JP6628661B2 - Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst - Google Patents
Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst Download PDFInfo
- Publication number
- JP6628661B2 JP6628661B2 JP2016064807A JP2016064807A JP6628661B2 JP 6628661 B2 JP6628661 B2 JP 6628661B2 JP 2016064807 A JP2016064807 A JP 2016064807A JP 2016064807 A JP2016064807 A JP 2016064807A JP 6628661 B2 JP6628661 B2 JP 6628661B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- superheated steam
- producing
- firing
- acrylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 95
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 title claims description 39
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 66
- 238000010304 firing Methods 0.000 claims description 61
- 238000001354 calcination Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 25
- 238000007254 oxidation reaction Methods 0.000 claims description 22
- 239000007789 gas Substances 0.000 claims description 21
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 19
- 229910001882 dioxygen Inorganic materials 0.000 claims description 19
- 239000012298 atmosphere Substances 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- 239000012808 vapor phase Substances 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 25
- 229910052760 oxygen Inorganic materials 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 238000011068 loading method Methods 0.000 description 12
- 239000007858 starting material Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000002184 metal Substances 0.000 description 10
- 239000012018 catalyst precursor Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000012744 reinforcing agent Substances 0.000 description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- -1 organic acid salts Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical group [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- WUJISAYEUPRJOG-UHFFFAOYSA-N molybdenum vanadium Chemical compound [V].[Mo] WUJISAYEUPRJOG-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、アクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するのに好適な触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造に関する。 The present invention relates to a method for producing a catalyst suitable for producing acrylic acid by subjecting acrolein to catalytic gas phase oxidation in the presence of molecular oxygen or a molecular oxygen-containing gas to produce acrylic acid, and an acrylic acid using the catalyst. Related to the manufacture of.
アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要であり、近年では特に、吸水性樹脂の原料としてその重要性が高まっている。一般的にアクリル酸は、プロピレンを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクロレインを製造し、さらに得られたアクロレインを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸とする二段酸化方法で製造される。
このような、アクロレインを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒として、モリブデン−バナジウム系を中心とした複合酸化物触媒およびその製造方法の検討がなされているが、目的とするアクリル酸の選択率と収率等の触媒性能は必ずしも充分なものではなく、触媒性能の改善を目的として各社から様々な提案がされている。
Acrylic acid is industrially important as a raw material for various synthetic resins, paints, and plasticizers, and in recent years, its importance has been particularly increasing as a raw material for water-absorbing resins. Generally, acrylic acid produces acrolein by catalytically oxidizing propylene in the presence of molecular oxygen or a molecular oxygen-containing gas to produce acrolein, and further converts the obtained acrolein to molecular oxygen or a molecular oxygen-containing gas. It is produced by a two-step oxidation method in which catalytic vapor phase oxidation is performed to form acrylic acid in the presence of.
As a catalyst for producing acrylic acid by catalytically oxidizing acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas to produce acrylic acid, a composite oxide catalyst mainly based on molybdenum-vanadium and its oxide Although the production method has been studied, the target catalyst performance such as selectivity and yield of acrylic acid is not always sufficient, and various proposals have been made by various companies for the purpose of improving the catalyst performance.
例えば、特許文献1では、アクロレインを分子状酸素で酸化してアクリル酸を製造する際に用いる少なくともモリブデンとバナジウムとを含有する複合酸化物触媒を製造する方法において、触媒原料を混合、反応させ、蒸発濃縮して得られる触媒前駆体を蒸焼した後、空気雰囲気下で焼成する製造方法が開示されている。
特許文献2では、触媒前駆体の供給流をほぼ一定の速度で1以上の焼成区域を通過するようにし、かつ進行方向に対して垂直にガスを流通させ、その際、焼成区域内での温度の時間的最大変動及び局所的最大温度差(温度勾配)をそれぞれ5℃以下に制御した製造方法が開示されている。
特許文献3では、有機物を含む原料を焼成してMoV系触媒を得る焼成工程を含むMoV系触媒の製造法であって、焼成温度が200〜400℃かつ保持時間が0.5〜10時間で焼成する第1工程と、第1工程より後に行われ、焼成温度が300〜450℃かつ保持時間が0.5〜10時間で焼成する第2工程を含み、第2工程の焼成温度が第1工程の焼成温度より50℃以上高温である製造法が開示されている。
特許文献4では、触媒前駆体を焼成器に供給し、触媒構成元素の金属酸化物の融点以上の温度で焼成する工程を含む酸化物触媒の製造方法であって、前記焼成工程中に触媒前駆体及び/又は前記酸化物触媒の温度を一時的に焼成温度よりも低い温度にする製造方法が開示されている。
For example, in Patent Literature 1, in a method for producing a composite oxide catalyst containing at least molybdenum and vanadium used for producing acrylic acid by oxidizing acrolein with molecular oxygen, the catalyst raw materials are mixed and reacted, A production method is disclosed in which a catalyst precursor obtained by evaporation and concentration is steamed and then fired in an air atmosphere.
In Patent Literature 2, a catalyst precursor supply flow is caused to pass through one or more calcination zones at a substantially constant speed, and a gas is passed perpendicularly to a traveling direction. Discloses a production method in which the maximum temporal fluctuation and the local maximum temperature difference (temperature gradient) are controlled to 5 ° C. or less, respectively.
Patent Document 3 discloses a method for producing a MoV-based catalyst including a calcination step of calcining a raw material containing an organic substance to obtain a MoV-based catalyst, wherein the calcination temperature is 200 to 400 ° C and the holding time is 0.5 to 10 hours. A first step of baking, and a second step performed after the first step and baking at a baking temperature of 300 to 450 ° C. and a holding time of 0.5 to 10 hours, wherein the baking temperature of the second step is 1st A manufacturing method is disclosed in which the temperature is 50 ° C. or more higher than the firing temperature in the process.
Patent Document 4 discloses a method for producing an oxide catalyst including a step of supplying a catalyst precursor to a calciner and calcining the catalyst precursor at a temperature equal to or higher than the melting point of the metal oxide of the catalyst constituent element. A production method is disclosed in which the temperature of the body and / or the oxide catalyst is temporarily lowered to a temperature lower than the calcination temperature.
アクリル酸は全世界で現在数百万トン/年の規模で生産されており、たとえ0.1%でも工業的規模で収率が向上すれば経済的に非常に大きなメリットがもたらされる。故に、工業的実用触媒として、更なるアクリル酸収率の向上や高生産性が望まれている。
かくして、本発明の目的は、アクロレインからアクリル酸を製造するに際し、触媒活性、選択性等の触媒性能に優れたアクリル酸を製造するのに好適な触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法を提供することにある。
Acrylic acid is currently produced on a scale of millions of tons / year worldwide, and even if 0.1%, an increase in industrial scale yields significant economic benefits. Therefore, further improvement in the yield of acrylic acid and high productivity are demanded as industrially practical catalysts.
Thus, an object of the present invention is to provide a method for producing a catalyst suitable for producing acrylic acid having excellent catalytic performance such as catalytic activity and selectivity when producing acrylic acid from acrolein, the catalyst, and the catalyst. An object of the present invention is to provide a method for producing acrylic acid used.
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、モリブデンおよびバナジウムを必須成分として含有するアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒の製造方法であって、製造過程において過熱水蒸気存在下で焼成する工程を含むことで、上記課題が解決できることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and found that acrolein containing molybdenum and vanadium as essential components is subjected to catalytic gas phase oxidation in the presence of molecular oxygen or a molecular oxygen-containing gas to form acrylic. The present inventors have found that a method for producing a catalyst for producing an acid, which includes a step of calcining in the presence of superheated steam in the production process, can solve the above problem, and have completed the present invention.
本発明を以下に示す。
[1]モリブデンおよびバナジウムを必須成分として含有するアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒の製造方法であって、過熱水蒸気存在下で焼成する工程を含むことを特徴とするアクリル酸製造用触媒の製造方法。
[2]前記過熱水蒸気存在下で焼成する焼成温度が320〜420℃であることを特徴とする[1]に記載の触媒の製造方法。
[3]前記過熱水蒸気存在下で焼成する工程が、焼成温度の異なる2段階以上の工程からなることを特徴とする[1]または[2]に記載の触媒の製造方法。
[4]前記過熱水蒸気存在下で焼成する工程が、焼成温度が320〜400℃である第1工程と、焼成温度が350〜420℃である第2工程とを含み、第1工程の焼成温度に対して第2工程の焼成温度の方が高いことを特徴とする[3]に記載の触媒の製造方法。
[5]さらに前記過熱水蒸気存在下で焼成する工程とは別に、過熱水蒸気非存在の雰囲気下で焼成する工程を含むことを特徴とする[1]〜[4]のいずれかに記載の触媒の製造方法。
[6][1]〜[5]のいずれかに記載の製造方法により得られるアクリル酸製造用触媒。
[7][6]に記載のアクリル酸製造用触媒を用いることを特徴とするアクリル酸の製造方法。
The present invention is described below.
[1] A method for producing a catalyst for producing acrylic acid by subjecting acrolein containing molybdenum and vanadium as essential components to catalytic gas phase oxidation in the presence of molecular oxygen or a gas containing molecular oxygen, comprising superheated steam A method for producing a catalyst for producing acrylic acid, comprising a step of calcining in the presence.
[2] The method for producing a catalyst according to [1], wherein a firing temperature for firing in the presence of the superheated steam is 320 to 420 ° C.
[3] The method for producing a catalyst according to [1] or [2], wherein the step of firing in the presence of superheated steam comprises two or more steps at different firing temperatures.
[4] The step of firing in the presence of superheated steam includes a first step in which the firing temperature is 320 to 400 ° C and a second step in which the firing temperature is 350 to 420 ° C, and the firing temperature in the first step. The method for producing a catalyst according to [3], wherein the calcination temperature in the second step is higher than that in the second step.
[5] The catalyst according to any one of [1] to [4], further including a step of calcining in an atmosphere without superheated steam, separately from the step of calcining in the presence of superheated steam. Production method.
[6] A catalyst for producing acrylic acid obtained by the production method according to any one of [1] to [5].
[7] A method for producing acrylic acid, comprising using the catalyst for producing acrylic acid according to [6].
本発明によれば、上記課題の解決により、アクロレインを分子状酸素により接触気相酸化してアクリル酸を製造する際に、長期間にわたり安定して高収率で製造できる触媒を提供することができ、該触媒を用いてアクリル酸を高収率で製造することができる。 According to the present invention, by solving the above problems, it is possible to provide a catalyst that can be stably produced at a high yield over a long period of time when producing acrylic acid by subjecting acrolein to catalytic gas phase oxidation with molecular oxygen. Acrylic acid can be produced in high yield using the catalyst.
以下、本発明にかかる触媒の製造方法および該触媒を用いたアクリル酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。
本発明で製造されるアクリル酸を製造するための触媒は、その触媒活性成分の組成としては、下記一般式(1)で表わされるものが好ましい。
MoaVbWcAdBeCfDgOh(1)
(式中、Moはモリブデン、Vはバナジウム、Wはタングステン、Aはアンチモン、スズから選ばれる少なくとも1種の元素、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ビスマス、テルルおよびニオブから選ばれる少なくとも1種の元素、Cはアルカリ金属およびアルカリ土類金属から選ばれる少なくとも1種の元素、Dはシリコン、アルミニウム、チタン、ジルコニウムおよびセリウムから選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、e、f、gおよびhは、Mo、V、W、A、B、C、DおよびOの原子数を表し、a=12のとき、2≦b≦14、0≦c≦10、0≦d≦5、0≦e≦12、0≦f≦5、0≦g≦50であり、hは各々の元素の酸化状態によって定まる数値である)
上記触媒活性成分は、この種の調製に一般に用いられている原料を用いることができ、例えば、各元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などを用いることもできる。
Hereinafter, the method for producing the catalyst according to the present invention and the method for producing acrylic acid using the catalyst will be described in detail, but the scope of the present invention is not limited to these descriptions, and the present invention is not limited to the following examples. The present invention can be appropriately modified and implemented without departing from the spirit of the invention.
The catalyst for producing acrylic acid produced by the present invention preferably has a composition of the catalytically active component represented by the following general formula (1).
MoaVbWcAdBeCfDgOh (1)
(Where Mo is molybdenum, V is vanadium, W is tungsten, A is at least one element selected from antimony and tin, B is chromium, manganese, iron, cobalt, nickel, copper, zinc, bismuth, tellurium and At least one element selected from niobium; C is at least one element selected from alkali metals and alkaline earth metals; D is at least one element selected from silicon, aluminum, titanium, zirconium and cerium; Is oxygen, a, b, c, d, e, f, g and h represent the number of atoms of Mo, V, W, A, B, C, D and O, and when a = 12, 2 ≦ b ≦ 14, 0 ≦ c ≦ 10, 0 ≦ d ≦ 5, 0 ≦ e ≦ 12, 0 ≦ f ≦ 5, 0 ≦ g ≦ 50, and h is a numerical value determined by the oxidation state of each element. )
As the above-mentioned catalytically active component, raw materials generally used for this kind of preparation can be used. For example, oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts and the like of each element can be used. Or their aqueous solutions and sols, or compounds containing a plurality of elements can also be used.
これら出発原料を、水等の溶媒に溶解あるいは懸濁させることにより、出発原料混合液を調製する(以後、「原料混合液調製工程」と称する場合がある)。その際の調製方法は、上記出発原料を順次水に混合する方法や、出発原料の種類に応じて複数の水溶液または水性スラリーを調製し、これらを順次混合する方法など、この種の触媒製造に一般的に用いられる方法により調製すればよい。出発原料の混合順序、温度、圧力、pH等については特に制限はなく、出発原料に応じて適宜選択できる。また、適宜、硝酸、アンモニア、硝酸アンモニウム、炭酸アンモニウムなどの含窒素化合物を加えて、pHは4〜10の範囲内で制御するのが好ましい。 A starting material mixture is prepared by dissolving or suspending these starting materials in a solvent such as water (hereinafter sometimes referred to as a “raw material mixture preparation step”). The preparation method at that time is a method of sequentially mixing the above-mentioned starting materials in water, a method of preparing a plurality of aqueous solutions or aqueous slurries according to the types of the starting materials, and a method of sequentially mixing these, and the like. It may be prepared by a generally used method. The order of mixing the starting materials, the temperature, the pressure, the pH and the like are not particularly limited, and can be appropriately selected depending on the starting materials. It is preferable that the pH is controlled within the range of 4 to 10 by appropriately adding a nitrogen-containing compound such as nitric acid, ammonia, ammonium nitrate, and ammonium carbonate.
次に、得られた出発原料混合液を乾燥させて乾燥物を得る(以後、「原料混合液乾燥工程」と称する場合がある)。具体的には、スプレードライヤー、ドラムドライヤー等を用いて粉末状の乾燥物を得る方法、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の乾燥物を得る方法、一旦、出発原料混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに上記加熱処理する方法等が挙げられる。乾燥機等を用いて乾燥する場合、その雰囲気としては、空気、過熱水蒸気、不活性ガス、それらの混合ガス等を用いることができる。また、減圧による乾燥方法として、例えば、真空乾燥機を用いて、ブロック状または粉末状の乾燥物を得ることもできる。上記した乾燥する温度は特に限定はなく、例えば、80〜300℃の範囲で適宜選択すればよい。 Next, the obtained starting material mixture is dried to obtain a dried product (hereinafter sometimes referred to as “raw material mixture drying step”). Specifically, a method of obtaining a powdery dried product using a spray drier, a drum drier, or the like, a block-shaped or flake-shaped dried product which is heated in an air stream using a box-type dryer, a tunnel-type dryer, or the like. And a method in which the starting material mixture is once concentrated, evaporated to dryness to obtain a cake-like solid, and the solid is further subjected to the above heat treatment. When drying is performed using a dryer or the like, the atmosphere may be air, superheated steam, an inert gas, a mixed gas thereof, or the like. In addition, as a drying method under reduced pressure, for example, a block or powdery dried product can be obtained using a vacuum dryer. The drying temperature is not particularly limited, and may be appropriately selected, for example, in the range of 80 to 300 ° C.
得られた乾燥物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成形工程に送られる。その際の前記乾燥物の粉体粒度は、特に限定されないが、成形性に優れる点で500μm以下、好ましくは200μm以下、更には100μm以下が好ましい。
乾燥物を成形する成形工程(以後、単に「成形工程」と称する場合がある)では、その成形方法として、打錠成形機や押出し成形機により一定の形状とする成形法や、一定の形状を有する任意の不活性担体上に担持する造粒法が挙げられる。他にも、出発原料混合液を乾燥させずに液状で用い、長時間かけて加熱しながら所望の担体に吸収あるいは塗布して乾燥担持させる蒸発乾固法により製造することもできる。また、原料混合液乾燥工程で得られた乾燥物を後述する過熱水蒸気存在下で焼成を行った後、一般的な成形法や造粒法などにより、成形体あるいは担持体として製造することもできる。これらの中でも特に、特開昭63−200839号公報に記載の遠心流動コーティング法や、さらには特開2004−136267号公報に記載のロッキングミキサー法を用いて不活性担体に担持する造粒法が好ましい。
The obtained dried product is sent to a subsequent molding process through a pulverizing process and a classification process for obtaining a powder having an appropriate particle size, if necessary. The particle size of the powder of the dried product at that time is not particularly limited, but is preferably 500 μm or less, preferably 200 μm or less, and more preferably 100 μm or less from the viewpoint of excellent moldability.
In the molding step of forming a dried product (hereinafter sometimes simply referred to as “molding step”), the molding method may be a tableting molding machine or an extrusion molding machine, or a certain shape. And a granulation method supported on any inert carrier. Alternatively, it can be produced by an evaporation to dryness method in which the starting material mixture is used in a liquid form without drying, and is absorbed or applied to a desired carrier while being heated over a long period of time and dried and supported. Further, after the dried product obtained in the raw material mixture liquid drying step is calcined in the presence of superheated steam, which will be described later, it can be produced as a molded body or a carrier by a general molding method or a granulation method. . Among these, in particular, a centrifugal flow coating method described in JP-A-63-200839 and a granulation method in which the particles are supported on an inert carrier by using a rocking mixer method described in JP-A-2004-136267 are described. preferable.
打錠成形機や押出し成形機による成形法の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。
造粒法や蒸発乾固法の場合に使用できる不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。その形状においても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。
In the case of a molding method using a tableting machine or an extrusion molding machine, the shape is not particularly limited, and may be any shape such as a sphere, a column, a ring, and an irregular shape. Of course, in the case of a spherical shape, the shape need not be a true sphere, but may be a substantially spherical shape, and the same applies to a cylindrical shape and a ring shape.
As an inert carrier that can be used in the case of a granulation method or an evaporation to dryness method, alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite, etc. No. The shape is not particularly limited, and a known shape such as a sphere, a column, or a ring can be used.
これら上記の成形工程においては、乾燥物の成形性を向上させるための成形補助剤やバインダー、触媒に適度な細孔を形成させるための気孔形成剤など、一般に触媒の製造においてこれらの効果を目的として使用される物質(以後、「補助物質」という場合もある)を用いることができ、中でも、造粒法においてはバインダーを使用するのが好ましい。
また、補助物質とは別に触媒の機械的強度を向上させる目的で、補強剤を用いることもできる。具体例としては、補強剤として一般的に知られているシリカ、アルミナ、セラミック繊維、ガラス繊維、炭素繊維、鉱物繊維、金属繊維、炭化ケイ素や窒化ケイ素などの各種ウィスカ、などが挙げられ、その結晶構造も多結晶質でも単結晶質でも非晶質でもよいが、多結晶質または単結晶質が望ましい。また、触媒の形状や機械的強度に応じて、繊維径、繊維長、材質等の異なる複数の補強剤を用いてもよい。補強剤は、出発原料混合液に添加しておいてもよいし、成形工程時に配合してもよい。
また、成型工程後の成形体あるいは担持体は、後述する焼成工程の前に、乾燥機や熱風等を用いて乾燥してもよい。
In the above-mentioned molding step, a molding aid and a binder for improving the moldability of the dried product, a pore-forming agent for forming an appropriate pore in the catalyst, and the like, are generally used for the purpose of producing these catalysts. (Hereinafter, sometimes referred to as "auxiliary substance"), and among them, it is preferable to use a binder in the granulation method.
In addition to the auxiliary substance, a reinforcing agent can be used for the purpose of improving the mechanical strength of the catalyst. Specific examples include silica, alumina, ceramic fibers, glass fibers, carbon fibers, mineral fibers, metal fibers, various whiskers such as silicon carbide and silicon nitride, which are generally known as reinforcing agents, and the like. The crystal structure may be polycrystalline, single crystalline or amorphous, but polycrystalline or single crystalline is desirable. Further, a plurality of reinforcing agents having different fiber diameters, fiber lengths, materials, and the like may be used according to the shape and mechanical strength of the catalyst. The reinforcing agent may be added to the starting material mixture, or may be blended during the molding step.
Further, the molded body or the support after the molding step may be dried using a drier, hot air or the like before a firing step described later.
本発明においては、過熱水蒸気の存在下に焼成することが重要である。原因ははっきりとはしないものの、過熱水蒸気存在下で焼成することにより、一酸化炭素、二酸化炭素、酢酸などの不所望な副生物が減少しており、触媒表面上の不所望な副生物を生成する反応点が減少したものと考えられる。 In the present invention, firing in the presence of superheated steam is important. Although the cause is not clear, by firing in the presence of superheated steam, undesirable by-products such as carbon monoxide, carbon dioxide, and acetic acid are reduced, and undesired by-products on the catalyst surface are generated. It is considered that the number of reaction points to be performed decreased.
当該過熱水蒸気の存在下での焼成(以後、「過熱水蒸気焼成」と称することがある)は、その方法に特に限定はなく様々な方法で実施することができる。例えば、原料混合液乾燥工程で得られた乾燥物、成形工程で得られた成形体あるいは担持体(以下、「触媒前駆体」ともいう)を、直接、過熱水蒸気に接触させて焼成してもよく、また、触媒前駆体を容器などに入れてから過熱水蒸気の存在下に焼成してもよい。容器に充填する場合は、充填する容器の形状に制約はなく、蓋などを用いても良い。 The firing in the presence of the superheated steam (hereinafter sometimes referred to as “superheated steam firing”) can be carried out by various methods without any particular limitation. For example, the dried product obtained in the raw material mixture drying step, the formed body or the support obtained in the forming step (hereinafter, also referred to as “catalyst precursor”) may be directly contacted with superheated steam and fired. Alternatively, the catalyst precursor may be placed in a container or the like and then calcined in the presence of superheated steam. When filling the container, the shape of the container to be filled is not limited, and a lid or the like may be used.
過熱水蒸気の濃度は10%以上が好ましく、さらに好ましくは50%以上であり、より好ましくは90%以上である。過熱水蒸気濃度が100%ではない場合、過熱水蒸気以外のガス種に制限は無いが、窒素、アルゴン、クリプトン、ヘリウムなど一般的な不活性ガスを用いることが好ましい。 The concentration of the superheated steam is preferably 10% or more, more preferably 50% or more, and more preferably 90% or more. When the superheated steam concentration is not 100%, there is no limitation on gas species other than superheated steam, but it is preferable to use a general inert gas such as nitrogen, argon, krypton, and helium.
焼成炉については、特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよく、流通式、密閉式、循環式など、過熱水蒸気存在下で処理できるものであれば、限定されない。
過熱水蒸気焼成の焼成温度は320〜420℃、好ましくは350〜410℃である。焼成時間としては1〜24時間が好適であり、更に好ましくは1〜10時間である。
The firing furnace is not particularly limited, and a generally used box-type firing furnace or a tunnel-type firing furnace may be used, and it can be processed in the presence of superheated steam, such as a flow type, a closed type, and a circulation type. If there is, it is not limited.
The firing temperature of the superheated steam firing is from 320 to 420 ° C, preferably from 350 to 410 ° C. The firing time is preferably from 1 to 24 hours, more preferably from 1 to 10 hours.
過熱水蒸気焼成の焼成工程は、焼成温度の異なる2段階以上の工程にて実施しても良い。2段階以上の工程で焼成を実施する際は、焼成温度が320〜400℃、好ましくは320〜380℃である第1工程、350〜420℃、好ましくは380〜410℃である第2工程を含み、第1工程の焼成温度に対して第2工程の焼成温度の方が高い態様が好ましい。過熱水蒸気焼成の焼成時間としては、各工程において1〜24時間が好適であり、更に好ましくは1〜10時間である。昇温速度は工程において、0.1℃/分以上、20℃/分以下が好ましく、更に好ましくは1℃/分以上、15℃/分以下である。昇温速度が15℃/分以上の場合、アンモニア等が急激に発熱分解するため、その発熱による触媒の熱劣化により、性能が低下する傾向にある。 The firing step of superheated steam firing may be performed in two or more steps having different firing temperatures. When performing the calcination in two or more steps, the first step in which the calcination temperature is 320 to 400 ° C, preferably 320 to 380 ° C, and the second step in which the calcination temperature is 350 to 420 ° C, preferably 380 to 410 ° C In a preferred embodiment, the firing temperature in the second step is higher than the firing temperature in the first step. The firing time of the superheated steam firing is preferably 1 to 24 hours in each step, and more preferably 1 to 10 hours. The heating rate in the process is preferably 0.1 ° C./min or more and 20 ° C./min or less, more preferably 1 ° C./min or more and 15 ° C./min or less. If the heating rate is 15 ° C./min or more, ammonia and the like are rapidly exothermicly decomposed, and the performance tends to decrease due to thermal deterioration of the catalyst due to the heat generation.
また、過熱水蒸気焼成の焼成工程において焼成温度の異なる次工程に移る際、投入した触媒前駆体の取り出しをせず、連続で焼成することが好ましいが、例えば、前記した第1工程と第2工程との間に一旦降温過程があっても良い。 Further, in the baking step of the superheated steam baking, it is preferable to perform the baking continuously without taking out the charged catalyst precursor when moving to the next step having a different baking temperature, for example, the first step and the second step described above. There may be a temperature lowering process once.
また、前記過熱水蒸気焼成とは別に、過熱水蒸気を導入しない条件すなわち過熱水蒸気非存在の雰囲気下で焼成する工程(以後、「別焼成工程」と称することがある)を含んでもよい。当該別焼成工程は、過熱水蒸気焼成の前および/または後に実施しても、過熱水蒸気焼成の各工程の間に実施しても良いが、過熱水蒸気焼成の前および/または後に実施することが好ましく、過熱水蒸気焼成の前に実施することがより好ましい。当該別焼成工程の焼成温度は、320〜420℃、好ましくは350〜410℃であり、焼成時間は、1〜24時間が好適であり、更に好ましくは1〜10時間である。過熱水蒸気非存在の雰囲気下は、過熱水蒸気を導入しなければ特に限定はなく、空気雰囲気、窒素、アルゴン、クリプトン、ヘリウムなど一般的な不活性ガス雰囲気、これらの混合ガス雰囲気下などが挙げられる。また、別焼成工程における昇温速度は、0.1℃/分以上、20℃/分以下が好ましく、更に好ましくは1℃/分以上、15℃/分以下である。 In addition to the above-described superheated steam firing, a step of firing under conditions in which superheated steam is not introduced, that is, in an atmosphere in which no superheated steam is present (hereinafter, sometimes referred to as “another firing step”) may be included. The separate firing step may be performed before and / or after the superheated steam firing, or may be performed between each step of the superheated steam firing, but is preferably performed before and / or after the superheated steam firing. More preferably, it is performed before the superheated steam calcination. The firing temperature in the separate firing step is 320 to 420 ° C, preferably 350 to 410 ° C, and the firing time is preferably 1 to 24 hours, and more preferably 1 to 10 hours. The atmosphere without superheated steam is not particularly limited as long as superheated steam is not introduced, and examples thereof include an air atmosphere, a general inert gas atmosphere such as nitrogen, argon, krypton, and helium, and a mixed gas atmosphere thereof. . Further, the rate of temperature rise in the separate firing step is preferably 0.1 ° C./min or more and 20 ° C./min or less, more preferably 1 ° C./min or more and 15 ° C./min or less.
本発明のアクリル酸製造用触媒を用いてアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造するのに用いられる反応器については特段の制限はなく、固定床反応器、流動床反応器、移動床反応器のいずれも用いることができるが、通常、固定床反応器が用いられる。 There is no particular limitation on the reactor used for producing acrylic acid by subjecting acrolein to catalytic gas-phase oxidation with molecular oxygen using the catalyst for producing acrylic acid of the present invention, and there are no particular restrictions on the reactor. Both a vessel and a moving bed reactor can be used, but a fixed bed reactor is usually used.
触媒を反応器に充填する場合には、単一な触媒である必要はなく、例えば、活性の異なる複数種の触媒を用い、これらを活性の異なる順に充填したり、触媒の一部を不活性担体などで希釈したりしてもよい。 When the catalyst is charged into the reactor, it is not necessary to use a single catalyst.For example, a plurality of catalysts having different activities are used, and these are charged in the order of different activities, or a part of the catalyst is deactivated. It may be diluted with a carrier or the like.
また、本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のアクロレイン、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを200〜400℃の温度範囲で0.1〜1.0MPaの圧力下、300〜8,000h−1(STP)の空間速度で酸化触媒に接触させればよい。 The reaction conditions in the present invention are not particularly limited, and any conditions generally used for this type of reaction can be used. For example, 1 to 15% by volume, preferably 4 to 12% by volume of acrolein, 0.5 to 25% by volume, preferably 2 to 20% by volume of molecular oxygen, 0 to 30% by volume, preferably 0 to A mixed gas consisting of 2525% by volume of water vapor and the balance of an inert gas such as nitrogen under a pressure of 0.1 to 1.0 MPa in a temperature range of 200 to 400 ° C. under a pressure of 300 to 8,000 h −1 (STP). What is necessary is just to contact an oxidation catalyst at space velocity.
反応ガスとしては、アクロレイン、分子状酸素および不活性ガスからなる混合ガスはもちろんのこと、グリセリンの脱水反応や、プロピレンの酸化反応によって得られるアクロレイン含有の混合ガスも使用可能である。また、この混合ガスに必要に応じ、空気または酸素などを添加することもできる。 As the reaction gas, not only a mixed gas composed of acrolein, molecular oxygen and an inert gas, but also a mixed gas containing acrolein obtained by a dehydration reaction of glycerin or an oxidation reaction of propylene can be used. Air or oxygen can be added to the mixed gas as needed.
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では便宜上、「質量部」を「部」と記すことがある。実施例および比較例におけるアクロレイン転化率、アクリル酸選択率およびアクリル酸収率は次式によって求めた。
アクロレイン転化率(モル%)
=(反応したアクロレインのモル数)/(供給したアクロレインのモル数)×100
アクリル酸選択率(モル%)
=(生成したアクリル酸のモル数)/(反応したアクロレインのモル数)×100
アクリル酸収率(モル%)
=(生成したアクリル酸のモル数)/(供給したアクロレインのモル数)×100
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the following, “parts by mass” may be referred to as “parts” for convenience. Acrolein conversion, acrylic acid selectivity, and acrylic acid yield in Examples and Comparative Examples were determined by the following equations.
Acrolein conversion (mol%)
= (Mol number of reacted acrolein) / (mol number of supplied acrolein) × 100
Acrylic acid selectivity (mol%)
= (Mol number of acrylic acid generated) / (mol number of reacted acrolein) × 100
Acrylic acid yield (mol%)
= (Mol number of generated acrylic acid) / (mol number of supplied acrolein) × 100
<実施例1>
[触媒調製]
純水1000部を加熱攪拌しながら、そのなかにパラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム23.2部、パラタングステン酸アンモニウム16.6部を溶解した。別に純水100部を加熱撹拌しながら、硝酸銅19.4部を溶解した。得られた2つの溶液を混合し、さらに三酸化アンチモン6.2部および酸化アルミニウム9.7部を添加して、出発原料混合液を得た。この出発原料混合液を噴霧乾燥させた後、得られた乾燥物を250μm以下に篩分けし、触媒前駆体の粉体を得た。遠心流動コーティング装置に平均粒径4mmのα−アルミナ球形担体を投入し、次いで純水を担体に含浸させてから、触媒前駆体の粉末を担体に担持させた後、約90℃の熱風で乾燥して担持体を得た。得られた担持体の一部をルツボに入れ、箱型焼成炉で室温から過熱水蒸気を噴霧ノズルにより炉内へ導入し、2℃/分で昇温し、380℃で7時間焼成して触媒1を得た。
この触媒1の担持率は30質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo12V4.3Sb0.8W1.2Cu1.6Al3.6
なお、担持率は下記式により求めた。
担持率(質量%)=(担持された触媒粉体の質量(g))/(用いた担体の質量(g))×100
<Example 1>
[Catalyst preparation]
While heating and stirring 1000 parts of pure water, 100 parts of ammonium paramolybdate, 23.2 parts of ammonium metavanadate, and 16.6 parts of ammonium paratungstate were dissolved therein. Separately, 19.4 parts of copper nitrate were dissolved while heating and stirring 100 parts of pure water. The resulting two solutions were mixed, and 6.2 parts of antimony trioxide and 9.7 parts of aluminum oxide were added to obtain a starting material mixture. After the starting material mixture was spray-dried, the obtained dried product was sieved to 250 μm or less to obtain a powder of a catalyst precursor. An α-alumina spherical carrier having an average particle size of 4 mm is charged into a centrifugal fluidized coating apparatus, and then the carrier is impregnated with pure water. After that, the catalyst precursor powder is supported on the carrier and dried with hot air at about 90 ° C. Thus, a carrier was obtained. A part of the obtained carrier is put in a crucible, superheated steam is introduced into the furnace from room temperature by a spray nozzle in a box-type firing furnace, the temperature is raised at 2 ° C./min, and the catalyst is fired at 380 ° C. for 7 hours. 1 was obtained.
The loading ratio of this catalyst 1 was 30% by mass, and the composition of metal elements excluding oxygen was as follows.
Catalyst composition: Mo 12 V 4.3 Sb 0.8 W 1.2 Cu 1.6 Al 3.6
The loading was determined by the following equation.
Loading ratio (mass%) = (mass (g) of supported catalyst powder) / (mass (g) of carrier used) × 100
[酸化反応]
全長300mm、内径18mmのSUS製U字反応管に、層長が100mmとなるように触媒1を充填し、アクロレイン2容量%、酸素3容量%、水蒸気10容量%、窒素85容量%の混合ガスを空間速度5000hr−1(STP)で導入し、アクロレイン酸化反応を行った。反応温度はアクロレインの転化率が93.5%前後となるように調節した。その反応結果を表1に示す。
[Oxidation reaction]
A SUS U-shaped reaction tube having a total length of 300 mm and an inner diameter of 18 mm is filled with the catalyst 1 so that the layer length becomes 100 mm, and a mixed gas of 2% by volume of acrolein, 3% by volume of oxygen, 10% by volume of steam and 85% by volume of nitrogen is used. Was introduced at a space velocity of 5000 hr -1 (STP) to perform an acrolein oxidation reaction. The reaction temperature was adjusted so that the conversion of acrolein was about 93.5%. Table 1 shows the results of the reaction.
<実施例2>
実施例1において、得られた担持体の一部をルツボに入れ、箱型焼成炉で室温から過熱水蒸気を噴霧ノズルにより炉内へ導入し、2℃/分で昇温し、430℃で3時間焼成したこと以外は実施例1と同様に調製し、触媒2を得た。この触媒2の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒2を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 2>
In Example 1, a part of the obtained support was put into a crucible, superheated steam was introduced into the furnace from room temperature by a spray nozzle in a box-type firing furnace, and the temperature was raised at 2 ° C./min. A catalyst 2 was obtained in the same manner as in Example 1 except that the calcination was performed for an hour. The loading rate of the catalyst 2 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. An acrolein oxidation reaction was carried out using Catalyst 2 in the same manner as in Example 1. Table 1 shows the results.
<実施例3>
実施例1において、得られた担持体の一部をルツボに入れ、箱型焼成炉で室温から過熱水蒸気を噴霧ノズルにより炉内へ導入し、15℃/分で昇温し、第1工程として370℃で3時間焼成後、過熱水蒸気にて19℃/分で昇温し、第2工程として400℃で5時間焼成したこと以外は実施例1と同様に調製し、触媒3を得た。この触媒3の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒3を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 3>
In Example 1, a part of the obtained carrier was put into a crucible, superheated steam was introduced into the furnace from room temperature by a spray nozzle in a box-type firing furnace, and the temperature was raised at 15 ° C./min. After calcining at 370 ° C. for 3 hours, the temperature was increased with superheated steam at 19 ° C./min, and the catalyst was prepared in the same manner as in Example 1 except that calcining was performed at 400 ° C. for 5 hours as a second step. The loading ratio of the catalyst 3 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 3, an acrolein oxidation reaction was carried out in the same manner as in Example 1. Table 1 shows the results.
<実施例4>
実施例1において、得られた担持体の一部をルツボに入れ、箱型焼成炉で室温から過熱水蒸気を噴霧ノズルにより炉内へ導入し、2℃/分で昇温し、350℃で5時間焼成した後、別焼成工程としてN2雰囲気にて390℃で5時間焼成したこと以外は実施例1と同様に調製し、触媒4を得た。この触媒4の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒4を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 4>
In Example 1, a part of the obtained carrier was put into a crucible, superheated steam was introduced into the furnace from a room temperature by a spray nozzle in a box-type firing furnace, and the temperature was raised at 2 ° C./min. After calcination for an hour, a catalyst 4 was prepared in the same manner as in Example 1 except that calcination was performed at 390 ° C. for 5 hours in an N 2 atmosphere as a separate calcination step. The loading ratio of the catalyst 4 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 4, an acrolein oxidation reaction was carried out in the same manner as in Example 1. Table 1 shows the results.
<実施例5>
実施例1において、得られた担持体の一部をルツボに入れ、箱型焼成炉で室温から過熱水蒸気を噴霧ノズルにより炉内へ導入し、2℃/分で昇温し、340℃で6時間焼成した後、別焼成工程としてO2濃度10%、N2濃度90%雰囲気にて380℃で5時間焼成したこと以外は実施例1と同様に調製し、触媒5を得た。この触媒5の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒5を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 5>
In Example 1, a part of the obtained carrier was put into a crucible, superheated steam was introduced into the furnace from room temperature by a spray nozzle in a box-type firing furnace, and the temperature was raised at 2 ° C./min. After calcination for an hour, a catalyst 5 was prepared in the same manner as in Example 1 except that calcination was performed at 380 ° C. for 5 hours in an atmosphere of 10% O 2 and 90% N 2 as a separate calcination step. The loading rate of this catalyst 5 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 5, an acrolein oxidation reaction was carried out in the same manner as in Example 1. Table 1 shows the results.
<実施例6>
実施例1において、得られた担持体の一部をルツボに入れ、別焼成工程として箱型焼成炉で室温からN2雰囲気にて2℃/分で昇温し、330℃で3時間焼成した後、過熱水蒸気を噴霧ノズルにより炉内へ導入し380℃で7時間焼成したこと以外は実施例1と同様に調製し、触媒6を得た。この触媒6の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒6を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 6>
In Example 1, a part of the obtained support was put in a crucible, and as a separate firing step, the temperature was raised from room temperature to 2 ° C./min from room temperature in a N 2 atmosphere in a box type firing furnace, followed by firing at 330 ° C. for 3 hours. Thereafter, a catalyst 6 was prepared in the same manner as in Example 1 except that superheated steam was introduced into the furnace through a spray nozzle and calcined at 380 ° C. for 7 hours. The loading ratio of the catalyst 6 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. An acrolein oxidation reaction was carried out using Catalyst 6 in the same manner as in Example 1. Table 1 shows the results.
<実施例7>
実施例1において、得られた担持体の一部をルツボに入れ、別焼成工程として箱型焼成炉で室温からO2濃度10%、N2濃度90%雰囲気にて2℃/分で昇温し、350℃で3時間焼成した後、過熱水蒸気を噴霧ノズルにより炉内へ導入し390℃で5時間焼成したこと以外は実施例1と同様に調製し、触媒7を得た。この触媒7の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒7を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 7>
In Example 1, a part of the obtained support was put into a crucible, and as a separate firing step, the temperature was raised from room temperature in a box-type firing furnace at room temperature at an O 2 concentration of 10% and an N 2 concentration of 90% at 2 ° C./min. After calcining at 350 ° C. for 3 hours, a catalyst 7 was prepared in the same manner as in Example 1 except that superheated steam was introduced into the furnace through a spray nozzle and calcined at 390 ° C. for 5 hours. The loading ratio of this catalyst 7 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 7, an acrolein oxidation reaction was carried out in the same manner as in Example 1. Table 1 shows the results.
<実施例8>
実施例1において、得られた担持体の一部をルツボに入れ、別焼成工程として箱型焼成炉で室温からO2濃度10%、N2濃度90%雰囲気にて2℃/分で昇温し、380℃で3時間焼成した後、過熱水蒸気を噴霧ノズルにより炉内へ導入し410℃で1時間焼成したこと以外は実施例1と同様に調製し、触媒8を得た。この触媒8の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒8を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 8>
In Example 1, a part of the obtained support was put into a crucible, and as a separate firing step, the temperature was raised from room temperature in a box-type firing furnace at room temperature at an O 2 concentration of 10% and an N 2 concentration of 90% at 2 ° C./min. After calcination at 380 ° C. for 3 hours, a catalyst 8 was prepared in the same manner as in Example 1 except that superheated steam was introduced into the furnace through a spray nozzle and calcined at 410 ° C. for 1 hour. The loading ratio of the catalyst 8 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 8, an acrolein oxidation reaction was carried out in the same manner as in Example 1. Table 1 shows the results.
<比較例1>
実施例1において、得られた担持体の一部をルツボに入れ、過熱水蒸気焼成に代えて箱型焼成炉で室温からO2濃度10%、N2濃度90%にて2℃/分で昇温し、380℃で5時間焼成したこと以外は実施例1と同様に調製し、触媒9を得た。この触媒9の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒9を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 1>
In Example 1, placed in a portion of the resulting carrier in the crucible, O 2 concentration of 10% from room temperature in a box sintering furnace in place of the superheated steam calcination at N 2 concentration 90% rise at 2 ° C. / min Catalyst 9 was obtained in the same manner as in Example 1, except that the mixture was heated and calcined at 380 ° C for 5 hours. The loading ratio of the catalyst 9 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. An acrolein oxidation reaction was carried out using Catalyst 9 in the same manner as in Example 1. Table 1 shows the results.
<比較例2>
実施例1において、得られた担持体の一部をルツボに入れ、過熱水蒸気焼成に代えて箱型焼成炉で室温からO2濃度10%、N2濃度90%雰囲気にて2℃/分で昇温し、330℃で5時間焼成し、さらに温度を変更して390℃で4時間焼成したこと以外は実施例1と同様に調製し、触媒10を得た。この触媒10の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒10を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 2>
In Example 1, a part of the obtained support was put into a crucible, and instead of superheated steam firing, a box-type firing furnace was used at room temperature at an O 2 concentration of 10% and an N 2 concentration of 90% at 2 ° C./min. Catalyst 10 was obtained in the same manner as in Example 1, except that the temperature was raised, and the mixture was calcined at 330 ° C. for 5 hours, and the temperature was further changed and calcined at 390 ° C. for 4 hours. The loading ratio of the catalyst 10 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. An acrolein oxidation reaction was carried out in the same manner as in Example 1 using the catalyst 10. Table 1 shows the results.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016064807A JP6628661B2 (en) | 2016-03-29 | 2016-03-29 | Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016064807A JP6628661B2 (en) | 2016-03-29 | 2016-03-29 | Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017176947A JP2017176947A (en) | 2017-10-05 |
JP6628661B2 true JP6628661B2 (en) | 2020-01-15 |
Family
ID=60004628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016064807A Active JP6628661B2 (en) | 2016-03-29 | 2016-03-29 | Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6628661B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161841A (en) * | 1980-05-19 | 1981-12-12 | Mitsubishi Petrochem Co Ltd | Manufacture of composite oxide catalyst |
JP2006130373A (en) * | 2004-11-02 | 2006-05-25 | Nippon Kayaku Co Ltd | Method for manufacturing compound metal oxide catalyst and catalyst |
JP4858266B2 (en) * | 2007-03-28 | 2012-01-18 | 三菱化学株式会社 | Method for producing composite oxide catalyst |
DE102012207811A1 (en) * | 2012-05-10 | 2012-07-12 | Basf Se | Heterogeneously catalyzed gas phase partial oxidation of (meth)acrolein to (meth)acrylic acid using a catalytically active multimetal oxide mass |
-
2016
- 2016-03-29 JP JP2016064807A patent/JP6628661B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017176947A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8716523B2 (en) | Catalyst for use in production of methacrylic acid and method for manufacturing the same | |
KR102422025B1 (en) | Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid | |
BR0008771B1 (en) | processes for the catalytic gas phase oxidation of propene to acrylic acid, and from propene to acrolein and / or acrylic acid. | |
KR102612311B1 (en) | Method for producing acrolein, methacrolein, acrylic acid or methacrylic acid | |
JP7170375B2 (en) | Catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same | |
JP2018521851A (en) | Method for producing mixed metal oxide catalyst containing molybdenum and bismuth | |
JP6504774B2 (en) | Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst | |
JP2008264766A (en) | Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid | |
JP5448331B2 (en) | Acrylic acid production catalyst and method for producing acrylic acid using the catalyst | |
JP4720431B2 (en) | Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP5831329B2 (en) | Composite oxide catalyst | |
TW201400450A (en) | Process for producing alkyl methacrylate | |
JP2015120133A (en) | Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst | |
JP2004002209A (en) | Method for producing unsaturated aldehyde | |
JP6628661B2 (en) | Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst | |
JP2017176932A (en) | catalyst | |
CN116033968B (en) | Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid | |
JP2016168588A (en) | Catalyst for manufacturing methacrylic acid | |
JP6487242B2 (en) | Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst | |
JP6136436B2 (en) | Catalyst production method | |
JP2012245433A (en) | Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid | |
JP2005161309A (en) | Method for manufacturing compound oxide catalyst | |
JP6534328B2 (en) | Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst | |
JP4970986B2 (en) | Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst | |
JP2006007205A (en) | Compound oxide catalyst and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190827 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6628661 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |