JP6639839B2 - Bearing steel with excellent whitening resistance and exfoliation life - Google Patents
Bearing steel with excellent whitening resistance and exfoliation life Download PDFInfo
- Publication number
- JP6639839B2 JP6639839B2 JP2015177725A JP2015177725A JP6639839B2 JP 6639839 B2 JP6639839 B2 JP 6639839B2 JP 2015177725 A JP2015177725 A JP 2015177725A JP 2015177725 A JP2015177725 A JP 2015177725A JP 6639839 B2 JP6639839 B2 JP 6639839B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- residual
- quenched
- tempered
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 81
- 239000010959 steel Substances 0.000 title claims description 81
- 230000002087 whitening effect Effects 0.000 title claims description 9
- 238000004299 exfoliation Methods 0.000 title claims description 3
- 230000008859 change Effects 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 26
- 229910052804 chromium Inorganic materials 0.000 claims description 22
- 229910052748 manganese Inorganic materials 0.000 claims description 21
- 229910052759 nickel Inorganic materials 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 229910052750 molybdenum Inorganic materials 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 15
- 229910000734 martensite Inorganic materials 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000006104 solid solution Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 41
- 239000001257 hydrogen Substances 0.000 description 41
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 38
- 238000005255 carburizing Methods 0.000 description 24
- 239000011651 chromium Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 19
- 238000005096 rolling process Methods 0.000 description 19
- 238000010791 quenching Methods 0.000 description 17
- 230000000171 quenching effect Effects 0.000 description 17
- 206010040844 Skin exfoliation Diseases 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 238000005256 carbonitriding Methods 0.000 description 12
- 150000001247 metal acetylides Chemical class 0.000 description 12
- 238000005496 tempering Methods 0.000 description 11
- 238000009661 fatigue test Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000003754 machining Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical group [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、鋼材中に水素が浸入することで水素を起因とする白色組織変化が発生する環境において、耐白色組織変化はく離寿命および転動寿命に優れる軸受用鋼に関する。 TECHNICAL FIELD The present invention relates to a bearing steel having excellent white structure change resistance and rolling life in an environment in which hydrogen enters a steel material to cause a white structure change caused by hydrogen.
自動車用の電装用軸受においては、水素を起因とした白色組織変化を伴う早期破損が問題となっている。また、その他、海上風車や鉄鋼用圧延機等の潤滑油中に水分の浸入が発生しやすい軸受においても、同様の早期破損が懸念されている。これらの組織変化型の早期はく離は、材料の小型化、荷重増大、潤滑油の低粘度化が進んだ近年においては、ますます軸受使用における対策の実施が必要となっている。 In electrical bearings for automobiles, there is a problem of early breakage accompanied by a change in white structure due to hydrogen. In addition, there is a concern about similar early breakage in bearings, such as marine wind turbines and rolling mills for steel, in which moisture is likely to enter the lubricating oil. The early peeling of these structural change types requires more and more measures to be taken in the use of bearings in recent years in which materials have been reduced in size, the load has increased, and the viscosity of lubricating oil has been reduced.
そこで、これらの水素を起因とした白色組織変化に対し、添加剤の利用や、温度上昇防止などの設計や、潤滑油側での水素発生および浸入の防止などの方策が採られている。しかしながら、このような方策では不十分な場合や適用が困難な場合が多く、そこで白色組織変化による早期はく離に対して、鋼材側においても対策が求められている。 To cope with these changes in white structure caused by hydrogen, measures such as the use of additives, design for preventing temperature rise, and prevention of hydrogen generation and intrusion on the lubricating oil side have been adopted. However, such measures are often inadequate or difficult to apply, and therefore, countermeasures are also required on the steel side for early peeling due to changes in white structure.
このような状況下で、軸受のような転がり環境における潤滑油分解による水素発生および水素浸入による白色組織変化を伴った早期はく離に対し、鋼材側での対策として、V、Ti、Nbといった炭化物生成元素を添加することで、炭化物に水素をトラップさせることによって、鋼材の長寿命化を図る技術がある(例えば、特許文献1参照。)。しかしながら、これらの元素の添加は素材コストの大幅な増加となる。さらに炭化物自体が応力集中源となる可能性が高く、水素が炭化物周囲に局在化することで白色組織変化を伴った早期破損につながる恐れがある。 Under these circumstances, as a countermeasure on the steel side, the formation of carbides such as V, Ti, and Nb is performed as a countermeasure on the steel side against hydrogen generation due to lubricating oil decomposition in a rolling environment such as a bearing and white structure change due to hydrogen intrusion. There is a technique for extending the life of a steel material by trapping hydrogen in a carbide by adding an element (for example, see Patent Document 1). However, the addition of these elements results in a significant increase in material costs. Further, the carbide itself is likely to be a source of stress concentration, and localization of hydrogen around the carbide may lead to early breakage accompanied by white structure change.
また、従来の技術として、鋼中に進入した水素による白色組織変化に対し、マルテンサイトブロック界面への水素濃化抑制が有効であるとし、熱処理およびCr、Mo、Vといった炭化物および炭窒化物生成元素を添加することで、固溶C、Nを低減させる技術が提案されている(例えば、特許文献2参照。)。しかし、浸炭時および浸炭窒化時のC量、N量の低減は、材料硬さの低減を招いて強度低下にもつながる。そのために、C、Nを低減することなく、用いることが可能な手法が必要となっている。 Further, as a conventional technique, it is assumed that suppression of hydrogen concentration at the martensite block interface is effective against white structure change due to hydrogen entering steel, and heat treatment and formation of carbides and carbonitrides such as Cr, Mo, and V are performed. A technique for reducing solid solution C and N by adding an element has been proposed (for example, see Patent Document 2). However, a reduction in the amounts of C and N during carburizing and carbonitriding leads to a reduction in material hardness and a reduction in strength. Therefore, a method that can be used without reducing C and N is required.
本発明が解決しようとする課題は、炭化物析出や固溶C量やN量の低下といった転動疲労寿命特性を低下させる可能性のある技術に頼ることなく、水素を起因とした白色組織変化が発生する環境において、耐白色組織変化はく離寿命および転動疲労寿命に優れる軸受用鋼を提供することである。 The problem to be solved by the present invention is that the white structure change caused by hydrogen can be reduced without relying on the technology that may reduce the rolling fatigue life characteristics such as carbide precipitation and reduction of the amount of solid solution C and N. It is an object of the present invention to provide a bearing steel which is excellent in a white structure change resistance peeling life and a rolling fatigue life in an environment where it occurs.
発明者らは、水素が侵入し、水素を起因とした白色組織変化を伴った早期破損が発生する現象に対し、成分設計を見直し、母相成分中に固溶したSi、Mn、Cr、Ni、Moなどの量および残留γ量を一定量以上確保することで、水素が浸入し、水素を起因とした白色組織変化が起こる環境においても、白色組織変化を抑制することが可能であり、転動疲労寿命に優れる軸受溶鋼を製造可能であることを見出した。 The present inventors reviewed the component design for the phenomenon that hydrogen invaded and caused early breakage accompanied by white structure change caused by hydrogen, and found that Si, Mn, Cr, and Ni dissolved in the matrix phase component. , Mo and the like and the residual γ amount are not less than a certain amount, it is possible to suppress the white structure change even in an environment where hydrogen enters and a white structure change caused by hydrogen occurs. It has been found that it is possible to produce molten steel bearing having excellent dynamic fatigue life.
上記の課題を解決するための本発明の手段は、請求項1の手段では、質量%で、C:0.13〜0.35%、Si:0.20〜0.65%、Mn:0.50〜1.80%、P:0.030%以下、S:0.030%以下、Cr:2.30〜3.50%を含有し、さらに、Ni:0.10〜0.50%、Mo:0.03〜0.50%から選択した1種または2種を含有し、残部がFeおよび不可避不純物からなる鋼が浸炭焼入焼戻しされた状態または浸炭窒化焼入焼戻しされた状態であって、その最表面から100〜300μmの母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計は3.0%以上であり、さらに残留γ量は27〜50vol%であって、その他残部はマルテンサイト組織であることを特徴とする耐白色組織変化はく離寿命に優れる軸受用鋼である。
Means of the present invention for solving the above-mentioned problem is that, in the means of
請求項2の手段では、上記の請求項1に記載の化学成分に加えて、質量%で、V:0.01〜0.20%、Nb:0.01〜0.20%、Ti:0.01〜0.20%から選択した1種または2種以上を含有し、残部がFeおよび不可避不純物からなる鋼が浸炭焼入焼戻しされた状態または浸炭窒化焼入焼戻しされた状態であって、その最表面から100〜300μmの母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計は3.0%以上であり、さらに残留γ量は27〜50vol%であって、その他残部はマルテンサイト組織であることを特徴とする耐白色組織変化はく離寿命に優れる軸受用鋼である。
According to the means of claim 2, in addition to the chemical components described in
請求項3の手段では、質量%で、C:0.13〜0.35%、Si:0.20〜0.65%、Mn:0.50〜1.80%、P:0.030%以下、S:0.030%以下、Cr:2.30〜3.50%を含有し、さらに、Ni:0.10〜0.50%、Mo:0.03〜0.50%から選択した1種または2種を含有し、残部がFeおよび不可避不純物からなる鋼を浸炭焼入焼戻しされた状態または浸炭窒化焼入焼戻しされた状態であって、その最表面から100〜300μmの母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計は3.0%以上であり、さらに残留γ量は27〜50vol%であって、該残留γ量の残部はマルテンサイト組織である鋼材からなることを特徴とする耐白色組織変化はく離寿命に優れる軸受部品である。 According to the means of claim 3, C: 0.13 to 0.35%, Si: 0.20 to 0.65%, Mn: 0.50 to 1.80%, P: 0.030% by mass%. Hereinafter, S: 0.030% or less, Cr: 2.30 to 3.50%, Ni: 0.10 to 0.50%, Mo: 0.03 to 0.50% A matrix containing 100% to 300 μm from the outermost surface of a steel containing one or two kinds, the balance being Fe and inevitable impurities, in a state of being carburized and quenched and tempered or in a state of being carbonitrided and quenched and tempered. The total of Si, Mn, Cr, Ni, and Mo dissolved therein is 3.0% or more, the residual γ content is 27 to 50 vol%, and the remainder of the residual γ content is a martensite structure. It is a bearing part with excellent whitening resistance and whitening characteristic characterized by being made of steel. .
請求項4の手段では、質量%で、C:0.13〜0.35%、Si:0.20〜0.65%、Mn:0.50〜1.80%、P:0.030%以下、S:0.030%以下、Cr:2.30〜3.50%を含有し、さらに、Ni:0.10〜0.50%、Mo:0.03〜0.50%から選択した1種または2種を含有し、さらに、V:0.01〜0.20%、Nb:0.01〜0.20%、Ti:0.01〜0.20%から選択した1種または2種以上を含有し、残部がFeおよび不可避不純物からなる鋼が浸炭焼入焼戻しされた状態または浸炭窒化焼入焼戻しされた状態であって、その最表面から100〜300μmの母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計は3.0%以上であり、さらに残留γ量は27〜50vol%であって、該残留γ量の残部はマルテンサイト組織である鋼材からなることを特徴とする耐白色組織変化はく離寿命に優れる軸受部品である。 In the means of claim 4, C: 0.13 to 0.35%, Si: 0.20 to 0.65%, Mn: 0.50 to 1.80%, P: 0.030% by mass%. Hereinafter, S: 0.030% or less, Cr: 2.30 to 3.50%, Ni: 0.10 to 0.50%, Mo: 0.03 to 0.50% One or two kinds, and one or two selected from V: 0.01 to 0.20%, Nb: 0.01 to 0.20%, Ti: 0.01 to 0.20% Steel containing at least one species and the balance consisting of Fe and inevitable impurities is in a state of being carburized and quenched and tempered or in a state of being carbonitrided and quenched and tempered , and is solidified in a matrix component of 100 to 300 μm from its outermost surface. dissolved the Si, Mn, Cr, Ni, total Mo is 3.0% or more, further residual γ amount 27 ~50Vo A%, the remainder of the residual γ amount is bearing parts excellent in 耐白 color tissue changes flaking life, characterized in that it consists of steel is martensite structure.
上記の手段とすることで、本発明の軸受用鋼およびこの鋼からなる軸受部品は、鋼材中に水素が浸入することで水素を起因とする白色組織変化が発生する環境において、浸炭焼入焼戻し後または浸炭窒化焼入焼戻し後の鋼の最表面から100〜300μmの母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計量を3.0%以上とし、さらに残留γ量を20〜50vol%以上とすることで、SUJ2の2倍以上の転動疲労寿命および耐白色組織変化はく離寿命に優れている。 By adopting the above means, the steel for bearing of the present invention and the bearing component made of this steel can be subjected to carburizing, quenching and tempering in an environment where a white structure change caused by hydrogen is caused by infiltration of hydrogen into steel. The total amount of Si, Mn, Cr, Ni, and Mo dissolved in a matrix component of 100 to 300 μm from the outermost surface of the steel after or after carbonitriding, quenching, and quenching and tempering is set to 3.0% or more, and further, the amount of residual γ Is 20 to 50 vol% or more, the rolling fatigue life and the whitening change resistance peeling life of twice or more of SUJ2 are excellent.
発明を実施するための形態について説明するに先立って、本願の請求項の手段の軸受用鋼の化学成分の限定理由および当該鋼の各種の限定理由について以下に順を追って説明する。なお、化学成分の%は質量%で、残留γ量の%はvol%である。 Prior to describing the modes for carrying out the invention, the reasons for limiting the chemical composition of the steel for bearing and the various reasons for limiting the steel according to the claims of the present application will be described in order. In addition,% of the chemical component is% by mass, and% of the amount of residual γ is vol%.
C:0.13〜0.35%
Cは、芯部の焼入れ性、鍛造性、機械加工性に影響する元素である。Cは0.13%未満では十分な芯部の硬さが得られず、強度が低下するので、0.13%以上の添加が必要である。一方、Cは0.35%より多くなると、鋼素材の硬さが増加し、被削性および鍛造性等の加工性を阻害する。そこで、Cは0.13〜0.35%とし、望ましくは、0.15〜0.30%とする。
C: 0.13 to 0.35%
C is an element that affects the hardenability, forgeability, and machinability of the core. If C is less than 0.13%, sufficient core hardness cannot be obtained, and the strength is reduced. Therefore, it is necessary to add 0.13% or more. On the other hand, if C is more than 0.35%, the hardness of the steel material increases, and the workability such as machinability and forgeability is impaired. Therefore, C is set to 0.13 to 0.35%, preferably 0.15 to 0.30%.
Si:0.20〜0.65%
Siは、脱酸に必要な元素であり、さらに、高温環境での鋼素材の強度を高め、組織変化の抑制、転動疲労寿命の向上につながる元素である。これらの効果を十分に得るためには、Siは0.20%以上の添加が必要である。一方、Siは0.65%より多くなると、鋼素材の硬さが増加し、被削性および鍛造性等の加工性を阻害し、また、浸炭阻害を起こし、浸炭または浸炭窒化しても十分な材料強度が得られない。そこで、Siは0.20〜0.65%とし、望ましくは0.25〜0.50%とする。
Si: 0.20 to 0.65%
Si is an element necessary for deoxidation, and is an element that further increases the strength of a steel material in a high-temperature environment, suppresses structural change, and improves the rolling fatigue life. In order to obtain these effects sufficiently, it is necessary to add 0.20% or more of Si. On the other hand, if Si is more than 0.65%, the hardness of the steel material increases, impairing machinability and workability such as forgeability, and also impairs carburization, which is sufficient even if carburizing or carbonitriding. High material strength cannot be obtained. Therefore, Si is set to 0.20 to 0.65%, preferably 0.25 to 0.50%.
Mn:0.50〜1.80%
Mnは、焼入性の確保に必要な元素であり、鋼素材を浸炭または浸炭窒化した際に、残留γ量を増加させることで、水素を起因とした白色組織変化の抑制につながる元素である。これらの効果を十分に得るには、Mnは0.50以上の添加が必要である。一方、Mnは1.80%より多くなると、鋼素材の硬さが増加し、被削性および鍛造性等の加工性を阻害し、また、Sと結合してMnSとなることで、水素を起因とした白色組織変化の起点となる。そこで、Mnは0.50〜1.80%とし、望ましくは、0.65〜1.60%とする。
Mn: 0.50 to 1.80%
Mn is an element necessary for ensuring hardenability, and when carburizing or carbonitriding a steel material, increasing the amount of residual γ is an element that leads to suppression of white structure change caused by hydrogen. . To obtain these effects sufficiently, Mn needs to be added at 0.50 or more. On the other hand, when Mn is more than 1.80%, the hardness of the steel material increases, impairs the machinability such as machinability and forgeability, and combines with S to form MnS, thereby reducing hydrogen. This is the starting point of the white structure change caused. Therefore, Mn is set to 0.50 to 1.80%, preferably 0.65 to 1.60%.
P:0.030%以下
Pは、0.030%より多く含有されると、鋼素材を脆化し、疲労強度を下げる元素である。そこで、Pは0.030%以下とする。
P: 0.030% or less When P is contained in an amount of more than 0.030%, it is an element that embrittles the steel material and lowers the fatigue strength. Therefore, P is set to 0.030% or less.
S:0.030%以下
Sは、0.030%より多く含有されると、鋼素材の冷間加工性を阻害し、疲労強度を劣化する元素である。そこで、Sは0.030%以下とする。
S: 0.030% or less When S is contained in an amount of more than 0.030%, it is an element that impairs the cold workability of the steel material and deteriorates the fatigue strength. Therefore, S is set to 0.030% or less.
Cr:2.30〜3.50%
Crは、焼入性の確保に必要な元素であり、鋼材を浸炭または浸炭窒化した際に、残留γ量を増加させることで、水素を起因とした白色組織変化の抑制につながる元素である。さらに、Crは微細で均質な残留γを形成するのに有効であり、水素を起因とした白色組織変化の抑制効果を高める。これらの十分な効果を得るには、Crは2.30%以上の添加が必要である。一方、Crは過多になると浸炭または浸炭窒化時に、鋼材最表面で酸化物を形成することで浸炭阻害を引き起こし、強度劣化につながる元素である。また、Crは浸炭時に粗大炭化物を形成し、粗大炭化物の周囲において水素を起因とした白色組織変化の起点となるので、Crは3.50%以下とする必要がある。そこで、Crは2.30〜3.50%とし、望ましくは2.50〜3.20%とする。
Cr: 2.30 to 3.50%
Cr is an element necessary for ensuring hardenability, and is an element that increases the amount of residual γ when carburizing or carbonitriding a steel material, thereby leading to suppression of a change in white structure caused by hydrogen. Further, Cr is effective in forming fine and uniform residual γ, and enhances the effect of suppressing a change in white structure caused by hydrogen. To obtain these sufficient effects, Cr must be added in an amount of 2.30% or more. On the other hand, when Cr is excessive, it is an element that forms an oxide on the outermost surface of the steel material during carburizing or carbonitriding, thereby inhibiting carburization and leading to deterioration in strength. Further, Cr forms coarse carbides during carburization and becomes a starting point of white structure change caused by hydrogen around the coarse carbides, so that Cr needs to be 3.50% or less. Therefore, Cr is set to 2.30 to 3.50%, preferably 2.50 to 3.20%.
Ni:0.10〜0.50%
Niは、添加により鋼材の焼入性を高め、鋼材を浸炭または浸炭窒化した際に、残留γ量を増加する。これらの効果を十分に得るには、Niは0.10%以上の添加が必要である。一方、Niは過多に添加すると、素材コストが大きく増加する。また、Niは浸炭または浸炭窒化時に塊状の残留γが形成し易くなり、残留γによる水素を起因とした白色組織変化の抑制効果が失われるので、Niは0.50%を上限として添加するのが良い。そこで、Niは0.10〜0.50%とする。
Ni: 0.10 to 0.50%
Ni enhances the hardenability of the steel material by addition, and increases the amount of residual γ when the steel material is carburized or carbonitrided. In order to obtain these effects sufficiently, it is necessary to add Ni in an amount of 0.10% or more. On the other hand, if Ni is added excessively, the material cost increases significantly. In addition, Ni is liable to form massive residual γ during carburizing or carbonitriding, and loses the effect of suppressing white structure change caused by hydrogen due to residual γ. Therefore, Ni is added up to 0.50% as an upper limit. Is good. Therefore, Ni is set to 0.10 to 0.50%.
Mo:0.03〜0.50%
Moは、添加により鋼材の焼入性を高め、鋼材を浸炭または浸炭窒化した際に、残留γ量を増加し、また、組織を均質化し、残留γを均質に分布させるのに有効である。これらの効果を十分に得るためには、Moは0.03%以上が必要である。一方、Moは過多に添加すると素材コストが大きく増加し、また、組織を均質化する組織変化の抑制の効果は0.50%で飽和するので、Moは0.50%以下の添加とする。そこで、Moは0.03〜0.50%とし、望ましくは、0.03〜0.40%とする。
Mo: 0.03 to 0.50%
Mo is effective in increasing the hardenability of the steel material by adding Mo, increasing the amount of residual γ when the steel material is carburized or carbonitrided, homogenizing the structure, and uniformly distributing the residual γ. In order to obtain these effects sufficiently, Mo needs to be 0.03% or more. On the other hand, if Mo is added excessively, the material cost increases greatly, and the effect of suppressing the structural change for homogenizing the structure saturates at 0.50%. Therefore, Mo is added at 0.50% or less. Therefore, Mo is set to 0.03 to 0.50%, preferably 0.03 to 0.40%.
V:0.01〜0.20%
Vは、結晶粒を微細化し、粒界における水素濃度を低減することで水素を起因とした白色組織変化を抑制し、また、浸炭または浸炭窒化時にサブミクロンオーダーの炭化物や炭窒化物を形成することで、水素トラップとして機能して白色組織変化の抑制に有効に作用する画素であり、十分な効果を得るには、0.01%以上の添加が必要である。一方、Vの添加による結晶粒微細化、炭化物や炭窒化物析出による白色組織変化の抑制効果は、Vの0.20%までの添加で飽和し、これより過多に添加すると、粗大な炭化物や炭窒化物を析出し、かえって悪影響を及ぼすので、Vは0.20%以下とする。そこで、Vは0.01〜0.20%とする。
V: 0.01 to 0.20%
V suppresses white structure change caused by hydrogen by refining crystal grains and reducing hydrogen concentration at grain boundaries, and forms carbides and carbonitrides of submicron order during carburizing or carbonitriding. Thus, the pixel functions as a hydrogen trap and effectively acts to suppress the change in white structure. To obtain a sufficient effect, the addition of 0.01% or more is necessary. On the other hand, the effect of refining the crystal grains by adding V and suppressing the change in the white structure due to the precipitation of carbides and carbonitrides is saturated with the addition of V up to 0.20%. V is set to 0.20% or less because carbon nitride is precipitated and adversely affects the carbon nitride. Therefore, V is set to 0.01 to 0.20%.
Nb:0.01〜0.20%
Nbは、結晶粒を微細化し、粒界における水素濃度を低減することで水素を起因とした白色組織変化を抑制する。また、Nbは浸炭または浸炭窒化時にサブミクロンオーダーの炭化物や炭窒化物を形成することで水素トラップとして機能し、白色組織変化の抑制に有効である。これらの十分な効果を得るためには、Nbは0.01%以上の添加が必要である。一方、Nbの添加による結晶粒微細化および炭化物や炭窒化物の析出による白色組織変化の抑制効果は、Nbの0.20%までの添加で飽和し、これより過多に添加すると粗大な炭化物や炭窒化物を析出するため、かえって悪影響を及ぼすので、Nbの添加は0.20%以下とする。そこで、Nbは0.01〜0.20%とする。
Nb: 0.01 to 0.20%
Nb suppresses a change in the white structure caused by hydrogen by making the crystal grains fine and reducing the hydrogen concentration at the grain boundaries. Also, Nb functions as a hydrogen trap by forming carbides and carbonitrides on the order of submicrons during carburizing or carbonitriding, and is effective in suppressing white structure change. To obtain these sufficient effects, Nb must be added at 0.01% or more. On the other hand, the effect of refining the crystal grains by adding Nb and suppressing the change of the white structure due to the precipitation of carbides and carbonitrides is saturated when Nb is added up to 0.20%. Nb is added at 0.20% or less because carbonitrides are precipitated, which has an adverse effect. Therefore, Nb is set to 0.01 to 0.20%.
Ti:0.01〜0.20%
Tiは、結晶粒を微細化し、粒界における水素濃度を低減することで水素を起因とした白色組織変化を抑制する。また、Tiは浸炭または浸炭窒化時にサブミクロンオーダーの炭化物や炭窒化物を形成することで、水素トラップとして機能し、白色組織変化の抑制に有効である。これらの効果を十分に得るためには、Nbは0.01%以上の添加が必要である。一方、Nbの添加による結晶粒微細化および炭化物や炭窒化物析出による白色組織変化の抑制効果は、Nbは0.20%までの添加で飽和し、過多に添加すると粗大な炭化物・炭窒化物析出するため、かえって悪影響を及ぼす。そのため、Tiの添加は0.20%以下とする。そこで、Tiは0.01〜0.20%とする。
Ti: 0.01 to 0.20%
Ti suppresses a white structure change caused by hydrogen by making crystal grains fine and reducing the hydrogen concentration at the grain boundaries. Further, Ti forms a submicron-order carbide or carbonitride during carburizing or carbonitriding, thereby functioning as a hydrogen trap, and is effective in suppressing a change in white structure. In order to obtain these effects sufficiently, Nb needs to be added at 0.01% or more. On the other hand, the effect of adding Nb to refine the crystal grains and suppress the change in white structure due to precipitation of carbides and carbonitrides is that Nb is saturated up to 0.20% and coarse carbides / carbonitrides when added excessively. Precipitation causes adverse effects. Therefore, the addition of Ti is set to 0.20% or less. Therefore, Ti is set to 0.01 to 0.20%.
該鋼の浸炭焼入焼戻し後のまたは浸炭窒化焼入焼戻し後の該鋼の最表面から100〜300μm
水素を起因とした組織変化は、繰返し高いせん断応力を受ける該鋼の最表面から100〜300μmにおいて発生して破損に至るため、この位置における組織変化の抑制が重要である。そこで、該鋼の浸炭焼入焼戻し後のまたは浸炭窒化焼入焼戻し後の該鋼の最表面から100〜300μmと規定する。
100 to 300 μm from the outermost surface of the steel after carburizing and quenching and tempering of the steel or after carbonitriding and quenching and tempering
Since the structural change due to hydrogen occurs repeatedly at 100 to 300 μm from the outermost surface of the steel that is repeatedly subjected to high shear stress and leads to breakage, it is important to suppress the structural change at this position. Therefore, the thickness is defined as 100 to 300 μm from the outermost surface of the steel after carburizing and quenching and tempering or after carbonitriding and quenching and tempering of the steel.
母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計は3.0%以上
浸炭または浸炭窒化した際には、炭化物や炭窒化物の形成により母相の合金元素量は実際の添加量と比較して低下している。そこで十分な残留γ量を得るためには母相に固溶した合金元素量を増やす必要がある。また、水素の拡散速度を低下させることにより組織変化は抑制される。これらの効果を十分に得るためには、母相中のSi、Mn、Cr、Ni、Moの合計量は3.0%以上である必要がある。そこで、母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計は3.0%以上と規定する。
The total of Si, Mn, Cr, Ni, and Mo dissolved in the matrix component is 3.0% or more. When carburized or carbonitrided, the amount of alloying elements in the matrix is actually increased due to the formation of carbides and carbonitrides. Is lower than the added amount. Therefore, in order to obtain a sufficient amount of residual γ, it is necessary to increase the amount of alloying elements dissolved in the matrix. In addition, the structural change is suppressed by reducing the diffusion rate of hydrogen. In order to obtain these effects sufficiently, the total amount of Si, Mn, Cr, Ni, and Mo in the matrix needs to be 3.0% or more. Therefore, the total of Si, Mn, Cr, Ni, and Mo dissolved in the matrix component is specified to be 3.0% or more.
残留γ量は20〜50vol%
残留γ量は非拡散性の水素のトラップサイトとして機能して使用時の水素の濃化を抑制し、また、鋼材内を拡散する水素の拡散速度を遅くする効果を持ち、水素を起因とした組織変化の抑制に非常に有効である。これらの効果を十分に得るためには、残留γ量は20vol%以上が必要である。一方、残留γ量は50vol%より過多になると、鋼の硬さの低下を引き起こし、強度劣化につながり、また寸法の安定性の低下や塊状γの発生にもつながる。そのため残留γ量は50vol%以下とする。そこで、残留γ量は20〜50vol%とする。
The residual γ amount is 20 to 50 vol%
The amount of residual γ functions as a non-diffusible hydrogen trap site, suppressing the concentration of hydrogen during use, and also has the effect of slowing the diffusion rate of hydrogen diffusing in steel, resulting from hydrogen. It is very effective in suppressing organizational changes. In order to obtain these effects sufficiently, the residual γ amount needs to be 20 vol% or more. On the other hand, if the residual γ content is more than 50 vol%, the hardness of the steel is reduced, leading to a deterioration in strength, a reduction in dimensional stability and the generation of massive γ. Therefore, the amount of residual γ is set to 50 vol% or less. Therefore, the amount of residual γ is set to 20 to 50 vol%.
残部はマルテンサイト組織
フェライトやパーライトといった強度の低い組織が存在すると、水素を起因とした白色組織変化の起点となる。そこで、残部はマルテンサイト組織とする。
The remainder is a martensite structure. If a low-strength structure such as ferrite or pearlite is present, it becomes a starting point of a white structure change caused by hydrogen. Therefore, the remainder is a martensite structure.
次いで、発明の実施の形態について説明する。表1に示す化学組成からなる本発明の成分を満たす実施例鋼の試料No.A〜O、および本発明の成分を一部満たさない比較例鋼の試料No.P〜Tのそれぞれを100kg真空溶解炉で溶製して鋼とした。なお、比較例鋼の試料No.QはJIS規定の高炭素クロム軸受鋼鋼材であるSUJ2であり、比較例鋼の試料No.RはJIS規定のクロムモリブデン鋼鋼材であるSCM420である。次いで、これらの鋼を1250℃で直径65mmに鍛伸して、900℃で1時間保持した後、空冷して焼ならしを行った。また、比較例鋼の試料No.QのSUJ2は、さらに800℃で球状化焼鈍を実施した。その後、比較例鋼の試料No.QのSUJ2を除く全ての鋼を、図1に示す、外径φ60mm、内径φ20mm、厚さ8.3mmのスラスト型転動疲労試験片に粗加工した。比較例鋼の試料No.QのSUJ2については、図1に示す外径φ60mm、内径φ20mm、厚さ6.0mmのスラスト型転動疲労試験片に粗加工した。 Next, embodiments of the invention will be described. Sample No. of the example steel satisfying the components of the present invention having the chemical composition shown in Table 1. Samples No. A to O and comparative example steels not partially satisfying the components of the present invention. Each of P to T was melted in a 100 kg vacuum melting furnace to obtain steel. In addition, the sample No. of the comparative example steel. Q is SUJ2 which is a high carbon chromium bearing steel material specified by JIS. R is SCM420 which is a chromium molybdenum steel according to JIS. Next, these steels were forged to a diameter of 65 mm at 1250 ° C., held at 900 ° C. for 1 hour, and air-cooled for normalization. In addition, the sample No. of the comparative example steel. SUJ2 of Q was further subjected to spheroidizing annealing at 800 ° C. Then, the sample No. of the comparative example steel was used. All the steels except for SUJ2 of Q were rough-worked into thrust-type rolling fatigue test pieces shown in FIG. 1 having an outer diameter of 60 mm, an inner diameter of 20 mm, and a thickness of 8.3 mm. Sample No. of Comparative Example Steel As for SUJ2 of Q, a thrust type rolling fatigue test piece having an outer diameter of φ60 mm, an inner diameter of φ20 mm, and a thickness of 6.0 mm shown in FIG. 1 was roughly processed.
比較例鋼の試料No.QのSUJ2を除く、全ての鋼種についてのスラスト型転動疲労試験片を、図2に示す浸炭焼入れパターンの条件(浸炭温度:930℃、狙いCp=0.80%)でガス浸炭焼入れを実施した後に、180℃で90分保持して空冷することで焼戻し処理を実施した。また、比較例鋼の試料No.QのSUJ2については840℃で30分保持して油冷を行い、焼入れした後に、180℃で90分保持して空冷することで焼戻し処理を実施した。 Sample No. of Comparative Example Steel Except for SUJ2 of Q, the thrust type rolling fatigue test specimens of all steel types were subjected to gas carburizing and quenching under the conditions of carburizing and quenching pattern shown in FIG. 2 (carburizing temperature: 930 ° C., target Cp = 0.80%). After that, a tempering treatment was performed by holding at 180 ° C. for 90 minutes and air cooling. In addition, the sample No. of the comparative example steel. SUJ2 of Q was kept at 840 ° C. for 30 minutes to perform oil cooling, quenched, and then tempered by being kept at 180 ° C. for 90 minutes and air-cooled.
なお、実施例鋼の試料No.BおよびKに示す鋼を図2に示す浸炭焼入れパターンの条件で、浸炭時の狙いCp=1.2%としてガス浸炭して焼入焼戻しまで実施することで、意図的に残留γ量を過多とし、比較例鋼の加工No.21および22とした。また、実施例鋼のNo.Eに示す鋼を同様の工程でガス浸炭して焼入焼戻しまで実施した後に、残留γ量の現象を目的に、Arガス中において600℃で5時間保持して急冷することで焼なましを実施し、その後、830℃で30分保持して油冷を行って焼入れし、180℃で90分保持して空冷し、焼戻し処理を実施して比較例鋼の加工No.23とした。また、実施例鋼の試料No.Lに示す鋼を同様の工程で、試験片の粗加工まで実施した後に、図2と同様の浸炭焼入れパターンの条件(浸炭温度:930℃、狙いCp=0.80%)でガス浸炭焼入れを実施した後に、残留γ量の減少を目的に、液体窒素によるサブゼロ処理を実施し、その後、180℃で90分保持して空冷して焼戻し処理を実施して比較例鋼の加工No.24とした。 In addition, the sample No. of the example steel was used. Under the conditions of the carburizing and quenching pattern shown in FIG. 2, the steels shown in B and K are subjected to gas carburizing and quenching and tempering with the target Cp = 1.2% at the time of carburizing, whereby the residual γ amount is intentionally excessively increased. And the machining No. of the comparative steel. 21 and 22. In addition, the No. of the example steels. After the steel shown in E was subjected to gas carburizing and quenching and tempering in the same process, annealing was performed by holding at 600 ° C. for 5 hours in Ar gas and rapidly cooling for the purpose of the residual γ amount phenomenon. After that, holding at 830 ° C. for 30 minutes to perform oil cooling and quenching, holding at 180 ° C. for 90 minutes to air-cool, performing a tempering treatment, and performing processing No. 23. Further, the sample No. of the example steel was used. After the steel shown in L was subjected to the same process up to the rough processing of the test piece, gas carburizing and quenching were performed under the same carburizing and quenching pattern conditions (carburizing temperature: 930 ° C., target Cp = 0.80%) as in FIG. After the implementation, a sub-zero treatment with liquid nitrogen was carried out for the purpose of reducing the residual γ content, and thereafter, it was kept at 180 ° C. for 90 minutes and air-cooled to perform a tempering treatment. 24.
以上の熱処理を行った後に、比較例鋼の加工No.17のSUJ2を除く、全ての試験片については、試験面を0.15mm研磨し、さらに反対側を研磨することで高さを8.0mmに仕上げた。比較例鋼の加工No.17のSUJ2については、試験面を0.20mm研磨し、さらに反対側を研磨することで高さを5.6mmに仕上げた。また、これらの試験面は、バフ研磨にて鏡面仕上げとした。 After performing the above heat treatment, the processing No. With respect to all the test pieces except SUJ2 of No. 17, the test surface was polished by 0.15 mm and the other side was polished to finish the height to 8.0 mm. Processing No. of Comparative Example Steel For SUJ2 No. 17, the test surface was polished by 0.20 mm, and the opposite side was further polished to a height of 5.6 mm. These test surfaces were mirror-finished by buffing.
上記で作製したスラスト型転動疲労試験片を使用し、耐白色組織変化はく離寿命を測定するために、表2に示す浸炭焼入れパターンの条件で、陰極チャージ法にて試験片に水素添加した後に、最大接触面圧5.3GPaでスラスト型転動疲労試験機を用いて、はく離までの転動疲労寿命の測定を行った。また、同様に作製したスラスト型転動疲労試験片を使用し、最表面から100〜300μmである位置から薄膜試料を切り出してTEM(透過型電子顕微鏡)観察を実施した。TEM観察において、炭化物を避けるように位置調整を行い、EDS分析を行うことで、母相自体に固溶しているSi、Mn、Cr、Ni、Mo量を測定し、その合計量を計算した。また、同様にスラスト型転動疲労試験片を用いて最表面から100〜300μmの位置の深さとなるまで電解研磨を実施した後に、X線回折を用いて残留γ量の測定を行った。また、同様にスラスト型転動疲労試験片を使用して試料断面の組織をSEM(走査電子顕微鏡)にて最表面から100〜300μmの位置における組織の観察を行った結果、いずれも残留γとマルテンサイトからなる組織であることを確認した。 Using the thrust-type rolling fatigue test specimen prepared above, in order to measure the white structure resistance peeling life, after hydrogenation to the test specimen by the cathode charge method under the conditions of carburizing and quenching pattern shown in Table 2. Using a thrust-type rolling fatigue tester at a maximum contact surface pressure of 5.3 GPa, the rolling fatigue life until peeling was measured. In addition, a thin film sample was cut out from a position that was 100 to 300 μm from the outermost surface using a thrust-type rolling fatigue test piece manufactured in the same manner, and observed with a TEM (transmission electron microscope). In TEM observation, the position was adjusted so as to avoid carbides, and EDS analysis was performed to measure the amounts of Si, Mn, Cr, Ni, and Mo dissolved in the mother phase itself, and the total amount was calculated. . Similarly, after performing electropolishing using a thrust-type rolling fatigue test piece to a depth of 100 to 300 μm from the outermost surface, the residual γ amount was measured using X-ray diffraction. Similarly, using a thrust-type rolling fatigue test piece, the structure of the cross section of the sample was observed by SEM (scanning electron microscope) at a position of 100 to 300 μm from the outermost surface. It was confirmed that the organization consisted of martensite.
以上、最表面から100〜300μmの位置における、母相自体に固溶しているSi、Mn、Cr、Ni、Moの合計量、残留γ量およびスラスト型転動疲労試験におけるL50寿命の測定結果および比較例鋼の加工No.17のSUJ2とのL50寿命比を計算した結果を表3に示す。 As described above, the measurement results of the total amount of Si, Mn, Cr, Ni, and Mo dissolved in the matrix phase itself, the amount of residual γ, and the L50 life in a thrust rolling fatigue test at a position of 100 to 300 μm from the outermost surface And No. of the comparative steel. Table 3 shows the results of calculating the L50 life ratio of the No. 17 with SUJ2.
表3に示すように、実施例鋼の加工No.1〜15は、水素環境下の転動疲労特性について、比較例鋼の加工No.17のSUJ2と比較して2倍以上のL50寿命を有しており、耐白色組織変化はく離寿命に優れている。一方、比較例鋼の加工No.19は、最表面から100〜300μmの位置における残留γ量が68%と過多であり、十分な材料強度を確保できなかったので早期に破損した。また、Niを多量に添加した比較例鋼の加工No.20は比較的早期に破損しており、このことにより、Ni添加量が多くなって粗大な塊状残留γを形成することで十分な耐白色組織変化はく離寿命を示さなくなると分かる。さらに、実施例鋼の試料No.B、Kを用いて浸炭時のC濃度を増量することで、残留γ量を過多とした比較例鋼の加工No.21、22は、明確に耐白色組織変化はく離寿命が短寿命化している。これは、十分な材料強度を確保できなかったためである。一方で、実施例鋼の加工No.12、5を用いて、それぞれ焼鈍処理、サブゼロ処理を実施することで、残留γ量が減少した比較例鋼の加工No.21、22においては、明確に耐白色組織変化はく離寿命が短寿命化しており、高せん断応力域において一定量の残留γ量の確保が重要であると分かる。 As shown in Table 3, machining No. No. 1 to No. 15 show the rolling fatigue characteristics in a hydrogen environment, and machining Nos. 17 has twice or more the L50 life as compared to SUJ2 of 17 and is excellent in the peeling life due to the change in white structure resistance. On the other hand, No. In No. 19, the residual γ amount at a position of 100 to 300 μm from the outermost surface was excessively large at 68%, and sufficient material strength could not be secured. In addition, machining No. of the comparative example steel to which a large amount of Ni was added was used. No. 20 was damaged relatively early, which indicates that a sufficient amount of Ni was added to form a coarse bulky residual γ, whereby a sufficient change in white structure resistance and a peeling life could not be exhibited. Further, the sample No. of the example steel was used. B and K were used to increase the C concentration during carburization to increase the residual γ content. In Nos. 21 and 22, the peeling life of the change in the white structure was clearly shortened. This is because sufficient material strength could not be secured. On the other hand, the machining No. No. 12 and No. 5 were subjected to the annealing treatment and the sub-zero treatment, respectively. In Nos. 21 and 22, the peeling life of the change in white structure resistance was clearly shortened, and it can be seen that it is important to secure a certain amount of residual γ in a high shear stress region.
図3に、実施例鋼および比較例鋼についての残留γ量と耐白色組織変化はく離寿命の関係をグラフで示す。上記のように、残留γ量の過多による強度不足およびNiの多量添加による塊状γの生成に起因して短寿命となった比較例鋼の加工No.19、21および22、並びに、比較例鋼のNo.20を除くと、残留γ量と耐白色組織変化はく離寿命は良い相関を示す。 FIG. 3 is a graph showing the relationship between the residual γ content and the whitening resistance change peeling life of the example steel and the comparative example steel. As described above, the working steel No. of the comparative example steel having a short life due to insufficient strength due to an excessive amount of residual γ and generation of massive γ due to a large amount of Ni addition. Nos. 19, 21 and 22, and Comparative Example Steel Nos. Excluding 20, the residual γ content and the whitening resistance change peeling life show a good correlation.
1 スラスト型転動疲労試験片 1 Thrust type rolling fatigue test piece
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177725A JP6639839B2 (en) | 2015-09-09 | 2015-09-09 | Bearing steel with excellent whitening resistance and exfoliation life |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177725A JP6639839B2 (en) | 2015-09-09 | 2015-09-09 | Bearing steel with excellent whitening resistance and exfoliation life |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017053002A JP2017053002A (en) | 2017-03-16 |
JP2017053002A5 JP2017053002A5 (en) | 2018-09-20 |
JP6639839B2 true JP6639839B2 (en) | 2020-02-05 |
Family
ID=58317399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015177725A Active JP6639839B2 (en) | 2015-09-09 | 2015-09-09 | Bearing steel with excellent whitening resistance and exfoliation life |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6639839B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6846901B2 (en) * | 2016-09-28 | 2021-03-24 | 山陽特殊製鋼株式会社 | High cleanliness bearing steel with excellent rolling fatigue life in hydrogen environment |
JP6946636B2 (en) * | 2016-11-15 | 2021-10-06 | 株式会社ジェイテクト | Rolling sliding members, their manufacturing methods, carburized nitriding steel materials and rolling bearings |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2514847B1 (en) * | 2010-03-19 | 2014-12-17 | Nippon Steel & Sumitomo Metal Corporation | Surface layer-hardened steel part and method of manufacturing the same |
JP6347926B2 (en) * | 2013-08-27 | 2018-06-27 | 山陽特殊製鋼株式会社 | Hardened steel for gears with excellent pitting resistance under hydrogen environment |
-
2015
- 2015-09-09 JP JP2015177725A patent/JP6639839B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017053002A (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5432105B2 (en) | Case-hardened steel and method for producing the same | |
WO2016017160A1 (en) | Carbonitrided bearing member | |
CN113260728B (en) | Carbonitrided bearing component | |
JP2007162128A (en) | Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component | |
JP2009215597A (en) | Rolling-motion part and manufacturing method therefor | |
EP3382051A1 (en) | Steel, carburized steel component, and carburized steel component production method | |
CN111684094A (en) | Steel for carburized parts | |
EP3399063A1 (en) | Case-hardened steel, carburized component, and process for producing case-hardened steel | |
US20180202030A1 (en) | Near-eutectoid bearing steel | |
JP3792341B2 (en) | Soft nitriding steel with excellent cold forgeability and pitting resistance | |
CN113227424B (en) | Steel material as material for carbonitrided bearing member | |
JP6399213B2 (en) | Case-hardened steel parts | |
JP2021127503A (en) | Steel material for bearing raceway and bearing raceway | |
JP6639839B2 (en) | Bearing steel with excellent whitening resistance and exfoliation life | |
JP2017133052A (en) | Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor | |
JP7464822B2 (en) | Steel for bearing raceways and bearing raceways | |
JP7057715B2 (en) | Bearing steel with excellent rolling fatigue life in a hydrogen intrusion environment | |
TWI630278B (en) | Surface hardened steel | |
WO2018212196A1 (en) | Steel and component | |
JP2015160979A (en) | Case-hardening steel in which generation of abnormal grain in carburizing treatment can be suppressed and machine structure component using the same | |
JP2007113071A (en) | Case hardening steel having excellent rolling fatigue property and crystal grain coarsening prevention property | |
JP5976581B2 (en) | Steel material for bearings and bearing parts with excellent rolling fatigue characteristics | |
JP6846901B2 (en) | High cleanliness bearing steel with excellent rolling fatigue life in hydrogen environment | |
JP2007113027A (en) | Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus | |
JP6146381B2 (en) | Case-hardened steel for bearings with excellent rolling fatigue characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6639839 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |