であることが好ましい。 The content of the binder in the positive electrode mixture layer is such that the positive electrode active material and the conductive auxiliary agent in the positive electrode mixture layer can be satisfactorily bound to prevent desorption from these positive electrode mixture layers. From the viewpoint of better enhancing the reliability of the battery used, the content is preferably 1% by mass or more. However, when the amount of the binder in the positive electrode mixture layer is too large, the amount of the positive electrode active material and the amount of the conductive auxiliary agent are reduced, and the effect of increasing the capacity may be reduced. Therefore, the content of the binder in the positive electrode mixture layer is preferably 1.6% by mass or less.
正極を作製するにあたっては、前記の正極活物質、導電助剤およびバインダなどを含む正極合剤を、N−メチル−2−ピロリドン(NMP)などの溶剤を用いて均一に分散させたペースト状やスラリー状の組成物を調製し(バインダは溶剤に溶解していてもよい)、この組成物を正極集電体表面に塗布して乾燥し、必要に応じてプレス処理により正極合剤層の厚みや密度を調整する方法が採用できる。ただし、本発明の正極の作製方法は前記の方法に限られず、他の方法を採用しても構わない。 In preparing the positive electrode, a paste mixture in which the positive electrode mixture containing the positive electrode active material, the conductive auxiliary agent, the binder, and the like is uniformly dispersed using a solvent such as N-methyl-2-pyrrolidone (NMP) is used. A slurry-like composition is prepared (the binder may be dissolved in a solvent), this composition is applied to the surface of the positive electrode current collector and dried, and if necessary, the thickness of the positive electrode mixture layer is reduced by pressing. And a method of adjusting the density. However, the method for producing the positive electrode of the present invention is not limited to the above method, and another method may be adopted.
正極集電体の材質は、電池内において化学的に安定な電子伝導体であれば特に限定されない。例えば、アルミニウムまたはアルミニウム合金、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂などの他に、アルミニウム、アルミニウム合金またはステンレス鋼の表面に炭素層またはチタン層を形成した複合材などを用いることができる。このような材質で構成される正極集電体の中でも、アルミニウムやアルミニウム合金で構成された箔、フィルムなどが好ましい。 The material of the positive electrode current collector is not particularly limited as long as it is an electronic conductor that is chemically stable in the battery. For example, in addition to aluminum or an aluminum alloy, stainless steel, nickel, titanium, carbon, a conductive resin, and the like, a composite material or the like in which a carbon layer or a titanium layer is formed on the surface of aluminum, an aluminum alloy, or stainless steel can be used. . Among the positive electrode current collectors made of such materials, foils and films made of aluminum or an aluminum alloy are preferable.
正極集電体は、その厚みが、11μm以下、好ましくは10μm以下である。正極集電体を薄くすることで、非水電解質二次電池の内容積のうち、正極集電体によって占有される割合を可及的に小さくすることができるため、このような正極を用いて形成される非水電解質二次電池では、内部への非水電解質の導入量をより多くすることが可能となる。 The thickness of the positive electrode current collector is 11 μm or less, preferably 10 μm or less. By reducing the thickness of the positive electrode current collector, the proportion of the internal volume of the nonaqueous electrolyte secondary battery occupied by the positive electrode current collector can be made as small as possible. In the formed non-aqueous electrolyte secondary battery, the amount of the non-aqueous electrolyte introduced into the inside can be increased.
充電の上限電圧を4.3V以上に設定することで高容量化を図った場合には、非水電解質二次電池が充電された状態での正極の電位が非常に高くなるため、非水電解質の酸化分解が起こり、正極中の非水電解質が不足することにより、正極中に含まれる正極活物質の表層に分解生成物が堆積したり、粒子間のイオン伝導経路が減少したりし、これらが電池の充放電サイクル特性の低下の原因となる虞がある。しかしながら、前記のような薄い正極集電体を使用し、非水電解質二次電池の内部への非水電解質の導入量を多くした場合には、前記の問題の発生を抑えて、この問題の発生に起因する充放電サイクル特性の低下を抑制することができる。 When the capacity is increased by setting the upper limit voltage of charging to 4.3 V or higher, the potential of the positive electrode in the charged state of the non-aqueous electrolyte secondary battery becomes extremely high. Oxidation decomposition of the non-aqueous electrolyte in the positive electrode occurs, and decomposition products are deposited on the surface layer of the positive electrode active material contained in the positive electrode, and ion conduction paths between particles are reduced. May cause the deterioration of the charge / discharge cycle characteristics of the battery. However, when the thin positive electrode current collector as described above is used and the amount of the nonaqueous electrolyte introduced into the nonaqueous electrolyte secondary battery is increased, the occurrence of the above problem is suppressed, and this problem is solved. It is possible to suppress a decrease in charge / discharge cycle characteristics due to the occurrence.
ただし、正極集電体が薄すぎると、強度が不足して正極や電池の生産性が損なわれる虞があることから、正極集電体の厚みは、6μm以上であることが好ましい。 However, if the positive electrode current collector is too thin, the strength is insufficient and productivity of the positive electrode and the battery may be impaired. Therefore, the thickness of the positive electrode current collector is preferably 6 μm or more.
正極合剤層の厚みは、集電体の片面あたり、30〜80μmであることが好ましい。また、正極合剤層においては、より高容量とする観点から、充填率が75%以上であることが好ましい。ただし、正極合剤層の充填率が高すぎると、正極合剤層中の空孔が少なくなりすぎて、正極合剤層中への非水電解質(非水電解液)の浸透性が低下する虞があることから、その充填率は、83%以下であることが好ましい。正極合剤層の充填率は、下記式により求められる。 The thickness of the positive electrode mixture layer is preferably 30 to 80 μm per one surface of the current collector. In the positive electrode mixture layer, the filling rate is preferably 75% or more from the viewpoint of higher capacity. However, if the filling rate of the positive electrode mixture layer is too high, the porosity in the positive electrode mixture layer becomes too small, and the permeability of the nonaqueous electrolyte (nonaqueous electrolyte) into the positive electrode mixture layer decreases. Since there is a possibility that the filling rate is 83% or less. The filling rate of the positive electrode mixture layer is determined by the following equation.
充填率(%) = 100×(正極合剤層の実密度/正極合剤層の理論密度) Filling rate (%) = 100 × (actual density of positive electrode mixture layer / theoretical density of positive electrode mixture layer)
正極合剤層の充填率を算出するための前記式における「正極合剤層の理論密度」とは、正極合剤層の各構成成分の密度と含有量とから算出される密度(正極合剤層中に空孔が存在しないものとして求めた密度)であり、「正極合剤層の実密度」とは、以下の方法により測定されるものである。まず、正極を1cm×1cmの大きさに切り取り、マイクロメータで厚み(l1)を、精密天秤で質量(m1)を測定する。次に、正極合剤層を削り取り、集電体のみを取り出して、その集電体の厚み(lc)と質量(mc)を正極と同様に測定する。得られた厚みと質量から、以下の式によって正極合剤層の実密度(dca)を求める(前記の厚みの単位はcm、質量の単位はgである)。
dca=(m1−mc)/(l1−lc)
The “theoretical density of the positive electrode mixture layer” in the above formula for calculating the filling rate of the positive electrode mixture layer is the density (positive electrode mixture) calculated from the density and content of each component of the positive electrode mixture layer. (The density obtained assuming that there are no pores in the layer), and the "actual density of the positive electrode mixture layer" is measured by the following method. First, cut a positive electrode to a size of 1 cm × 1 cm, a thickness micrometer (l 1), measuring the mass (m 1) a precision balance. Next, scraped off the positive electrode mixture layer, and extract only the collector, measuring the thickness of the current collector (l c) mass (m c) in the same manner as the positive electrode. From the obtained thickness and mass, the actual density (d ca ) of the positive electrode mixture layer is determined by the following formula (the unit of the thickness is cm and the unit of mass is g).
d ca = (m 1 -m c ) / (l 1 -l c)
また、正極には、必要に応じて、非水電解質二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 Further, a lead body for electrically connecting to other members in the non-aqueous electrolyte secondary battery may be formed on the positive electrode according to a conventional method, if necessary.
本発明の非水電解質二次電池は、正極、負極、セパレータおよび非水電解質を備えており、正極として本発明の正極を有していればよく、その他の構成および構造については特に制限はなく、従来から知られている非水電解質二次電池に採用されている各構成および構造を適用することができる。 The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, and may have the positive electrode of the present invention as a positive electrode, and other configurations and structures are not particularly limited. Each configuration and structure employed in a conventionally known nonaqueous electrolyte secondary battery can be applied.
本発明の非水電解質二次電池に係る負極には、例えば、負極活物質やバインダ、更には必要に応じて導電助剤などを含有する負極合剤層を、集電体の片面または両面に有する構造のものを使用することができる。 In the negative electrode according to the nonaqueous electrolyte secondary battery of the present invention, for example, a negative electrode mixture layer containing a negative electrode active material and a binder, and further, if necessary, a conductive auxiliary, on one or both surfaces of the current collector It is possible to use one having a structure having.
負極活物質としては、例えば、黒鉛〔鱗片状黒鉛などの天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;など〕、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、リチウムと合金化可能な金属(Si、Snなど)またはその合金、酸化物などが挙げられ、これらのうちの1種または2種以上を用いることができる。 Examples of the negative electrode active material include graphite [natural graphite such as flaky graphite; artificial graphite obtained by graphitizing easily graphitizable carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB), and carbon fibers at 2800 ° C. or more. ; Pyrolyzed carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fiber, activated carbon, metals (Si, Sn, etc.) that can be alloyed with lithium or the like. Alloys, oxides, and the like can be given, and one or more of these can be used.
前記の負極活物質の中でも、特に非水電解質二次電池の高容量化を図るには、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。以下、当該材料を「SiOx」という)を用いることが好ましい。また、このような高容量の負極活物質を使用することで、負極合剤層を薄くしつつ、電池の容量を大きくすることができる。 Among the above-mentioned negative electrode active materials, in order to increase the capacity of the non-aqueous electrolyte secondary battery in particular, a material containing Si and O as constituent elements (however, the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5. Hereinafter, the material is preferably referred to as “SiO x ”. In addition, by using such a high-capacity negative electrode active material, the capacity of the battery can be increased while the thickness of the negative electrode mixture layer is reduced.
SiOxは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOxには、非晶質のSiO2マトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiO2と、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiO2マトリックス中に、Siが分散した構造で、SiO2とSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 SiO x may include a microcrystalline or amorphous phase of Si, and in this case, the atomic ratio of Si to O is a ratio including the microcrystalline or amorphous phase of Si. That is, the SiO x to SiO 2 matrix of amorphous Si (e.g., microcrystalline Si) is include the dispersed structure, the SiO 2 of the amorphous, dispersed therein It is sufficient that the above atomic ratio x satisfies 0.5 ≦ x ≦ 1.5, including the total of Si. For example, in the case of a structure in which Si is dispersed in an amorphous SiO 2 matrix and the molar ratio of SiO 2 to Si is 1: 1, x = 1, so the structural formula is represented by SiO. You. In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
そして、SiOxは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOxの表面が炭素材料で被覆されていることが望ましい。SiOxは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOxと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOxを炭素材料と複合化した複合体であれば、例えば、単にSiOxと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。 The SiO x is preferably a composite compounded with a carbon material. For example, the surface of the SiO x is desirably coated with a carbon material. Since SiO x has poor conductivity, when it is used as a negative electrode active material, from the viewpoint of securing good battery characteristics, a conductive material (conductive auxiliary agent) is used, and the SiO x and the conductive material in the negative electrode are used. It is necessary to form a good conductive network by improving the mixing / dispersion with the compound. In the case of a composite in which SiO x is combined with a carbon material, for example, the conductive network at the negative electrode is better than when a material obtained by simply mixing SiO x and a conductive material such as a carbon material is used. Formed.
SiOxと炭素材料との複合体としては、前記のように、SiOxの表面を炭素材料で被覆したものの他、SiOxと炭素材料との造粒体などが挙げられる。 Examples of the composite of SiO x and the carbon material include, as described above, a material in which the surface of SiO x is coated with a carbon material, and a granulated body of SiO x and a carbon material.
また、前記の、SiOxの表面を炭素材料で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、より電池特性(例えば、充放電サイクル特性)に優れたリチウム二次電池の実現が可能となる。炭素材料で被覆されたSiOxと炭素材料との複合体としては、例えば、炭素材料で被覆されたSiOxと炭素材料との混合物を更に造粒した造粒体などが挙げられる。 Further, by using the composite in which the surface of SiO x is coated with a carbon material in combination with a conductive material (such as a carbon material), a more favorable conductive network can be formed in the negative electrode. Thus, a lithium secondary battery having higher capacity and more excellent battery characteristics (for example, charge / discharge cycle characteristics) can be realized. The complex of the SiO x and the carbon material coated with a carbon material, for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.
また、表面が炭素材料で被覆されたSiOxとしては、SiOxとそれよりも比抵抗値が小さい炭素材料との複合体(例えば造粒体)の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でSiOxと炭素材料とが分散した状態であると、より良好な導電ネットワークを形成できるため、SiOxを負極活物質として含有する負極を有する非水電解質二次電池において、重負荷放電特性などの電池特性を更に向上させることができる。 Further, as the SiO x whose surface is coated with a carbon material, the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a lower specific resistance value than that is further coated with a carbon material. Those can also be preferably used. In the state where SiO x and the carbon material are dispersed in the inside of the granule, a better conductive network can be formed.Therefore, in a non-aqueous electrolyte secondary battery having a negative electrode containing SiO x as a negative electrode active material, Battery characteristics such as heavy load discharge characteristics can be further improved.
SiOxとの複合体の形成に用い得る前記炭素材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。 Examples of the carbon material may be used to form the complex with SiO x, for example, as low-crystalline carbon, carbon nanotube, a carbon material such as vapor-grown carbon fibers are preferred.
前記炭素材料の詳細としては、繊維状またはコイル状の炭素材料、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、更に、SiOx粒子が膨張収縮しても、その粒子との接触を保持しやすい性質を有している点において好ましい。 As the details of the carbon material, at least one selected from the group consisting of a fibrous or coiled carbon material, carbon black (including acetylene black and Ketjen black), artificial graphite, easily graphitizable carbon, and non-graphitizable carbon Certain materials are preferred. A fibrous or coiled carbon material is preferred because it easily forms a conductive network and has a large surface area. Carbon black (including acetylene black and Ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and even when the SiO x particles expand and contract. It is preferable in that it has a property of easily maintaining contact with the particles.
負極活物質としてSiOxを使用する場合、後述するように黒鉛も負極活物質として併用することが好ましいが、この黒鉛を、SiOxと炭素材料との複合体に係る炭素材料として使用することもできる。黒鉛も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、更に、SiOx粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有しているため、SiOxとの複合体形成に好ましく使用することができる。 When using SiO x as the negative electrode active material, it is preferable that graphite is also used as the negative electrode active material as described later, but this graphite may also be used as a carbon material related to the composite of SiO x and the carbon material. it can. Graphite, like carbon black, also has high electrical conductivity and high liquid retention, and also has the property of easily maintaining contact with SiO x particles even if the particles expand and contract. and for that, it can be preferably used in the complex formation with SiO x.
前記例示の炭素材料の中でも、SiOxとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いために電池の充放電に伴うSiOxの膨張収縮に追従でき、また、嵩密度が大きいために、SiOx粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。 Among the carbon materials exemplified above, a fibrous carbon material is particularly preferable as the material used when the composite with SiO x is a granulated material. Fibrous carbon material can follow the expansion and contraction of SiO x with the charging and discharging of the battery due to the high shape is thin threadlike flexibility, also because bulk density is large, many and SiO x particles This is because it can have a junction. Examples of the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.
繊維状の炭素材料は、例えば、気相法にてSiOx粒子の表面に形成することもできる。 The fibrous carbon material can be formed on the surface of the SiO x particles by, for example, a gas phase method.
SiOxの比抵抗値が、通常、103〜107kΩcmであるのに対して、前記例示の炭素材料の比抵抗値は、通常、10−5〜10kΩcmである。また、SiOxと炭素材料との複合体は、粒子表面の炭素材料被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。 Specific resistance of the SiO x is normally whereas a 10 3 ~10 7 kΩcm, the specific resistance value of the exemplary carbon material is usually 10 -5 ~10kΩcm. Further, the composite of SiO x and the carbon material may further have a material layer (a material layer containing non-graphitizable carbon) covering the carbon material coating layer on the particle surface.
負極にSiOxと炭素材料との複合体を使用する場合、SiOxと炭素材料との比率は、炭素材料との複合化による作用を良好に発揮させる観点から、SiOx:100質量部に対して、炭素材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、SiOxと複合化する炭素材料の比率が多すぎると、負極合剤層中のSiOx量の低下に繋がり、高容量化の効果が小さくなる虞があることから、SiOx:100質量部に対して、炭素材料は、50質量部以下であることが好ましく、40質量部以下であることがより好ましい。 When a composite of SiO x and a carbon material is used for the negative electrode, the ratio of the SiO x to the carbon material is preferably in the range of 100 parts by mass of SiO x from the viewpoint of favorably exhibiting the effect of the composite with the carbon material. The carbon material is preferably at least 5 parts by mass, more preferably at least 10 parts by mass. Further, in the composite, if the ratio of the carbon material to be composited with SiO x is too large, it leads to a decrease in the amount of SiO x in the negative electrode mixture layer, and the effect of increasing the capacity may be reduced. The carbon material is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, based on 100 parts by mass of SiO x .
前記のSiOxと炭素材料との複合体は、例えば下記の方法によって得ることができる。 The composite of SiO x and a carbon material can be obtained, for example, by the following method.
まず、SiOxを複合化する場合の作製方法について説明する。SiOxが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。 First, a manufacturing method in the case of compounding SiO x will be described. A dispersion in which SiO x is dispersed in a dispersion medium is prepared, sprayed and dried to produce composite particles including a plurality of particles. As the dispersion medium, for example, ethanol or the like can be used. It is usually appropriate to spray the dispersion in an atmosphere at 50 to 300 ° C. In addition to the above method, the same composite particles can be produced by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.
なお、SiOxと、SiOxよりも比抵抗値の小さい炭素材料との造粒体を作製する場合には、SiOxが分散媒に分散した分散液中に前記炭素材料を添加し、この分散液を用いて、SiOxを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOxと炭素材料との造粒体を作製することができる。 Incidentally, the SiO x, in the case of manufacturing a granulated body with small carbon material resistivity value than SiO x is adding the carbon material in the dispersion liquid of SiO x are dispersed in a dispersion medium, the dispersion The composite particles (granulated material) may be formed by the same method as in the case where SiO x is composited using the liquid. Also, a granulated body of SiO x and a carbon material can be produced by a granulation method using the same mechanical method as described above.
次に、SiOx粒子(SiOx複合粒子、またはSiOxと炭素材料との造粒体)の表面を炭素材料で被覆して複合体とする場合には、例えば、SiOx粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素材料被覆層)を形成できることから、少量の炭素材料によってSiOx粒子に均一性よく導電性を付与できる。 Next, when the surface of SiO x particles (SiO x composite particles or granules of SiO x and a carbon material) is coated with a carbon material to form a composite, for example, the SiO x particles and a hydrocarbon-based material may be used. The gas and the gas are heated in the gas phase, and carbon generated by thermal decomposition of the hydrocarbon-based gas is deposited on the surface of the particles. As described above, according to the vapor phase growth (CVD) method, the hydrocarbon-based gas spreads to every corner of the composite particles, and the surface of the particles and the pores on the surface contain a thin carbon material containing a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, a small amount of carbon material can impart conductivity to the SiO x particles with good uniformity.
炭素材料で被覆されたSiOxの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600〜1200℃が適当であり、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。 In the production of SiO x coated with carbon material for vapor deposition (CVD) process temperature (ambient temperature), varies depending on the kind of hydrocarbon gas, usually, is suitably 600 to 1200 ° C. Especially, it is preferable that it is 700 degreeC or more, and it is more preferable that it is 800 degreeC or more. This is because the higher the treatment temperature, the smaller the amount of remaining impurities and the more the coating layer containing highly conductive carbon can be formed.
炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱いやすいトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。更に、メタンガスやアセチレンガスなどを用いることもできる。 As a liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene which is easy to handle is particularly preferable. By evaporating these (for example, bubbling with nitrogen gas), a hydrocarbon-based gas can be obtained. Further, methane gas, acetylene gas, or the like can be used.
また、気相成長(CVD)法にてSiOx粒子(SiOx複合粒子、またはSiOxと炭素材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化性樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素材料を含む被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。 After the surface of SiO x particles (SiO x composite particles or granules of SiO x and a carbon material) is covered with a carbon material by a vapor phase growth (CVD) method, a petroleum pitch or a coal pitch is coated. After attaching at least one organic compound selected from the group consisting of a thermosetting resin, and a condensate of a naphthalene sulfonate and an aldehyde to a coating layer containing a carbon material, the organic compound is attached. The particles obtained may be fired.
具体的には、炭素材料で被覆されたSiOx粒子(SiOx複合粒子、またはSiOxと炭素材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。 Specifically, a dispersion in which SiO x particles (SiO x composite particles or granules of SiO x and a carbon material) coated with a carbon material and the organic compound are dispersed in a dispersion medium is prepared. The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.
前記ピッチとしては等方性ピッチを、熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。 As the pitch, an isotropic pitch can be used, and as the thermosetting resin, a phenol resin, a furan resin, a furfural resin, or the like can be used. As a condensate of a naphthalene sulfonic acid salt and an aldehyde, a naphthalene sulfonic acid formaldehyde condensate can be used.
炭素材料で被覆されたSiOx粒子と前記有機化合物とを分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600〜1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOxの融点以下であることを要する。 As a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound, for example, water and alcohols (such as ethanol) can be used. It is usually appropriate to spray the dispersion in an atmosphere at 50 to 300 ° C. Usually, the firing temperature is suitably from 600 to 1200 ° C., but preferably 700 ° C. or higher, more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the smaller the amount of residual impurities and the higher the conductivity of the coating layer containing a high-quality carbon material. However, the treatment temperature is required to be less than the melting point of SiO x.
負極活物質にSiOx(好ましくはSiOxと炭素材料との複合体)を使用する場合には、黒鉛も併用することが好ましい。SiOxは、非水電解質二次電池の負極活物質として汎用されている炭素材料に比べて高容量である一方で、電池の充放電に伴う体積変化量が大きいため、SiOxの含有量の高い負極合剤層を有する負極を用いた非水電解質二次電池では、充放電の繰り返しによって負極(負極合剤層)が大きく体積変化して劣化し、容量が低下する(すなわち充放電サイクル特性が低下する)虞がある。黒鉛は、非水電解質二次電池の負極活物質として汎用されており、比較的容量が大きい一方で、電池の充放電に伴う体積変化量がSiOxに比べて小さい。よって、負極活物質にSiOxと黒鉛とを併用することで、SiOxの使用量の低減に伴って電池の容量向上効果が小さくなることを可及的に抑制しつつ、電池の充放電サイクル特性の低下を良好に抑えることができることから、より高容量であり、かつ充放電サイクル特性に優れた非水電解質二次電池とすることが可能となる。 When SiO x (preferably, a composite of SiO x and a carbon material) is used as the negative electrode active material, it is preferable to use graphite in combination. SiO x, while a high capacity as compared with carbon materials are widely used as the negative electrode active material for a nonaqueous electrolyte secondary battery, because of the large volume change accompanying the charge and discharge of the battery, the content of SiO x In a nonaqueous electrolyte secondary battery using a negative electrode having a high negative electrode mixture layer, the negative electrode (negative electrode mixture layer) undergoes a large volume change and deterioration due to repetition of charge and discharge, resulting in a decrease in capacity (ie, charge-discharge cycle characteristics Is reduced). Graphite, a non-aqueous are generally used as the negative electrode active material of electrolyte secondary battery, while a relatively large capacity, the volume change due to charging and discharging of the battery is small compared to the SiO x. Therefore, by using SiO x and graphite together as the negative electrode active material, it is possible to minimize the effect of improving the capacity of the battery as the amount of SiO x used is reduced, and to reduce the charge / discharge cycle of the battery. Since deterioration in characteristics can be suppressed well, a nonaqueous electrolyte secondary battery having higher capacity and excellent charge / discharge cycle characteristics can be obtained.
前記のSiOxと共に負極活物質として使用する黒鉛としては、例えば、鱗片状黒鉛などの天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;などが挙げられる。 The graphite used as a negative electrode active material with said SiO x, for example, natural graphite such as flake graphite; pyrolytic carbon, mesophase carbon microbeads (MCMB), the 2800 ° C. or higher graphitizable carbon such as carbon fiber And artificial graphite which has been graphitized with the above.
負極活物質にSiOxと炭素材料との複合体と、黒鉛とを併用する場合、SiOxを使用することによる高容量化の効果を良好に確保する観点から、全負極活物質中におけるSiOxと炭素材料との複合体の含有量が、0.01質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがより好ましい。また、充放電に伴うSiOxの体積変化による問題をより良好に回避する観点から、全負極活物質中におけるSiOxと炭素材料との複合体の含有量が、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。 When used in combination with complexes of SiO x and the carbon material in the negative electrode active material, and graphite, from the viewpoint of satisfactorily ensuring the effect of the high capacity by using a SiO x, SiO x in total negative electrode active material in The content of the composite of carbon and the carbon material is preferably 0.01% by mass or more, more preferably 1% by mass or more, and even more preferably 3% by mass or more. Further, from the viewpoint of better avoiding the problem due to the volume change of SiO x due to charge and discharge, the content of the composite of SiO x and the carbon material in all the negative electrode active materials may be 20% by mass or less. It is more preferably at most 15% by mass.
負極のバインダには、正極に使用し得るものとして先に例示したものと同じものや、スチレンブタジエンゴム(SBR)、エチレン−アクリル酸共重合体または該共重合体のNa+イオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNa+イオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNa+イオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNa+イオン架橋体などが使用できる。また、負極の導電助剤には、正極に使用し得るものとして先に例示したものと同じものが使用できる。 Examples of the binder for the negative electrode include the same binders as those exemplified above as those usable for the positive electrode, styrene-butadiene rubber (SBR), ethylene-acrylic acid copolymer or a Na + ion crosslinked product of the copolymer, ethylene A methacrylic acid copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl acrylate copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl methacrylate copolymer or the copolymer A combined Na + ion crosslinked product can be used. Further, as the conductive auxiliary agent for the negative electrode, the same ones as exemplified above as usable for the positive electrode can be used.
負極は、例えば、負極活物質およびバインダ、更には必要に応じて使用される導電助剤を、NMPや水などの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造される。ただし、負極は、前記の製造方法で製造されたものに限定される訳ではなく、他の方法で製造したものであってもよい。 For the negative electrode, for example, a negative electrode mixture-containing composition in the form of a paste or slurry in which a negative electrode active material and a binder, and furthermore, a conductive auxiliary used as necessary, is dispersed in a solvent such as NMP or water is prepared. (However, the binder may be dissolved in a solvent.) It is manufactured through a step of applying this on one or both sides of the current collector, drying, and, if necessary, performing a pressing treatment such as a calendering treatment. . However, the negative electrode is not limited to one manufactured by the above-described manufacturing method, and may be manufactured by another method.
また、負極には、必要に応じて、非水電解質二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 Further, a lead body for electrically connecting to other members in the non-aqueous electrolyte secondary battery may be formed on the negative electrode according to a conventional method, if necessary.
負極合剤層の厚みは、例えば、集電体の片面あたり10〜100μmであることが好ましい。また、負極合剤層の組成としては、例えば、負極活物質を80.0〜99.8質量%とし、バインダを0.1〜10質量%とすることが好ましい。更に、負極合剤層に導電助剤を含有させる場合には、負極合剤層における導電助剤の量を0.1〜10質量%とすることが好ましい。 The thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 μm per one surface of the current collector. Further, as the composition of the negative electrode mixture layer, for example, it is preferable that the negative electrode active material be 80.0 to 99.8% by mass and the binder be 0.1 to 10% by mass. Further, when the negative electrode mixture layer contains a conductive auxiliary, the amount of the conductive auxiliary in the negative electrode mixture layer is preferably 0.1 to 10% by mass.
負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。 As the current collector of the negative electrode, a copper or nickel foil, a punched metal, a net, an expanded metal, or the like can be used, and usually, a copper foil is used. When the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the negative electrode current collector preferably has an upper limit of 30 μm and a lower limit of 5 μm to ensure mechanical strength. Is desirable.
非水電解質としては、例えば、下記の溶媒中に、リチウム塩を溶解させることで調製した溶液(非水電解液)が使用できる。 As the non-aqueous electrolyte, for example, a solution (non-aqueous electrolyte) prepared by dissolving a lithium salt in the following solvent can be used.
溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン(γ-
BL)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、ジメチルスルフォキシド(DMSO)、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド(DMF)、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。
Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), and γ-butyrolactone (γ-
BL), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethylsulfoxide (DMSO), 1,3-dioxolan, formamide, dimethylformamide (DMF), dioxolan, acetonitrile, nitromethane Aprotic compounds such as methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether and 1,3-propanesultone The organic solvent can be used alone or as a mixed solvent obtained by mixing two or more kinds.
非水電解液に係るリチウム塩としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≧2)、LiN(RfOSO2)2〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種が挙げられる。これらのリチウム塩の非水電解液中の濃度としては、0.6〜1.8mol/lとすることが好ましく、0.9〜1.6mol/lとすることがより好ましい。
The lithium salt according to the non-aqueous electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4,
非水電解質二次電池に使用する非水電解質には、充放電サイクル特性の更なる改善や、高温貯蔵性や過充電防止などの安全性を向上させる目的で、ビニレンカーボネート、ビニルエチレンカーボネート、無水酸、スルホン酸エステル、ジニトリル、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。 Non-aqueous electrolytes used in non-aqueous electrolyte secondary batteries include vinylene carbonate, vinyl ethylene carbonate, and anhydrous ethylene for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storability and overcharge prevention. Additives such as acids, sulfonic esters, dinitrile, 1,3-propanesultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene and t-butylbenzene (including their derivatives) can also be added as appropriate.
更に、非水電解質二次電池の非水電解質には、前記の非水電解液に、ポリマーなどの公知のゲル化剤を添加してゲル化したもの(ゲル状電解質)を用いることもできる。 Further, as the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery, a non-aqueous electrolyte prepared by adding a known gelling agent such as a polymer to the above-described non-aqueous electrolyte and gelling (a gel electrolyte) can also be used.
本発明の非水電解質二次電池内では、前記正極と前記負極との間に、前記の非水電解質を含ませたセパレータが配される。セパレータとしては、大きなイオン透過度および所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、一定温度以上(例えば100〜140℃)で構成材料の溶融によって孔が閉塞し、抵抗を上げる機能を有するもの(すなわち、シャットダウン機能を有するもの)が好ましい。 In the nonaqueous electrolyte secondary battery of the present invention, a separator containing the nonaqueous electrolyte is disposed between the positive electrode and the negative electrode. As the separator, an insulating microporous thin film having high ion permeability and predetermined mechanical strength is used. Further, a material having a function of increasing the resistance by closing the pores by melting the constituent material at a certain temperature or higher (for example, 100 to 140 ° C.) (that is, a material having a shutdown function) is preferable.
このようなセパレータの具体例としては、耐有機溶剤性および疎水性を有するポリエチレン、ポリプロピレンなどポリオレフィン系ポリマー、またはガラス繊維などの材料で構成されるシート(多孔質シート)、不織布若しくは織布;前記例示のポリオレフィン系ポリマーの微粒子を接着剤で固着した多孔質体;などが挙げられる。 Specific examples of such a separator include a sheet (porous sheet), a nonwoven fabric, or a woven fabric made of a material such as polyethylene or polypropylene having organic solvent resistance and hydrophobicity, or a material such as glass fiber; And a porous body in which fine particles of a polyolefin-based polymer are fixed with an adhesive.
セパレータの孔径は、正負極より脱離した正負極の活物質、導電助剤およびバインダなどが通過しない程度であることが好ましく、例えば、0.01〜1μmであることが望ましい。セパレータの厚みは、8〜30μmとすることが一般的であるが、本発明では、10〜20μmとすることが好ましい。また、セパレータの空孔率は、構成材料や厚みに応じて決定されるが、30〜80%であることが一般的である。 The pore size of the separator is preferably such that the active material of the positive and negative electrodes detached from the positive and negative electrodes, the conductive auxiliary agent, the binder, and the like do not pass, and for example, desirably 0.01 to 1 μm. The thickness of the separator is generally 8 to 30 μm, but is preferably 10 to 20 μm in the present invention. The porosity of the separator is determined according to the constituent material and thickness, but is generally 30 to 80%.
本発明の非水電解質二次電池において、本発明の正極と前記の負極とは、前記のセパレータを介して積層した積層電極体、または前記のセパレータを介して積層した後、渦巻状に巻回して形成した巻回電極体として使用される。 In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode of the present invention and the negative electrode are laminated electrode bodies laminated via the separator, or laminated via the separator, and then wound in a spiral. It is used as a wound electrode body.
本発明の非水電解質二次電池は、例えば、積層電極体や巻回電極体を外装体内に装填し、更に外装体内に非水電解質を注入して非水電解質中に電極体を浸漬させた後、外装体の開口部を封止することで製造される。外装体には、スチール製やアルミニウム製、アルミニウム合金製の筒形(角筒形や円筒形など)の外装缶や、金属を蒸着したラミネートフィルムで構成される外装体などを用いることができる。 The non-aqueous electrolyte secondary battery of the present invention is, for example, a stacked electrode body or a wound electrode body is loaded in an exterior body, and the non-aqueous electrolyte is further injected into the exterior body to immerse the electrode body in the non-aqueous electrolyte. Thereafter, it is manufactured by sealing the opening of the exterior body. As the outer package, a steel (aluminum, aluminum, or aluminum alloy) tubular can (such as a rectangular tube or a cylindrical tube) can be used, or a package formed of a laminated film on which metal is deposited can be used.
本発明の非水電解質二次電池は、従来の非水電解質二次電池と同様に、充電時の上限電圧を4.2V程度に設定して使用することも可能であるが、これより高い4.3V以上を上限電圧とする充電を行う方法で使用してもよく、このような方法で使用しても、良好な充放電サイクル特性(特に高温下での充放電サイクル特性)を発揮できる。よって、本発明の非水電解質二次電池は、充電時の上限電圧を高めて高容量化を図りつつ、このような条件での充電と放電とを繰り返し実施しても、長期にわたって大きな容量を維持することが可能である。なお、本発明の非水電解質二次電池の充電の上限電圧は、4.7V以下であることが好ましい。 The nonaqueous electrolyte secondary battery of the present invention can be used with the upper limit voltage during charging set to about 4.2 V, similarly to the conventional nonaqueous electrolyte secondary battery. It may be used in a method of performing charging with an upper limit voltage of 0.3 V or more, and even when used in such a method, good charge / discharge cycle characteristics (particularly, charge / discharge cycle characteristics at high temperatures) can be exhibited. Therefore, the non-aqueous electrolyte secondary battery of the present invention has a large capacity for a long time even if charging and discharging are repeatedly performed under such conditions while increasing the upper limit voltage during charging to achieve high capacity. It is possible to maintain. The upper limit voltage for charging the nonaqueous electrolyte secondary battery of the present invention is preferably 4.7 V or less.
本発明の非水電解質二次電池のシステムは、本発明の非水電解質二次電池と充電装置とを備えており、前記非水電解質二次電池に対し、前記充電装置により加えられる電圧の上限値が4.3V以上(好ましくは4.7V以下)となる条件で充電するものである。かかるシステムによって、本発明の非水電解質二次電池のより大きな容量での使用が可能となる。本発明の非水電解質二次電池のシステムに係る充電装置については、上限電圧を4.3V以上(好ましくは4.7V以下)とする条件で本発明の非水電解質二次電池の充電を実施可能なものであればよく、従来から知られている非水電解質二次電池用の充電装置、例えば、定電流充電後に定電圧充電を行うことのできる充電装置や、パルス充電を行うことのできる充電装置などを使用することができる。 The non-aqueous electrolyte secondary battery system of the present invention includes the non-aqueous electrolyte secondary battery of the present invention and a charging device, and the upper limit of the voltage applied by the charging device to the non-aqueous electrolyte secondary battery. The battery is charged under the condition that the value is 4.3 V or more (preferably 4.7 V or less). Such a system allows the non-aqueous electrolyte secondary battery of the present invention to be used at a higher capacity. Regarding the charging device according to the non-aqueous electrolyte secondary battery system of the present invention, the charging of the non-aqueous electrolyte secondary battery of the present invention is performed under the condition that the upper limit voltage is 4.3 V or more (preferably 4.7 V or less). As long as it is possible, a conventionally known charging device for a non-aqueous electrolyte secondary battery, for example, a charging device capable of performing constant voltage charging after constant current charging or a pulse charging can be performed. A charging device or the like can be used.
本発明の非水電解質二次電池は、高容量であり、充放電サイクル特性(特に高温下での充放電サイクル特性)が優れていることから、こうした特性が特に要求される用途をはじめとして、従来から知られている非水電解質二次電池が採用されている各種用途に好ましく適用することができる。 The non-aqueous electrolyte secondary battery of the present invention has a high capacity and excellent charge / discharge cycle characteristics (particularly, charge / discharge cycle characteristics at high temperatures). The present invention can be preferably applied to various uses in which a conventionally known nonaqueous electrolyte secondary battery is employed.
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
実施例1
<正極の作製>
正極活物質であるLiNi0.78Co0.20Al0.02O2〔リチウム含有金属酸化物(A)、前記(b)の測定方法で求めた一次粒子径が0.5μm以上の粒子の割合が50質量%で、最大の一次粒子の粒子径が2μm〕とLiCo0.984Al0.008Mg0.006Ti0.001Zr0.001O2〔リチウム含有金属酸化物(B)〕との混合物(質量比20:80):97.3質量部、導電助剤(カーボンブラックおよび黒鉛で、使用比率が質量比で80:20):1.5質量部およびバインダであるPVDF:1.2質量部を混合して正極合剤とし、この正極合剤に、溶剤であるNMPを加え、エム・テクニック社製の「クレアミックス CLM0.8(商品名)」を用いて、回転数:10000min−1で30分間処理を行い、ペースト状の混合物とした。この混合物に、溶剤であるNMPを更に加えて、回転数:10000min−1で15分間処理を行い、正極合剤含有組成物を調製した。
Example 1
<Preparation of positive electrode>
LiNi 0.78 Co 0.20 Al 0.02 O 2 as the positive electrode active material [Lithium-containing metal oxide (A), particles having a primary particle diameter of 0.5 μm or more determined by the measurement method of (b) above] 50 mass%, the largest primary particle diameter is 2 μm] and LiCo 0.984 Al 0.008 Mg 0.006 Ti 0.001 Zr 0.001 O 2 [lithium-containing metal oxide (B)] (Mass ratio 20:80): 97.3 parts by mass, a conductive additive (carbon black and graphite, the use ratio is 80:20 by mass ratio): 1.5 parts by mass, and PVDF as a binder: 1 .2 parts by mass to form a positive electrode mixture, NMP as a solvent was added to this positive electrode mixture, and the number of revolutions was determined using "Meartech CLM 0.8 (trade name)" manufactured by M Technique. 10000min 1 performs 30-minute treatment, to obtain a paste mixture. NMP as a solvent was further added to this mixture, and the mixture was treated at a rotation speed of 10,000 min -1 for 15 minutes to prepare a positive electrode mixture-containing composition.
前記の正極合剤含有組成物を、集電体であるアルニミウム合金箔(厚み:10.0μm)の両面に塗布し、80℃で12時間真空乾燥を施し、更にプレス処理を施して、集電体の両面に、厚みが56μmの正極合剤層を有する正極を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.85g/cm3であり、充填率は77.7%であった。 The above-mentioned positive electrode mixture-containing composition is applied to both surfaces of an aluminum alloy foil (thickness: 10.0 μm) as a current collector, vacuum-dried at 80 ° C. for 12 hours, and further subjected to a press treatment to collect the current. A positive electrode having a positive electrode mixture layer having a thickness of 56 μm on both surfaces of the body was produced. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.85 g / cm 3 , and the filling factor was 77.7%.
なお、得られた正極の一部からリチウム含有金属酸化物(A)の一次粒子径測定用のサンプルを取り、前記(a)の方法で、リチウム含有金属酸化物(A)中の一次粒子径が0.5μm以上の粒子の割合、および最大の一次粒子の粒子径(一次粒子径の最大値)を求めた。 A sample for measuring the primary particle diameter of the lithium-containing metal oxide (A) was taken from a part of the obtained positive electrode, and the primary particle diameter in the lithium-containing metal oxide (A) was measured by the method (a). Was determined, and the particle diameter of the largest primary particle (the maximum value of the primary particle diameter) was determined.
<負極の作製>
天然黒鉛:97.5質量%、SBR:1.5質量%、およびカルボキシメチルセルロース(CMC、増粘剤):1質量%を、水を用いて混合してスラリー状の負極合剤含有組成物を調製した。この負極合剤含有組成物を、集電体である銅箔(厚み:8μm)の両面に塗布し、120℃で12時間真空乾燥を施し、更にプレス処理を施して、集電体の両面に、厚みが63μmの負極合剤層を有する負極を作製した。
<Preparation of negative electrode>
A mixture of natural graphite: 97.5% by mass, SBR: 1.5% by mass, and carboxymethylcellulose (CMC, thickener): 1% by mass was mixed with water to obtain a slurry-like negative electrode mixture-containing composition. Prepared. This negative electrode mixture-containing composition is applied to both surfaces of a copper foil (thickness: 8 μm) as a current collector, vacuum-dried at 120 ° C. for 12 hours, and further subjected to a press treatment, so that both surfaces of the current collector are coated. A negative electrode having a negative electrode mixture layer having a thickness of 63 μm was prepared.
<電極体の作製>
前記の正極と負極とをセパレータ(厚みが17μmで、透気度が300秒/100cm3のポリエチレン製多孔膜)を介して重ね合わせ、渦巻状に巻回した後、横断面が扁平状になるように押しつぶして扁平状巻回電極体を作製した。
<Preparation of electrode body>
The positive electrode and the negative electrode are overlapped with each other via a separator (a polyethylene porous film having a thickness of 17 μm and an air permeability of 300 seconds / 100 cm 3 ), and after being spirally wound, the cross section becomes flat. To produce a flat wound electrode body.
<非水電解液の調製>
メチルエチルカーボネートとジエチルカーボネートとエチレンカーボネートとの混合溶媒(体積比 0.5:2:1)に、1.2mol/lの濃度でLiPF6を溶解し、これにLiBF4:0.05質量%、ビニレンカーボネート:2質量%、プロパンスルトン:0.2質量%を加えて非水電解液(非水電解質)を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved at a concentration of 1.2 mol / l in a mixed solvent of methyl ethyl carbonate, diethyl carbonate and ethylene carbonate (volume ratio 0.5: 2: 1), and LiBF 4 : 0.05% by mass. , Vinylene carbonate: 2% by mass and propane sultone: 0.2% by mass to prepare a non-aqueous electrolyte (non-aqueous electrolyte).
<電池の組み立て>
外寸が厚さ3.75mm、幅52.8mm、高さ61.3mmのアルミニウム合金製の角形の電池ケースに前記の電極体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から前記の非水電解液を注入し、1時間静置した後注入口を封止して、図1に示す構造で、図2に示す外観の角形非水電解質二次電池を作製した。
<Assembly of battery>
The above-mentioned electrode body is inserted into a rectangular battery case made of an aluminum alloy having an outer dimension of a thickness of 3.75 mm, a width of 52.8 mm, and a height of 61.3 mm, and the lead body is welded. The plate was welded to the open end of the battery case. Thereafter, the nonaqueous electrolytic solution is injected from an injection port provided in the cover plate, and left standing for 1 hour. Then, the injection port is sealed, and the rectangular nonaqueous liquid having the structure shown in FIG. An electrolyte secondary battery was manufactured.
図1はその部分断面図であって、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回電極体6として、角形(角筒形)の外装缶4に非水電解液共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。
FIG. 1 is a partial cross-sectional view, in which a
電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この外装缶4は正極端子を兼ねている。そして、電池ケース4の底部にはポリエチレンシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
The
そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
Then, the lid plate 9 is inserted into the opening of the
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
In the battery of Example 1, the
図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図1では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。 FIG. 2 is a perspective view schematically showing the appearance of the battery shown in FIG. 1. FIG. 2 is intended to show that the battery is a prismatic battery. 1 schematically shows a battery, and only specific components of the battery are shown. Also, in FIG. 1, the section on the inner peripheral side of the electrode body is not shown in cross section.
実施例2
リチウム含有金属酸化物(A)を、LiNi0.82Co0.15Al0.03O2〔一次粒子径が0.5μm以上の粒子の割合が50質量%で、最大の一次粒子の粒子径が2μm〕に変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Example 2
Lithium-containing metal oxide (A) was converted to LiNi 0.82 Co 0.15 Al 0.03 O 2 [50% by mass of particles having a primary particle size of 0.5 μm or more was the largest primary particle size. Was changed to 2 μm], and a positive electrode was produced in the same manner as in Example 1. A prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例3
リチウム含有金属酸化物(A)を、LiNi0.75Co0.10Mn0.14Al0.01O2〔一次粒子径が0.5μm以上の粒子の割合が50質量%で、最大の一次粒子の粒子径が2μm〕に変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Example 3
LiNi 0.75 Co 0.10 Mn 0.14 Al 0.01 O 2 [The ratio of particles having a primary particle diameter of 0.5 μm or more is 50% by mass and the maximum primary A positive electrode was produced in the same manner as in Example 1 except that the particle diameter was changed to 2 μm], and a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例5
リチウム含有金属酸化物(A)を、LiNi0.80Co0.10Mn0.097Nb0.003O2〔一次粒子径が0.5μm以上の粒子の割合が50質量%で、最大の一次粒子の粒子径が2μm〕に変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Example 5
LiNi 0.80 Co 0.10 Mn 0.097 Nb 0.003 O 2 [The ratio of particles having a primary particle diameter of 0.5 μm or more was 50% by mass and the maximum primary concentration was LiNi 0.80 Co 0.10 Mn 0.097 Nb 0.003 O 2. A positive electrode was produced in the same manner as in Example 1 except that the particle diameter was changed to 2 μm], and a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例6
リチウム含有金属酸化物(A)を、一次粒子径が0.5μm以上の粒子の割合が80質量%で、最大の一次粒子の粒子径が3μmのものに変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Example 6
Lithium-containing metal oxide (A) was the same as Example 1 except that the ratio of particles having a primary particle diameter of 0.5 μm or more was changed to 80% by mass and the maximum primary particle diameter was changed to 3 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例7
リチウム含有金属酸化物(A)を、一次粒子径が0.5μm以上の粒子の割合が100質量%で、最大の一次粒子の粒子径が4μmのものに変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Example 7
Lithium-containing metal oxide (A) was the same as Example 1 except that the ratio of particles having a primary particle diameter of 0.5 μm or more was changed to 100% by mass and the maximum primary particle diameter was changed to 4 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例8
リチウム含有金属酸化物(A)を、一次粒子径が0.5μm以上の粒子の割合が100質量%で、最大の一次粒子の粒子径が5μmのものに変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Example 8
Lithium-containing metal oxide (A) was the same as Example 1 except that the ratio of particles having a primary particle diameter of 0.5 μm or more was changed to 100% by mass and the maximum primary particle diameter was changed to 5 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例9
リチウム含有金属酸化物(A)とリチウム含有金属酸化物(B)との混合比を、質量比で5:95に変更した以外は、実施例1と同様にして正極を作製した。また、負極合剤層の厚みを72μmに変更した以外は、実施例1と同様にして負極を作製した。そして、前記の正極と前記の負極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.90g/cm3であり、充填率は78.4%であった。
Example 9
A positive electrode was produced in the same manner as in Example 1 except that the mixing ratio of the lithium-containing metal oxide (A) and the lithium-containing metal oxide (B) was changed to 5:95 by mass ratio. Further, a negative electrode was produced in the same manner as in Example 1, except that the thickness of the negative electrode mixture layer was changed to 72 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above-mentioned positive electrode and the above-mentioned negative electrode were used. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.90 g / cm 3 , and the filling rate was 78.4%.
実施例10
リチウム含有金属酸化物(A)とリチウム含有金属酸化物(B)との混合比を、質量比で40:60に変更し、正極合剤層の厚みを57μmにした以外は実施例1と同様にして正極を作製した。また、負極合剤層の厚みを72μmに変更した以外は、実施例1と同様にして負極を作製した。そして、前記の正極と前記の負極とを用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.80g/cm3であり、充填率は77.3%であった。
Example 10
Same as Example 1 except that the mixing ratio of the lithium-containing metal oxide (A) and the lithium-containing metal oxide (B) was changed to 40:60 by mass and the thickness of the positive electrode mixture layer was set to 57 μm. To produce a positive electrode. Further, a negative electrode was produced in the same manner as in Example 1, except that the thickness of the negative electrode mixture layer was changed to 72 μm. Then, a positive electrode was prepared in the same manner as in Example 1 except that the above-described positive electrode and the above-described negative electrode were used, and a prismatic nonaqueous electrolyte secondary battery was formed in the same manner as in Example 1 except for using this positive electrode. Produced. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.80 g / cm 3 , and the filling rate was 77.3%.
実施例11
正極合剤含有組成物の調製に使用する正極活物質の量を96.5質量部とし、導電助剤の量を2質量部とし、バインダの量を1.5質量部とした以外は、実施例1と同様にして正極を作製した。また、負極合剤層の厚みを72μmに変更した以外は、実施例1と同様にして負極を作製した。そして、前記の正極と前記の負極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.83g/cm3であり、充填率は77.8%であった。
Example 11
Except that the amount of the positive electrode active material used in the preparation of the positive electrode mixture-containing composition was 96.5 parts by mass, the amount of the conductive additive was 2 parts by mass, and the amount of the binder was 1.5 parts by mass, A positive electrode was produced in the same manner as in Example 1. Further, a negative electrode was produced in the same manner as in Example 1, except that the thickness of the negative electrode mixture layer was changed to 72 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above-mentioned positive electrode and the above-mentioned negative electrode were used. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.83 g / cm 3 , and the filling rate was 77.8%.
実施例12
正極合剤含有組成物の調製に使用する正極活物質の量を98.7質量部とし、導電助剤にカーボンブラックのみを使用して、その量を0.5質量部とし、バインダの量を0.8質量部とした以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.87g/cm3であり、充填率は77.3%であった。
Example 12
The amount of the positive electrode active material used in the preparation of the positive electrode mixture-containing composition was 98.7 parts by mass, and only carbon black was used as the conductive additive, and the amount was 0.5 parts by mass. A positive electrode was produced in the same manner as in Example 1 except that the amount was 0.8 parts by mass, and a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.87 g / cm 3 , and the filling rate was 77.3%.
実施例13
負極活物質である平均粒子径d50が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%。以下、SiO/炭素材料複合体という。)と、平均粒子径d50が16μmである黒鉛とを、SiO/炭素材料複合体の量が1.5質量%となる量で混合した混合物:97.5質量部と、結着剤であるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、スラリー状の負極合剤含有組成物を調製した。この負極合剤含有組成物を、集電体である銅箔(厚み:8μm)の両面に塗布し、120℃で12時間真空乾燥を施し、更にプレス処理を施して、集電体の両面に、厚みが72μmの負極合剤層を有する負極を作製した。
Example 13
Complex the SiO surface is coated with a carbon material average particle size d 50 is a negative electrode active material is 8 [mu] m (amount of 10% by weight of the carbon material in the composite body. Hereinafter, it referred to SiO / carbon material composite.) And, the graphite average particle size d 50 is 16 [mu] m, the mixture amount of SiO / carbon material composite is mixed in an amount of 1.5 wt%: and 97.5 parts by weight, a binder SBR: 1 Water and 0.5 part by mass and 1 part by mass of CMC as a thickener were added and mixed to prepare a slurry-like negative electrode mixture-containing composition. This negative electrode mixture-containing composition is applied to both surfaces of a copper foil (thickness: 8 μm) as a current collector, vacuum-dried at 120 ° C. for 12 hours, and further subjected to a press treatment, so that both surfaces of the current collector are coated. A negative electrode having a negative electrode mixture layer having a thickness of 72 μm was prepared.
また、集電体の片面あたりの正極合剤層の厚みを58μmに変更した以外は、実施例1と同様にして正極を作製した。そして、この正極と前記の負極を用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。 Further, a positive electrode was produced in the same manner as in Example 1, except that the thickness of the positive electrode mixture layer per one surface of the current collector was changed to 58 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode and the above-mentioned negative electrode were used.
実施例14
負極活物質として使用する混合物を、SiO/炭素材料複合体の量が3.0質量%のものに変更し、集電体の片面あたりの負極合剤層の厚みを71μmに変更した以外は、実施例13と同様にして負極を作製した。また、集電体の片面あたりの正極合剤層の厚みを59μmに変更した以外は、実施例1と同様にして正極を作製した。そして、この正極と前記の負極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Example 14
Except that the mixture used as the negative electrode active material was changed to one in which the amount of the SiO / carbon material composite was 3.0% by mass, and the thickness of the negative electrode mixture layer per one surface of the current collector was changed to 71 μm. A negative electrode was produced in the same manner as in Example 13. Further, a positive electrode was produced in the same manner as in Example 1 except that the thickness of the positive electrode mixture layer per one surface of the current collector was changed to 59 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that this positive electrode and the above-mentioned negative electrode were used.
実施例15
正極合剤層の厚みを58μmにした以外は実施例10と同様にして正極を作製した。そして、この正極を用いた以外は実施例14と同様にして角形非水電解質二次電池を作製した。
Example 15
A positive electrode was produced in the same manner as in Example 10, except that the thickness of the positive electrode mixture layer was changed to 58 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 14 except that this positive electrode was used.
実施例16
リチウム含有金属酸化物(A)を、一次粒子径が0.5μm以上の粒子の割合が100質量%で、最大の一次粒子の粒子径が4μmのものに変更し、このリチウム含有金属酸化物(A)とリチウム含有金属酸化物(B)との混合比を質量比で60:40に変更し、正極合剤層の厚みを58μmにした以外は、実施例1と同様にして正極を作製した。また、負極合剤層の厚みを72μmに変更した以外は、実施例14と同様にして負極を作製した。そして、前記の正極と前記の負極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.75g/cm3であり、充填率は76.9%であった。
Example 16
The lithium-containing metal oxide (A) was changed to a lithium-containing metal oxide having a primary particle diameter of 0.5 μm or more in a proportion of 100% by mass and a maximum primary particle diameter of 4 μm. A positive electrode was produced in the same manner as in Example 1, except that the mixing ratio of A) and the lithium-containing metal oxide (B) was changed to 60:40 by mass ratio, and the thickness of the positive electrode mixture layer was changed to 58 μm. . A negative electrode was produced in the same manner as in Example 14, except that the thickness of the negative electrode mixture layer was changed to 72 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above-mentioned positive electrode and the above-mentioned negative electrode were used. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.75 g / cm 3 , and the filling rate was 76.9%.
実施例17
リチウム含有金属酸化物(A)を、一次粒子径が0.5μm以上の粒子の割合が100質量%で、最大の一次粒子の粒子径が5μmのものに変更し、このリチウム含有金属酸化物(A)とリチウム含有金属酸化物(B)との混合比を質量比で80:20に変更し、正極合剤層の厚みを58μmにした以外は実施例1と同様にして正極を作製した。また、負極合剤層の厚みを72μmに変更した以外は、実施例14と同様にして負極を作製した。そして、前記の正極と前記の負極とを用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.70g/cm3であり、充填率は75.9%であった。
Example 17
The lithium-containing metal oxide (A) was changed to a lithium-containing metal oxide in which the ratio of particles having a primary particle diameter of 0.5 μm or more was 100% by mass and the maximum primary particle diameter was 5 μm. A positive electrode was produced in the same manner as in Example 1, except that the mixing ratio of A) and the lithium-containing metal oxide (B) was changed to 80:20 in mass ratio, and the thickness of the positive electrode mixture layer was changed to 58 μm. A negative electrode was produced in the same manner as in Example 14, except that the thickness of the negative electrode mixture layer was changed to 72 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above-mentioned positive electrode and the above-mentioned negative electrode were used. The density (actual density) of the positive electrode mixture layer after the press treatment obtained by the above method was 3.70 g / cm 3 , and the filling rate was 75.9%.
比較例1
リチウム含有金属酸化物(A)に代えてLiNi0.47Co0.019Mn0.29Mg0.05O2を用い、集電体の片面あたりの正極合剤層の厚みを58μmに変更した以外は、実施例1と同様にして正極を作製した。また、集電体の片面あたりの負極合剤層の厚みを72μmに変更した以外は、実施例1と同様にして負極を作製した。そして、この負極と前記の正極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.80g/cm3であり、充填率は77.3%であった。
Comparative Example 1
LiNi 0.47 Co 0.019 Mn 0.29 Mg 0.05 O 2 was used instead of the lithium-containing metal oxide (A), and the thickness of the positive electrode mixture layer on one side of the current collector was changed to 58 μm. Except for the above, a cathode was produced in the same manner as in Example 1. Further, a negative electrode was manufactured in the same manner as in Example 1, except that the thickness of the negative electrode mixture layer per one surface of the current collector was changed to 72 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode and the above-mentioned positive electrode were used. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.80 g / cm 3 , and the filling rate was 77.3%.
比較例2
リチウム含有金属酸化物(A)に代えてLiNi0.91Co0.03Mn0.02Al0.02Mg0.02O2を用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Comparative Example 2
A positive electrode was produced in the same manner as in Example 1 except that LiNi 0.91 Co 0.03 Mn 0.02 Al 0.02 Mg 0.02 O 2 was used instead of the lithium-containing metal oxide (A). A prismatic nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that this positive electrode was used.
比較例3
リチウム含有金属酸化物(A)に代えて、LiNi0.78Co0.20Al0.02O2で、一次粒子径が0.5μm以上の粒子の割合が30質量%であり、最大の一次粒子の粒子径が1μmのものを使用した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Comparative Example 3
Instead of the lithium-containing metal oxide (A), LiNi 0.78 Co 0.20 Al 0.02 O 2 , the ratio of particles having a primary particle diameter of 0.5 μm or more is 30% by mass, and the maximum primary A positive electrode was produced in the same manner as in Example 1 except that the particles having a particle diameter of 1 μm were used, and a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
比較例4
リチウム含有金属酸化物(B)に代えてLiCo0.992Mg0.006Ti0.001Zr0.001O2を用いた以外は比較例3と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Comparative Example 4
A positive electrode was prepared in the same manner as in Comparative Example 3 except that LiCo 0.992 Mg 0.006 Ti 0.001 Zr 0.001 O 2 was used instead of the lithium-containing metal oxide (B). A prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except for the difference.
比較例5
正極活物質をリチウム含有金属酸化物(B)であるLiCo0.984Al0.008Mg0.006Ti0.001Zr0.001O2のみに変更し、集電体の片面あたりの正極合剤層の厚みを55μmに変更した以外は、実施例1と同様にして正極を作製した。また、集電体の片面あたりの負極合剤層の厚みを72μmに変更した以外は、実施例1と同様にして負極を作製した。そして、この負極と前記の正極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.95g/cm3であり、充填率は79.0%であった。
Comparative Example 5
The positive electrode active material was changed to only LiCo 0.984 Al 0.008 Mg 0.006 Ti 0.001 Zr 0.001 O 2 which is a lithium-containing metal oxide (B), and the positive electrode active material per one side of the current collector was changed. A positive electrode was produced in the same manner as in Example 1, except that the thickness of the agent layer was changed to 55 μm. Further, a negative electrode was manufactured in the same manner as in Example 1, except that the thickness of the negative electrode mixture layer per one surface of the current collector was changed to 72 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode and the above-mentioned positive electrode were used. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.95 g / cm 3 , and the filling rate was 79.0%.
比較例6
正極活物質を、リチウム含有金属酸化物(A)であるLiNi0.78Co0.20Al0.02O2のみに変更し、集電体の片面あたりの正極合剤層の厚みを57μmに変更した以外は、実施例1と同様にして正極を作製した。また、集電体の片面あたりの負極合剤層の厚みを76μmに変更した以外は、実施例1と同様にして負極を作製した。そして、この負極と前記の正極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.60g/cm3であり、充填率は75.1%であった。
Comparative Example 6
The positive electrode active material was changed to only LiNi 0.78 Co 0.20 Al 0.02 O 2, which is a lithium-containing metal oxide (A), and the thickness of the positive electrode mixture layer on one side of the current collector was reduced to 57 μm. A positive electrode was produced in the same manner as in Example 1, except for the change. Further, a negative electrode was produced in the same manner as in Example 1, except that the thickness of the negative electrode mixture layer per one surface of the current collector was changed to 76 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode and the above-mentioned positive electrode were used. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.60 g / cm 3 , and the filling factor was 75.1%.
参考実験例1
集電体の片面あたりの正極合剤層の厚みを60μmに変更した以外は、実施例1と同様にして正極を作製した。また、集電体の片面あたりの負極合剤層の厚みを68μmに変更した以外は、実施例1と同様にして負極を作製した。そして、この負極と前記の正極とを用いた以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Reference experiment example 1
A positive electrode was produced in the same manner as in Example 1, except that the thickness of the positive electrode mixture layer per one surface of the current collector was changed to 60 μm. Further, a negative electrode was produced in the same manner as in Example 1, except that the thickness of the negative electrode mixture layer per one surface of the current collector was changed to 68 μm. Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode and the above-mentioned positive electrode were used.
参考実験例2
リチウム含有金属酸化物(A)に代えてLiNi0.91Co0.03Mn0.02Al0.02Mg0.02O2を用いた以外は、参考実験例1と同様にして正極を作製し、この正極を用いた以外は参考実験例2と同様にして角形非水電解質二次電池を作製した。
Reference Experimental Example 2
A positive electrode was produced in the same manner as in Reference Example 1 except that LiNi 0.91 Co 0.03 Mn 0.02 Al 0.02 Mg 0.02 O 2 was used instead of the lithium-containing metal oxide (A). Then, a prismatic nonaqueous electrolyte secondary battery was produced in the same manner as in Reference Experimental Example 2 except that this positive electrode was used.
実施例の非水電解質二次電池に使用した正極に係る正極活物質の構成を表1に、実施例の非水電解質二次電池に使用した負極に係る負極活物質の構成を表2に、比較例および参考実験例の非水電解質二次電池に使用した正極に係る正極活物質の構成を表3に、比較例および参考実験例の非水電解質二次電池に使用した負極に係る負極活物質の構成を表4に、それぞれ示す。なお、比較例1の電池に係る正極で使用したLiNi0.47Co0.019Mn0.29Mg0.05O2、比較例2および参考実験例2の電池に係る正極で使用したLiNi0.91Co0.03Mn0.02Al0.02Mg0.02O2、および比較例3、4の電池に係る正極で使用したLiNi0.78Co0.20Al0.02O2は、リチウム含有金属酸化物(A)には該当しないが、表3では、便宜上、これらも「リチウム含有金属酸化物(A)」の欄に記載する。また、比較例4の電池に係る正極で使用したLiCo0.992Mg0.006Ti0.001Zr0.001O2は、リチウム含有金属酸化物(B)には該当しないが、表3では、便宜上、これらも「リチウム含有金属酸化物(B)」の欄に記載する。 Table 1 shows the configuration of the positive electrode active material according to the positive electrode used in the nonaqueous electrolyte secondary battery of Example, and Table 2 shows the configuration of the negative electrode active material of the negative electrode used in the nonaqueous electrolyte secondary battery of Example. Table 3 shows the configuration of the positive electrode active material according to the positive electrode used in the nonaqueous electrolyte secondary batteries of the comparative example and the reference experimental example, and the negative electrode active material related to the negative electrode used in the nonaqueous electrolyte secondary batteries of the comparative example and the reference experimental example. Table 4 shows the constitutions of the substances. Note that LiNi 0.47 Co 0.019 Mn 0.29 Mg 0.05 O 2 used in the positive electrode according to the battery of Comparative Example 1 and LiNi 0 used in the positive electrode according to the batteries of Comparative Example 2 and Reference Experimental Example 2 .91 Co 0.03 Mn 0.02 Al 0.02 Mg 0.02 O 2 and LiNi 0.78 Co 0.20 Al 0.02 O 2 used in the positive electrodes of the batteries of Comparative Examples 3 and 4. , And lithium-containing metal oxide (A), but in Table 3, these are also described in the column of “lithium-containing metal oxide (A)” for convenience. LiCo 0.992 Mg 0.006 Ti 0.001 Zr 0.001 O 2 used in the positive electrode of the battery of Comparative Example 4 does not correspond to the lithium-containing metal oxide (B). For convenience, these are also described in the column of “lithium-containing metal oxide (B)”.
表1および表3中、リチウム含有金属酸化物(A)およびリチウム含有金属酸化物(B)の「比率」は、正極活物質全量中のこれらの含有量を意味している。また、表1および表2中のリチウム含有金属酸化物(A)の「一次粒子径が0.5μm以上の粒子の割合」および「最大の一次粒子の粒子径」は、前記(a)の方法で求めた値である。 In Tables 1 and 3, the “ratio” of the lithium-containing metal oxide (A) and the lithium-containing metal oxide (B) means their content in the total amount of the positive electrode active material. In Tables 1 and 2, the “proportion of particles having a primary particle diameter of 0.5 μm or more” and “the maximum particle diameter of primary particles” of the lithium-containing metal oxide (A) are determined according to the method (a). Is the value obtained in
また、実施例および比較例の非水電解質二次電池について、下記の各評価を行った。 The following evaluations were performed on the nonaqueous electrolyte secondary batteries of the examples and comparative examples.
<1C放電容量測定>
実施例1〜16および比較例1〜6の各電池について、25℃の環境下で、4.4Vまで1Cの定電流で充電後、総充電時間が2.5時間となるまで定電圧充電し、続いて1Cで電池電圧が2.75Vになるまで定電流放電を行って、放電容量(1C放電容量)を測定した。また、参考実験例1、2の各電池については、充電電圧を4.2Vにした以外は、実施例1の電池などと同じ条件で、1C放電容量を測定した。
<1C discharge capacity measurement>
Each of the batteries of Examples 1 to 16 and Comparative Examples 1 to 6 was charged at a constant current of 1 C up to 4.4 V in an environment of 25 ° C., and then charged at a constant voltage until the total charging time became 2.5 hours. Subsequently, constant current discharge was performed at 1 C until the battery voltage reached 2.75 V, and the discharge capacity (1 C discharge capacity) was measured. The 1C discharge capacity of each of the batteries of Reference Experimental Examples 1 and 2 was measured under the same conditions as those of the battery of Example 1 except that the charging voltage was set to 4.2 V.
<45℃充放電サイクル特性評価>
実施例1〜16および比較例1〜6の各電池について、45℃の環境下で、4.4Vまで1Cの定電流で充電後、総充電時間が2.5時間となるまで定電圧充電し、続いて1Cで電池電圧が3.3Vまで定電流放電を行う一連の操作を1サイクルとして、これらを多数繰り返し、300サイクル目の放電容量を測定した。また、参考実験例1、2の各電池については、充電電圧を4.2Vにした以外は、実施例1の電池などと同じ条件で、300サイクル目の放電容量を測定した。そして、各電池について、300サイクル目の放電容量を、前記の1C放電容量で除した値を百分率で表して、容量維持率を求めた。
<Evaluation of charge / discharge cycle characteristics at 45 ° C>
Each of the batteries of Examples 1 to 16 and Comparative Examples 1 to 6 was charged at a constant current of 1 C up to 4.4 V in an environment of 45 ° C., and then charged at a constant voltage until the total charging time became 2.5 hours. Subsequently, a series of operations for performing constant current discharge at 1 C until the battery voltage reached 3.3 V was defined as one cycle, and these operations were repeated many times, and the discharge capacity at the 300th cycle was measured. Further, for each of the batteries of Reference Experimental Examples 1 and 2, the discharge capacity at the 300th cycle was measured under the same conditions as those of the battery of Example 1 except that the charging voltage was set to 4.2V. Then, for each battery, a value obtained by dividing the discharge capacity at the 300th cycle by the 1C discharge capacity was expressed as a percentage, and the capacity retention rate was obtained.
前記の各評価結果を表5および表6に示す。なお、表5および表6では、各非水電解質二次電池の1C放電容量および45℃充放電サイクル特性評価時の容量維持率を、それぞれ、実施例1の電池の結果を100とした場合の相対値で示す。 Tables 5 and 6 show the evaluation results. In Tables 5 and 6, the 1C discharge capacity of each non-aqueous electrolyte secondary battery and the capacity retention rate at the time of evaluation of the charge / discharge cycle characteristics at 45 ° C. are shown assuming that the result of the battery of Example 1 is 100. Shown as a relative value.
表1〜表6に示す通り、適正な組成を有し、かつ一次粒子径が0.5μm以上の粒子を適正な割合で含むリチウム含有金属酸化物(A)を、適正な量で含有する正極合剤層を備えた正極を用いた実施例1〜16の非水電解質二次電池は、1C放電容量が大きく高容量であり、また、45℃での充放電サイクル特性評価時の容量維持率が高く、高温下での充放電サイクル特性が優れていた。 As shown in Tables 1 to 6, a positive electrode containing a lithium-containing metal oxide (A) having a proper composition and containing particles having a primary particle diameter of 0.5 μm or more in a proper ratio in a proper amount. The non-aqueous electrolyte secondary batteries of Examples 1 to 16 using the positive electrode provided with the mixture layer have a large 1C discharge capacity and a high capacity, and a capacity retention rate at the time of evaluation of charge / discharge cycle characteristics at 45 ° C. And the charge / discharge cycle characteristics at high temperatures were excellent.
これに対し、リチウム含有金属酸化物(A)に代えてMnおよびMgの量が多い正極活物質を使用した比較例1の電池、リチウム含有金属酸化物(A)に代えてCoの量が少なくMgの量が多い正極活物質を使用した比較例2の電池、リチウム含有金属酸化物(A)に代えて一次粒子径が0.5μm以上の粒子の割合が低いものを使用した比較例3、4の電池、リチウム含有金属酸化物(A)を使用していない比較例5の電池、およびリチウム含有金属酸化物(A)のみを使用した比較例6の電池は、45℃での充放電サイクル特性評価時の容量維持率が低く、高温下での充放電サイクル特性が劣っていた。 On the other hand, the battery of Comparative Example 1 using the positive electrode active material having a large amount of Mn and Mg instead of the lithium-containing metal oxide (A), and having a small amount of Co instead of the lithium-containing metal oxide (A) The battery of Comparative Example 2 using a positive electrode active material having a large amount of Mg, Comparative Example 3 using a low percentage of particles having a primary particle diameter of 0.5 μm or more instead of the lithium-containing metal oxide (A), The battery of Comparative Example 4, the battery of Comparative Example 5 not using the lithium-containing metal oxide (A), and the battery of Comparative Example 6 using only the lithium-containing metal oxide (A) were charged and discharged at 45 ° C. The capacity retention at the time of characteristic evaluation was low, and the charge / discharge cycle characteristics at high temperatures were inferior.
なお、参考実験例1の非水電解質二次電池は、正極合剤層および負極合剤層の厚みが若干異なる以外は、実施例1の電池と同様の構成を有しており、参考実験例2の非水電解質二次電池は、正極合剤層および負極合剤層の厚みが若干異なる以外は、比較例2の電池と同様の構成を有している。これらの参考実験例1、2の電池については、前記の通り、充電時の上限電圧を4.2Vとして1C放電容量を測定したが、表3に示す通り、容量が小さかった。すなわち、比較例2の電池と参考実験例2の電池との比較から分かるように、充電時の上限電圧を4.2Vから4.3V以上(4.4V)に高めると、1C放電容量を大きくすることが可能となる一方で、高温下での充放電サイクル特性が低下するが、実施例1の電池の評価結果から分かるように、適正な組成を有し、かつ一次粒子径が0.5μm以上の粒子を適正な割合で含むリチウム含有金属酸化物(A)を、適正な量で含有する正極合剤層を備えた正極を用いることで、高温下での充放電サイクル特性の低下を抑制しつつ、高容量化を図ることができた。 The nonaqueous electrolyte secondary battery of Reference Experimental Example 1 has the same configuration as the battery of Example 1 except that the thicknesses of the positive electrode mixture layer and the negative electrode mixture layer are slightly different. The non-aqueous electrolyte secondary battery of No. 2 has the same configuration as the battery of Comparative Example 2 except that the thicknesses of the positive electrode mixture layer and the negative electrode mixture layer are slightly different. As for the batteries of Reference Experimental Examples 1 and 2, 1C discharge capacity was measured with the upper limit voltage at the time of charging set to 4.2 V as described above. As shown in Table 3, the capacity was small. That is, as can be seen from the comparison between the battery of Comparative Example 2 and the battery of Reference Experimental Example 2, when the upper limit voltage during charging is increased from 4.2 V to 4.3 V or more (4.4 V), the 1C discharge capacity increases. On the other hand, the charge-discharge cycle characteristics at high temperatures are reduced, but as can be seen from the evaluation results of the battery of Example 1, the battery has an appropriate composition and a primary particle diameter of 0.5 μm By using a positive electrode provided with a positive electrode mixture layer containing an appropriate amount of the lithium-containing metal oxide (A) containing the above particles in an appropriate ratio, a decrease in charge / discharge cycle characteristics at high temperatures is suppressed. While increasing the capacity.
1 正極
2 負極
3 セパレータ
1
Claims (7)
正極活物質、導電助剤およびバインダを含有する正極合剤層を有しており、
前記正極合剤層は、前記正極活物質として、下記一般式(1)
LiaNi1−b−c−dCobMncM1 dMgeO2 (1)
〔前記一般式(1)中、M1は、Li、Ni、CoおよびMn以外の金属元素であって、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.1≦b≦0.2、0≦c≦0.2、0.1≦b+c≦0.25、0.003≦d≦0.06、および0≦e≦0.003である〕で表され、かつ一次粒子径が0.5μm以上の粒子を50質量%以上含むリチウム含有金属酸化物(A)と、
下記一般式(2)
Li f Co 1−g−h M 2 g M 3 h O 2 (2)
〔前記一般式(2)中、M 2 は、Al、MgおよびErよりなる群から選択される少なくとも1種の元素で、M 3 は、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Mo、V、Sn、Ta、NbおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦f≦1.10、0.010≦g≦0.1、0.0005≦h≦0.05、g+h≦0.12である〕で表されるリチウム含有金属酸化物(B)とを含有しており、
前記正極合剤層が含有する正極活物質の全量を100質量%としたとき、前記リチウム含有金属酸化物(A)の含有量が、5〜80質量%であることを特徴とする非水電解質二次電池用正極。 Positive electrode, a negative electrode, a positive electrode used for a non-aqueous electrolyte secondary battery having a separator and a non-aqueous electrolyte,
Positive electrode active material, having a positive electrode mixture layer containing a conductive auxiliary and a binder,
The positive electrode mixture layer has the following general formula (1) as the positive electrode active material.
Li a Ni 1-b-c -d Co b Mn c M 1 d Mg e O 2 (1)
[In the general formula (1), M 1 is a metal element other than Li, Ni, Co, and Mn, and is at least one selected from the group consisting of Al, Ti, Sr, Zr, Nb, Ag, and Ba. Seed element, 0.9 ≦ a ≦ 1.10, 0.1 ≦ b ≦ 0.2, 0 ≦ c ≦ 0.2, 0.1 ≦ b + c ≦ 0.25, 0.003 ≦ d ≦ 0.06 and 0 ≦ e ≦ 0.003], and a lithium-containing metal oxide (A) containing 50% by mass or more of particles having a primary particle size of 0.5 μm or more ;
The following general formula (2)
Li f Co 1-g-h M 2 g M 3 h O 2 (2)
[In the general formula (2), M 2 is at least one element selected from the group consisting of Al, Mg and Er, and M 3 is Zr, Ti, Ni, Mn, Na, Bi, Ca, At least one element selected from the group consisting of F, P, Sr, W, Ba, Mo, V, Sn, Ta, Nb, and Zn; 0.9 ≦ f ≦ 1.10, 0.010 ≦ g ≦ 0.1, 0.0005 ≦ h ≦ 0.05, g + h ≦ 0.12], and a lithium-containing metal oxide (B) represented by the formula :
When the total amount of the positive electrode active material contained in the positive electrode mixture layer is 100% by mass, the content of the lithium-containing metal oxide (A) is 5 to 80% by mass. Positive electrode for secondary batteries.
前記非水電解質二次電池に対し、4.3V以上の電圧を上限とする充電を行うことを特徴とする非水電解質二次電池のシステム。
A non-aqueous electrolyte secondary battery according to any one of claims 4 to 6 , and a charging device,
A non-aqueous electrolyte secondary battery system comprising: charging the non-aqueous electrolyte secondary battery with a voltage of 4.3 V or more as an upper limit.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014146396A JP6654793B2 (en) | 2014-07-17 | 2014-07-17 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof |
CN201510378359.7A CN105280880B (en) | 2014-07-17 | 2015-07-01 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and system thereof |
KR1020150096501A KR102419885B1 (en) | 2014-07-17 | 2015-07-07 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014146396A JP6654793B2 (en) | 2014-07-17 | 2014-07-17 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016024879A JP2016024879A (en) | 2016-02-08 |
JP6654793B2 true JP6654793B2 (en) | 2020-02-26 |
Family
ID=55149518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014146396A Active JP6654793B2 (en) | 2014-07-17 | 2014-07-17 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6654793B2 (en) |
KR (1) | KR102419885B1 (en) |
CN (1) | CN105280880B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113149083A (en) * | 2016-03-14 | 2021-07-23 | 苹果公司 | Cathode active material for lithium ion battery |
KR20190006989A (en) * | 2016-05-12 | 2019-01-21 | 에리 파워 가부시키가이샤 | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery |
CN106207122A (en) * | 2016-08-12 | 2016-12-07 | 联想(北京)有限公司 | Polymer Li-ion battery negative material and polymer Li-ion battery and electronic equipment |
KR102146393B1 (en) | 2016-08-30 | 2020-08-20 | 삼성에스디아이 주식회사 | Separator for lithium rechargeable battery, method of manufacturing the separator, and rechargeable lithium battery including the separator |
JPWO2018110188A1 (en) * | 2016-12-14 | 2019-10-24 | マクセルホールディングス株式会社 | Lithium ion secondary battery, its manufacturing method and lithium ion secondary battery precursor |
CN110521029B (en) * | 2017-02-09 | 2022-11-29 | 株式会社村田制作所 | Secondary battery, battery pack, electric vehicle, electric tool, and electronic device |
KR102179968B1 (en) * | 2017-10-20 | 2020-11-17 | 주식회사 엘지화학 | Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby, positive electrode and lithium secondary battery including the same |
KR102288292B1 (en) * | 2018-06-07 | 2021-08-10 | 주식회사 엘지화학 | Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same |
US11695108B2 (en) | 2018-08-02 | 2023-07-04 | Apple Inc. | Oxide mixture and complex oxide coatings for cathode materials |
US11749799B2 (en) | 2018-08-17 | 2023-09-05 | Apple Inc. | Coatings for cathode active materials |
US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
US12206100B2 (en) | 2019-08-21 | 2025-01-21 | Apple Inc. | Mono-grain cathode materials |
WO2021100858A1 (en) * | 2019-11-22 | 2021-05-27 | 株式会社Gsユアサ | Electricity storage element and electricity storage device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3858699B2 (en) * | 2002-01-11 | 2006-12-20 | 株式会社豊田中央研究所 | Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same |
US7238450B2 (en) * | 2003-12-23 | 2007-07-03 | Tronox Llc | High voltage laminar cathode materials for lithium rechargeable batteries, and process for making the same |
JP4222519B2 (en) * | 2005-04-13 | 2009-02-12 | 日立マクセル株式会社 | Lithium ion secondary battery and equipment using the same |
KR101001567B1 (en) * | 2005-04-11 | 2010-12-17 | 히다치 막셀 가부시키가이샤 | Lithium-ion Secondary Battery |
JP4996117B2 (en) * | 2006-03-23 | 2012-08-08 | 住友金属鉱山株式会社 | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same |
JP4972624B2 (en) * | 2008-09-30 | 2012-07-11 | 日立ビークルエナジー株式会社 | Positive electrode material for lithium secondary battery and lithium secondary battery using the same |
JP5695373B2 (en) | 2009-09-09 | 2015-04-01 | 日立マクセル株式会社 | Electrode for electrochemical element and electrochemical element using the same |
JP2011192580A (en) * | 2010-03-16 | 2011-09-29 | Hitachi Maxell Energy Ltd | Nonaqueous secondary battery |
JP2012238581A (en) * | 2011-04-28 | 2012-12-06 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery |
JP2013065468A (en) * | 2011-09-16 | 2013-04-11 | Panasonic Corp | Lithium ion secondary battery |
JP5945197B2 (en) * | 2012-09-12 | 2016-07-05 | 日立マクセル株式会社 | Non-aqueous electrolyte secondary battery |
JP6059019B2 (en) * | 2013-01-07 | 2017-01-11 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery |
CN103280576B (en) * | 2013-06-06 | 2016-04-27 | 南通瑞翔新材料有限公司 | The positive electrode of lithium rechargeable battery and manufacture method thereof |
-
2014
- 2014-07-17 JP JP2014146396A patent/JP6654793B2/en active Active
-
2015
- 2015-07-01 CN CN201510378359.7A patent/CN105280880B/en active Active
- 2015-07-07 KR KR1020150096501A patent/KR102419885B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105280880A (en) | 2016-01-27 |
JP2016024879A (en) | 2016-02-08 |
KR102419885B1 (en) | 2022-07-12 |
KR20160010313A (en) | 2016-01-27 |
CN105280880B (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6654793B2 (en) | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof | |
JP4868556B2 (en) | Lithium secondary battery | |
KR101485382B1 (en) | Lithium secondary battery | |
US9570777B2 (en) | Lithium secondary battery | |
JP6258641B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6253411B2 (en) | Lithium secondary battery | |
JP6453611B2 (en) | Lithium secondary battery | |
JP6059019B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5121035B1 (en) | Lithium ion secondary battery | |
JP5945197B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5031065B2 (en) | Lithium ion secondary battery | |
JP2012003997A (en) | Nonaqueous electrolyte secondary cell | |
JP2017147054A (en) | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP2017103024A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same | |
JP5523506B2 (en) | Method for producing lithium ion secondary battery | |
JP2014007010A (en) | Lithium secondary battery | |
JP5566825B2 (en) | Lithium secondary battery | |
JP6208584B2 (en) | Nonaqueous electrolyte secondary battery | |
JP6063705B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2014141932A1 (en) | Lithium secondary battery | |
JP5978024B2 (en) | Non-aqueous secondary battery | |
JP2017152223A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same | |
JP5658122B2 (en) | Lithium secondary battery | |
JP2013118068A (en) | Lithium secondary battery | |
JP5785653B2 (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6654793 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |