[go: up one dir, main page]

JP6634727B2 - 光学素子、光学素子の製造方法、及び電子機器 - Google Patents

光学素子、光学素子の製造方法、及び電子機器 Download PDF

Info

Publication number
JP6634727B2
JP6634727B2 JP2015157969A JP2015157969A JP6634727B2 JP 6634727 B2 JP6634727 B2 JP 6634727B2 JP 2015157969 A JP2015157969 A JP 2015157969A JP 2015157969 A JP2015157969 A JP 2015157969A JP 6634727 B2 JP6634727 B2 JP 6634727B2
Authority
JP
Japan
Prior art keywords
optical element
manufacturing
polarizing element
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015157969A
Other languages
English (en)
Other versions
JP2017037158A (ja
JP2017037158A5 (ja
Inventor
啓友 熊井
啓友 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015157969A priority Critical patent/JP6634727B2/ja
Priority to US15/195,385 priority patent/US9977168B2/en
Publication of JP2017037158A publication Critical patent/JP2017037158A/ja
Priority to US15/955,589 priority patent/US10386557B2/en
Publication of JP2017037158A5 publication Critical patent/JP2017037158A5/ja
Application granted granted Critical
Publication of JP6634727B2 publication Critical patent/JP6634727B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/007Forming single grooves or ribs, e.g. tear lines, weak spots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、光学素子、光学素子の製造方法、及び電子機器に関する。
上記光学素子は、例えば、電子機器としてのプロジェクターにおいて、液晶ライトバルブを挟んで両側に配置されている。光学素子としては、例えば、特許文献1に記載のような、ワイヤーグリッド型の偏光素子が挙げられる。偏光素子は、透明な基板上に金属からなるグリッドが、用いる光の波長よりも短いピッチで敷き詰められて構成されている。
このような偏光素子は、無機物で構成できるため、有機物を用いた偏光素子と比較して光照射による劣化が著しく少なく、高輝度化が進む液晶プロジェクターにおいて有効なデバイスである。
偏光素子の製造方法は、例えば、基板上に、アルミニウム膜、酸化シリコン膜、シリコン膜を順に形成し、その上にストライプ状のレジストパターンを形成し、レジストパターンをマスクとして上記積層膜を同時にエッチングすることにより、平面視ストライプ状のアスペクト比の大きい積層体(グリッド)を有する偏光素子が形成される。
特開2012−98469号公報
しかしながら、アスペクト比の大きい積層体であり、かつ、各膜のエッチングレートが異なることから、エッチング量にばらつきが生じる。よって、最下層のアルミニウム膜と基板との界面までエッチングする場合、ばらつきを考慮してエッチング量を多めにする必要があり、その結果、積層体の側面がエッチングされて積層体の幅が狭くなるなど、微細化が難しいという課題がある。
本発明の態様は、上記課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]本適用例に係る光学素子は、基板と、前記基板の一方の面に平面視でストライプ状に設けられた複数の反射層と、前記複数の反射層の各々の前記基板と反対側の面に設けられた吸収層と、前記吸収層と、前記複数の反射層のうち互いに隣り合う2つの反射層の間と、を覆うように設けられた酸化膜と、を備え、前記酸化膜は、前記吸収層に含まれる材料の酸化物であることを特徴とする。
本適用例によれば、先に反射層を形成した後に吸収層を形成することができるので、例えば、反射層と吸収層とを同時にエッチングする場合と比較して、エッチングレートの違いによるエッチングのばらつきを抑えることが可能となり、ストライプ状の反射層を微細に形成することができる。よって、コントラスト及び明るさを向上させることができる。また、吸収層に含まれる材料を酸化膜にしているので、反射層の間の透過率が低下することを抑えることができる。
[適用例2]上記適用例に係る光学素子において、前記基板は、前記複数の反射層のうち互いに隣り合う2つの反射層の間に溝部を有し、前記酸化膜の一部は、前記溝部の中に位置していることが好ましい。
本適用例によれば、先に反射層を形成した後に吸収層を形成することができるので、例えば、反射層と吸収層とを同時にエッチングする場合と比較して、エッチングレートの違いによるエッチングのばらつきを抑えることが可能となり、ストライプ状の反射層を微細に形成することができる。よって、コントラスト及び明るさを向上させることができる。また、反射層の間の溝部の中に酸化膜が形成されているので、反射層の間が透明に近くなり、反射層の間の透過率が低下することを抑えることができる。
[適用例3]上記適用例に係る光学素子において、前記複数の反射層と前記吸収層との間に設けられた誘電体層を備えることが好ましい。
本適用例によれば、反射層と吸収層との間に誘電体層が設けられているので、反射層と吸収層との間で構成元素の相互拡散が生じることを防ぐことができる。よって、拡散に起因する偏光分離特性の変動を抑えることができる。
[適用例4]上記適用例に係る光学素子において、前記複数の反射層は、アルミニウム、銀、銅、クロム、チタン、ニッケル、タングステン、鉄のうち少なくとも1つを含むことが好ましい。
本適用例によれば、上記材料で反射層を形成することにより、熱酸化などの製造工程により、容易に酸化膜(誘電体層)を形成することができる。
[適用例5]上記適用例に係る光学素子において、前記吸収層は、シリコン、ゲルマニウム、クロムのうち少なくとも1つを含むことが好ましい。
本適用例によれば、光を吸収することができる、言い換えれば、低反射率の光学素子を実現することができる。
[適用例6]上記適用例に係る光学素子において、前記誘電体層は、酸化シリコンであることが好ましい。
本適用例によれば、熱酸化などの製造工程により、容易に酸化シリコンを形成することができる。
[適用例7]本適用例に係る光学素子の製造方法は、基板の一方の面に平面視でストライプ状に複数の反射層を形成する工程と、前記基板の一方の面及び前記複数の反射層の各々を覆うように吸収層を形成する工程と、前記吸収層のうち、前記複数の反射層の前記基板と反対側の面に形成された部分の一部と、前記複数の反射層の互いに隣り合う2つの反射層の間に形成された部分と、を酸化させて酸化膜を形成する工程と、を備えることを特徴とする。
本適用例によれば、先に反射層を形成した後に吸収層を形成するので、例えば、反射層と吸収層とを同時にエッチングする場合と比較して、エッチングレートの違いによるエッチングのばらつきを抑えることが可能となり、ストライプ状の反射層を微細に形成することができる。よって、コントラスト及び明るさを向上させることができる。また、反射層の間に酸化膜を形成するので、反射層の間の透過率が低下することを抑えることができる。
[適用例8]上記適用例に係る光学素子の製造方法において、前記複数の反射層を形成する工程の後に、前記複数の反射層のうち互いに隣り合う2つの反射層の間に溝部を形成する工程を備え、前記酸化膜の一部は、前記溝部の中に位置していることが好ましい。
本適用例によれば、先に反射層を形成した後に吸収層を形成するので、例えば、反射層と吸収層とを同時にエッチングする場合と比較して、エッチングレートの違いによるエッチングのばらつきを抑えることが可能となり、ストライプ状の反射層を微細に形成することができる。よって、コントラスト及び明るさを向上させることができる。また、反射層を形成した後に溝部を形成し、溝部の中の材料(膜)を酸化させて酸化膜を形成するので、反射層の間が透明に近くなり、反射層の間の透過率が低下することを抑えることができる。
[適用例9]本適用例に係る光学素子の製造方法は、基板の一方の面に平面視でストライプ状に複数の反射層を形成する工程と、前記基板の一方の面及び前記複数の反射層の各々を覆うように吸収層を形成する工程と、前記吸収層のうち、前記複数の反射層の互いに隣り合う2つの反射層の間に形成された部分をエッチング処理により除去する工程と、を備えることを特徴とする。
本適用例によれば、反射層の間の吸収層を除去することにより、反射層間の基板を露出させるので、反射層の間の透過率を向上させることができる。
[適用例10]上記適用例に係る光学素子の製造方法において、前記複数の反射層と前記吸収層との間に誘電体層を形成する工程を備えることが好ましい。
本適用例によれば、反射層と吸収層との間に誘電体層を形成するので、反射層と吸収層との間で構成元素の相互拡散が生じることを防ぐことができる。よって、拡散に起因する偏光分離特性の変動を抑えることができる。
[適用例11]上記適用例に係る光学素子の製造方法において、前記複数の反射層は、アルミニウム、銀、銅、クロム、チタン、ニッケル、タングステン、鉄のうち少なくとも1つを含むことが好ましい。
本適用例によれば、上記材料で反射層を形成することにより、熱酸化などの製造工程により、容易に酸化膜(誘電体層)を形成することができる。
[適用例12]上記適用例に係る光学素子の製造方法において、前記吸収層は、シリコン、ゲルマニウム、クロムのうち少なくとも1つを含むことを特徴とする。
本適用例によれば、光を吸収することができる、言い換えれば、低反射率の光学素子を実現することができる。
[適用例13]上記適用例に係る光学素子の製造方法において、前記誘電体層は、酸化シリコンであることが好ましい。
本適用例によれば、熱酸化などの製造工程により、容易に酸化シリコンを形成することができる。
[適用例14]本適用例に係る電子機器は、上記に記載の光学素子を備えることを特徴とする。
本適用例によれば、上記に記載の光学素子を備えているので、表示品質を向上させることが可能な電子機器を提供することができる。
偏光素子の構成を示す概略斜視図。 偏光素子をYZ平面で切った部分断面図。 第1実施形態の偏光素子の構成を具体的に示す部分断面図。 偏光素子の製造方法を示すフローチャート。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 電子機器としてのプロジェクターの構成を示す概略図。 グリッドのピッチと明るさとの関係、及びグリッドのピッチとコントラストとの関係を示すグラフ。 明るさとコントラストとの関係を示すグラフ。 第2実施形態の偏光素子の構成を示す部分断面図。 偏光素子の製造方法を示すフローチャート。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 第3実施形態の偏光素子の製造方法を示すフローチャート。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。 偏光素子の製造方法のうち一部の製造工程を示す概略断面図。
以下、本発明を具体化した実施形態について図面に従って説明する。なお、使用する図面は、説明する部分が認識可能な状態となるように、適宜拡大または縮小して表示している。
(第1実施形態)
<偏光素子>
まず、第1実施形態の偏光素子の構成について、図1〜図3を参照して説明する。図1は、偏光素子の構成を示す概略斜視図である。図2は、偏光素子をYZ平面で切った部分断面図である。図3は、第1実施形態の偏光素子の構成を具体的に示す部分断面図である。
なお、以下の説明においてはXYZ直交座標系を設定し、このXYZ座標系を参照しつつ各部材の位置関係を説明する。この際、グリッド12が設けられている基板11の面11cと平行な面をXY平面とし、グリッド12の延在方向をX軸方向とする。グリッド12の並び方向(配列軸)はY軸方向である。
図1及び図2に示すように、偏光素子1は、基板11と、基板11上に平面視でストライプ状に形成された複数のグリッド12と、を備えている。グリッド12は、反射性を有する反射層12aと、反射層12aの表面に形成された誘電体層12bと、誘電体層12bの上面に形成された吸収層12cと、を備えている。
基板11は、透光性を有する材料であればよく、例えば、石英、プラスチック等を用いてもよい。本実施形態では、基板11として、ガラス基板を用いている。偏光素子1の用途によっては、偏光素子1が蓄熱して高温になる場合があるため、基板11の材料としては、耐熱性の高いガラスや石英を用いることが好ましい。
反射層12aは、基板11上で一方向に延びる金属細線であり、基板11上に所定のピッチで互いに平行に配列されている。反射層12aの材料としては、可視域において光の反射率が高い材料が用いられる。具体的には、例えば、アルミニウム、銀、銅、クロム、チタン、ニッケル、タングステン、鉄などを反射層12aの材料として用いることができる。本実施形態では、反射層12aの材料としてアルミニウムを用いている。
誘電体層12bは、各々の反射層12aの表面を覆うように形成されている。誘電体層12bの材料としては、金属の酸化物が用いられ、可視域において光透過率の高い材料、例えば、酸化アルミニウムのような誘電体材料を用いることが好ましい。後述するように、誘電体層12bは、反射層12aを酸化させる方法や、金属の酸化物を成膜する方法などにより形成することができる。
また誘電体層12bは、反射層12aと吸収層12cとの構成元素の相互拡散を抑制するバリア層として形成されており、必要に応じて反射層12aと吸収層12cとの間に形成される。
誘電体層12bの材料は、上記のバリア性を有する誘電体材料であれば特に限定されないが、シリコン、アルミニウム、クロム、チタン、ニッケル、タングステンなどの酸化物や窒化物、酸化窒化物により形成することができる。
吸収層12cは、反射層12a上に積層された誘電体層12b上に形成され、反射層12aの延在方向(X軸方向)に沿って延びている。吸収層12cの材料としては、可視領域において誘電体層12bの光吸収率よりも高い光吸収率を有する物質が用いられる。具体的には、シリコン、ゲルマニウム、クロムからなる群より選ばれる1種又は2種以上からなる。本実施形態では、吸収層12cの材料として、シリコンを用いている。
隣り合って配置された2つのグリッド12の間には凹部15が設けられている。凹部15は、可視光の波長よりも短い周期でY軸方向に略均等な間隔で設けられている。本実施形態の偏光素子1Aにおける各部の寸法は例えば以下のように設定することができる。
反射層12aの高さは、例えば、180nm程度である。反射層12aの幅は、例えば、40nm程度である。反射層12aの表面に形成された誘電体層12bの膜厚は、例えば、10nm〜20nm程度である。吸収層12cの膜厚は、例えば、10nm〜20nmである。
また、隣り合って配置された2つのグリッド12の間隔Sは、例えば、70nm程度である。グリッド12の周期P(ピッチ)は、例えば、140nmである。
グリッド12が、反射層12aと、誘電体層12bと、吸収層12cとの積層構造となっていることで、グリッド12の延在方向と直交する方向(Y方向)に振動する直線偏光(偏光)であるTM波21を透過させ、グリッド12の延在方向(X方向)に振動する直線偏光(偏光)であるTE波22を吸収させることができる。
より詳しくは、基板11の吸収層12c側から入射したTE波22は、主に吸収層12cの光吸収作用によって減衰され、また場合によっては誘電体層12bにより減衰される。誘電体層12bを通過したTE波22は、反射層12a(ワイヤーグリッドとして機能)で反射される。
この反射したTE波22は、誘電体層12bを通過する際に位相差を付与され、干渉効果により減衰されるともに、残りが吸収層12cで再吸収される。以上のようなTE波22の減衰効果により、吸収型の所望の偏光分離特性を得ることができる。TE波22の透過率は、例えば、1%以下である。
一方、TM波21に対しては、高い透過率を有する。透過率は、例えば、80%以上である。(TM)/(TE)で定義されるコントラストは、1000以上が好ましい。
また、第1実施形態の偏光素子1Aは、図3に示すように、隣り合って配置された2つのグリッド12の間の基板11に溝部16が設けられている。溝部16の中には、誘電体層12b及び吸収層12cを形成する際に成膜された酸化シリコンなどの酸化膜12b1,12c1が形成されている。
このように、グリッド12とグリッド12との間の基板11に溝部16を形成し、溝部16の中の膜を酸化させて酸化膜を形成するので、グリッド12間が透明に近くなり、グリッド12間の透過率が低下することを抑えることができる。
<偏光素子の製造方法>
次に、第1実施形態の偏光素子1Aの製造方法について、図4〜図9を参照して説明する。図4は、偏光素子の製造方法を示すフローチャートである。図5〜図9は、偏光素子の製造方法のうち一部の製造工程を示す概略断面図である。
図4に示すように、第1実施形態の偏光素子1Aの製造方法は、反射層形成工程(ステップS11)と、溝部形成工程(ステップS12)と、誘電体層形成工程(ステップS13)と、吸収層形成工程(ステップS14)と、熱酸化処理工程(ステップS15)と、を備えている。
まず、図4に示すように、ステップS11では、反射層12aを形成する。具体的には、まず、基板11上に周知の方法を用いてアルミニウムを成膜する。次に、2光束干渉露光法を用いてレジストパターンを形成し、レジストパターンをマスクとしてアルミニウムなどからなるワイヤーグリッド型の反射層12aを形成する。以上により、図5に示すように、基板11上にストライプ状に配置された複数の反射層12aが形成される。
次に、図5に示すように、ステップS12では、溝部16を形成する。具体的には、図5に示すように、基板11における隣り合う反射層12aの間に溝部16を形成する。溝部16の形成方法としては、例えば、基板11にドライエッチングなどによって溝部16を形成する。溝部16の深さとしては、少なくとも、後に形成される誘電体層12b及び吸収層12cの酸化膜12b1,12c1が埋まる程度であることが好ましい。
ステップS13では、誘電体層12bを形成する。具体的には、図7に示すように、例えば、基板11を加熱させることにより反射層12aの表面の酸化反応を促進させる。基板11を加熱させる方法としては、例えば、加熱炉での大気圧アニール処理を挙げることができる。基板11の加熱温度は、例えば、300℃である。
誘電体層12bの膜厚としては、上記したように、10nm〜20nm程度である。以上により、反射層12aの表面に、酸化アルミニウム(AlOx)からなる誘電体層12bが形成される。
ステップS14では、吸収層12cを形成する。具体的には、図8に示すように、例えば、公知のマグネトロンスパッタ法を用いて、誘電体層12b上にシリコンなどからなる吸収層12cを成膜する。吸収層12cの膜厚は、上記したように、10nm〜20nmである。
ステップS15では、熱酸化処理を施す。具体的には、図9に示すように、基板11に熱処理を施すことにより、グリッド12間の基板11上に付きまわったシリコンの残渣を熱酸化させて、酸化シリコン(SiO2)にする。これにより、吸収層12cの表面の一部が酸化(酸化膜12c1)されるものの、グリッド12間の膜を酸化させることができる。
このように、グリッド12とグリッド12との間の膜を酸化させて酸化膜12c1を形成するので、グリッド12間が透明に近くなり、グリッド12間の透過率が低下することを抑えることができる。以上により、偏光素子1Aが完成する。
<電子機器>
次に、本実施形態の電子機器について、図10を参照して説明する。図10は、電子機器としてのプロジェクターの構成を示す概略図である。
図10に示すように、プロジェクター800は、光源810、ダイクロイックミラー813、814、反射ミラー815、816、817、入射レンズ818、リレーレンズ819、射出レンズ820、光変調部822、823、824、クロスダイクロイックプリズム825、投射レンズ826、を有している。
光源810は、メタルハライド等のランプ811とランプの光を反射するリフレクター812とからなる。なお、光源810としては、メタルハライド以外にも超高圧水銀ランプ、フラッシュ水銀ランプ、高圧水銀ランプ、Deep UVランプ、キセノンランプ、キセノンフラッシュランプ等を用いることも可能である。
ダイクロイックミラー813は、光源810からの白色光に含まれる赤色光を透過させるとともに、青色光と緑色光とを反射する。透過した赤色光は反射ミラー817で反射されて、赤色光用の光変調部822に入射される。また、ダイクロイックミラー813で反射された青色光と緑色光のうち、緑色光は、ダイクロイックミラー814によって反射され、緑色光用の光変調部823に入射される。青色光は、ダイクロイックミラー814を透過し、長い光路による光損失を防ぐために設けられた入射レンズ818、リレーレンズ819及び射出レンズ820を含むリレー光学系821を介して、青色光が光変調部824に入射される。
光変調部822〜824は、液晶ライトバルブ830を挟んで両側に、上記偏光素子1(1A)を用いた偏光素子840,850が配置されている。偏光素子840は、光源810から射出された光の光路上の、光源810と液晶ライトバルブ830との間に設けられている。また、偏光素子850は、液晶ライトバルブ830を通過した光の光路上の、液晶ライトバルブ830と投射レンズ826との間に設けられている。偏光素子840,850は、互いの透過軸が直交して(クロスニコル配置)配置されている。
本実施形態のプロジェクター800では、耐熱性の高い無機材料で形成された偏光素子840,850を配置しているため、偏光素子840,850が劣化することを抑えることができる。
各光変調部822〜824により変調された3つの色光は、クロスダイクロイックプリズム825に入射する。このクロスダイクロイックプリズム825は4つの直角プリズムを貼り合わせたものであり、その界面には赤光を反射する誘電体多層膜と青光を反射する誘電体多層膜とがX字状に形成されている。これらの誘電体多層膜により3つの色光が合成されて、カラー画像を表す光が形成される。合成された光は、投射光学系である投射レンズ826によってスクリーン827上に投射され、画像が拡大されて表示される。
以上のような構成の電子機器は、上述した実施形態の偏光素子1を用いるため、信頼性が高く優れた表示特性を有するプロジェクター800を提供することができる。
なお、上記偏光素子1が搭載される電子機器としては、プロジェクター800の他、例えば、ヘッドマウントディスプレイ(HMD)、ヘッドアップディスプレイ(HUD)、スマートフォン、EVF(Electrical View Finder)、携帯電話、モバイルコンピューター、デジタルカメラ、デジタルビデオカメラ、車載機器、照明機器など各種電子機器に用いることができる。
<光学特性評価>
次に、本実施形態の偏光素子の光学特性評価について、図11及び図12を参照して説明する。図11は、グリッド(WG)のピッチと明るさとの関係、及びグリッドのピッチとコントラストとの関係を示すグラフである。図12は、明るさとコントラストとの関係を示すグラフである。
なお、明るさ及びコントラストの解析は、上記プロジェクター800のライトバルブ用の偏光素子として適用することを想定して評価を行った。本発明の偏光素子1は、無機材料で形成されており耐熱性が高いことから、前述した高出力の光源を有するプロジェクター800の偏光板として適用できる。
図11に示すグラフは、横軸にグリッド12のピッチ(nm)を示しており、具体的には、ピッチ50nm〜150nmまで変化させている。また、グラフ左側の縦軸は、明るさTp(%)を示しており、具体的には、明るさ90%〜98%を示している。一方、グラフ右側の縦軸は、コントラストを示しており、具体的には、コントラスト0〜12000までを示している。
図11のグラフに示すように、グリッド12のピッチと明るさとの関係は、グリッド12のピッチを狭くしていくにつれて明るさが向上する。しかし、グリッド12のピッチが80nm程度を境に、ピッチを狭くすると、明るさが低下する。
また、グリッド12のピッチとコントラストとの関係も同様に、グリッド12のピッチを狭くしていくにつれてコントラストが向上する。なお、図11に示すグラフの範囲では、コントラストのピーク値を特定することは難しい。このように、グリッド12のピッチが、明るさとコントラストに大きな影響を与えることがわかる。
図12に示すグラフは、横軸に明るさTp(%)を示しており、具体的には、明るさ90%〜98%までを示している。縦軸は、コントラストを示しており、具体的には、コントラスト0〜12000までを示している。
図12のグラフに示すように、コントラスト4000程度で明るさのピークである96%に達する。コントラスト4000から12000まで向上させた場合、明るさは低下する。
グリッド12のピッチの設定方法としては、グリッド12の加工精度や、使用する環境、目的に応じて設定することが好ましい。
以上詳述したように、第1実施形態の偏光素子1A、偏光素子1Aの製造方法、及び電子機器によれば、以下に示す効果が得られる。
(1)第1実施形態の偏光素子1A、及び偏光素子1Aの製造方法によれば、先に反射層12aを形成した後に、誘電体層12b及び吸収層12cを形成するので、例えば、反射層12a、誘電体層12b、及び吸収層12cの積層体を同時にエッチングして形成する場合と比較して、エッチングレートの違いによるエッチングのばらつきを抑えることができる。よって、ストライプ状の反射層12a、誘電体層12b、及び吸収層12cで構成されたグリッド12を均一に形成することができる。よって、コントラスト及び明るさを向上させることができる。また、グリッド12とグリッド12との間の膜を酸化させて酸化膜12b1,12c1を形成するので、グリッド12間の透過率が低下することを抑えることができる。
(2)第1実施形態の偏光素子1A、及び偏光素子1Aの製造方法によれば、グリッド12とグリッド12との間の基板11に溝部16を形成し、溝部16の中の膜を酸化させて酸化膜12c1を形成するので、グリッド12間が透明に近くなり、グリッド12間の透過率が低下することを抑えることができる。
(3)第1実施形態の偏光素子1Aの製造方法によれば、一般的に用いられる製造方法(真空プロセス、スパッタ法、フォトリソグラフィ法など)を用いて偏光素子1Aを製造することができるので、生産性を向上させることができる。また、かかるコストを抑えることができる。
(4)第1実施形態のプロジェクター800によれば、上記に記載の偏光素子1Aを備えているので、表示品質を向上させることが可能な電子機器を提供することができる。
(第2実施形態)
<偏光素子>
まず、偏光素子の構成について、図13を参照して説明する。図13は、第2実施形態の偏光素子の構成を示す部分断面図である。
第2実施形態の偏光素子1Bは、上述の第1実施形態の偏光素子1Aと比べて、基板11に溝部16が設けられていない部分が異なり、その他の部分については概ね同様である。このため第2実施形態では、第1実施形態と異なる部分について詳細に説明し、その他の重複する部分については適宜説明を省略する。
図13に示すように、第2実施形態の偏光素子1Bは、第1実施形態と同様に、基板11と、基板11上に平面視でストライプ状に形成された複数のグリッド12と、を備えている。グリッド12は、反射層12aと、反射層12aの表面に形成された誘電体層12bと、誘電体層12bの上面に形成された吸収層12cと、を備えている。
第2実施形態の特徴として、隣り合って配置された2つのグリッド12の間には、第1実施形態のような溝部16は設けられていない。グリッド12の間の基板11上には、誘電体層12b及び吸収層12cを形成する際に成膜された酸化シリコンなどの酸化膜12c1が形成されている。
<偏光素子の製造方法>
次に、第2実施形態の偏光素子1Bの製造方法について、図14〜図18を参照して説明する。図14は、偏光素子の製造方法を示すフローチャートである。図15〜図18は、偏光素子の製造方法のうち一部の製造工程を示す概略断面図である。
図14に示すように、第2実施形態の偏光素子1Bの製造方法は、反射層形成工程(ステップS21)と、誘電体層形成工程(ステップS22)と、吸収層形成工程(ステップS23)と、熱酸化処理工程(ステップS24)と、を備えている。
ステップS21では、図15に示すように、反射層12aを形成する。具体的には、第1実施形態と同様に、2光束干渉露光法を用いてアルミニウムなどからなるワイヤーグリッド型の反射層12aを形成する。
ステップS22では、誘電体層12bを形成する。具体的には、図16に示すように、例えば、基板11を加熱させることにより反射層12aの表面の酸化反応を促進させる。基板11を加熱させる方法は、第1実施形態と同様である。以上により、反射層12aの表面に、酸化アルミニウム(AlOx)からなる誘電体層12bが形成される。
ステップS23では、吸収層12cを形成する。具体的には、図17に示すように、例えば、公知のマグネトロンスパッタ法を用いて、誘電体層12b上にシリコンなどからなる吸収層12cを成膜する。
ステップS24では、熱酸化処理を施す。具体的には、図18に示すように、基板11に熱処理を施すことにより、グリッド12間の基板11上に付きまわったシリコンの残渣を酸化させて、酸化シリコン(SiO2)にする。以上により、偏光素子1Bが完成する。
以上詳述したように、第2実施形態の偏光素子1B、及び偏光素子1Bの製造方法によれば、第1実施形態の効果に加えて、以下に示す効果が得られる。
(5)第2実施形態の偏光素子1Bによれば、グリッド12間に溝部16を形成することなく、酸化膜12c1,12b1を形成するので、製造工程を少なくすることが可能となり、かかるコストを抑えることができる。
(第3実施形態)
<偏光素子の製造方法>
次に、第3実施形態の偏光素子1Cの製造方法について、図19〜図23を参照して説明する。図19は、偏光素子の製造方法を示すフローチャートである。図20〜図23は、偏光素子の製造方法のうち一部の製造工程を示す概略断面図である。
第3実施形態の偏光素子1Cは、上述の図1に示す偏光素子1と同様である。なお、第3実施形態の偏光素子1Cの製造方法は、第2実施形態の偏光素子1Bの製造方法と比べて、熱酸化処理の代わりにエッチング処理を施す部分が異なり、その他の部分については概ね同様である。このため第3実施形態では、第2実施形態と異なる部分(製造方法)について詳細に説明し、その他の重複する部分については適宜説明を省略する。
図19に示すように、第3実施形態の偏光素子1Cの製造方法は、反射層形成工程(ステップS31)と、誘電体層形成工程(ステップS32)と、吸収層形成工程(ステップS33)と、エッチング処理工程(ステップS34)と、を備えている。
ステップS31〜ステップS33(図20〜図22)は、上記第2実施形態のステップS21〜ステップS23(図15〜図17)と同様である。なお、ステップS32の誘電体層12bを形成する工程は、スパッタ法を用いて形成するようにしてもよい。
ステップS34では、エッチング処理を施す。具体的には、図23に示すように、グリッド12間の基板11上に付きまわった残渣(酸化膜12b1及び吸収層12c)にエッチング処理を施し除去する。エッチング処理には、例えば、Cl2ガス又はCF4ガスを用いる。以上により、グリッド12間に基板11の表面が露出した偏光素子1Cが完成する。
以上詳述したように、第3実施形態の偏光素子1C、及び偏光素子1Cの製造方法によれば、第1実施形態及び第2実施形態の効果に加えて、以下に示す効果が得られる。
(6)第3実施形態の偏光素子1Cによれば、基板11上におけるグリッド12間の膜を除去するので、グリッド12間に酸化膜がある場合と比較して、透過率を向上させることができる。
なお、本発明の態様は、上記した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、本発明の態様の技術範囲に含まれるものである。また、以下のような形態で実施することもできる。
(変形例1)
上記したように、反射層12a、誘電体層12b、及び吸収層12cによってグリッド12を構成することに限定されず、例えば、反射層12a、及び吸収層12cによってグリッド12を構成するようにしてもよい。
(変形例2)
上記したように、グリッド12間の膜を熱酸化によって酸化膜に形成することに限定されず、例えば、化学反応させるなど他の方法を用いて酸化膜にするようにしてもよい。
1,1A,1B,1C…光学素子としての偏光素子、11…基板、11c…面、12…グリッド、12a…反射層、12b…誘電体層、12c…吸収層、12b1,12c1…酸化膜、14…吸収層、15…凹部、16…溝部、21…TM波、22…TE波、800…プロジェクター、810…光源、811…ランプ、812…リフレクター、813,814…ダイクロイックミラー、815,816,817…反射ミラー、818…入射レンズ、819…リレーレンズ、820…射出レンズ、821…リレー光学系、822,823,824…光変調部、825…クロスダイクロイックプリズム、826…投射レンズ、827…スクリーン、830…液晶ライトバルブ、840…偏光素子、850…偏光素子。

Claims (9)

  1. 基板と、
    前記基板の一方の面に平面視でストライプ状に設けられた複数の反射層と、
    前記複数の反射層と、前記複数の反射層のうち互いに隣り合う2つの反射層の間と、を覆うように設けられた誘電体層と、
    前記複数の反射層の各々の前記基板と反対側の面に設けられた吸収層と、
    前記吸収層の一部が酸化されて設けられた酸化膜と、
    前記互いに隣り合う2つの反射層の間において、前記基板の一方の面に設けられた溝部と、を備え、
    前記誘電体層は、前記複数の反射層の各々の側面に沿って設けられると共に、前記溝部の側面及び底面に沿って設けられ、前記酸化膜は、前記溝部において前記誘電体層に積層されていることを特徴とする光学素子。
  2. 請求項に記載の光学素子であって、
    前記複数の反射層は、アルミニウム、銀、銅、クロム、チタン、ニッケル、タングステン、鉄のうち少なくとも1つを含むことを特徴とする光学素子。
  3. 請求項に記載の光学素子であって、
    前記吸収層は、シリコン、ゲルマニウム、クロムのうち少なくとも1つを含むことを特徴とする光学素子。
  4. 請求項に記載の光学素子であって、
    前記誘電体層は、酸化シリコンを含むことを特徴とする光学素子。
  5. 基板の一方の面に平面視でストライプ状に複数の反射層を形成する工程と、
    前記複数の反射層を形成する工程の後に、前記複数の反射層のうち互いに隣り合う2つの反射層の間に溝部を形成する工程と、
    前記複数の反射層の各々を覆うと共に、前記溝部の側面及び底面を覆うように誘電体層を形成する工程と、
    前記基板の一方の面及び前記複数の反射層の各々を覆うように吸収層を形成する工程と、
    前記吸収層のうち、前記複数の反射層の前記基板と反対側の面に形成された部分の一部と、前記溝部において前記誘電体層上に形成された部分と、を酸化させて酸化膜を形成する工程と、を備えることを特徴とする光学素子の製造方法。
  6. 請求項に記載の光学素子の製造方法であって、
    前記複数の反射層は、アルミニウム、銀、銅、クロム、チタン、ニッケル、タングステン、鉄のうち少なくとも1つを含むことを特徴とする光学素子の製造方法。
  7. 請求項に記載の光学素子の製造方法であって、
    前記吸収層は、シリコン、ゲルマニウム、クロムのうち少なくとも1つを含むことを特徴とする光学素子の製造方法。
  8. 請求項に記載の光学素子の製造方法であって、
    前記誘電体層は、酸化シリコンを含むことを特徴とする光学素子の製造方法。
  9. 請求項1乃至請求項のいずれか一項に記載の光学素子を備えることを特徴とする電子機器。
JP2015157969A 2015-08-10 2015-08-10 光学素子、光学素子の製造方法、及び電子機器 Active JP6634727B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015157969A JP6634727B2 (ja) 2015-08-10 2015-08-10 光学素子、光学素子の製造方法、及び電子機器
US15/195,385 US9977168B2 (en) 2015-08-10 2016-06-28 Optical element, method for manufacturing the same, and electronic apparatus
US15/955,589 US10386557B2 (en) 2015-08-10 2018-04-17 Optical element, method for manufacturing the same, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157969A JP6634727B2 (ja) 2015-08-10 2015-08-10 光学素子、光学素子の製造方法、及び電子機器

Publications (3)

Publication Number Publication Date
JP2017037158A JP2017037158A (ja) 2017-02-16
JP2017037158A5 JP2017037158A5 (ja) 2018-09-06
JP6634727B2 true JP6634727B2 (ja) 2020-01-22

Family

ID=57995649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157969A Active JP6634727B2 (ja) 2015-08-10 2015-08-10 光学素子、光学素子の製造方法、及び電子機器

Country Status (2)

Country Link
US (2) US9977168B2 (ja)
JP (1) JP6634727B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139531B (zh) * 2015-10-28 2020-09-18 迪睿合株式会社 偏振元件及其制造方法
JP2019061125A (ja) * 2017-09-27 2019-04-18 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
JP6678630B2 (ja) * 2017-09-28 2020-04-08 デクセリアルズ株式会社 偏光板及びこれを備える光学機器
WO2019135192A1 (en) * 2018-01-05 2019-07-11 3M Innovative Properties Company Stray light absorbing film
KR102559836B1 (ko) * 2018-01-31 2023-07-27 삼성디스플레이 주식회사 편광자, 상기 편광자를 포함한 광학 장치, 상기 편광자를 포함한 디스플레이 장치 및 상기 편광자의 제조 방법
JP6642622B2 (ja) 2018-05-23 2020-02-05 セイコーエプソン株式会社 ワイヤーグリッド偏光素子、液晶装置、および電子機器
JP6703050B2 (ja) * 2018-07-31 2020-06-03 デクセリアルズ株式会社 偏光板、光学機器及び偏光板の製造方法
JP2023108734A (ja) * 2022-01-26 2023-08-07 デクセリアルズ株式会社 ワイヤグリッド偏光素子およびその製造方法ならびに光学機器
JP2023109636A (ja) * 2022-01-27 2023-08-08 デクセリアルズ株式会社 ワイヤグリッド偏光素子およびその製造方法ならびに光学機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192733B2 (en) * 2009-03-11 2015-11-24 Terumo Kabushiki Kaisha Puncture needle assembly and medicinal liquid injection device
JP2012002972A (ja) * 2010-06-16 2012-01-05 Seiko Epson Corp 偏光素子及びその製造方法、液晶装置、電子機器
JP5760388B2 (ja) * 2010-11-01 2015-08-12 セイコーエプソン株式会社 偏光素子とその製造方法、プロジェクター、液晶装置、電子機器
JP2012103490A (ja) * 2010-11-10 2012-05-31 Seiko Epson Corp 偏光素子とその製造方法、プロジェクター、液晶装置、電子機器
JP2012181420A (ja) * 2011-03-02 2012-09-20 Sony Chemical & Information Device Corp 偏光素子
JP6100492B2 (ja) * 2012-09-05 2017-03-22 デクセリアルズ株式会社 偏光素子、プロジェクター及び偏光素子の製造方法

Also Published As

Publication number Publication date
US9977168B2 (en) 2018-05-22
JP2017037158A (ja) 2017-02-16
US20180239071A1 (en) 2018-08-23
US10386557B2 (en) 2019-08-20
US20170045658A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6634727B2 (ja) 光学素子、光学素子の製造方法、及び電子機器
JP5760388B2 (ja) 偏光素子とその製造方法、プロジェクター、液晶装置、電子機器
KR101240042B1 (ko) 편광 소자 및 그 제조 방법, 액정 장치, 전자기기
JP5636650B2 (ja) 偏光素子および投写型表示装置
JP5796522B2 (ja) 偏光素子、および偏光素子の製造方法
US8488070B2 (en) Polarizing element and method for manufacturing the same, projection type display, liquid crystal device, and electronic apparatus
KR101304813B1 (ko) 편광 소자 및 그 제조 방법, 액정 장치, 전자기기
US9164307B2 (en) Polarizer, polarizer producing process, projector, liquid crystal device, and electronic device
JP5402317B2 (ja) 偏光素子および偏光素子の製造方法、投写型表示装置、液晶装置、電子機器
JP2012103490A (ja) 偏光素子とその製造方法、プロジェクター、液晶装置、電子機器
JP5182060B2 (ja) 偏光素子および偏光素子の製造方法、液晶装置、電子機器および投射型表示装置
JP5182061B2 (ja) 偏光素子および偏光素子の製造方法、液晶装置、電子機器および投射型表示装置
JP6991985B2 (ja) 液晶表示装置および投射型表示装置
JP2011158801A (ja) 偏光素子、偏光素子の製造方法、液晶装置、電子機器
US11346990B2 (en) Polarizing element, liquid crystal apparatus and electronic apparatus
US20250004178A1 (en) Polarizing plate, optical equipment, and method for manufacturing a polarizing plate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180904

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6634727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150