[go: up one dir, main page]

JP6628299B2 - Particle forming method and particles - Google Patents

Particle forming method and particles Download PDF

Info

Publication number
JP6628299B2
JP6628299B2 JP2014170457A JP2014170457A JP6628299B2 JP 6628299 B2 JP6628299 B2 JP 6628299B2 JP 2014170457 A JP2014170457 A JP 2014170457A JP 2014170457 A JP2014170457 A JP 2014170457A JP 6628299 B2 JP6628299 B2 JP 6628299B2
Authority
JP
Japan
Prior art keywords
peptide
solution
particles
electrodes
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014170457A
Other languages
Japanese (ja)
Other versions
JP2016044148A (en
Inventor
亮 櫻井
亮 櫻井
プラドド クリ
プラドド クリ
青野 正和
正和 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2014170457A priority Critical patent/JP6628299B2/en
Publication of JP2016044148A publication Critical patent/JP2016044148A/en
Application granted granted Critical
Publication of JP6628299B2 publication Critical patent/JP6628299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は電流の局所加熱によって局所的な溶液の過飽和を作り出すことによってバイオ系分子で構成したマイクロメートルサイズの構造体を形成する方法に関し、またその方法によって形成した構造体に関する。   The present invention relates to a method of forming a micrometer-sized structure composed of bio-based molecules by creating local supersaturation of a solution by local heating of an electric current, and to a structure formed by the method.

分子自己組織化(molecular self-assembly)は自然界に広く見られるものであり、明確なモルフォロジーを持った多様な超分子ナノ/マイクロ自己組織化構造が、タンパク質やペプチドのような生物学的な構成要素間の非共有結合的な相互作用によって適切に配列して形成されてきた(非特許文献1〜7)。このような自己組織化構造の分子構造はX線回折によって確認されるが(非特許文献8,9)、マイクロ構造への成長過程についての実験報告はほとんどない。ペプチドベースのマイクロチューブについて以前報告された成長モデルは主に最終構造の走査電子顕微鏡観察のみに基づいて提示されたものである(非特許文献10〜12)。バイオ系分子から自己組織的にマイクロ構造が成長するメカニズムを実験的に検証する報告はほとんどなされておらず、実験結果と提案されたモデルとの間に大きなギャップが存在している。従って、生物の形態に似せた、また生体を模倣したマイクロサイズの構造物を制御して製造するためには、分子で構成した自己組織化プロセスについての深い理解が強く求められている。   Molecular self-assembly is widespread in nature, and a variety of supramolecular nano / micro self-assembled structures with well-defined morphologies form biological structures such as proteins and peptides. They have been formed by appropriately arranging them by non-covalent interaction between elements (Non-Patent Documents 1 to 7). Although the molecular structure of such a self-assembled structure is confirmed by X-ray diffraction (Non-Patent Documents 8 and 9), there are few experimental reports on the process of growing into a microstructure. Previously reported growth models for peptide-based microtubes were presented primarily based solely on scanning electron microscopy of the final structure (Non-Patent Documents 10 to 12). There have been few reports on the experimental verification of the mechanism by which microstructures grow from biomolecules in a self-organizing manner, and there is a large gap between the experimental results and the proposed model. Therefore, in order to control and manufacture a micro-sized structure that resembles or mimics the form of an organism, a deep understanding of the self-assembly process composed of molecules is strongly required.

その反対に、これらペプチド集合体の構造体を人工的に作製した例は単純なものがほとんどであり、複雑で機能的なモルフォロジーを構成するための手法が大きな関心を集めている。自己組織化された複雑なアーキテクチャでは、ナノスケールの構成要素とマイクロスケールサイズ全体との間の階層的な協調関係によって分子自体の持つ機能性が増強される(非特許文献13〜16)。しかしながら、今日まで報告されている階層的なアーキテクチャのほとんどは無機材料を使用して作製されたものである(非特許文献13,17)。触媒、センサー及び細胞培養分野において、コスト効率が高く、環境に優しい応用を実現するため、有機分子のみから構成した、特に生体分子ベースのアーキテクチャを作製することが求められている(非特許文献14〜16)。分子自己組織化アーキテクチャを設計し、制御して作製することはナノ医薬(非特許文献18)及びナノフォトニクス(非特許文献19)に大きな発展をもたらす。   On the contrary, the examples of artificially producing the structures of these peptide aggregates are mostly simple, and techniques for constructing complex and functional morphologies have attracted much interest. In a complex self-assembled architecture, the functionality of the molecule itself is enhanced by the hierarchical cooperation between the nanoscale components and the entire microscale size (Non-Patent Documents 13 to 16). However, most of the hierarchical architectures reported to date have been made using inorganic materials (13, 17). In the field of catalysts, sensors and cell cultures, there is a need to create an architecture based solely on organic molecules, especially biomolecules, to achieve cost-effective and environmentally friendly applications (Non-Patent Document 14). ~ 16). Designing, controlling and fabricating molecular self-assembly architectures has led to significant advances in nanopharmaceuticals (Non-Patent Document 18) and nanophotonics (Non-Patent Document 19).

本発明の課題はペプチド系分子が溶解している溶液の一部分を急激に加熱することで、部分的に過飽和となった状況を作り出す。過飽和溶液では分子同士の凝集が起こりやすく、結果としてペプチド分子の自己組織のための核が形成される。つまり、溶液の一部分を急激に加熱する事は、マイクロ構造を形成する新規な条件を実現することにある。また、この新規な条件により、これまでに実現されていない構造・形状を有するペプチドのマイクロ構造を提供することもその課題とする。   An object of the present invention is to create a partially supersaturated state by rapidly heating a part of a solution in which a peptide molecule is dissolved. In a supersaturated solution, aggregation of molecules is likely to occur, and as a result, nuclei for self-organization of peptide molecules are formed. In other words, rapid heating of a part of the solution is to realize a new condition for forming a microstructure. It is another object of the present invention to provide a microstructure of a peptide having a structure and shape that has not been realized until now under the novel conditions.

本発明の一側面によれば、昇温により蒸発する溶媒にペプチドを分散した溶液を準備し、前記溶液を電流印加によるジュール加熱により局所的に昇温させて、前記ペプチドの結晶核を形成し、前記結晶核を中心とした自己成長により、前記ペプチドの粒子を形成する、粒子形成方法が与えられる。
ここで、前記局所的な昇温により前記溶液中に前記ペプチドの過飽和状態を発現させ、もって前記ペプチドの結晶核を形成してよい。
また、前記電流印加は、二つの電極を互いに対向させ、前記二つの電極間に電圧を印加することにより、前記電極間の空隙に存在する前記溶液に電流を流すことにより行ってよい。
また、前記二つの電極は先細の形状を有し、その先細の先端同士を対向させて前記電圧の印加を行ってよい。
また、前記電流印加は、少なくとも一本の導電経路に電圧を印加することにより行い、前記導電経路上の前記溶液を局所的に加熱してよい。
また、前記溶液を局所的に前記溶媒の沸点まで昇温させてよい。
また、前記昇温後、前記電流の印加を停止してよい。
また、前記ペプチドはアミノ酸残基数が10未満のペプチド(以下、短ペプチドと称する)であってよい。
また、前記粒子は粒径が1μm〜20μmであり、表面に多孔体を有する球状粒子であってよい。
また、前記多孔体の平均孔径が20nm〜500nmであってよい。
また、前記多孔体は平均直径が20nm〜300nmの複数のナノワイヤーからなるネットワーク構造を有してよい。
本発明の他の側面によれば、ペプチドからなり、表面に平均孔径が20nm〜500nmの多孔体を有する、粒径が1μm〜20μmの粒子が与えられる。
ここで、前記多孔体は平均直径が20nm〜300nmの複数のナノワイヤーからなるネットワーク構造を有してよい。
また、前記ペプチドは短ペプチドであってよい。
また、前記短ペプチドはジフェニルアラニンペプチド及びフェニルアラニンペプチドからなる群から選択されてよい。
According to one aspect of the present invention, a solution in which a peptide is dispersed in a solvent that evaporates by increasing the temperature is prepared, and the solution is locally heated by Joule heating by applying an electric current to form crystal nuclei of the peptide. A particle forming method for forming particles of the peptide by self-growth around the crystal nucleus.
Here, the supersaturated state of the peptide may be expressed in the solution by the local temperature increase, thereby forming a crystal nucleus of the peptide.
Further, the current application may be performed by causing two electrodes to face each other and applying a voltage between the two electrodes, thereby causing a current to flow through the solution existing in a gap between the electrodes.
Further, the two electrodes may have a tapered shape, and the voltage may be applied with their tapered tips facing each other.
Further, the current application may be performed by applying a voltage to at least one conductive path to locally heat the solution on the conductive path.
Further, the temperature of the solution may be locally raised to the boiling point of the solvent.
After the temperature rise, the application of the current may be stopped.
Further, the peptide may be a peptide having less than 10 amino acid residues (hereinafter, referred to as a short peptide).
The particles may be spherical particles having a particle size of 1 μm to 20 μm and having a porous body on the surface.
The average pore diameter of the porous body may be 20 nm to 500 nm.
Further, the porous body may have a network structure including a plurality of nanowires having an average diameter of 20 nm to 300 nm.
According to another aspect of the present invention, particles having a particle size of 1 μm to 20 μm, which are made of a peptide and have a porous body having an average pore diameter of 20 nm to 500 nm on the surface, are provided.
Here, the porous body may have a network structure including a plurality of nanowires having an average diameter of 20 nm to 300 nm.
Further, the peptide may be a short peptide.
Further, the short peptide may be selected from the group consisting of a diphenylalanine peptide and a phenylalanine peptide.

本発明により、溶液に局所的・かつ急激に分子が過飽和となっている領域を作ることによって新しい成長様式を実現する事ができた。また、コアの周囲に多孔質のシェルを有する新規なマイクロ構造が得られた。   According to the present invention, a new growth mode can be realized by creating a region where molecules are supersaturated locally and rapidly in a solution. Also, a novel microstructure having a porous shell around the core was obtained.

分子の自己組織化制御に用いた電極と溶液の概略図。2つの金電極間距離は約120μm。Schematic diagram of an electrode and a solution used for controlling self-assembly of molecules. The distance between the two gold electrodes is about 120 μm. 溶液滴下後の電極の写真。A photograph of the electrode after the solution was dropped. 1mg/mLの溶液(溶媒はエタノール)4マイクロリットルを100Vの電圧を印加した電極間に滴下した後電流の時間変化を示すグラフ。電圧印加時間は25秒間。The graph which shows the time change of an electric current after dripping 4 microliters of 1 mg / mL solution (solvent is ethanol) between the electrodes to which the voltage of 100V was applied. The voltage application time is 25 seconds. 100Vの電圧を印加したギャップに溶液を滴下した際の、サーモグラフィによって測定した温度分布を示す図。The figure which shows the temperature distribution measured by thermography when the solution is dripped at the gap which applied the voltage of 100V. 濃度1mg/μLのジフェニルアラニンペプチド分子のメタノール溶液を使用して作製した多孔質マイクロ構造の走査電子線顕微鏡像。The scanning electron beam microscope image of the porous microstructure produced using the methanol solution of the diphenylalanine peptide molecule of 1 mg / microliter concentration. 電圧印加後に電極間に生成したマイクロ球体の走査電子線顕微鏡像。Scanning electron microscope image of a microsphere generated between electrodes after voltage application. 図2a中の矢印で示したマイクロ球体の拡大図の走査電子線顕微鏡像。FIG. 2B is a scanning electron microscope image of an enlarged view of the microsphere shown by an arrow in FIG. 2A. 滴下直後に電圧を印加して作成したマイクロチューブの走査電子顕微鏡像。Scanning electron microscope image of a microtube created by applying a voltage immediately after dropping. 電圧を加えずに作成した分子球の走査電子顕微鏡像。Scanning electron microscope image of a molecular sphere created without applying a voltage. 作成したマイクロ構造に対して飛行時間型二次イオン質量分析(TOF−SIMS)を実施して得られたスペクトルを示す図。The figure which shows the spectrum obtained by performing time-of-flight secondary ion mass spectrometry (TOF-SIMS) with respect to the created microstructure. カバーガラス(厚さ約100μm)を挟んで2つの電極またはプローブ間に電流が流れない配置を作り、10〜10V/mの電界を加える電極と滴下した溶液の概念図。FIG. 4 is a conceptual diagram of an electrode for applying an electric field of 10 7 to 10 5 V / m and a solution dripped by forming an arrangement in which no current flows between two electrodes or a probe with a cover glass (about 100 μm in thickness) interposed therebetween. 2つの電極間を細い金細線(厚さ100nm、幅300nm、長さ600μm)で接続したガラス基板上の電極の概念図。FIG. 4 is a conceptual diagram of an electrode on a glass substrate in which two electrodes are connected by a thin gold wire (thickness: 100 nm, width: 300 nm, length: 600 μm). 電極間に0.5Vの電圧を50秒間印加して局所的なジュール熱によって自己組織化を制御して作成した多孔質のマイクロ構造の走査電子線顕微鏡像。Scanning electron microscope image of a porous microstructure created by applying a voltage of 0.5 V between electrodes for 50 seconds and controlling self-organization by local Joule heat. フェニルアラニン(FY)ペプチド分子(差し込み図は分子構造を示す)をメタノールに溶かした溶液(濃度1mg/1mL)に、電圧を印加せずにガラス基板上に滴下した後、自己組織化によって形成されたワイヤ状の構造の走査電子顕微鏡像。Phenylalanine (FY) peptide molecule (inset shows molecular structure) was dropped on a glass substrate without applying voltage to a solution (concentration: 1 mg / 1 mL) dissolved in methanol and formed by self-assembly. Scanning electron microscope image of a wire-like structure. 同様の溶液を電極下に滴下し、電極間に100Vの電圧を30秒間印加した後に成長したマイクロ構造の走査電子顕微鏡像。Scanning electron microscope image of a microstructure grown after a similar solution was dropped under an electrode and a voltage of 100 V was applied between the electrodes for 30 seconds.

本発明の方法では、ペプチド分子を分散した溶液を電圧印加によるジュール加熱を用いて局所的に加熱することで生じる局所的な温度急上昇によって、加熱された箇所にペプチド分子の過飽和を発現させる。過飽和溶液中では分子の衝突が頻繁に起こるので、この過飽和状態が起こっている領域に結晶核が形成される。この結晶核を中心とした自己組織化成長によってマイクロ粒子を形成する。ここでマイクロ粒子とはサイズが1μm〜20μmの粒子を言う。本発明は、局所的に過飽和となる領域を人工的に作り出して、分子の自己組織化を制御する最初の発明である。溶液のごく狭い領域に電流を流すとジュール加熱によって、溶液を部分的にかつ急激に加熱することができる。このため、核形成及び溶液の対流その他の流動による近傍領域からの分子の十分な供給などのバランスから、特異なマイクロ構造を生成する条件が与えられる。このマイクロ構造生成条件により、マイクロ粒子の表面には、平均直径が20nm〜300nmのナノワイヤ(実施例では50nm〜100nm)が絡まり合うことで形成される、平均孔径が20nm〜500nmのメッシュ状(ネットワーク構造)の多孔体が形成される。本発明はまた、このような方法によって形成可能なマイクロ粒子に関する。   In the method of the present invention, supersaturation of a peptide molecule is expressed in a heated portion by a local rapid rise in temperature caused by locally heating a solution in which a peptide molecule is dispersed using Joule heating by applying a voltage. Molecular collisions frequently occur in a supersaturated solution, and crystal nuclei are formed in a region where the supersaturation occurs. Microparticles are formed by self-organizing growth centering on this crystal nucleus. Here, the microparticle refers to a particle having a size of 1 μm to 20 μm. The present invention is the first invention that artificially creates a locally supersaturated region to control the self-assembly of molecules. When an electric current is applied to a very small area of the solution, Joule heating can partially and rapidly heat the solution. Therefore, a condition for generating a unique microstructure is given from a balance between nucleation and sufficient supply of molecules from a nearby region due to convection and other flows of the solution. Under the conditions for generating the microstructure, the surface of the microparticle is formed by entanglement of nanowires having an average diameter of 20 nm to 300 nm (in the embodiment, 50 nm to 100 nm). Structure) is formed. The present invention also relates to microparticles that can be formed by such a method.

本願では、小さい分子量であるジフェニルアラニン(FF)ペプチドを使用して調節された作製を実現する一つの方法を示す。FFペプチドはタンパク質を構成する重要な分子であって、Alzheimerのβ−アミロイドポリペプチドの主要認識モチーフ(core recognition motif)として知られている(非特許文献8、20〜23)。自己組織化ペプチドは、その化学的多様性、特定の分子検出能力、入手容易性及び機能上の柔軟性により、非常に魅力的な構成要素である(非特許文献24〜27)。本願では形状及びサイズが海の藻である珪藻に類似している、ユニークなペプチドベースの花形状のマイクロ構造を、人工的な過飽和状態下での初期の核形成を利用して作り出す。本願における局所的な過飽和形成によるマイクロ構造形成手法は、分子の自己組織化を制御するための溶媒極性、濃縮、pHあるは酵素などの通常使用される外部刺激を用いた自己組織化制御とは異なっている(非特許文献5,6,28)。   In this application, one method to achieve controlled production using a low molecular weight diphenylalanine (FF) peptide is shown. The FF peptide is an important molecule constituting a protein, and is known as a core recognition motif of Alzheimer's β-amyloid polypeptide (Non-Patent Documents 8, 20 to 23). Self-assembled peptides are very attractive components due to their chemical diversity, specific molecular detection capabilities, availability and functional flexibility (24-27). In the present application, a unique peptide-based flower-shaped microstructure, similar in shape and size to the marine algae diatom, is created using early nucleation under artificial supersaturation. The microstructure formation technique by local supersaturation formation in the present application is a self-organization control using commonly used external stimuli such as solvent polarity, concentration, pH or enzyme to control the self-assembly of molecules. It is different (Non-Patent Documents 5, 6, 28).

<マイクロ構造の作製方法>
[FFペプチド溶液及び金電極の作製]
FFペプチド(Bachem社)粉末を100mg/mLの濃度で1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(1,1,1,3,3,3-hexafluoro-2-propanol、HFIP)に溶解した。このFFペプチド溶液をメタノールで希釈して、最終濃度1mg/mLとした。凝集や自己組織化が事前には起こらないようにするため、実験毎に新しいFFペプチド溶液を作製した。電子銃(e-gun)蒸着法によりクロム(10nm)及び金(50nm)を、マスクパターンを介して蒸着することでガラス基板上に金電極を作製した。この電極構造は三角形の2つの電極がそれぞれの頂点を近接させて対向した形状となっていて、これらの頂点の間の空隙をギャップと呼ぶ。
<Method for fabricating microstructure>
[Preparation of FF peptide solution and gold electrode]
FF peptide (Bachem) powder at a concentration of 100 mg / mL in 1,1,1,3,3,3-hexafluoro-2-propanol (1,1,1,3,3,3-hexafluoro-2-propanol) , HFIP). This FF peptide solution was diluted with methanol to a final concentration of 1 mg / mL. To avoid aggregation and self-assembly in advance, a new FF peptide solution was prepared for each experiment. A gold electrode was formed on a glass substrate by depositing chromium (10 nm) and gold (50 nm) through a mask pattern by an electron gun (e-gun) deposition method. This electrode structure has a shape in which two triangular electrodes face each other with their vertexes close to each other, and a gap between these vertices is called a gap.

[マイクロ構造の作製及び測定]
マイクロ構造の成長を調べるため、図1aに概念的に示すように、FFペプチド溶液の液滴4mLを上記電極間のギャップに滴下し、成長の初期ステージとして、これら電極間に電圧範囲V(10〜100V)を25〜85秒間印加した。滴下直後のギャップ付近の写真を図1bに示す。電圧を印加して、測定器SourceMeter2400(Keithley製)によってその電流をモニタした。その結果を図1cに示す。CCDカメラを取り付けた光学顕微鏡を使用してマイクロ構造の成長を記録した。溶媒が自然乾燥した後(3〜20分)、多孔質でユニークなマイクロ球体及び滑らかなマイクロチューブが成長した。アルバック・ファイ株式会社製のPHI TRIFT V nano TOFを使用して測定した、作製されたマイクロ構造のTOF−SIMS正イオンスペクトルは、図3に示すように、H−Phe−Phe−OHペプチドの単独で帯電した(singularly charged)イオンに対応する、313m/z(質量−電荷比)における特性ピークを示した。これは本実施例で適用された実験条件の下でのFFペプチド分子の構造的完全性を示している。印加電圧を低下させると、部分的に成長した多孔質構造に対する完全に成長した「珪藻状」の多孔質構造の比率が小さくなった。印加電圧を小さくした場合、完全な多孔質構造を作成するためには長い印加時間が必要となる。
[Preparation and measurement of microstructure]
To study the growth of the microstructure, a 4 mL droplet of the FF peptide solution was dropped into the gap between the electrodes, as conceptually shown in FIG. 1a, and a voltage range V (10 100100 V) was applied for 25 to 85 seconds. FIG. 1B shows a photograph near the gap immediately after the dropping. A voltage was applied, and the current was monitored by a measuring instrument SourceMeter2400 (manufactured by Keithley). The result is shown in FIG. 1c. The microstructure growth was recorded using an optical microscope fitted with a CCD camera. After the solvent air dried (3-20 minutes), porous, unique microspheres and smooth microtubes grew. The TOF-SIMS positive ion spectrum of the prepared microstructure measured using PHI TRIFT V nano TOF manufactured by ULVAC-PHI was, as shown in FIG. At 313 m / z (mass-charge ratio), corresponding to singularly charged ions. This indicates the structural integrity of the FF peptide molecule under the experimental conditions applied in this example. As the applied voltage was reduced, the ratio of the fully grown "diatom-like" porous structure to the partially grown porous structure was reduced. When the applied voltage is reduced, a long application time is required to create a completely porous structure.

[温度測定]
電圧を印加している間の試料の温度分布をサーモグラフ(ViewOhre Imaging, AIR32 Micro3x)を使用して測定した。初期ステージでは、基板を厚さ100〜400μmの厚い溶液層で覆われている。電流は、主に溶液の底に位置する電極間に流れる。電圧印加を開始して数秒後に、図1dのギャップ中央部にあるやや色の濃い領域の一部で発泡が観察された。これは当該領域の局所温度がメタノールの沸点(約64.7℃)に到達したことを示唆している。電圧印加時間が短い(約60秒以下)場合には、ジュール加熱により大幅に温度上昇が起こる局所領域の体積は、溶液の全体積よりもかなり小さい。したがって、昇温した溶液が対流により遠くへ移動すると、室温まで冷却される。図1d中の中心部のやや濃色の部分及びその周囲の部分はそれぞれ約60℃及び約24℃に相当する。つまり、電極間のギャップの真上及びその極近傍部分が局所的に大きく昇温していることが判る。
[Temperature measurement]
The temperature distribution of the sample during the application of the voltage was measured using a thermograph (ViewOhre Imaging, AIR32 Micro3x). In the initial stage, the substrate is covered with a thick solution layer having a thickness of 100 to 400 μm. Current flows mainly between the electrodes located at the bottom of the solution. Several seconds after the start of the voltage application, foaming was observed in a part of a slightly darker region in the center of the gap in FIG. 1D. This suggests that the local temperature of the region has reached the boiling point of methanol (about 64.7 ° C.). When the voltage application time is short (about 60 seconds or less), the volume of the local region where the temperature rise is greatly increased by Joule heating is considerably smaller than the total volume of the solution. Therefore, when the heated solution moves far by convection, it is cooled to room temperature. The slightly darker part in the center and the surrounding part in FIG. 1d correspond to about 60 ° C. and about 24 ° C., respectively. In other words, it can be seen that the temperature directly above the gap between the electrodes and in the vicinity of the gap is greatly increased locally.

[珪藻状多孔質マイクロ構造の形成]
図2aは濃度1mg/μLのジフェニルアラニンペプチド溶液(溶媒はメタノール)を使用して作製した多孔質マイクロ構造(平均粒径5〜10μm)の走査電子顕微鏡像(SEM像)を示す。図1aに示すマイクロ構造作成のための典型的な構成では、図1bに示すように、FFペプチドのメタノール溶液を1滴、120μmの距離を有するギャップが開いている二つのAu電極の間に滴下した。電圧(例えば100V)を両電極間に印加すると、100μAオーダーの電流が溶液を通って流れる。この電流のために、ギャップ領域の温度がジュール加熱効果によって上昇した。図1dは、ギャップに上記溶液4μLを滴下して両電極間に100Vの電圧を25秒間印加したときのギャップを中心とする領域のサーモグラフィマッピングを示す。その中心部のやや暗い部分は約60℃、そこから僅かに外れた最も明るい部分は約40℃であることが判った。溶媒の乾燥後(3〜6分)、図2b〜図2dに示す、いくつかのマイクロ球体及びマイクロチューブが基板上に観察された。これらのマイクロ球体の形状は図2a右下部分の差し込み図に示すマイクロメートルサイズの珪藻(marine algae diatom)に良く似ている。図2a右上の差し込み図に示すマイクロ球体の高倍率SEM像から、その表面モルフォロジーがわかる。具体的には、多数の突起を有する複数のワイヤー(平均直径50〜100nm)が絡み合って全体で三次元ネットワーク構造となっているが、これは珪藻の被殻(frustule)に非常によく似ている。典型的な電圧100Vを印加する場合には、マイクロ構造形成の初期成長ステージは4μLの溶液滴下後約25〜30秒の印加時間を要する。FFペプチドのメタノール溶液を自然蒸発した場合、自己組織化により図2eに示す直径100〜400nmの球形のドット状構造が形成される。本願の結果はナノスケールのドット状構造からミクロンスケールの球体及びチューブへの明確なモルフォロジー遷移を示した。多孔質マイクロ球体及びマイクロチューブ中のFFペプチド分子の構造上の完全性を、飛行時間型二次イオン質量分析(time-of-flight secondary ion mass spectroscopy、TOF−SIMS)(非特許文献22)を使用して確認した(図3)。
[Formation of diatom-like porous microstructure]
FIG. 2a shows a scanning electron microscope image (SEM image) of a porous microstructure (average particle size of 5 to 10 μm) prepared using a diphenylalanine peptide solution (solvent: methanol) having a concentration of 1 mg / μL. In a typical configuration for creating microstructures as shown in FIG. 1a, one drop of methanol solution of FF peptide is dropped between two Au electrodes with a gap of 120 μm, as shown in FIG. 1b. did. When a voltage (eg, 100 V) is applied between the electrodes, a current on the order of 100 μA flows through the solution. This current caused the temperature of the gap region to increase due to the Joule heating effect. FIG. 1d shows thermographic mapping of a region centered on the gap when 4 μL of the above solution is dropped into the gap and a voltage of 100 V is applied between the two electrodes for 25 seconds. It was found that the slightly dark portion at the center was about 60 ° C, and the brightest part slightly deviated therefrom was about 40 ° C. After drying of the solvent (3-6 minutes), several microspheres and microtubes were observed on the substrate, as shown in FIGS. 2b-2d. The shape of these microspheres closely resembles the micrometer-sized diatom (marine algae diatom) shown in the inset in the lower right part of FIG. 2a. The surface morphology can be seen from the high magnification SEM image of the microsphere shown in the upper right inset of FIG. 2a. Specifically, a plurality of wires having a large number of protrusions (average diameter of 50 to 100 nm) are entangled to form a three-dimensional network structure as a whole, which is very similar to a diatom frustule. I have. When a typical voltage of 100 V is applied, the initial growth stage for forming the microstructure requires an application time of about 25 to 30 seconds after 4 μL of the solution is dropped. When the methanol solution of the FF peptide is naturally evaporated, a spherical dot-like structure having a diameter of 100 to 400 nm shown in FIG. Our results showed a clear morphological transition from nanoscale dot-like structures to micron-scale spheres and tubes. The structural integrity of FF peptide molecules in porous microspheres and microtubes was determined by time-of-flight secondary ion mass spectroscopy (TOF-SIMS) (Non-Patent Document 22). It was confirmed by using (FIG. 3).

マイクロ構造の形成に当たっての温度、電界及び電流の影響を確認するため、いくつかの系統的な実験を行った。本実験の電極間で実現された電界と同程度の10〜10V/mが維持されるが電流は流れない三種類の異なる電極パターンを作製した(図4参照)。これらの電極パターンにFFペプチド溶液を滴下した場合、多孔質のマイクロ構造を全く形成できず、電圧を印加しなかった場合と同様な典型的なドット状の球体が観察された。更には、ヒーターを使用して溶液の温度を30〜65℃まで一様に上昇させた場合もまた本発明に係るマイクロ構造を全く生成できなかった。これらの結果から、電界及び温度を本発明に係るマイクロ構造形成に影響する可能性のある要因のリストから外すことができた。図1dに示す温度分布はまた、電極間に幅広い電流経路があるため、電流密度が低い(約1×10−10A/μm)。したがって、電流の影響も上述のリストから外すことができた。更には、溶液中に電流を流す代わりに、図5aに示すように、電極間に幅の狭い金属ワイヤを設け、電極間に0.5Vという低い電圧を印加した。金属ワイヤ中でのジュール加熱によって引き起こされた別のタイプの人工的な過飽和によっても、図5bに示すところの本発明に係るマイクロ構造が形成されたことから、本マイクロ構造の形成に何らかの電気化学反応が関与する可能性も排除された。 Several systematic experiments were performed to confirm the effects of temperature, electric field and current on the formation of the microstructure. 10 5 ~10 7 V / m electric field comparable which is realized between the electrodes of the present experiment is maintained was prepared three different electrode patterns, no current flows (see FIG. 4). When the FF peptide solution was dropped on these electrode patterns, a porous microstructure could not be formed at all, and a typical dot-like sphere similar to the case where no voltage was applied was observed. Furthermore, even when the temperature of the solution was uniformly raised to 30 to 65 ° C. using a heater, the microstructure according to the present invention could not be produced at all. From these results, the electric field and temperature could be excluded from the list of factors that could affect the microstructure formation according to the present invention. The temperature distribution shown in FIG. 1d also has a low current density (about 1 × 10 −10 A / μm 2 ) due to the wide current path between the electrodes. Therefore, the influence of the current could be removed from the above list. Further, instead of passing a current through the solution, a narrow metal wire was provided between the electrodes as shown in FIG. 5A, and a voltage as low as 0.5 V was applied between the electrodes. Another type of artificial supersaturation caused by Joule heating in the metal wire also formed the microstructure according to the present invention as shown in FIG. The possible involvement of the reaction was also ruled out.

本発明が特定の分子にのみ適応されうるのか、他のペプチド分子にまで拡張しうるのかを確認する目的で、フェニルアラニン(FY)ペプチド分子(図6a挿入図に分子構造を示す)をメタノールに溶かした溶液(濃度1mg/1mL)を用いた実験を実施した。電圧を印加せずにFYペプチド溶液をガラス基板上に滴下すると、自己組織化によってワイヤ状の構造が形成された(図6a参照)。同様の溶液を電極下に滴下し、電極間に100Vの電圧を30秒間印加すると、図6bの走査電子顕微鏡像に見られる、表面に多数のナノワイヤが絡み合ったネットワーク状の多孔質構造を有する直径が2〜10μm程度のマイクロ構造が実現された。つまり、小さいペプチド系分子に対しても一般性をもつマイクロ構造作製方法である事が確認できた。   For the purpose of confirming whether the present invention can be applied only to a specific molecule or extend to other peptide molecules, a phenylalanine (FY) peptide molecule (the molecular structure is shown in the inset of FIG. 6a) is dissolved in methanol. An experiment was performed using the solution (concentration 1 mg / 1 mL). When the FY peptide solution was dropped on the glass substrate without applying a voltage, a wire-like structure was formed by self-organization (see FIG. 6a). When a similar solution is dropped under the electrodes and a voltage of 100 V is applied between the electrodes for 30 seconds, the diameter of the network-like porous structure in which a large number of nanowires are entangled on the surface can be seen in the scanning electron microscope image of FIG. 6b. However, a microstructure of about 2 to 10 μm was realized. That is, it was confirmed that the method was a microstructure preparation method having generality even for small peptide-based molecules.

[結論]
本願によって初めて小さなジペプチドから「珪藻状」の複合構造を作製するための単純な作製方法及びその成長機構が提示された。人工的な過飽和で誘発される小さな核の形成によって自己組織化によるモルフォロジー遷移及びユニークなマイクロ構造の作製が引き起こされる。マイクロ球体は珪藻と同様な多孔質構造を有するが、珪藻の構造は高感度バイオセンサーとして知られている(非特許文献32〜34)。従って、短ペプチド(アミノ酸残基数が10未満のペプチド)を蛍光性タンパク質、ポリペプチドあるいは酵素などの他の機能性生体分子で置き換えてもやはり階層的な機能性生体材料が作製できるかもしれないが、これは低コストで環境にやさしいバイオセンサー、バイオフォトニック素子及び生体触媒をもたらすことであろう。
[Conclusion]
The present application has presented, for the first time, a simple production method for producing a “diatom-like” composite structure from a small dipeptide and its growth mechanism. The formation of small nuclei induced by artificial supersaturation causes morphological transitions by self-assembly and the creation of unique microstructures. Microspheres have a porous structure similar to diatoms, but the structure of diatoms is known as a high-sensitivity biosensor (Non-Patent Documents 32-34). Therefore, even if a short peptide (a peptide having less than 10 amino acid residues) is replaced with another functional biomolecule such as a fluorescent protein, polypeptide or enzyme, a hierarchical functional biomaterial may still be produced. However, this would result in low cost and environmentally friendly biosensors, biophotonic devices and biocatalysts.

多孔質で親水性がある構造体を作製したので、センサー、触媒などの応用が期待できる。また作製する手法は、他のペプチド分子でも実現したことから一般性があり、医薬関連のバイオ材料から所望のマイクロ構造を作る場合、フォトニクスで必要とされる機能性分子を含んだマイクロ構造を作る場合に適応できる可能性がある。   Since a porous and hydrophilic structure was produced, applications such as sensors and catalysts can be expected. In addition, the method of production is general because it has been realized with other peptide molecules, and when creating a desired microstructure from biomaterials related to medicine, create a microstructure containing functional molecules required for photonics May be adaptable in some cases.

Whitesides, G. M., Mathias, J. P. & Seto, C. T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312-1319 (1991).Whitesides, G.M., Mathias, J.P. & Seto, C.T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.Science 254, 1312-1319 (1991). Gazit, E., Diversity for self-assembly, Nature Chem. 2, 1010-1011 (2010).Gazit, E., Diversity for self-assembly, Nature Chem. 2, 1010-1011 (2010). Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F., Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577-585 (2003).Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F., Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577-585 (2003). Zhang, S., Fabrication of novel biomaterials through molecular self-assembly. Nature biotechnology 21, 1171-1178 (2003).Zhang, S., Fabrication of novel biomaterials through molecular self-assembly.Nature biotechnology 21, 1171-1178 (2003). Hirst, A. R. et al., Biocatalytic induction of supramolecular order. Nature Chem. 2, 1089.1094 (2010).Hirst, A.R. et al., Biocatalytic induction of supramolecular order.Nature Chem. 2, 1089.1094 (2010). Williams, R. J. et al., Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotech. 4, 19-24 (2009).Williams, R.J. et al., Enzyme-assisted self-assembly under thermodynamic control.Nature Nanotech. 4, 19-24 (2009). Zhang, S. et al., A self-assembly pathway to aligned monodomain gels. Nature Mater. 9, 594-601 (2010).Zhang, S. et al., A self-assembly pathway to aligned monodomain gels.Nature Mater. 9, 594-601 (2010). Goerbitz, C.H., The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzhemer’s β-amyloid polypeptide. Chem. Commun. 2332-2334 (2006).Goerbitz, C.H., The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzhemer's β-amyloid polypeptide. Chem. Commun. 2332-2334 (2006). Goerbitz, C. H., Microporous organic materials from hydrophobic dipeptides. Chem. Euro. J. 13, 1022-1031 (2007).Goerbitz, C.H., Microporous organic materials from hydrophobic dipeptides. Chem. Euro. J. 13, 1022-1031 (2007). Wang, M., Du, L., Wu, X., Xiong, S. & Chu, P. K., Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano 5, 4448-4454 (2011).Wang, M., Du, L., Wu, X., Xiong, S. & Chu, P.K., Charged diphenylalanine nanotubes and controlled hierarchical self-assembly.ACS Nano 5, 4448-4454 (2011). Yan, X. & Moehwald, J. Li, H., Self-assembly of hexagonal microtubes and their optical wave guiding. Adv. Mater. 23, 2796-2801 (2011).Yan, X. & Moehwald, J. Li, H., Self-assembly of hexagonal microtubes and their optical wave guiding.Adv. Mater. 23, 2796-2801 (2011). Wang, W. and Chau, Y., Self-assembled peptide nanorods as building blocks of fractal patterns. Soft Matter 5, 4893-4898 (2009).Wang, W. and Chau, Y., Self-assembled peptide nanorods as building blocks of fractal patterns.Soft Matter 5, 4893-4898 (2009). Ge, J., Lei, J. & Zare, R. N., Protein-inorganic hybrid nanoflowers. Nature 11Nanotechnol. 7, 428-432 (2012).Ge, J., Lei, J. & Zare, R.N., Protein-inorganic hybrid nanoflowers.Nature 11 Nanotechnol. 7, 428-432 (2012). Kiyonaka, S. et al., Semi-wet peptide/protein array using supramolecular hydrogel. Nature Mater. 3, 58-64 (2004).Kiyonaka, S. et al., Semi-wet peptide / protein array using supramolecular hydrogel.Nature Mater. 3, 58-64 (2004). Cui, Y., Kim, S. N., Naik, R. R. & Mcalpine, M. C., Biomimetic peptide nanosensors. Acc. Chem. Res. 45, 696-704 (2012).Cui, Y., Kim, S.N., Naik, R.R. & Mcalpine, M.C., Biomimetic peptide nanosensors. Acc. Chem. Res. 45, 696-704 (2012). Silva, G. A. et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352-1355 (2004).Silva, G.A. et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers.Science 303, 1352-1355 (2004). Noorduin, W. L., Grinthal, A., Mahadevan, L. & Aizenberg, J., Rationally designed complex, hierarchical microarchitectures. Science 340, 832-837 (2013).Noorduin, W.L., Grinthal, A., Mahadevan, L. & Aizenberg, J., Rationally designed complex, hierarchical microarchitectures.Science 340, 832-837 (2013). Webber, M.J., Kessler, J.A. & Strupp, S.I., Emerging peptide nanomedicine to regenerate tissues and organs, J. Inter. Med. 267, 71-88 (2009).Webber, M.J., Kessler, J.A. & Strupp, S.I., Emerging peptide nanomedicine to regenerate tissues and organs, J. Inter. Med. 267, 71-88 (2009). Drain, C. M., Self-organization of self-assembled photonic materials into functional devices: Photo-switched conductors. Proc. Natl. Acad. Sci. USA 99, 5178-5182 (2002).Drain, C.M., Self-organization of self-assembled photonic materials into functional devices: Photo-switched conductors. Proc. Natl. Acad. Sci. USA 99, 5178-5182 (2002). Reches, M. & Gazit, E., Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625-627 (2003).Reches, M. & Gazit, E., Casting metal nanowires within discrete self-assembled peptide nanotubes.Science 300, 625-627 (2003). Reches, M. & Gazit, E., Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 1, 195-200 (2006).Reches, M. & Gazit, E., Controlled patterning of aligned self-assembled peptide nanotubes.Nature Nanotech. 1, 195-200 (2006). Abramovich, L. Adler et al., Self-assembled arrays of peptide nanotubes by vapor deposition. Nature Nanotech. 4, 849-854 (2009).Abramovich, L. Adler et al., Self-assembled arrays of peptide nanotubes by vapor deposition.Nature Nanotech. 4, 849-854 (2009). Yan, X., Zhu, P. & Li, J., Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877-1890 (2010).Yan, X., Zhu, P. & Li, J., Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877-1890 (2010). Hartgerink, J. D., Beniash, E. & Stupp, S. I., Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684-1688 (2001).Hartgerink, J.D., Beniash, E. & Stupp, S.I., Self-assembly and mineralization of peptide-amphiphile nanofibers.Science 294, 1684-1688 (2001). Ghadiri, M. R., Granja, J.R., Milligan, R.A., McRee, D.E. & Khazanovich, N., Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324-327 (1993).12Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E. & Khazanovich, N., Self-assembling organic nanotubes based on a cyclic peptide architecture.Nature 366, 324-327 (1993) .12 Vauthe, S., Santoso, S., Gong, H., Watson, N. & Zhang, S., Molecular self-assembly of surfactant-like peptides to form naotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 16, 5355-5360 (2002).Vauthe, S., Santoso, S., Gong, H., Watson, N. & Zhang, S., Molecular self-assembly of surfactant-like peptides to form naotubes and nanovesicles.Proc. Natl. Acad. Sci. USA 16 , 5355-5360 (2002). Fletcher, J. M. et al., Self-assembling cages from coiled-coil peptide modules. Science 340, 595-599 (2013).Fletcher, J.M. et al., Self-assembling cages from coiled-coil peptide modules.Science 340, 595-599 (2013). Uijin, R. V. & Smith, A. M., Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664-675 (2008).Uijin, R.V. & Smith, A.M., Designing peptide based nanomaterials.Chem. Soc. Rev. 37, 664-675 (2008). Amdursky, N., Molotskii, M., Gazit, E. & Rosenman, G., Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc. 132, 15632-15636 (2010).Amdursky, N., Molotskii, M., Gazit, E. & Rosenman, G., Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc. 132, 15632-15636 (2010). Saito, Y., Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996).Saito, Y., Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996). Huang, J., Stringfellow, T.C. & Yu, L., Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: implications for understanding its crystallization and polymorphism. J. Am. Chem. Soc. 130, 13973-13980 (2008).Huang, J., Stringfellow, TC & Yu, L., Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: implications for understanding its crystallization and polymorphism.J. Am. Chem. Soc. 130, 13973-13980 ( 2008). Poulsen, N. & Kroeger, N., Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. J. Bio. Chem. 279, 42993-42999 (2004).Poulsen, N. & Kroeger, N., Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. J. Bio.Chem. 279, 42993-42999 (2004). Scheffela, A., Poulsena, N., Shianb, S. & Kroeger, N., Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc. Natl. Acad. Sci. USA, 108, 3175.3180 (2011).Scheffela, A., Poulsena, N., Shianb, S. & Kroeger, N., Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc. Natl. Acad. Sci. USA, 108, 3175.3180 (2011). Marshall, K. E., Robinson, E. W., Hengel, S. M., Pasa.-Tolic, L. & Roesijadi, G., FRET imaging of diatoms expressing a biosilica-localized ribose sensor, PLoS ONE 7, e33771-1-8 (2012).Marshall, K.E., Robinson, E.W., Hengel, S.M., Pasa.-Tolic, L. & Roesijadi, G., FRET imaging of diatoms expressing a biosilica-localized ribose sensor, PLoS ONE 7, e33771-1-8 (2012).

Claims (12)

昇温により蒸発する溶媒にジフェニルアラニンペプチド及びフェニルアラニンペプチドからなる群から選択されるペプチドを分散した溶液を準備し、
前記溶液を電流印加によるジュール加熱により局所的に昇温させて、前記ペプチドの結晶核を形成し、
前記結晶核を中心とした自己成長により、前記ペプチドの粒子を形成する、
粒子形成方法。
Prepare a solution in which a peptide selected from the group consisting of diphenylalanine peptide and phenylalanine peptide is dispersed in a solvent that evaporates by raising the temperature,
The solution is locally heated by Joule heating by applying an electric current to form crystal nuclei of the peptide,
Forming particles of the peptide by self-growth around the crystal nucleus,
Particle formation method.
前記局所的な昇温により前記溶液中に前記ペプチドの過飽和状態を発現させ、もって前記ペプチドの結晶核を形成する、
請求項1に記載の粒子形成方法。
Expressing the supersaturated state of the peptide in the solution by the local temperature increase, thereby forming a crystal nucleus of the peptide,
The method for forming particles according to claim 1.
前記電流印加は、二つの電極を互いに対向させ、前記二つの電極間に電圧を印加することにより、前記電極間の空隙に存在する前記溶液に電流を流すことにより行う、請求項1または2に記載の粒子形成方法。   3. The method according to claim 1, wherein the current application is performed by causing two electrodes to face each other and applying a voltage between the two electrodes to cause a current to flow through the solution existing in a gap between the electrodes. 4. The method for forming particles according to the above. 前記二つの電極は先細の形状を有し、その先細の先端同士を対向させて前記電圧の印加を行う、請求項3に記載の粒子形成方法。   The particle forming method according to claim 3, wherein the two electrodes have a tapered shape, and the voltage is applied with the tapered tips facing each other. 前記電流印加は、少なくとも一本の導電経路に電圧を印加することにより行い、
前記導電経路上の前記溶液を局所的に加熱する、
請求項1または2に記載の粒子形成方法。
The current application is performed by applying a voltage to at least one conductive path,
Locally heating the solution on the conductive path,
The method for forming particles according to claim 1.
前記溶液を局所的に前記溶媒の沸点まで昇温させる、請求項1から5の何れかに記載の粒子形成方法。   The particle forming method according to claim 1, wherein the temperature of the solution is locally increased to a boiling point of the solvent. 前記昇温後、前記電流の印加を停止する、請求項1から6の何れかに記載の粒子形成方法。   The method according to claim 1, wherein the application of the current is stopped after the temperature is increased. 前記粒子は粒径が1μm〜20μmであり、表面に多孔体を有する球状粒子である、請求項1からの何れかに記載の粒子形成方法。 The particles are particle size 1 m to 20 m, a spherical particle with a porous material to the surface, the particles forming method according to any one of claims 1 to 7. 前記多孔体の平均孔径が20nm〜500nmである、請求項に記載の粒子形成方法。 The particle forming method according to claim 8 , wherein the porous body has an average pore diameter of 20 nm to 500 nm. 前記多孔体は平均直径が20nm〜300nmの複数のナノワイヤーからなるネットワーク構造を有する、請求項またはに記載の粒子形成方法。 The porous body having a network structure in which the average diameter comprising a plurality of nanowires 20 nm to 300 nm, the particles forming method according to claim 8 or 9. ジフェニルアラニンペプチド及びフェニルアラニンペプチドからなる群から選択されるペプチドからなり、
コアと、コアの周囲に多孔体のシェルとを有し、
前記多孔体の平均孔径が20nm〜500nmであり、
粒径が1μm〜20μmの粒子。
Consisting of a peptide selected from the group consisting of diphenylalanine peptide and phenylalanine peptide ,
Having a core and a porous shell around the core,
The porous body has an average pore diameter of 20 nm to 500 nm,
Particles having a particle size of 1 μm to 20 μm.
前記多孔体は平均直径が20nm〜300nmの複数のナノワイヤーからなるネットワーク構造を有する、請求項1に記載の粒子。 The porous body having a network structure in which the average diameter comprising a plurality of nanowires 20 nm to 300 nm, the particles of claim 1 1.
JP2014170457A 2014-08-25 2014-08-25 Particle forming method and particles Active JP6628299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014170457A JP6628299B2 (en) 2014-08-25 2014-08-25 Particle forming method and particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170457A JP6628299B2 (en) 2014-08-25 2014-08-25 Particle forming method and particles

Publications (2)

Publication Number Publication Date
JP2016044148A JP2016044148A (en) 2016-04-04
JP6628299B2 true JP6628299B2 (en) 2020-01-08

Family

ID=55635032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170457A Active JP6628299B2 (en) 2014-08-25 2014-08-25 Particle forming method and particles

Country Status (1)

Country Link
JP (1) JP6628299B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103462A (en) * 1987-10-08 1990-04-16 Mitsui Toatsu Chem Inc Separating agent for liquid chromatography
CA2030551C (en) * 1989-05-01 1998-08-25 Wayne Gombotz Process for producing small particles of biologically active molecules
WO1999008960A1 (en) * 1997-08-20 1999-02-25 Asahi Kasei Kogyo Kabushiki Kaisha Spherical porous body
JP4692513B2 (en) * 2000-06-14 2011-06-01 宇部興産株式会社 Method for producing polyamide porous particles
US7491699B2 (en) * 2002-12-09 2009-02-17 Ramot At Tel Aviv University Ltd. Peptide nanostructures and methods of generating and using the same
WO2010100847A1 (en) * 2009-03-03 2010-09-10 独立行政法人国立高等専門学校機構 Device for crystallizing biopolymer, cell of solution for crystallizing biopolymer, method for controlling alignment of biopolymer, method for crystallizing biopolymer and biopolymer crystal
JP2012158680A (en) * 2011-01-31 2012-08-23 Kyocera Chemical Corp Method of producing porous resin particle and porous resin particle
JP2016011835A (en) * 2012-03-30 2016-01-21 三菱化学株式会社 Liquid chromatography packing, liquid chromatography column and liquid chromatography apparatus

Also Published As

Publication number Publication date
JP2016044148A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
Elnathan et al. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences
Kim et al. Development of toroidal nanostructures by self-assembly: rational designs and applications
Nudelman et al. Biomineralization as an inspiration for materials chemistry
Smith et al. Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials
Meng et al. Gas-flow-induced reorientation to centimeter-sized two-dimensional colloidal single crystal of polystyrene particle
Park et al. Colloidal assembly of hierarchically structured porous supraparticles from flower-shaped protein–inorganic hybrid nanoparticles
Persson et al. Vertical oxide nanotubes connected by subsurface microchannels
Behrens Synthesis of inorganic nanomaterials mediated by protein assemblies
Tian et al. Fabrication of one-and two-dimensional gold nanoparticle arrays on computationally designed self-assembled peptide templates
Hu et al. Self-assembly of constrained cyclic peptides controlled by ring size
Castillo-León et al. Self–assembled peptide nanostructures for biomedical applications: advantages and challenges
Wang et al. Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid
Sakurai et al. A new approach to molecular self-assembly through formation of dipeptide-based unique architectures by artificial supersaturation
US20150299758A1 (en) Magnetic nanoparticles
Pan et al. Superhydrophobic surface-assisted preparation of microspheres and supraparticles and their applications
Nahi et al. Positively charged additives facilitate incorporation in inorganic single crystals
JP6628299B2 (en) Particle forming method and particles
Mariano et al. Bioinspired micro-and nano-structured neural interfaces
Wu et al. Using cell structures to develop functional nanomaterials and nanostructures–case studies of actin filaments and microtubules
Huang et al. Nanotubings of titania/polymer composite: template synthesis and nanoparticle inclusion
Koley et al. Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures
KR102609621B1 (en) Structure of surface active macromolecules
Schoen et al. Tuning colloidal association with specific peptide interactions
KR101597025B1 (en) Method of manufacturing 3D Architectures from Biological Liquid Crystals and the product for Sensing and Actuating Applications
Wang Bionanofiber-based Nanostructure Fabrication and Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191128

R150 Certificate of patent or registration of utility model

Ref document number: 6628299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250