JP6642170B2 - Electrostatic chuck device and manufacturing method thereof - Google Patents
Electrostatic chuck device and manufacturing method thereof Download PDFInfo
- Publication number
- JP6642170B2 JP6642170B2 JP2016058515A JP2016058515A JP6642170B2 JP 6642170 B2 JP6642170 B2 JP 6642170B2 JP 2016058515 A JP2016058515 A JP 2016058515A JP 2016058515 A JP2016058515 A JP 2016058515A JP 6642170 B2 JP6642170 B2 JP 6642170B2
- Authority
- JP
- Japan
- Prior art keywords
- electrostatic chuck
- heating member
- sheet material
- gap
- electrostatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 127
- 239000000463 material Substances 0.000 claims description 97
- 238000000034 method Methods 0.000 claims description 19
- 229920001971 elastomer Polymers 0.000 claims description 17
- 239000000806 elastomer Substances 0.000 claims description 16
- 229920001296 polysiloxane Polymers 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 54
- 239000011810 insulating material Substances 0.000 description 42
- 239000000853 adhesive Substances 0.000 description 36
- 230000001070 adhesive effect Effects 0.000 description 36
- 235000012431 wafers Nutrition 0.000 description 17
- 239000000919 ceramic Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 239000002131 composite material Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 10
- 238000009434 installation Methods 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 239000013464 silicone adhesive Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- -1 polydimethylsiloxane Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical compound [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QVGDHHIUWSXNBR-UHFFFAOYSA-N [W+4].[O-2].[Al+3] Chemical compound [W+4].[O-2].[Al+3] QVGDHHIUWSXNBR-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VQLOCUKZAJRPAO-UHFFFAOYSA-N aluminum oxygen(2-) tantalum(5+) Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Ta+5] VQLOCUKZAJRPAO-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- RBNWAMSGVWEHFP-UHFFFAOYSA-N trans-p-Menthane-1,8-diol Chemical compound CC(C)(O)C1CCC(C)(O)CC1 RBNWAMSGVWEHFP-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、静電チャック装置及びその製造方法に関する。 The present invention relates to an electrostatic chuck device and a method for manufacturing the same.
半導体製造プロセスにおいては、ウエハの加工に当たり、試料台に簡単にウエハを取付け、固定するとともに、このウエハを所望の温度に維持する装置として静電チャック装置が使用されている。
半導体素子の高集積化や高性能化に伴い、ウエハの加工の微細化が進んでおり、生産効率が高く、大面積の微細加工が可能なプラズマエッチング技術がよく用いられている。静電チャック装置に固定されたウエハにプラズマを照射すると、このウエハの表面温度が上昇する。そこで、この表面温度の上昇を抑えるために、静電チャック装置のベース部に水等の冷却媒体を循環させてウエハを下側から冷却しているが、この際、プラズマによるウエハへの入熱のウエハ面内のばらつきにより、ウエハの面内で温度分布が発生する。例えば、ウエハの中心部では温度が高くなり、縁辺部では温度が低くなる傾向にある。
2. Description of the Related Art In a semiconductor manufacturing process, an electrostatic chuck device is used as a device for easily mounting and fixing a wafer on a sample stage and maintaining the wafer at a desired temperature when processing the wafer.
With the high integration and high performance of semiconductor elements, the processing of wafers has been miniaturized, and a plasma etching technique which has high production efficiency and enables fine processing of a large area is often used. When plasma is irradiated to a wafer fixed to the electrostatic chuck device, the surface temperature of the wafer increases. Therefore, in order to suppress the rise in the surface temperature, a cooling medium such as water is circulated through the base portion of the electrostatic chuck device to cool the wafer from below. At this time, heat input to the wafer by plasma is performed. Due to the variation in the wafer surface, a temperature distribution occurs in the wafer surface. For example, the temperature tends to be higher at the center of the wafer and lower at the edge.
例えば、ヘリウム等のガスを用いたウエハの面内温度分布を調整する静電チャック装置やウエハと静電チャックの吸着面との間の接触面積を調整した静電チャック装置では、局所的な温度制御を行うことが難しかった。
また、従来のヒータ機能付き静電チャック装置では、ヒータの急速な昇降温により、静電チャック部やベース部やヒータ自体にクラックが発生することがあり、静電チャック装置としての耐久性が不十分であるという問題点があった。
かかる問題を解決するために、例えば、プラズマエッチング装置等の処理装置に適用した場合に、シリコンウエハ等の板状試料の面内に局所的な温度分布を生じさせることにより、プラズマ印加に伴うシリコンウエハ等の板状試料の局所的な温度制御を行うことが可能な静電チャック装置が開示されている(例えば、特許文献1参照)。
For example, in an electrostatic chuck device that adjusts an in-plane temperature distribution of a wafer using a gas such as helium or an electrostatic chuck device that adjusts a contact area between a wafer and a suction surface of the electrostatic chuck, a local temperature It was difficult to control.
Further, in the conventional electrostatic chuck device with a heater function, cracks may occur in the electrostatic chuck portion, the base portion, and the heater itself due to rapid temperature rise and fall of the heater, and the durability of the electrostatic chuck device is not sufficient. There was a problem that it was enough.
In order to solve such a problem, for example, when applied to a processing apparatus such as a plasma etching apparatus, by generating a local temperature distribution in the plane of a plate-like sample such as a silicon wafer, the An electrostatic chuck device capable of locally controlling the temperature of a plate-like sample such as a wafer has been disclosed (for example, see Patent Document 1).
静電チャック部を加熱する加熱部材は、通常、静電チャック部の板状試料の載置面上と反対側の面に間隙を有して接着されているため、静電チャック部と加熱部材とにより凹凸が生じ、加熱部材を安定して固定することができなかった。
本発明は、加熱部材が静電チャック部の板状試料の載置面上と反対側の面に安定に固定化された静電チャック装置及びその製造方法を提供することを目的とし該目的を達成することを課題とする。
Since the heating member for heating the electrostatic chuck portion is usually bonded with a gap to the surface of the electrostatic chuck portion opposite to the surface on which the plate-like sample is placed, the heating member and the heating member are As a result, the heating member could not be fixed stably.
An object of the present invention is to provide an electrostatic chuck device in which a heating member is stably fixed to a surface of the electrostatic chuck portion opposite to a surface on which a plate-shaped sample is placed, and a method for manufacturing the same. The task is to achieve it.
前記課題を達成するための具体的手段は以下の通りである。
<1> 一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、前記静電チャック部の前記載置面と反対側の面に間隙を有するパターンで接着された加熱部材と、前記加熱部材の間隙を充填するシート材と、前記静電チャック部を冷却する機能を有するベース部とをこの順に備え、前記シート材は、ショア硬度(A)が10〜70である静電チャック装置である。
Specific means for achieving the above object are as follows.
<1> One principal surface is a mounting surface on which a plate-shaped sample is mounted, and an electrostatic chuck unit having a built-in electrostatic chuck internal electrode, and an electrostatic chuck unit on the opposite side to the mounting surface described above. A heating member bonded in a pattern having a gap on a surface, a sheet material filling the gap between the heating members, and a base portion having a function of cooling the electrostatic chuck portion are provided in this order, and the sheet material includes The electrostatic chuck device has a Shore hardness (A) of 10 to 70.
<2> 前記シート材が、シリコーン系エラストマー及びフッ素系エラストマーからなる群より選択される1種以上を含有する<1>に記載の静電チャック装置である。 <2> The electrostatic chuck device according to <1>, wherein the sheet material contains at least one selected from the group consisting of a silicone-based elastomer and a fluorine-based elastomer.
<3> 前記加熱部材の間隙の全体積が、前記シート材の体積の10体積%〜50体積%である<1>又は<2>に記載の静電チャック装置である。 <3> The electrostatic chuck device according to <1> or <2>, wherein the entire volume of the gap between the heating members is 10% by volume to 50% by volume of the volume of the sheet material.
<4> 前記シート材の貯蔵弾性率E’が、0〜200℃の温度範囲において1〜10MPaである<1>〜<3>のいずれか1つに記載の静電チャック装置である。 <4> The electrostatic chuck device according to any one of <1> to <3>, wherein a storage elastic modulus E ′ of the sheet material is 1 to 10 MPa in a temperature range of 0 to 200 ° C.
<5> <1>〜<4>のいずれか1つに記載の静電チャック装置の製造方法であって、
一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部の前記載置面と反対側の面に、間隙を有するパターンで接着された加熱部材を形成する工程、及び、
前記静電チャック部の前記加熱部材が形成された面と、層厚が50〜300μmであり、かつショア硬度(A)が10〜70であるシート材とを対峙させて、前記静電チャック部と、前記静電チャック部を冷却する機能を有するベース部とで、前記シート材を挟み、押圧する工程を有する静電チャック装置の製造方法である。
<5> The method for manufacturing an electrostatic chuck device according to any one of <1> to <4>,
One main surface is a mounting surface on which the plate-shaped sample is mounted, and is bonded in a pattern having a gap to a surface opposite to the mounting surface described above of the electrostatic chuck portion having the internal electrode for electrostatic chuck. Forming a heating member, and
The surface of the electrostatic chuck portion on which the heating member is formed and a sheet material having a layer thickness of 50 to 300 μm and a Shore hardness (A) of 10 to 70 are opposed to each other to form the electrostatic chuck portion. And a base unit having a function of cooling the electrostatic chuck unit.
本発明によれば、加熱部材が静電チャック部の板状試料の載置面上と反対側の面に安定に固定化された静電チャック装置及びその製造方法が提供される。 According to the present invention, there is provided an electrostatic chuck device in which a heating member is stably fixed to a surface of the electrostatic chuck portion opposite to a surface on which a plate-shaped sample is placed, and a method of manufacturing the same.
<静電チャック装置>
本発明の静電チャック装置は、一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、前記静電チャック部の前記載置面と反対側の面に間隙を有するパターンで接着された加熱部材と、前記加熱部材の間隙を充填するシート材と、前記静電チャック部を冷却する機能を有するベース部とをこの順に備え、前記シート材は、ショア硬度(A)が10〜70である。
まず、本発明の静電チャック装置における静電チャック部、加熱部材、シート材、並びにベース部の積層構成について説明する。
<Electrostatic chuck device>
The electrostatic chuck device according to the present invention is configured such that one main surface is a mounting surface on which a plate-shaped sample is mounted, and an electrostatic chuck unit having a built-in internal electrode for electrostatic suction, and the electrostatic chuck unit described above. A heating member adhered in a pattern having a gap on the surface opposite to the mounting surface, a sheet material filling the gap between the heating members, and a base portion having a function of cooling the electrostatic chuck portion are provided in this order. The sheet material has a Shore hardness (A) of 10 to 70.
First, the laminated structure of the electrostatic chuck unit, the heating member, the sheet material, and the base unit in the electrostatic chuck device of the present invention will be described.
図1は、本発明の静電チャック装置の積層構成の一例を示す断面模式図である。
静電チャック装置100は、ウエハを固定する静電チャック部2と、静電チャック部2を加熱する加熱部材50と、静電チャック部2を冷却する機能を有する厚みのある円板状のベース部10とを有する。静電チャック部2とベース部10との間には、静電チャック部2側から順に、加熱部材50、シート材20、及び絶縁材層60を有する。
FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of the electrostatic chuck device of the present invention.
The electrostatic chuck device 100 includes an electrostatic chuck unit 2 for fixing a wafer, a heating member 50 for heating the electrostatic chuck unit 2, and a thick disk-shaped base having a function of cooling the electrostatic chuck unit 2. A part 10. A heating member 50, a sheet material 20, and an insulating material layer 60 are provided between the electrostatic chuck 2 and the base 10 in this order from the electrostatic chuck 2 side.
加熱部材50は、図示しない接着剤、粘着剤等を介して、静電チャック部2の載置面と反対側の面(加熱部材設置面という)上に位置し、静電チャック部2に、間隙を有するパターンで接着されている。加熱部材50は、例えば、幅の狭い帯状の金属材料を蛇行させた1つ又は複数のパターンにより構成することができる。図1には、4つの加熱部材50が示されている。これらの加熱部材50は、通常、1つのパターンで連なっているが、複数の、同一種又は異種のパターンにより構成されていてもよい。例えば、直径の異なる複数の輪状の加熱部材を同心円状に配置してもよい。 The heating member 50 is located on a surface (referred to as a heating member installation surface) opposite to the mounting surface of the electrostatic chuck unit 2 via an adhesive, an adhesive, or the like (not shown). Glued in a pattern with gaps. The heating member 50 can be configured by, for example, one or a plurality of patterns in which a narrow band-shaped metal material is meandering. FIG. 1 shows four heating members 50. These heating members 50 are generally connected in one pattern, but may be formed by a plurality of same or different patterns. For example, a plurality of ring-shaped heating members having different diameters may be arranged concentrically.
図1のシート材20は、ショア硬度(A)が10〜70であるため、加熱部材50の間隙の形状に追随する。従って、静電チャック部2の加熱部材設置面に加熱部材50がある場所は、加熱部材50上又は加熱部材50の側面に隣接し、加熱部材50がない場所は静電チャック部2に隣接している。
静電チャック装置の製造方法の詳細は後述するが、静電チャック装置は、加熱部材50を固定した静電チャック部2の加熱部材設置面側に、シート材20と、必要に応じて絶縁材層60を介在させて、静電チャック部2とベース部10とを挟み、加圧することで、製造することができる。このとき、シート材20として、ショア硬度(A)が10〜70である硬度が低い材質のシートを使用することで、シート材20の一部が流動的に移動して、加熱部材50同士の間隙に入り込み、静電チャック部2と加熱部材5とにより生じた凹凸を埋設するので、加熱部材50を静電チャック部2の加熱部材設置面に安定に固定化することができる。シート材のショア硬度(A)は、例えば、テクロック社製のデュロメータGS−706で測定することができる。
Since the sheet material 20 in FIG. 1 has a Shore hardness (A) of 10 to 70, it follows the shape of the gap of the heating member 50. Therefore, a place where the heating member 50 is located on the heating member installation surface of the electrostatic chuck unit 2 is adjacent to the heating member 50 or a side surface of the heating member 50, and a place where the heating member 50 is not located is adjacent to the electrostatic chuck unit 2. ing.
Although the details of the method of manufacturing the electrostatic chuck device will be described later, the electrostatic chuck device includes a sheet material 20 and an insulating material, if necessary, on the heating member installation surface side of the electrostatic chuck portion 2 to which the heating member 50 is fixed. It can be manufactured by sandwiching the electrostatic chuck portion 2 and the base portion 10 with the layer 60 interposed therebetween and applying pressure. At this time, by using a sheet of a low hardness material having a Shore hardness (A) of 10 to 70 as the sheet material 20, a part of the sheet material 20 moves fluidly and the heating members 50 Since it enters the gap and buries the unevenness generated by the electrostatic chuck 2 and the heating member 5, the heating member 50 can be stably fixed to the heating member installation surface of the electrostatic chuck 2. The Shore hardness (A) of the sheet material can be measured by, for example, a durometer GS-706 manufactured by Teklock.
また、加熱部材50の間隙の全体積(以下「間隙割合」と称することがある)は、シート材20の体積の50体積%以下であることが好ましい。50体積%以下であることで、加熱部材50の間隙に埋設されていない部分のシート材20の厚さが確保され、加熱部材50と絶縁材層60(絶縁材層60を有さない場合はベース部10)との近接を抑制し、静電チャック部とベース部との温度差により生じる応力を緩和することができる。また、一般に、静電チャック装置の構造上の制限から、間隙割合は10体積%以上になり易い。 Further, the total volume of the gap of the heating member 50 (hereinafter sometimes referred to as “gap ratio”) is preferably 50% by volume or less of the volume of the sheet material 20. When the volume is 50% by volume or less, the thickness of the sheet material 20 that is not buried in the gap between the heating members 50 is secured, and the heating member 50 and the insulating material layer 60 (when the insulating material layer 60 is not provided, The proximity to the base portion 10) can be suppressed, and the stress caused by the temperature difference between the electrostatic chuck portion and the base portion can be reduced. In general, the gap ratio is likely to be 10% by volume or more due to the structural limitation of the electrostatic chuck device.
更に、図1の静電チャック装置100は、シート材20とベース部10との間に、絶縁材層60を有する。図1においては、絶縁材層60をベース部10に隣接する位置に設けているが、絶縁材層60は、例えば、加熱部材50と静電チャック部2との間に設けられていてもよいし、シート材20とベース部10との間及び加熱部材50と静電チャック部2との間の両方に設けられていてもよい。
本発明の静電チャック装置の積層構成は図1に示す構成に限られない。
以下、図面の符号を省略して説明する。
Further, the electrostatic chuck device 100 of FIG. 1 has an insulating material layer 60 between the sheet material 20 and the base portion 10. In FIG. 1, the insulating material layer 60 is provided at a position adjacent to the base portion 10, but the insulating material layer 60 may be provided, for example, between the heating member 50 and the electrostatic chuck portion 2. Then, it may be provided both between the sheet member 20 and the base portion 10 and between the heating member 50 and the electrostatic chuck portion 2.
The stacking configuration of the electrostatic chuck device of the present invention is not limited to the configuration shown in FIG.
Hereinafter, the description will be made with the reference numerals in the drawings omitted.
〔シート材〕
シート材は、ショア硬度(A)(JIS Z 2246:2000)が10〜70である。
ショア硬度(A)が10未満であるシート材は入手することができず、70を超えるシート材は、表面凹凸への追従性が悪く、静電チャック部及び加熱部材への密着性に優れない。シート材のショア硬度(A)は15〜65であることが好ましく、20〜60であることがより好ましい。
シート材は上記のような硬度の低い材質であることで、シート材が、加熱部材が固定化された静電チャック部とベース部とに挟まれたときに、シート材の一部が流動的に加熱部材の間隙に入り込み、加熱部材を静電チャック部に固定化する。
シート材は、チューイングガムのように塑性変形するものではなく、弾力性のある素材であることが好ましい。具体的には、シート材の貯蔵弾性率E’が、0〜200℃の温度範囲において1〜10MPaであることが好ましく、2〜8MPaであることがより好ましい。E’が1MPa以上であることで、塑性変形しにくく、E’が10MPa以下であることで、シート材のショア硬度(A)を70以下にし易い。
シート材の貯蔵弾性率E’は、JIS K 7244(1999年)のプラスチック動的機械特性の試験方法に基づき測定することができる。
[Sheet material]
The sheet material has a Shore hardness (A) (JIS Z 2246: 2000) of 10 to 70.
A sheet material having a Shore hardness (A) of less than 10 is not available, and a sheet material having a Shore hardness of more than 70 has poor followability to surface irregularities and is not excellent in adhesion to an electrostatic chuck portion and a heating member. . The shore hardness (A) of the sheet material is preferably from 15 to 65, and more preferably from 20 to 60.
Since the sheet material is a material having a low hardness as described above, when the sheet material is sandwiched between the electrostatic chuck portion to which the heating member is fixed and the base portion, a part of the sheet material flows. Into the gap between the heating members to fix the heating member to the electrostatic chuck portion.
The sheet material is preferably not elastically deformed like chewing gum, but is an elastic material. Specifically, the storage elastic modulus E ′ of the sheet material is preferably 1 to 10 MPa in a temperature range of 0 to 200 ° C., and more preferably 2 to 8 MPa. When E ′ is 1 MPa or more, plastic deformation is difficult, and when E ′ is 10 MPa or less, the shore hardness (A) of the sheet material is easily reduced to 70 or less.
The storage elastic modulus E 'of the sheet material can be measured based on the test method of plastic dynamic mechanical properties in JIS K 7244 (1999).
本発明において、シート材は、加熱部材の間隙を埋設し、加熱部材を安定に固定化する機能を有すると共に、静電チャック部とベース部との温度差により生じる応力を緩和する機能も有し得る。
静電チャック部とベース部との温度差により生じる応力を緩和する観点から、シート材は、シリコーン系エラストマー、及びフッ素系エラストマーからなる群より選択される1種以上を含有することが好ましい。
シリコーン系エラストマーとしては、オルガノポリシロキサンを主成分としたもので、ポリジメチルシロキサン系、ポリメチルフェニルシロキサン系、ポリジフェニルシロキサン系に分けられる。一部をビニル基、アルコキシ基等で変性したものもある。具体例として、KEシリーズ〔信越化学工業(株)製〕、SEシリーズ、CYシリーズ、SHシリーズ〔以上、東レダウコーニングシリコーン(株)製〕などが挙げられる。
In the present invention, the sheet material has a function of burying the gap between the heating members and stably fixing the heating member, and also has a function of relaxing stress caused by a temperature difference between the electrostatic chuck portion and the base portion. obtain.
From the viewpoint of relaxing the stress caused by the temperature difference between the electrostatic chuck portion and the base portion, the sheet material preferably contains at least one selected from the group consisting of a silicone-based elastomer and a fluorine-based elastomer.
Silicone-based elastomers contain organopolysiloxane as a main component and are classified into polydimethylsiloxane-based, polymethylphenylsiloxane-based, and polydiphenylsiloxane-based elastomers. Some are partially modified with vinyl groups, alkoxy groups and the like. Specific examples include the KE series (manufactured by Shin-Etsu Chemical Co., Ltd.), SE series, CY series, and SH series (all manufactured by Toray Dow Corning Silicone Co., Ltd.).
フッ素系エラストマーとしては、ハードセグメントがフッ素系樹脂であり、ソフトセグメントがフッ素系ゴムである構造を有するエラストマー、シリコーン系エラストマーに含まれる炭化水素基の一部又は全部の水素原子がフッ素原子に置換されたエラストマー等が挙げられる。
シート材は、シリコーン系エラストマー、又はフッ素系エラストマーを、それぞれ単独で含んでいてもよいし、2種以上を含んでいてもよいし、1種以上のシリコーン系エラストマーと1種以上のフッ素系エラストマーの両方を含んでいてもよい。
As the fluorine-based elastomer, an elastomer having a structure in which the hard segment is a fluorine-based resin and the soft segment is a fluorine-based rubber, and some or all of the hydrogen atoms of the hydrocarbon groups contained in the silicone-based elastomer are replaced with fluorine atoms And the like.
The sheet material may contain a silicone-based elastomer or a fluorine-based elastomer alone, or may contain two or more kinds, or one or more silicone-based elastomers and one or more fluorine-based elastomers May be included.
〔静電チャック部〕
静電チャック部は、一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵する。
より具体的には、例えば、上面が半導体ウエハ等の板状試料を載置する載置面とされた載置板と、この載置板と一体化され該載置板を支持する支持板と、これら載置板と支持板との間に設けられた静電吸着用内部電極及び静電吸着用内部電極の周囲を絶縁する絶縁材層(チャック内絶縁材層)と、支持板を貫通するようにして設けられ静電吸着用内部電極に直流電圧を印加する給電用端子とにより構成されていることが好ましい。
(Electrostatic chuck)
The electrostatic chuck section has one main surface as a mounting surface on which a plate-shaped sample is mounted, and has a built-in internal electrode for electrostatic suction.
More specifically, for example, a mounting plate whose upper surface is a mounting surface on which a plate-shaped sample such as a semiconductor wafer is mounted, and a supporting plate that is integrated with the mounting plate and supports the mounting plate. An inner electrode for electrostatic attraction provided between the mounting plate and the support plate and an insulating material layer (insulating material layer in the chuck) for insulating the periphery of the inner electrode for electrostatic attraction, and penetrating the support plate. It is preferable that the power supply terminal be provided with a power supply terminal that is provided as described above and applies a DC voltage to the internal electrode for electrostatic attraction.
載置板及び支持板は、重ね合わせた面の形状を同じくする円板状のもので、酸化アルミニウム−炭化ケイ素(Al2O3−SiC)複合焼結体、酸化アルミニウム(Al2O3)焼結体、窒化アルミニウム(AlN)焼結体、酸化イットリウム(Y2O3)焼結体等の機械的な強度を有し、腐食性ガス及びそのプラズマに対する耐久性を有する絶縁性のセラミックス焼結体からなるものであることが好ましい。
載置板の載置面には、直径が板状試料の厚みより小さい突起部が複数個形成され、これらの突起部が板状試料を支える構成であることが好ましい。
The mounting plate and the support plate are disk-shaped and have the same superimposed surface shape, and are made of an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, aluminum oxide (Al 2 O 3 ). Insulating ceramics having mechanical strength such as sintered body, aluminum nitride (AlN) sintered body, yttrium oxide (Y 2 O 3 ) sintered body, and having durability against corrosive gas and its plasma. It is preferable that it is made of a union.
It is preferable that a plurality of protrusions having a diameter smaller than the thickness of the plate-shaped sample are formed on the mounting surface of the mounting plate, and the protrusions support the plate-shaped sample.
静電チャック部の厚さ(載置板及び支持板の合計の厚み)は0.7mm〜5.0mmが好ましい。静電チャック部の厚さが0.7mm以上であることで、静電チャック部の機械的強度を確保することができる。静電チャック部の厚さが5.0mm以下であることで、静電チャック部の横方向の熱移動が増加しにくく、所定の面内温度分布が得られ易くなるため、熱容量が増加しにくく、熱応答性が劣化しにくい。なお、静電チャック部の横方向とは、図1に示すような、静電チャック部、加熱部材、シート材、並びにベース部の積層構成において、積層方向と直交する方向をいう。 The thickness of the electrostatic chuck portion (the total thickness of the mounting plate and the support plate) is preferably 0.7 mm to 5.0 mm. When the thickness of the electrostatic chuck portion is 0.7 mm or more, mechanical strength of the electrostatic chuck portion can be secured. When the thickness of the electrostatic chuck portion is 5.0 mm or less, the heat transfer in the lateral direction of the electrostatic chuck portion does not easily increase, and a predetermined in-plane temperature distribution is easily obtained, so that the heat capacity does not easily increase. , Heat responsiveness is not easily deteriorated. In addition, the lateral direction of the electrostatic chuck unit refers to a direction orthogonal to the stacking direction in the stacked configuration of the electrostatic chuck unit, the heating member, the sheet material, and the base unit as illustrated in FIG.
静電吸着用内部電極は、電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
静電吸着用内部電極は、酸化アルミニウム−炭化タンタル(Al2O3−Ta4C5)導電性複合焼結体、酸化アルミニウム−タングステン(Al2O3−W)導電性複合焼結体、酸化アルミニウム−炭化ケイ素(Al2O3−SiC)導電性複合焼結体、窒化アルミニウム−タングステン(AlN−W)導電性複合焼結体、窒化アルミニウム−タンタル(AlN−Ta)導電性複合焼結体等の導電性セラミックス、又は、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されている。
The internal electrode for electrostatic attraction is used as an electrode for electrostatic chuck for generating electric charge and fixing a plate-like sample by electrostatic attraction force, and its shape and size are appropriately adjusted according to its use. Is done.
Internal electrodes for electrostatic attraction, aluminum oxide - tantalum carbide (Al 2 O 3 -Ta 4 C 5) conductive composite sintered body, an aluminum oxide - tungsten (Al 2 O 3 -W) conductive composite sintered body, aluminum oxide - silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, an aluminum nitride - tungsten (AlN-W) conductive composite sintered body, an aluminum nitride - tantalum (AlN-Ta) conductive composite sintered It is formed of a conductive ceramic such as a body or a high melting point metal such as tungsten (W), tantalum (Ta), and molybdenum (Mo).
静電吸着用内部電極の厚さは、特に限定されるものではないが、0.1μm〜100μmが好ましく、5μm〜20μmがより好ましい。静電吸着用内部電極の厚さが0.1μm以上であることで、充分な導電性を確保することができ、厚さが100μm以下であることで、載置板及び支持板と、静電吸着用内部電極との間の熱膨張率差が大きくなりにくく、載置板と支持板との接合界面にクラックが入りにくい。
このような厚さの静電吸着用内部電極は、スパッタ法、蒸着法等の成膜法、又はスクリーン印刷法等の塗工法により容易に形成することができる。
The thickness of the internal electrode for electrostatic attraction is not particularly limited, but is preferably 0.1 μm to 100 μm, more preferably 5 μm to 20 μm. When the thickness of the internal electrode for electrostatic attraction is 0.1 μm or more, sufficient conductivity can be secured, and when the thickness is 100 μm or less, the mounting plate and the support plate are The difference in thermal expansion coefficient between the internal electrode for adsorption and the internal electrode for adsorption is less likely to be large, and cracks are less likely to occur at the joint interface between the mounting plate and the support plate.
The internal electrode for electrostatic adsorption having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.
チャック内絶縁材層は、静電吸着用内部電極を囲繞して腐食性ガス及びそのプラズマから静電吸着用内部電極を保護するとともに、載置板と支持板との境界部、すなわち静電吸着用内部電極以外の外周部領域を接合一体化するものである。チャック内絶縁材層は、載置板及び支持板を構成する材料と同一組成または主成分が同一の絶縁材料により構成されていることが好ましい。 The insulating material layer in the chuck surrounds the internal electrode for electrostatic attraction, protects the internal electrode for electrostatic attraction from corrosive gas and its plasma, and at the boundary between the mounting plate and the support plate, that is, the electrostatic attraction. The outer peripheral region other than the internal electrode is joined and integrated. It is preferable that the in-chuck insulating material layer is made of the same composition or the same main component as the material forming the mounting plate and the support plate.
給電用端子は、静電吸着用内部電極に直流電圧を印加するために設けられた棒状のものである。給電用端子の材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではないが、熱膨張係数が静電吸着用内部電極及び支持板の熱膨張係数に近似したものが好ましく、例えば、静電吸着用内部電極を構成している導電性セラミックス、又は、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料が好適に用いられる。 The power supply terminal is a rod-shaped terminal provided for applying a DC voltage to the internal electrode for electrostatic attraction. The material of the power supply terminal is not particularly limited as long as it is a conductive material having excellent heat resistance, but a material whose thermal expansion coefficient is close to the thermal expansion coefficient of the internal electrode for electrostatic adsorption and the support plate is used. Preferably, for example, a conductive ceramic constituting the internal electrode for electrostatic adsorption, or a metal material such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), and Kovar alloy is suitably used. Used.
給電用端子は、絶縁性を有する碍子によりベース部に対して絶縁されていることが好ましい。
また、給電用端子は支持板に接合一体化され、さらに、載置板と支持板とは、静電吸着用内部電極及びチャック内絶縁材層により接合一体化されて静電チャック部を構成していることが好ましい。
The power supply terminal is preferably insulated from the base by an insulator having an insulating property.
The power supply terminal is joined and integrated with the support plate, and the mounting plate and the support plate are joined and integrated with the internal electrode for electrostatic attraction and the insulating material layer in the chuck to constitute an electrostatic chuck portion. Is preferred.
〔加熱部材〕
加熱部材は、静電チャック部の載置面と反対側の面に位置し、接着剤、粘着剤等を介して、静電チャック部に、間隙を有するパターンで固定されている。
加熱部材の形態は特に制限されないが、相互に独立した2つ以上のヒーターパターンからなるヒータエレメントであることが好ましい。
ヒータエレメントは、例えば、静電チャック部の載置面と反対側の面(加熱部材設置面)の中心部に形成された内ヒータと、内ヒータの周縁部外方に環状に形成された外ヒータとの、相互に独立した2つのヒータにより構成することができる。内ヒータ及び外ヒータは、それぞれが、幅の狭い帯状の金属材料を蛇行させたパターンを、加熱部材設置面の中心軸を中心として、この軸の回りに繰り返し配置し、かつ隣接するパターン同士を接続することで、1つの連続した帯状のヒーターパターンとすることができる。
内ヒータ及び外ヒータをそれぞれ独立に制御することにより、静電チャック部の載置板の載置面に静電吸着により固定されている板状試料の面内温度分布を精度良く制御することができる。
(Heating member)
The heating member is located on the surface opposite to the mounting surface of the electrostatic chuck portion, and is fixed to the electrostatic chuck portion via an adhesive, an adhesive, or the like in a pattern having a gap.
The form of the heating member is not particularly limited, but is preferably a heater element composed of two or more heater patterns independent of each other.
The heater element includes, for example, an inner heater formed at the center of a surface (heating member installation surface) opposite to the mounting surface of the electrostatic chuck portion, and an outer heater formed annularly outside a peripheral portion of the inner heater. It can be constituted by two mutually independent heaters. Each of the inner heater and the outer heater repeatedly arranges a pattern obtained by meandering a narrow band-shaped metal material around the central axis of the heating member installation surface around this axis, and connects adjacent patterns to each other. By connecting, one continuous belt-shaped heater pattern can be obtained.
By controlling the inner heater and the outer heater independently, it is possible to accurately control the in-plane temperature distribution of the plate-like sample fixed to the mounting surface of the mounting plate of the electrostatic chuck portion by electrostatic suction. it can.
ヒータエレメントは、厚みが0.2mm以下、好ましくは0.1mm以下の一定の厚みを有する非磁性金属薄板、例えば、チタン(Ti)薄板、タングステン(W)薄板、モリブデン(Mo)薄板等をフォトリソグラフィー法により、所望のヒーターパターンにエッチング加工することで形成されることが好ましい。
ヒータエレメントの厚みが0.2mm以下であることで、ヒータエレメントのパターン形状が板状試料の温度分布として反映されにくく、板状試料の面内温度を所望の温度パターンに維持し易くなる。
また、ヒータエレメントを非磁性金属で形成すると、静電チャック装置を高周波雰囲気中で用いてもヒータエレメントが高周波により自己発熱しにくく、板状試料の面内温度を所望の一定温度又は一定の温度パターンに維持し易くなる。
また、一定の厚みの非磁性金属薄板を用いてヒータエレメントを形成すると、ヒータエレメントの厚みが加熱面全域で一定となり、さらに発熱量も加熱面全域で一定となるので、静電チャック部の載置面における温度分布を均一化することができる。
The heater element is made of a non-magnetic metal sheet having a constant thickness of 0.2 mm or less, preferably 0.1 mm or less, for example, a titanium (Ti) sheet, a tungsten (W) sheet, a molybdenum (Mo) sheet, or the like. It is preferably formed by etching a desired heater pattern by a lithography method.
When the thickness of the heater element is 0.2 mm or less, the pattern shape of the heater element is less likely to be reflected as the temperature distribution of the plate-shaped sample, and the in-plane temperature of the plate-shaped sample is easily maintained at a desired temperature pattern.
In addition, when the heater element is formed of a non-magnetic metal, even when the electrostatic chuck device is used in a high-frequency atmosphere, the heater element is unlikely to generate heat by high frequency, and the in-plane temperature of the plate-like sample is maintained at a desired constant temperature or a constant temperature. It becomes easier to maintain the pattern.
In addition, if the heater element is formed using a non-magnetic metal thin plate having a constant thickness, the thickness of the heater element becomes constant over the entire heating surface, and the amount of generated heat becomes constant over the entire heating surface. The temperature distribution on the mounting surface can be made uniform.
〔絶縁材層〕
静電チャック装置は、ベース部の少なくとも一部を被覆する絶縁材層を有することが好ましい。
本発明の静電チャック装置は、静電チャック部を加熱する加熱部材を有していることから、静電チャック部とベース部との導通(ショート不良)を抑制し、ベース部の耐電圧性を向上するために、絶縁材層を有することが好ましい。
絶縁材層は、ベース部の少なくとも一部を被覆していればよいが、ベース部の全部を被覆するフィルム状又はシート状の層であることが好ましい。
また、絶縁材層の位置は、静電チャック部とベース部との間にあればよく、また、単層のみならず、複数の層で構成されていてもよい。例えば、ベース部に隣接する位置、加熱部材と静電チャック部との間等に絶縁材層を有していてもよい。
以上の中でも、絶縁材層は、絶縁材層の形成容易性の観点から、加熱部材と、ベース部との間であって、ベース部に近接する位置に備えられることが好ましい。
(Insulating material layer)
The electrostatic chuck device preferably has an insulating material layer covering at least a part of the base portion.
Since the electrostatic chuck device of the present invention has a heating member for heating the electrostatic chuck portion, conduction (short circuit failure) between the electrostatic chuck portion and the base portion is suppressed, and the withstand voltage of the base portion is reduced. It is preferable to have an insulating material layer in order to improve the quality.
The insulating material layer may cover at least a part of the base portion, but is preferably a film-like or sheet-like layer covering the entire base portion.
Further, the position of the insulating material layer may be any position between the electrostatic chuck portion and the base portion, and may be composed of not only a single layer but also a plurality of layers. For example, an insulating material layer may be provided at a position adjacent to the base portion, between the heating member and the electrostatic chuck portion, or the like.
Among them, the insulating material layer is preferably provided between the heating member and the base portion and in a position close to the base portion from the viewpoint of ease of forming the insulating material layer.
絶縁材層をベース部に固定する場合、絶縁材層は、ベース部の上面に接着剤を介して固定されていることが好ましい。絶縁材層の固定に用いる接着剤(絶縁材層用接着剤)は特に制限されず、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性及び絶縁性を有するシート状、又はフィルム状の接着性樹脂を用いることができる。絶縁材層用接着剤の厚みは5μm〜100μmが好ましく、より好ましくは10μm〜50μmである。絶縁材層用接着剤の面内の厚みのバラツキは、ベース部による静電チャック部の温度制御の面内均一性を上げる観点から10μm以内が好ましい。
絶縁材層の熱伝導率は、静電チャック部の温度調整の観点から、0.05W/mk以上かつ0.5W/mk以下が好ましく、より好ましくは0.1W/mk以上かつ0.25W/mk以下である。
When fixing the insulating material layer to the base portion, the insulating material layer is preferably fixed to the upper surface of the base portion via an adhesive. The adhesive used for fixing the insulating material layer (the adhesive for the insulating material layer) is not particularly limited, and is a heat-resistant and insulating sheet-like or film-like adhesive resin such as a polyimide resin, a silicone resin, and an epoxy resin. Can be used. The thickness of the adhesive for the insulating material layer is preferably from 5 μm to 100 μm, more preferably from 10 μm to 50 μm. The variation in the in-plane thickness of the adhesive for the insulating material layer is preferably within 10 μm from the viewpoint of improving the in-plane uniformity of the temperature control of the electrostatic chuck portion by the base portion.
From the viewpoint of adjusting the temperature of the electrostatic chuck portion, the thermal conductivity of the insulating material layer is preferably 0.05 W / mk or more and 0.5 W / mk or less, more preferably 0.1 W / mk or more and 0.25 W / mk. mk or less.
〔ベース部〕
ベース部は、静電チャック部を冷却する機能を有し、加熱部材により加熱された静電チャック部を所望の温度に調整するための部材であり、静電チャック部に固定された板状試料のエッチング等により生じた発熱を下げる機能も有する。
ベース部の形状は特に制限されないが、通常、厚みのある円板状である。ベース部は、その内部に水を循環させる流路が形成された水冷ベース等であることが好ましい。
ベース部を構成する材料は、熱伝導性、導電性、及び加工性に優れた金属、これらの金属を含む複合材、並びに、セラミックスが挙げられる。具体的には、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS)等が好適に用いられる。ベース部の少なくともプラズマに曝される面は、アルマイト処理が施されているか、アルミナ等の絶縁膜が成膜されていることが好ましい。
[Base]
The base portion has a function of cooling the electrostatic chuck portion, is a member for adjusting the temperature of the electrostatic chuck portion heated by the heating member to a desired temperature, and is a plate-like sample fixed to the electrostatic chuck portion. It also has the function of reducing the heat generated by etching or the like.
Although the shape of the base portion is not particularly limited, it is usually a thick disk. The base portion is preferably a water-cooled base or the like in which a flow path for circulating water is formed.
Materials constituting the base portion include metals having excellent thermal conductivity, conductivity, and workability, composite materials containing these metals, and ceramics. Specifically, for example, aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS), or the like is suitably used. It is preferable that at least a surface of the base portion exposed to the plasma is subjected to an alumite treatment or an insulating film such as alumina is formed.
<静電チャック装置の製造方法>
静電チャック装置の製造方法は、本発明の静電チャック装置の積層構成を形成し得る方法であれば、特に制限されず、例えば、静電チャック部、加熱部材、シート材、ベース部をこの順に積層して、静電チャック部とベース部とを、ホットプレス等により加圧して挟んでもよいし、各層間に接着剤を介在させて、互いに隣接する層を接着してもよい。
シート材を加熱部材の間隙に入り込ませ、シート材と、加熱部材及び静電チャック部との密着性を高めて、加熱部材を静電チャック部の板状試料の載置面上と反対側の面に安定に固定化し易くする観点から、シート材は、層厚が50〜300μmであり、かつショア硬度(A)が10〜70であるシート材を用いることが好ましい。
<Manufacturing method of electrostatic chuck device>
The manufacturing method of the electrostatic chuck device is not particularly limited as long as it can form the laminated structure of the electrostatic chuck device of the present invention. For example, the electrostatic chuck portion, the heating member, the sheet material, and the base portion are The electrostatic chuck portion and the base portion may be laminated in this order, and the electrostatic chuck portion and the base portion may be pressed and sandwiched by a hot press or the like, or the adjacent layers may be bonded to each other with an adhesive interposed between the respective layers.
The sheet material is inserted into the gap between the heating members, and the adhesion between the sheet material, the heating member and the electrostatic chuck portion is increased, and the heating member is placed on the opposite side of the electrostatic chuck portion from the mounting surface of the plate-like sample. From the viewpoint of facilitating stable fixing to the surface, it is preferable to use a sheet material having a layer thickness of 50 to 300 μm and a Shore hardness (A) of 10 to 70.
すなわち、静電チャック装置の製造方法は、一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部の前記載置面と反対側の面に、間隙を有するパターンで接着された加熱部材を形成する工程、及び、前記静電チャック部の前記加熱部材が形成された面と、層厚が50〜300μmであり、かつショア硬度(A)が10〜70であるシート材とを対峙させて、前記静電チャック部と、前記静電チャック部を冷却する機能を有するベース部とで、前記シート材を挟み、押圧する工程を有することが好ましい。 That is, in the manufacturing method of the electrostatic chuck device, one main surface is set as a mounting surface on which the plate-shaped sample is mounted, and is opposite to the mounting surface described above of the electrostatic chuck portion having the internal electrode for electrostatic chuck. Forming a heating member adhered in a pattern having a gap to the surface of the electrostatic chuck portion, and a surface of the electrostatic chuck portion on which the heating member is formed, having a layer thickness of 50 to 300 μm and a Shore hardness ( A) a step of pressing the sheet material between 10 and 70 with the electrostatic chuck portion and a base portion having a function of cooling the electrostatic chuck portion, and pressing the sheet material. Is preferred.
静電チャック装置の製造に用いるシート材の層厚(シート材に外力が加わっていない状態での層厚)が50μm以上であることで、静電チャック部とベース部との温度差により生じる応力を緩和し易く、300μm以下であることで、静電チャック部の面内温度均一性の低下を抑制することができる。
シート材の層厚は、70〜250μmであることが好ましい。シート材の厚さは、例えば、ミツトヨ社製の膜厚VL−50Aで測定することができる。
シート材のショア硬度(A)、材質等については、既述のとおりである。
When the layer thickness of the sheet material used in the manufacture of the electrostatic chuck device (layer thickness in a state where no external force is applied to the sheet material) is 50 μm or more, the stress caused by the temperature difference between the electrostatic chuck portion and the base portion When the thickness is 300 μm or less, a decrease in in-plane temperature uniformity of the electrostatic chuck portion can be suppressed.
The layer thickness of the sheet material is preferably 70 to 250 μm. The thickness of the sheet material can be measured, for example, with a film thickness VL-50A manufactured by Mitutoyo Corporation.
The shore hardness (A), material, and the like of the sheet material are as described above.
静電チャック装置の製造に接着剤を用いる場合は、接着剤シートを用いてもよいし、液状の接着剤を用いてもよいが、接着剤を付与した層の層厚を小さくする観点から、接着剤と、水と、必要に応じて接着剤を溶解する有機溶媒とを含む塗布液(以下、接着用溶液と称する)を用いることが好ましい。 When using an adhesive in the manufacture of the electrostatic chuck device, an adhesive sheet may be used, or a liquid adhesive may be used, but from the viewpoint of reducing the thickness of the layer provided with the adhesive, It is preferable to use a coating liquid (hereinafter, referred to as a bonding solution) containing an adhesive, water, and, if necessary, an organic solvent that dissolves the adhesive.
静電チャック装置の製造にあたっては、予め、静電チャック部の加熱部材設置面上に接着剤等で加熱部材を固定しておくことが好ましい。
静電チャック装置に絶縁材層を備える場合は、ベース部上に接着剤(絶縁材層用接着剤)で絶縁材層を固定しておくことが好ましい。
加熱部材は、1つ又は複数の個別の加熱部材を、間隔を空けつつ、加熱部材設置面上にそれぞれ固定してもよいし、加熱部材設置面上に膜状又は板状の加熱部材を貼り付けてから、加熱部材の一部をエッチング等により除去して間隙を形成してもよい。
In manufacturing the electrostatic chuck device, it is preferable that the heating member is fixed in advance with an adhesive or the like on the heating member installation surface of the electrostatic chuck portion.
When the electrostatic chuck device is provided with an insulating material layer, it is preferable to fix the insulating material layer on the base portion with an adhesive (adhesive for the insulating material layer).
As for the heating member, one or a plurality of individual heating members may be fixed on the heating member installation surface while leaving an interval, or a film-like or plate-like heating member may be attached on the heating member installation surface. After attaching, a part of the heating member may be removed by etching or the like to form a gap.
シート材は、片面又は両面に予め接着用溶液を塗布しておくことが好ましい。加熱部材付き静電チャック部とベース部とで、接着用溶液を塗布済みのシート材を挟み、ホットプレス等により加圧することで、静電チャック装置が得られる。
静電チャック装置に絶縁材層を設けるときは、絶縁材の片面または両面に接着用溶液を塗布しておき、加熱部材付き静電チャック部とベース部とで、接着用溶液を塗布済みのシート材及び接着用溶液を塗布済みの絶縁材を任意の位置に配置して挟み、ホットプレス等により加圧することで、絶縁材層付きの静電チャック装置が得られる。
It is preferable that the sheet material is preliminarily coated on one or both sides with an adhesive solution. An electrostatic chuck device can be obtained by sandwiching the sheet material to which the adhesive solution has been applied between the electrostatic chuck portion with the heating member and the base portion, and pressing the sheet material with a hot press or the like.
When the insulating material layer is provided on the electrostatic chuck device, a bonding solution is applied to one or both surfaces of the insulating material, and the sheet on which the bonding solution is applied is applied between the electrostatic chuck portion with the heating member and the base portion. An electrostatic chuck device with an insulating material layer can be obtained by arranging and sandwiching the insulating material coated with the material and the adhesive solution at an arbitrary position and pressing the insulating material with a hot press or the like.
接着用溶液の接着剤は、公知の接着剤を用いることができ、アクリル系、エポキシ系、シリコーン系等の種々の接着剤を用いることができる。接着剤は市販品でもよく、例えば、シリコーン接着剤(シリコーン粘着剤を含む)として、東レ・ダウコーニング社製、シリコーン粘着剤(例えば、SD 4580 PSA、SD 4584 PSA、SD 4585 PSA、SD 4587 L PSA、SD 4560 PSA等)、モメンティブ社製、シリコーン接着剤(例えば、XE13−B3208、TSE3221、TSE3212S、TSE3261−G、TSE3280−G、TSE3281−G、TSE3221、TSE326、TSE326M、TSE325等)、信越シリコーン社製、シリコーン接着剤(例えば、KE−1820、KE−1823、KE−1825、KE−1830、KE−1833等)等が挙げられる。 As the adhesive for the bonding solution, a known adhesive can be used, and various adhesives such as acrylic, epoxy, and silicone can be used. The adhesive may be a commercially available product. For example, as a silicone adhesive (including a silicone adhesive), a silicone adhesive (eg, SD 4580 PSA, SD 4584 PSA, SD 4585 PSA, SD 4587 L) manufactured by Dow Corning Toray Co., Ltd. PSA, SD 4560 PSA, etc.), manufactured by Momentive, silicone adhesives (eg, XE13-B3208, TSE3221, TSE3212S, TSE3261-G, TSE3280-G, TSE3281-G, TSE3221, TSE326, TSE326M, TSE325), Shin-Etsu Silicone And silicone adhesives (for example, KE-1820, KE-1823, KE-1825, KE-1830, KE-1833, etc.).
接着用溶液は、接着剤を溶解する有機溶媒を含んでいてもよい。有機溶媒としては、接着剤を溶解し得るものであれば特に制限されず、例えば、アルコール及びケトンからなる群より選択される少なくとも1種が挙げられる。アルコールとしては、メタノール、エタノール、イソプロピルアルコール等が挙げられ、ケトンとしては、アセトン、メチルエチルケトン等が挙げられる。 The bonding solution may include an organic solvent that dissolves the adhesive. The organic solvent is not particularly limited as long as it can dissolve the adhesive, and includes, for example, at least one selected from the group consisting of alcohols and ketones. Examples of the alcohol include methanol, ethanol, and isopropyl alcohol, and examples of the ketone include acetone and methyl ethyl ketone.
接着用溶液は、薄膜での均一塗布の観点から、接着剤の濃度が、0.05質量%〜5質量%となる範囲で調製することが好ましい。接着用溶液中の接着剤の濃度は、0.1質量%〜1質量%であることがより好ましい。
更に、接着用溶液は、接着剤の加水分解を促進するために触媒を含でいてもよい。触媒としては、塩酸、硝酸、アンモニア等が挙げられ、中でも、塩酸、及びアンモニアが好ましい。
静電チャック装置内に触媒が残存することを抑制する観点から、接着用溶液は、触媒を含まないことが好ましく、接着剤として、反応性官能基がエポキシ基、イソシアネート基、アミノ基、又はメルカプト基である接着剤を含むことが好ましい。
It is preferable that the adhesive solution is prepared so that the concentration of the adhesive is in a range of 0.05% by mass to 5% by mass from the viewpoint of uniform application in a thin film. The concentration of the adhesive in the bonding solution is more preferably 0.1% by mass to 1% by mass.
Further, the bonding solution may include a catalyst to promote hydrolysis of the adhesive. Examples of the catalyst include hydrochloric acid, nitric acid, and ammonia, and among them, hydrochloric acid and ammonia are preferable.
From the viewpoint of suppressing the catalyst remaining in the electrostatic chuck device, the bonding solution preferably does not contain a catalyst, and as the adhesive, the reactive functional group is an epoxy group, an isocyanate group, an amino group, or a mercapto group. It is preferred to include a base adhesive.
また、静電チャック部は次のように製造することが好ましい。
まず、酸化アルミニウム−炭化ケイ素(Al2O3−SiC)複合焼結体により板状の載置板及び支持板を作製する。この場合、炭化ケイ素粉末及び酸化アルミニウム粉末を含む混合粉末を所望の形状に成形し、その後、例えば1600℃〜2000℃の温度、非酸化性雰囲気、好ましくは不活性雰囲気下にて所定時間、焼成することにより、載置板及び支持板を得ることができる。
Further, it is preferable that the electrostatic chuck portion is manufactured as follows.
First, aluminum oxide - to produce a plate-shaped mounting plate and the support plate by a silicon carbide (Al 2 O 3 -SiC) composite sintered body. In this case, a mixed powder containing the silicon carbide powder and the aluminum oxide powder is formed into a desired shape, and then fired at a temperature of, for example, 1600 ° C. to 2000 ° C. in a non-oxidizing atmosphere, preferably in an inert atmosphere, for a predetermined time. By doing so, a mounting plate and a support plate can be obtained.
次いで、支持板に、給電用端子を嵌め込み保持するための固定孔を複数個形成する。
給電用端子を、支持板の固定孔に密着固定し得る大きさ、形状となるように作製する。この給電用端子の作製方法としては、例えば、給電用端子を導電性複合焼結体とした場合、導電性セラミックス粉末を、所望の形状に成形して加圧焼成する方法等が挙げられる。
Next, a plurality of fixing holes for fitting and holding the power supply terminals are formed in the support plate.
The power supply terminal is manufactured so as to have a size and a shape capable of being tightly fixed to the fixing hole of the support plate. As a method of manufacturing the power supply terminal, for example, when the power supply terminal is a conductive composite sintered body, a method of molding a conductive ceramic powder into a desired shape and firing it under pressure may be used.
このとき、給電用端子に用いられる導電性セラミックス粉末としては、静電吸着用内部電極と同様の材質からなる導電性セラミックス粉末が好ましい。
また、給電用端子を金属とした場合、高融点金属を用い、研削法、粉末治金等の金属加工法等により形成する方法等が挙げられる。
At this time, the conductive ceramic powder used for the power supply terminal is preferably a conductive ceramic powder made of the same material as the internal electrode for electrostatic attraction.
When the power supply terminal is made of metal, a method using a metal having a high melting point, such as a grinding method or a metal working method such as powder metallurgy, may be used.
次いで、給電用端子が嵌め込まれた支持板の表面の所定領域に、給電用端子に接触するように、上記の導電性セラミックス粉末等の導電材料をテルピネオールとエチルセルロース等とを含む有機溶媒に分散した静電吸着用内部電極形成用塗布液を塗布し、乾燥して、静電吸着用内部電極形成層とする。
この塗布法としては、均一な厚さに塗布する必要があることから、スクリーン印刷法等を用いることが望ましい。また、他の方法としては、蒸着法あるいはスパッタリング法により上記の高融点金属の薄膜を成膜する方法、上記の導電性セラミックスあるいは高融点金属からなる薄板を配設して静電吸着用内部電極形成層とする方法等がある。
Next, a conductive material such as the above-mentioned conductive ceramic powder was dispersed in an organic solvent containing terpineol, ethyl cellulose, and the like so as to be in contact with the power supply terminal in a predetermined region of the surface of the support plate in which the power supply terminal was fitted. A coating solution for forming an internal electrode for electrostatic attraction is applied and dried to form a layer for forming an internal electrode for electrostatic attraction.
As this coating method, it is necessary to apply a uniform thickness, and therefore, it is preferable to use a screen printing method or the like. Other methods include a method of forming a thin film of the above-mentioned high melting point metal by a vapor deposition method or a sputtering method, and disposing a thin plate made of the above-mentioned conductive ceramics or a high melting point metal to form an internal electrode for electrostatic adsorption. There is a method of forming a formation layer.
また、支持板上の静電吸着用内部電極形成層を形成した領域以外の領域に、絶縁性、耐腐食性、耐プラズマ性を向上させるために、載置板及び支持板と同一組成または主成分が同一の粉末材料を含むチャック内絶縁材層を形成する。このチャック内絶縁材層は、例えば、載置板及び支持板と同一組成または主成分が同一の絶縁材料粉末をテレピノールとエチルセルロース等とを含む有機溶媒に分散した塗布液を、上記所定領域にスクリーン印刷等で塗布し、乾燥することにより形成することができる。 In addition, in order to improve insulation, corrosion resistance, and plasma resistance, a region other than the region where the electrostatic adsorption internal electrode forming layer is formed on the support plate has the same composition or main composition as the mounting plate and the support plate. The in-chuck insulating material layer containing the same powder material is formed. The insulating material layer in the chuck is, for example, a coating liquid obtained by dispersing an insulating material powder having the same composition or the same main component as the mounting plate and the support plate in an organic solvent containing terpinol, ethylcellulose, or the like, in a screen above the predetermined region. It can be formed by applying by printing or the like and drying.
次いで、支持板上の静電吸着用内部電極形成層及び絶縁材の上に載置板を重ね合わせ、次いで、これらを高温、高圧下にてホットプレスして一体化する。このホットプレスにおける雰囲気は、真空、あるいはAr、He、N2等の不活性雰囲気が好ましい。また、圧力は5〜10MPaが好ましく、温度は1600℃〜1850℃が好ましい。 Next, the mounting plate is superimposed on the electrostatic adsorption internal electrode forming layer on the support plate and the insulating material, and then these are integrated by hot pressing under high temperature and high pressure. Atmosphere in the hot press, vacuum or Ar, He, an inert atmosphere such as N 2 is preferable. The pressure is preferably 5 to 10 MPa, and the temperature is preferably 1600 ° C to 1850 ° C.
このホットプレスにより、静電吸着用内部電極形成層は焼成されて導電性複合焼結体からなる静電吸着用内部電極となる。同時に、支持板及び載置板は、チャック内絶縁材層を介して接合一体化される。
また、給電用端子は、高温、高圧下でのホットプレスで再焼成され、支持板の固定孔に密着固定される。
そして、これら接合体の上下面、外周およびガス穴等を機械加工し、静電チャック部とする。
By this hot pressing, the electrostatic adsorption internal electrode forming layer is fired to become an electrostatic adsorption internal electrode formed of a conductive composite sintered body. At the same time, the support plate and the mounting plate are joined and integrated via the in-chuck insulating material layer.
Further, the power supply terminal is refired by hot pressing under a high temperature and a high pressure, and is tightly fixed to a fixing hole of the support plate.
Then, the upper and lower surfaces, outer periphery, gas holes, and the like of these joined bodies are machined to form an electrostatic chuck portion.
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
以下の実施例及び比較例においては、図1に示す静電チャック装置の積層構成に類似する積層体を作成し、評価した。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
In the following Examples and Comparative Examples, a laminate similar to the laminate configuration of the electrostatic chuck device shown in FIG. 1 was prepared and evaluated.
<1.実施例及び比較例の積層体の構成>
実施例及び一部の比較例の積層体は、図1における静電チャック部2、加熱部材50、シート材20、及びベース部10をこの順に積層した構成をしている。ただし、実施例及び比較例の積層体は、図1における絶縁材層60は備えていない。比較例1の積層体は、ショア硬度(A)が10〜70のシート材を有していない。
<1. Configuration of Laminate of Examples and Comparative Examples>
The laminates of the example and some comparative examples have a configuration in which the electrostatic chuck 2, the heating member 50, the sheet material 20, and the base 10 in FIG. 1 are laminated in this order. However, the laminates of the example and the comparative example do not include the insulating material layer 60 in FIG. The laminate of Comparative Example 1 does not have a sheet material having a Shore hardness (A) of 10 to 70.
<2.積層体の製造>
セラミックス板(Al2O3−SiC複合焼結体;静電チャック部)上に、接着剤を介して厚さ100μmのTi箔(加熱部材)を積層してから、Ti箔をエッチングすることにより、セラミックス板の一部を露出させ、直径の異なる輪状のTi箔が同心円状に配置されたTiパターンを形成した。
Tiパターンの模式図を図2に示す。図2において、静電チャック部上に、静電チャック部の外周22まで加熱部材のTi箔が積層されており、Ti箔は、静電チャック部の外周22側の2つについては、Ti箔のエッチングにより、加熱部材52と加熱部材54とに分けられ、加熱部材52と加熱部材54との間隙53は、凹状に形成されている。
Tiパターンによる凹凸面が形成されたセラミックス板上に、表1に示すショア硬度(A)及び層厚〔μm〕のシート材(シリコーン系エラストマーシート)を積層し、更にアルミ治具(直径40mm、厚さ2cm;ベース部10)を積層して、セラミックス板とアルミ治具を張り合わせ、100℃で3分間加熱し、積層体を得た。なお、シート材は、片面がエンボス状であり、他方の面が凹凸の無い平滑な表面のシート材を用い、積層体は、エンボス状の表面が、Tiパターンによる凹凸面が形成されたセラミックス板に隣接するように張り合わされている。
実施例及び比較例で用いたシート材のショア硬度(A)は、テクロック社製のデュロメータGS−706で測定し、厚さはミツトヨ社製の膜厚VL−50Aで測定したものである。
<2. Manufacture of laminated body>
A 100 μm-thick Ti foil (heating member) is laminated on a ceramic plate (Al 2 O 3 —SiC composite sintered body; electrostatic chuck portion) via an adhesive, and then the Ti foil is etched. Then, a part of the ceramic plate was exposed to form a Ti pattern in which ring-shaped Ti foils having different diameters were concentrically arranged.
FIG. 2 shows a schematic diagram of the Ti pattern. In FIG. 2, a Ti foil of a heating member is laminated on the electrostatic chuck portion up to the outer periphery 22 of the electrostatic chuck portion. Is divided into a heating member 52 and a heating member 54, and a gap 53 between the heating member 52 and the heating member 54 is formed in a concave shape.
A sheet material (silicone-based elastomer sheet) having a Shore hardness (A) and a layer thickness [μm] shown in Table 1 was laminated on a ceramic plate having an uneven surface formed by a Ti pattern, and further an aluminum jig (diameter 40 mm, The base portion 10) was laminated with a thickness of 2 cm, and a ceramic plate and an aluminum jig were stuck together and heated at 100 ° C. for 3 minutes to obtain a laminate. The sheet material used was a sheet material having one surface embossed and the other surface having no unevenness and a smooth surface. The laminated body was a ceramic plate having an embossed surface formed with an uneven surface by a Ti pattern. It is stuck so that it is adjacent to.
The Shore hardness (A) of the sheet material used in the examples and the comparative examples was measured by a durometer GS-706 manufactured by Teklock Corporation, and the thickness was measured by a film thickness VL-50A manufactured by Mitutoyo Corporation.
<3.評価方法>
実施例及び比較例の積層体について次の評価をした。結果を表1に示す。
1.加熱部材の間隙の埋設状態
実施例及び比較例の積層体の製造においては、シート材とベース部との間に接着剤を介在させなかったため、加熱部材及び静電チャック部に張り付いたシート材から、ベース部を容易に剥離することができた。また、シート材は、無色透明であるため、ベース部側のシート材表面を観察することにより、シート材による凹部の埋設状態を確認することができた。ベース部側のシート材表面を、光学顕微鏡により150倍に拡大した画像を確認することで、加熱部材の間隙のシート材による埋設状態を評価した。
シート材の加熱部材側の表面はエンボス状であり、他方の面は平滑であるため、圧着によりシート材が押圧されて、加熱部材の凹部に埋設されれば、エンボスが潰れてシート材は透明に見える。一方、シート材が加熱部材の凹部に十分埋設されないと、エンボスが潰れないため、光の乱反射によりシート材が白濁して見える。
<3. Evaluation method>
The following evaluations were performed on the laminates of the examples and the comparative examples. Table 1 shows the results.
1. Embedded state of the gap between the heating members In the production of the laminates of the example and the comparative example, since no adhesive was interposed between the sheet material and the base portion, the sheet material stuck to the heating member and the electrostatic chuck portion Thus, the base portion could be easily peeled off. Further, since the sheet material was colorless and transparent, by observing the surface of the sheet material on the base portion side, it was possible to confirm the embedded state of the concave portion by the sheet material. The state of embedding of the gap between the heating members by the sheet material was evaluated by confirming an image obtained by enlarging the surface of the sheet material on the base portion side by 150 times with an optical microscope.
Since the surface of the sheet material on the heating member side is embossed and the other surface is smooth, if the sheet material is pressed by pressing and buried in the recess of the heating member, the emboss is crushed and the sheet material becomes transparent. Looks like. On the other hand, if the sheet material is not sufficiently buried in the concave portion of the heating member, the emboss does not collapse, and the sheet material appears cloudy due to irregular reflection of light.
図2に示されるTiパターンの加熱部材52と加熱部材54との間隙53の拡大図を図3に示す。図3には、加熱部材152、加熱部材154及び、加熱部材152と加熱部材154との間隙153が示されている。間隙153は、凹状となっており、いわば、加熱部材152と加熱部材154との間に形成された溝である。
また、図3には、間隙153の任意の位置において、間隙153の幅が最短となるように結んだ直線が示されている。当該直線において、間隙153の加熱部材154側の一端をAとし、間隙153の加熱部材152側の一端をBとする。
図4には、直線ABの位置における加熱部材の間隙の断面図を示す。加熱部材の間隙253には、シート材222が台形状に埋設されている。
FIG. 3 is an enlarged view of the gap 53 between the heating member 52 and the heating member 54 having the Ti pattern shown in FIG. FIG. 3 shows the heating member 152, the heating member 154, and the gap 153 between the heating member 152 and the heating member 154. The gap 153 has a concave shape, that is, a groove formed between the heating member 152 and the heating member 154.
FIG. 3 shows a straight line connected at any position of the gap 153 so that the width of the gap 153 is the shortest. In this straight line, one end of the gap 153 on the heating member 154 side is A, and one end of the gap 153 on the heating member 152 side is B.
FIG. 4 is a cross-sectional view of the gap between the heating members at the position of the straight line AB. In the gap 253 of the heating member, a sheet material 222 is embedded in a trapezoidal shape.
既述のように、実施例及び比較例で用いたシート材の表面は、加熱部材に押し当てた面が、エンボス状になっているため、シート材222のうち、間隙253の壁面(図4においては底面)に押し当てられている領域のシート材222の表面bは、透明に見える。一方、シート材222のうち、間隙253の底面に押し当てられていない領域のシート材222の表面a及び表面cは、エンボスの凹凸による光の乱反射により、白濁して見える。
加熱部材の間隙の幅、図3及び図4においては、直線ABの長さLのうち、シート材が白濁して見える領域の長さ(図4においては、L1及びL2)の合計(図4においては、L1+L2)を「空壁部」とし、空壁部の割合〔図4においては、100×(L1+L2)/L〕を算出した。加熱部材の間隙のシート材による埋設状態は、算出した空壁部の割合に基づき、下記評価基準により評価した。
As described above, since the surface of the sheet material used in the example and the comparative example has an embossed surface pressed against the heating member, the wall surface of the gap 253 (see FIG. , The surface b of the sheet material 222 in the area pressed against the bottom surface looks transparent. On the other hand, the surface a and the surface c of the sheet material 222 in a region of the sheet material 222 that is not pressed against the bottom surface of the gap 253 appear cloudy due to irregular reflection of light due to embossed irregularities.
Gap width of the heating member, in FIGS. 3 and 4, of the length L of the straight line AB, the total length of the area where the sheet material appear cloudy (In FIG. 4, L 1 and L 2) ( In FIG. 4, L 1 + L 2 ) is defined as “empty wall portion”, and the ratio of the empty wall portion (in FIG. 4, 100 × (L 1 + L 2 ) / L) was calculated. The embedding state of the gap between the heating members by the sheet material was evaluated based on the calculated ratio of the empty wall portion according to the following evaluation criteria.
(評価基準)
A:凹部の両端を結ぶ直線上で、空壁部が50%以下である。
B:凹部の両端を結ぶ直線上で、空壁部が50%超90%未満である。
C:凹部の両端を結ぶ直線上で、空壁部が90%以上である。
(Evaluation criteria)
A: The empty wall portion is 50% or less on a straight line connecting both ends of the concave portion.
B: The empty wall portion is more than 50% and less than 90% on a straight line connecting both ends of the concave portion.
C: On a straight line connecting both ends of the concave portion, the empty wall portion is 90% or more.
2.シート材の貯蔵弾性率E’
実施例及び比較例で用いたシート材の貯蔵弾性率E’を日立ハイテクサイエンス社製のDMA−7100を用いて、室温(25℃)にて3回測定し、その平均値を表1に示した。
結果を表1に示す。
2. Storage modulus E 'of sheet material
The storage elastic modulus E ′ of the sheet material used in Examples and Comparative Examples was measured three times at room temperature (25 ° C.) using DMA-7100 manufactured by Hitachi High-Tech Science Corporation, and the average value is shown in Table 1. Was.
Table 1 shows the results.
3.シート材の体積に対する加熱部材の間隙の全体積の割合(間隙割合)
実施例及び比較例の積層体の製造に用いたシート材の体積と、加熱部材の間隙の全体積とから、シート材の体積に対する加熱部材の間隙の全体積の割合を算出した。結果を表1に示す。なお、加熱部材の間隙の全体積は、加熱部材の高さ(加熱部材の厚さ)、加熱部材間の溝の幅の長さ及び、加熱部材間の溝の全長から算出した。また、加熱部材間の溝の幅さ及び全長は、ガラスで接着した加熱部材の凹凸面を、光学顕微鏡で150倍に拡大し撮影した写真を元に算出した。
3. Ratio of the total volume of the gap of the heating member to the volume of the sheet material (gap ratio)
The ratio of the total volume of the gap of the heating member to the volume of the sheet material was calculated from the volume of the sheet material used for manufacturing the laminates of the examples and the comparative examples and the total volume of the gap of the heating member. Table 1 shows the results. The total volume of the gap between the heating members was calculated from the height (thickness of the heating member) of the heating member, the width of the groove between the heating members, and the total length of the groove between the heating members. Further, the width and the total length of the groove between the heating members were calculated based on a photograph taken by enlarging the uneven surface of the heating member adhered with glass by 150 times with an optical microscope.
表1からわかるように、ショア硬度(A)が10〜70のシート材を用いた積層体は、加熱部材の間隙にシート材が入り込み、凹凸を埋設していることがわかる。加熱部材の凹凸がシート材で埋設されていることで、加熱部材は安定に静電チャック部に固定化されることがわかった。 As can be seen from Table 1, in the laminate using a sheet material having a Shore hardness (A) of 10 to 70, the sheet material enters the gap between the heating members, and the unevenness is buried. It was found that the unevenness of the heating member was embedded in the sheet material, so that the heating member was stably fixed to the electrostatic chuck.
2 静電チャック部
10 ベース部
20 シート材
50 加熱部材
60 絶縁材層
100 静電チャック装置
2 electrostatic chuck section 10 base section 20 sheet material 50 heating member 60 insulating material layer 100 electrostatic chuck apparatus
Claims (4)
一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部の前記載置面と反対側の面に、間隙を有するパターンで接着された加熱部材を形成する工程、及び、
前記静電チャック部の前記加熱部材が形成された面と、層厚が50〜300μmであり、かつショア硬度(A)が10〜70であるシート材とを対峙させて、前記静電チャック部と、前記静電チャック部を冷却する機能を有するベース部とで、前記シート材を挟み、押圧する工程を有する静電チャック装置の製造方法。 One main surface is a mounting surface on which a plate-shaped sample is mounted, and an electrostatic chuck portion having a built-in electrostatic chuck internal electrode, and a gap between the electrostatic chuck portion and the surface opposite to the mounting surface described above. a heating member which is bonded in a pattern having a sheet material filling the gap between the heating member and a base portion having a function of cooling the electrostatic chuck portion in the manufacturing method of an electrostatic chuck device Ru in this order So,
One main surface is a mounting surface on which the plate-shaped sample is mounted, and is bonded in a pattern having a gap to a surface opposite to the mounting surface described above of the electrostatic chuck portion having the internal electrode for electrostatic chuck. Forming a heating member, and
The surface of the electrostatic chuck portion on which the heating member is formed and a sheet material having a layer thickness of 50 to 300 μm and a Shore hardness (A) of 10 to 70 are opposed to each other to form the electrostatic chuck portion. And a base part having a function of cooling the electrostatic chuck part .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058515A JP6642170B2 (en) | 2016-03-23 | 2016-03-23 | Electrostatic chuck device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058515A JP6642170B2 (en) | 2016-03-23 | 2016-03-23 | Electrostatic chuck device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017174938A JP2017174938A (en) | 2017-09-28 |
JP6642170B2 true JP6642170B2 (en) | 2020-02-05 |
Family
ID=59973151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016058515A Active JP6642170B2 (en) | 2016-03-23 | 2016-03-23 | Electrostatic chuck device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6642170B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7379166B2 (en) * | 2020-01-07 | 2023-11-14 | 日本特殊陶業株式会社 | Manufacturing method of holding device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4808149B2 (en) * | 2006-03-29 | 2011-11-02 | 新光電気工業株式会社 | Electrostatic chuck |
JP5507198B2 (en) * | 2009-10-26 | 2014-05-28 | 新光電気工業株式会社 | Electrostatic chuck |
JP5423632B2 (en) * | 2010-01-29 | 2014-02-19 | 住友大阪セメント株式会社 | Electrostatic chuck device |
JP5619486B2 (en) * | 2010-06-23 | 2014-11-05 | 東京エレクトロン株式会社 | Focus ring, manufacturing method thereof, and plasma processing apparatus |
KR101769062B1 (en) * | 2011-04-27 | 2017-08-17 | 스미토모 오사카 세멘토 가부시키가이샤 | Electrostatic chuck device |
JP5957812B2 (en) * | 2011-06-21 | 2016-07-27 | 住友大阪セメント株式会社 | Electrostatic chuck device |
JP6140457B2 (en) * | 2013-01-21 | 2017-05-31 | 東京エレクトロン株式会社 | Adhesion method, mounting table, and substrate processing apparatus |
JP6244804B2 (en) * | 2013-10-15 | 2017-12-13 | 住友大阪セメント株式会社 | Electrostatic chuck device |
JP6215002B2 (en) * | 2013-10-25 | 2017-10-18 | 東京エレクトロン株式会社 | Focus ring manufacturing method and plasma processing apparatus manufacturing method |
-
2016
- 2016-03-23 JP JP2016058515A patent/JP6642170B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017174938A (en) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5423632B2 (en) | Electrostatic chuck device | |
JP6064908B2 (en) | Electrostatic chuck device | |
JP6172301B2 (en) | Electrostatic chuck device | |
JP5994772B2 (en) | Electrostatic chuck device | |
KR102508959B1 (en) | electrostatic chuck device | |
JP2020035905A (en) | Electrostatic chuck device and manufacturing method therefor | |
WO2016152345A1 (en) | Electrostatic chuck device | |
JP5846186B2 (en) | Electrostatic chuck device and method of manufacturing electrostatic chuck device | |
JP6112236B2 (en) | Electrostatic chuck device | |
WO2017130827A1 (en) | Electrostatic chuck device | |
JP5504924B2 (en) | Electrostatic chuck device | |
JP6597437B2 (en) | Electrostatic chuck device | |
JP7110828B2 (en) | Electrostatic chuck device | |
JP6642170B2 (en) | Electrostatic chuck device and manufacturing method thereof | |
JP3662909B2 (en) | Wafer adsorption heating device and wafer adsorption device | |
JP2022094466A (en) | Electrostatic chuck device | |
JP6531675B2 (en) | Electrostatic chuck device | |
JP2021012928A (en) | Electrostatic chuck device | |
JP6558184B2 (en) | Electrostatic chuck device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190827 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6642170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |