JP6627760B2 - Crystallized glass - Google Patents
Crystallized glass Download PDFInfo
- Publication number
- JP6627760B2 JP6627760B2 JP2016538265A JP2016538265A JP6627760B2 JP 6627760 B2 JP6627760 B2 JP 6627760B2 JP 2016538265 A JP2016538265 A JP 2016538265A JP 2016538265 A JP2016538265 A JP 2016538265A JP 6627760 B2 JP6627760 B2 JP 6627760B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- thermal expansion
- heat treatment
- crystallized glass
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims description 214
- 239000013078 crystal Substances 0.000 claims description 93
- 238000010438 heat treatment Methods 0.000 claims description 90
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 31
- 239000006104 solid solution Substances 0.000 claims description 27
- 229910000500 β-quartz Inorganic materials 0.000 claims description 23
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 22
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 22
- 229910000174 eucryptite Inorganic materials 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 19
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 17
- 230000009477 glass transition Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 description 11
- 230000006911 nucleation Effects 0.000 description 11
- 125000006850 spacer group Chemical group 0.000 description 11
- 238000010899 nucleation Methods 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 4
- 229910052644 β-spodumene Inorganic materials 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
本発明は、結晶化ガラスに関する。 The present invention relates to crystallized glass.
光の干渉を用いた共振器は狭帯域の波長フィルタとして機能するため、波長多重光通信システムにおいて多くのデバイスに利用されている。中でもエタロンは半導体レーザーの波長安定化のための波長ロッカや、光信号の利得等化器などに用いられる重要な共振器である。エタロンとは、高い平面度と平行度をもつ一対の平行平面ハーフミラーから構成され、これに入射した光がハーフミラー間で多重干渉することにより、干渉次数に応じた波長の光が周期的に透過する性質を有する。 Since a resonator using optical interference functions as a narrow-band wavelength filter, it is used in many devices in a wavelength division multiplexing optical communication system. Among them, the etalon is an important resonator used for a wavelength locker for stabilizing the wavelength of a semiconductor laser, a gain equalizer for an optical signal, and the like. The etalon is composed of a pair of parallel flat half mirrors having high flatness and parallelism, and the light incident on the etalon causes multiple interference between the half mirrors, so that light of a wavelength corresponding to the interference order is periodically emitted. It has the property of transmitting light.
なお、ハーフミラーとハーフミラーの間をキャビティという。キャビティにおいては、使用中における温度変化によって透過波長が変化しないことが求められる。具体的には、温度変化によって光路長が変化しないように、温度が変化しても屈折率やハーフミラーどうしの間隔が変化しないことが求められている。 The space between the half mirrors is called a cavity. In the cavity, it is required that the transmission wavelength does not change due to a temperature change during use. Specifically, it is required that the refractive index and the interval between the half mirrors do not change even if the temperature changes so that the optical path length does not change due to the temperature change.
そのため、キャビティ内は、温度に対する屈折率の変化が極めて小さい空気で満たされている。なお、キャビティ内を空気で満たす場合、ハーフミラーとハーフミラーの間にスペーサーを配してエアギャップを形成している。 Therefore, the cavity is filled with air whose refractive index changes very little with temperature. When the cavity is filled with air, a spacer is arranged between the half mirrors to form an air gap.
また、温度が変化しても、ハーフミラーどうしの間隔が変化しないようにするために、スペーサーとしては特許文献1に示すような熱膨張係数の小さい結晶化ガラスが用いられている。 Further, in order to prevent the space between the half mirrors from changing even when the temperature changes, crystallized glass having a small thermal expansion coefficient as shown in Patent Document 1 is used as the spacer.
なお、スペーサーとハーフミラーを接合するにあたっては、使用中の温度変化によってハーフミラーどうしの間隔を大きく変化させる原因となる接着剤を用いなくてすむオプティカルコンタクト法で接合される。また、オプティカルコンタクト法では、スペーサーとハーフミラーを短時間でその接合強度を高めるために、スペーサーとハーフミラーを突き合わせた後、ガラス転移点以下の温度まで加熱して接合することがある。
しかしながら、スペーサーとハーフミラーとを加熱しながら接合した場合、接合時における熱処理でスペーサーの寸法に変化はないものの、熱処理を行った後の使用中における温度変化によってスペーサーの寸法が変化し、ハーフミラーどうしの間隔を一定に維持できず所望の光学特性が得られないという問題があった。 However, when the spacer and the half mirror are joined while being heated, the dimension of the spacer does not change due to the heat treatment during the joining, but the dimension of the spacer changes due to a temperature change during use after the heat treatment. There has been a problem that the distance between the two cannot be kept constant, and desired optical characteristics cannot be obtained.
本発明の目的は、ガラス転移点以下の温度で熱処理がなされ、その後、温度が変化するような環境に曝されたとしても、寸法変化を抑えることが可能な結晶化ガラスを提供することである。 An object of the present invention is to provide a crystallized glass capable of suppressing a dimensional change even when subjected to a heat treatment at a temperature equal to or lower than the glass transition point and thereafter exposed to an environment in which the temperature changes. .
すなわち、本発明の結晶化ガラスは、300℃〜ガラス転移点の温度で24時間熱処理を行い、熱処理前後における熱膨張係数の差(Δα)が±0.20×10−7/℃以内であり、且つ、前記熱処理後の−40〜80℃における熱膨張係数が0±0.3×10−7/℃以内であることを特徴とする。That is, the crystallized glass of the present invention is subjected to heat treatment at a temperature of 300 ° C. to the glass transition point for 24 hours, and the difference (Δα) between the thermal expansion coefficients before and after the heat treatment is within ± 0.20 × 10 −7 / ° C. And a thermal expansion coefficient at −40 to 80 ° C. after the heat treatment is within 0 ± 0.3 × 10 −7 / ° C.
本発明の結晶化ガラスは、ガラス転移点以下の温度で熱処理がなされ、その後、温度が変化するような環境に曝されたとしても、温度変化による寸法変化を抑えることができる。それ故、特に、温度変化による寸法安定性が求められるエタロン用のスペーサーとして好適に用いることができる。 The crystallized glass of the present invention is subjected to a heat treatment at a temperature equal to or lower than the glass transition point, and can suppress a dimensional change due to a temperature change even when exposed to an environment in which the temperature changes. Therefore, it can be particularly suitably used as a spacer for an etalon requiring dimensional stability due to a temperature change.
本発明の結晶化ガラスは、300℃〜ガラス転移点の温度で24時間熱処理を行い、熱処理前後における熱膨張係数の差(Δα)を±0.20×10−7/℃以内、すなわち−0.20×10−7/℃〜+0.20×10−7/℃と小さくすることで、熱処理による結晶化ガラスの熱膨張係数の変化を抑え、結晶化ガラスの寸法変化を抑えると共に、熱処理後の−40〜80℃における熱膨張係数を0±0.3×10−7/℃以内、すなわち−0.3×10−7/℃〜+0.3×10−7/℃とすることで、温度変化による結晶化ガラスの熱膨張係数の変化を抑え、結晶化ガラスの寸法変化を抑えている。そのため、ガラス転移点以下の温度で熱処理を行い、その後、温度が変化するような環境に曝したとしても、寸法変化の小さい結晶化ガラスを得ることができる。熱処理前後における熱膨張係数の差(Δα)の好ましい範囲は±0.15×10−7/℃以内、すなわち−0.15×10−7/℃〜+0.15×10−7/℃であり、熱処理後の−40〜80℃における熱膨張係数の好ましい範囲は0±0.25×10−7/℃以内、すなわち−0.25×10−7/℃〜+0.25×10−7/℃である。The crystallized glass of the present invention is subjected to a heat treatment at a temperature of 300 ° C. to a glass transition point for 24 hours, and a difference (Δα) in a coefficient of thermal expansion before and after the heat treatment is within ± 0.20 × 10 −7 / ° C. by reducing the .20 × 10 -7 /℃~+0.20×10 -7 / ℃ , suppressing a change in the thermal expansion coefficient of the crystallized glass by heat treatment, while suppressing the dimensional change of the crystallized glass, after heat treatment the thermal expansion coefficient in the -40~80 ℃ 0 ± 0.3 × 10 -7 / ℃ within, i.e. by the -0.3 × 10 -7 /℃~+0.3×10 -7 / ℃ , The change in the thermal expansion coefficient of the crystallized glass due to the temperature change is suppressed, and the dimensional change of the crystallized glass is suppressed. Therefore, even if heat treatment is performed at a temperature equal to or lower than the glass transition point, and then the film is exposed to an environment in which the temperature changes, crystallized glass having a small dimensional change can be obtained. A preferred range of the difference in thermal expansion coefficient ([Delta] [alpha]) before and after the heat treatment within ± 0.15 × 10 -7 / ℃, i.e. be a -0.15 × 10 -7 /℃~+0.15×10 -7 / ℃ , the preferred range of the thermal expansion coefficient of -40 to 80 ° C. after the heat treatment 0 ± 0.25 × 10 -7 / ℃ within, i.e. -0.25 × 10 -7 /℃~+0.25×10 -7 / ° C.
尚、熱処理前後における熱膨張係数の差(Δα)を小さくし、しかも、熱処理後の−40〜80℃における熱膨張係数を0±0.3×10−7/℃以内とするには、結晶化ガラスにおいて、析出する結晶の種類、結晶化度(析出する結晶の割合)、結晶の組成、ガラス相の割合、ガラス相の組成等を調整すればよい。In order to reduce the difference (Δα) between the coefficients of thermal expansion before and after the heat treatment and to set the coefficient of thermal expansion between −40 and 80 ° C. after the heat treatment to be within 0 ± 0.3 × 10 −7 / ° C. In the case of fossilized glass, the type of crystal to be precipitated, the degree of crystallinity (the ratio of the crystal to be precipitated), the composition of the crystal, the ratio of the glass phase, the composition of the glass phase and the like may be adjusted.
具体的には、主結晶の種類として、β−石英固溶体又はβ−ユークリプタイト固溶体を析出させ、しかも、結晶化度が、質量百分率で72〜80%である結晶化ガラスとすることが好ましい。結晶化度のより好ましい範囲は、質量百分率で73〜79%である。主結晶として、負の熱膨張係数を有するβ−石英固溶体又はβ−ユークリプタイト固溶体を析出させ、結晶化度を質量百分率で73〜79%とすることで、結晶相の負の熱膨張係数とガラス相の正の熱膨張係数が相殺され、結晶化ガラスの熱膨張係数を0×10−7/℃(ゼロ)に近づけることができ、温度変化による寸法変化の小さい結晶化ガラスが得やすくなる。また、結晶化ガラスにおいて、熱処理によって構造変化を起こすガラス相の割合を少なくできるため、熱処理による熱膨張係数の変化を抑えることができ、熱処理による寸法変化の小さい結晶化ガラスが得やすくなる。尚、結晶化度が低くなりすぎると、結晶相の熱膨張係数が負の方向へ大きくなる傾向にあり、しかも、ガラス相のSiO2の含有量が増加し、ガラス相の熱膨張係数が低下する傾向にある。そのため、結晶相の負の熱膨張係数とガラス相の正の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が負の方向に大きくなる傾向にあり、温度変化による寸法変化が大きくなりやすい。一方、結晶化度が高くなりすぎると、結晶化ガラスの熱膨張係数が負から正の方向へ変化する傾向にあり、しかも、ガラス相のSiO2の含有量が低下し、ガラス相の熱膨張係数が大きくなる傾向にある。そのため、結晶相の熱膨張係数とガラス相の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、温度変化による寸法変化が大きくなりやすい。Specifically, as a kind of the main crystal, β-quartz solid solution or β-eucryptite solid solution is precipitated, and the crystallinity is preferably crystallized glass having a mass percentage of 72 to 80%. . A more preferred range of crystallinity is 73-79% by mass. As a main crystal, a β-quartz solid solution or a β-eucryptite solid solution having a negative coefficient of thermal expansion is precipitated, and the crystallinity is set to 73 to 79% by mass percentage, whereby a negative coefficient of thermal expansion of a crystal phase is obtained. And the positive coefficient of thermal expansion of the glass phase are offset, and the coefficient of thermal expansion of the crystallized glass can be brought close to 0 × 10 −7 / ° C. (zero), so that crystallized glass with small dimensional change due to temperature change can be easily obtained. Become. Further, in the crystallized glass, since the ratio of the glass phase which causes a structural change due to the heat treatment can be reduced, the change in the coefficient of thermal expansion due to the heat treatment can be suppressed, and the crystallized glass having a small dimensional change due to the heat treatment can be easily obtained. If the crystallinity is too low, the thermal expansion coefficient of the crystalline phase tends to increase in the negative direction, and the content of SiO 2 in the glass phase increases, and the thermal expansion coefficient of the glass phase decreases. Tend to. Therefore, the negative thermal expansion coefficient of the crystal phase and the positive thermal expansion coefficient of the glass phase are not canceled out, and the thermal expansion coefficient of the crystallized glass tends to increase in the negative direction, and the dimensional change due to temperature change increases. Cheap. On the other hand, if the degree of crystallinity is too high, the coefficient of thermal expansion of the crystallized glass tends to change from negative to positive, and furthermore, the content of SiO 2 in the glass phase decreases, and the thermal expansion of the glass phase decreases. The coefficient tends to increase. Therefore, the coefficient of thermal expansion of the crystal phase and the coefficient of thermal expansion of the glass phase are not offset, and the coefficient of thermal expansion of the crystallized glass tends to increase in the positive direction, and the dimensional change due to temperature change is likely to increase.
また、本発明の結晶化ガラスは、Li2O・Al2O3・nSiO2で表わされるβ−石英固溶体又はβ−ユークリプタイト固溶体におけるSiO2の固溶度nをモル比で6.9以上であることが好ましい。固溶度nをモル比で6.9以上とすることで、β−石英固溶体又はβ−ユークリプタイト固溶体の熱膨張係数が負の方向に大きくなりすぎるのを抑えて熱処理後の−40〜80℃における結晶化ガラスの熱膨張係数を0×10−7/℃(ゼロ)に近づけることができる。固溶度nが小さくなりすぎると、β−石英固溶体又はβ−ユークリプタイト固溶体の熱膨張係数が負の方向に大きくなりすぎる傾向にあり、熱処理前後における熱膨張係数の差(Δα)を小さくしながら、結晶化ガラスの熱膨張係数を0×10−7/℃に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。固溶度nのより好ましい範囲はモル比で7.0以上である。In the crystallized glass of the present invention, the solid solubility n of SiO 2 in the β-quartz solid solution or β-eucryptite solid solution represented by Li 2 O · Al 2 O 3 · nSiO 2 is 6.9 in molar ratio. It is preferable that it is above. By setting the solid solubility n to 6.9 or more in molar ratio, the coefficient of thermal expansion of the β-quartz solid solution or β-eucryptite solid solution is suppressed from becoming too large in the negative direction, and -40 to 40 after the heat treatment. The coefficient of thermal expansion of the crystallized glass at 80 ° C. can approach 0 × 10 −7 / ° C. (zero). If the solid solubility n is too small, the coefficient of thermal expansion of the β-quartz solid solution or β-eucryptite solid solution tends to be too large in the negative direction, and the difference (Δα) between the coefficients of thermal expansion before and after the heat treatment is reduced. However, it is difficult to make the thermal expansion coefficient of the crystallized glass close to 0 × 10 −7 / ° C., and it is difficult to obtain a crystallized glass having a small dimensional change due to a temperature change. A more preferable range of the solid solubility n is 7.0 or more in molar ratio.
また、本発明の結晶化ガラスは、20〜300℃における結晶相の熱膨張係数は−11×10−7〜0×10−7/℃であることが好ましい。結晶相の熱膨張係数が負の方向に大きくなりすぎると、熱処理前後における熱膨張係数の差(Δα)を小さくしながら、熱処理後の−40〜80℃における結晶化ガラスの結晶化ガラスの熱膨張係数を0×10−7/℃に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。結晶相の熱膨張係数のより好ましい範囲は−10.5×10−7〜0×10−7/℃である。In the crystallized glass of the present invention, the thermal expansion coefficient of the crystal phase at 20 to 300 ° C. is preferably from −11 × 10 −7 to 0 × 10 −7 / ° C. If the thermal expansion coefficient of the crystal phase becomes too large in the negative direction, the difference in thermal expansion coefficient before and after the heat treatment (Δα) is reduced, and the heat of the crystallized glass at −40 to 80 ° C. after the heat treatment is reduced. It becomes difficult to make the expansion coefficient close to 0 × 10 −7 / ° C., and it becomes difficult to obtain crystallized glass having a small dimensional change due to a temperature change. A more preferable range of the thermal expansion coefficient of the crystal phase is -10.5 × 10 −7 to 0 × 10 −7 / ° C.
また、本発明の結晶化ガラスは、結晶相が、質量百分率で、SiO2 65.0〜80.0%、Al2O3 10.0〜18.0%、Li2O 3.0〜6.0%、MgO 0〜2.0%、ZnO 0〜2.0%、TiO2 0.5〜4.0%、ZrO2 0.5〜4.0%、P2O5 0〜0.5%を含有することが好ましい。結晶相がこのような組成を有するものであれば、主結晶の種類として、β−石英固溶体又はβ−ユークリプタイト固溶体が析出し、また、結晶化度、固溶度n、結晶の熱膨張係数が上記範囲となりやすくなるため、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得やすくなる。結晶相の組成範囲を上記のように決定した理由は以下の通りである。In the crystallized glass of the present invention, the crystal phase has a SiO 2 content of 65.0 to 80.0%, an Al 2 O 3 content of 10.0 to 18.0%, and a Li 2 O content of 3.0 to 6% by mass percentage. .0%, MgO 0~2.0%, ZnO 0~2.0%, TiO 2 0.5~4.0%, ZrO 2 0.5~4.0%, P 2 O 5 0~0. Preferably, it contains 5%. If the crystal phase has such a composition, β-quartz solid solution or β-eucryptite solid solution precipitates as the type of main crystal, and the crystallinity, solid solubility n, and thermal expansion of the crystal are increased. Since the coefficient tends to be in the above range, crystallized glass having a small dimensional change due to heat treatment or temperature change is easily obtained. The reasons for determining the composition range of the crystal phase as described above are as follows.
SiO2は、結晶相において、結晶を構成する成分であり、その含有量は65.0〜80.0%である。SiO2の含有量が多くなると、結晶相の熱膨張係数が負から正の方向へ変化する傾向にあり、結晶相とガラス相の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が少なくなると、Li2O・Al2O3・nSiO2で表わされるβ−石英固溶体又はβ−ユークリプタイト固溶体におけるSiO2の固溶度nが小さくなりやすく、結晶相の熱膨張係数が負の方向に大きくなりすぎる傾向にあり、熱処理前後における熱膨張係数の差(Δα)を小さくしながら、熱処理後の−40〜80℃における結晶化ガラスの結晶化ガラスの熱膨張係数を0×10−7/℃に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。SiO2のより好ましい範囲は70.0〜78.0%である。SiO 2 is a component constituting a crystal in the crystal phase, and its content is 65.0 to 80.0%. When the content of SiO 2 is increased, the thermal expansion coefficient of the crystal phase tends to change from negative to positive, the thermal expansion coefficients of the crystal phase and the glass phase are not canceled out, and the thermal expansion coefficient of the crystallized glass is reduced. It tends to increase in the positive direction, making it difficult to obtain crystallized glass with small dimensional changes due to heat treatment and temperature changes. On the other hand, when the content is small, the solid solubility n of SiO 2 in the β-quartz solid solution or β-eucryptite solid solution represented by Li 2 O.Al 2 O 3 .nSiO 2 tends to be small, and the heat of the crystal phase is low. The coefficient of expansion tends to be too large in the negative direction, and the coefficient of thermal expansion of the crystallized glass at −40 to 80 ° C. after the heat treatment is reduced while reducing the difference (Δα) between the coefficients of thermal expansion before and after the heat treatment. To 0 × 10 −7 / ° C., making it difficult to obtain a crystallized glass having a small dimensional change due to a temperature change. A more preferred range of SiO 2 is 70.0 to 78.0%.
Al2O3は、結晶相において、結晶を構成する成分であり、その含有量は10.0〜18.0%である。Al2O3の含有量が多くなると、結晶におけるSiO2の固溶度nが小さくなりやすく、結晶相の熱膨張係数が負の方向に大きくなりすぎる傾向にあり、熱処理前後における熱膨張係数の差(Δα)を小さくしながら、熱処理後の−40〜80℃における結晶化ガラスの結晶化ガラスの熱膨張係数を0×10−7/℃に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が少なくなると、結晶相の熱膨張係数が大きくなりやすく、結晶相とガラス相の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。Al2O3のより好ましい範囲は13.0〜18.0%である。Al 2 O 3 is a component constituting the crystal in the crystal phase, and its content is 10.0 to 18.0%. When the content of Al 2 O 3 increases, the solid solubility n of SiO 2 in the crystal tends to decrease, and the thermal expansion coefficient of the crystal phase tends to be too large in the negative direction. While making the difference (Δα) small, it is difficult to make the thermal expansion coefficient of the crystallized glass at −40 to 80 ° C. after the heat treatment close to 0 × 10 −7 / ° C., and the crystal whose dimensional change due to temperature change is small. It becomes difficult to obtain glass. On the other hand, when the content is small, the thermal expansion coefficient of the crystal phase tends to increase, the thermal expansion coefficients of the crystal phase and the glass phase are not canceled out, and the thermal expansion coefficient of the crystallized glass tends to increase in the positive direction. In addition, it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of Al 2 O 3 is from 13.0 to 18.0%.
Li2Oは、結晶相において、結晶を構成する成分であり、その含有量は3.0〜6.0%である。Li2Oの含有量が多くなると、結晶におけるSiO2の固溶度nが小さくなりやすく、結晶相の熱膨張係数が負の方向に大きくなりすぎる傾向にあり、熱処理前後における熱膨張係数の差(Δα)を小さくしながら、熱処理後の−40〜80℃における結晶化ガラスの結晶化ガラスの熱膨張係数を0×10−7/℃に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が少なくなると、結晶相の熱膨張係数が大きくなりやすく、結晶相とガラス相の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。Li2Oのより好ましい範囲は3.0〜5.5%である。Li 2 O is a component constituting a crystal in the crystal phase, and its content is 3.0 to 6.0%. When the content of Li 2 O increases, the solid solubility n of SiO 2 in the crystal tends to decrease, and the thermal expansion coefficient of the crystal phase tends to be too large in the negative direction. While making (Δα) small, it becomes difficult to make the coefficient of thermal expansion of the crystallized glass at −40 to 80 ° C. after heat treatment close to 0 × 10 −7 / ° C., and crystallization with small dimensional change due to temperature change It becomes difficult to obtain glass. On the other hand, when the content is small, the thermal expansion coefficient of the crystal phase tends to increase, the thermal expansion coefficients of the crystal phase and the glass phase are not canceled out, and the thermal expansion coefficient of the crystallized glass tends to increase in the positive direction. In addition, it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of Li 2 O is a 3.0 to 5.5%.
MgO及びZnOは、結晶相において、結晶に固溶する成分であり、これら成分の含有量はそれぞれ0〜2.0%である。これら成分の含有量が多くなると、β−石英固溶体又はβ−ユークリプタイト固溶体の他に、スピネルやガーナイト等の異種結晶も析出しやすくなり、結晶相の熱膨張係数が大きくなったり、熱処理や使用時の温度変化で結晶化ガラスが破損する恐れがある。MgO及びZnOのより好ましい範囲は、それぞれ0〜1.5%である。 MgO and ZnO are components that form a solid solution with the crystal in the crystal phase, and the content of each of these components is 0 to 2.0%. When the content of these components increases, in addition to the β-quartz solid solution or β-eucryptite solid solution, heterogeneous crystals such as spinel and garnite are also likely to precipitate, and the thermal expansion coefficient of the crystal phase increases, The crystallized glass may be damaged by temperature changes during use. The more preferred ranges of MgO and ZnO are each 0 to 1.5%.
TiO2及びZrO2は、結晶相において、結晶核成分であり、これら成分の含有量はそれぞれ0.5〜4.0%である。これら成分の含有量が多くなると、異種結晶が析出しやすくなり、結晶相の熱膨張係数が大きくなったり、熱処理や使用時の温度変化で結晶化ガラスが破損する恐れがある。一方、これら成分の含有量が少なくなると、所望の結晶化度が得にくくなったり、核形成が不十分となり、所望の粒径の結晶が得られず、結晶を析出させる際に析出したβ−石英固溶体又はβ−ユークリプタイト固溶体が正の熱膨張係数を有するβ−スポジュメン固溶体に低温で転移しやすくなり、その結果、結晶化ガラスの熱膨張係数を0×10−7/℃(ゼロ)に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。TiO2及びZrO2のより好ましい範囲は、それぞれ0.5〜3.5%である。TiO 2 and ZrO 2 are crystal nucleus components in the crystal phase, and the content of each of these components is 0.5 to 4.0%. When the content of these components increases, heterogeneous crystals tend to precipitate, and the thermal expansion coefficient of the crystal phase may increase, or the crystallized glass may be damaged by heat treatment or a temperature change during use. On the other hand, when the content of these components is reduced, it becomes difficult to obtain a desired degree of crystallinity, or nucleation becomes insufficient, crystals having a desired particle size cannot be obtained, and β- Quartz solid solution or β-eucryptite solid solution easily transitions to β-spodumene solid solution having a positive coefficient of thermal expansion at a low temperature. As a result, the coefficient of thermal expansion of crystallized glass is 0 × 10 −7 / ° C. (zero). , And it is difficult to obtain a crystallized glass having a small dimensional change due to a temperature change. A more preferable range of the TiO 2 and ZrO 2 are each 0.5 to 3.5%.
P2O5は、結晶相において、結晶核となりうる成分であり、その含有量は0〜0.5%である。P2O5の含有量が多くなると、異種結晶が析出しやすくなり、結晶相の熱膨張係数が大きくなったり、熱処理や使用時の温度変化で結晶化ガラスが破損する恐れがある。P2O5のより好ましい範囲は0〜0.4%である。P 2 O 5 is a component that can be a crystal nucleus in the crystal phase, and its content is 0 to 0.5%. When the content of P 2 O 5 is increased, heterogeneous crystals are likely to be precipitated, the thermal expansion coefficient of the crystal phase is increased, or the crystallized glass may be damaged by heat treatment or a temperature change during use. A more preferable range of P 2 O 5 is 0 to 0.4%.
また、本発明の結晶化ガラスは、ガラス相が、質量百分率で、SiO2 30.0〜50.0%、Al2O3 31.0〜45.0%、Li2O 1.0〜3.0%、MgO 0〜1.0%、ZnO 0〜1.0%、TiO2 0〜5.0%、ZrO2 0〜5.0%、P2O5 0〜9.0%、BaO 0〜8.0%、Na2O 0〜4.0%、K2O 0〜4.0%を含有することが好ましい。ガラス相がこのような組成を有するものであれば、熱処理によるガラス相の構造変化が生じにくくなり、熱処理による寸法変化の小さい結晶化ガラスが得やすくなる。ガラス相の組成範囲を上記のように決定した理由は以下の通りである。In the crystallized glass of the present invention, the glass phase has a SiO 2 content of 30.0 to 50.0%, an Al 2 O 3 content of 31.0 to 45.0%, and a Li 2 O content of 1.0 to 3 in mass percentage. .0%, MgO 0~1.0%, ZnO 0~1.0%, TiO 2 0~5.0%, ZrO 2 0~5.0%, P 2 O 5 0~9.0%, BaO 0~8.0%, Na 2 O 0~4.0% , preferably contains K 2 O 0~4.0%. If the glass phase has such a composition, the structural change of the glass phase due to the heat treatment is less likely to occur, and crystallized glass having a small dimensional change due to the heat treatment is easily obtained. The reasons for determining the composition range of the glass phase as described above are as follows.
SiO2は、ガラス相において、ガラスの骨格を形成する成分であり、その含有量は30.0〜50.0%である。SiO2の含有量が多くなると、ガラス相の熱膨張係数が小さくなりやすく、結晶相とガラス相の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が負の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が少なくなると、ガラス相の熱膨張係数が大きくなりやすく、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。SiO2のより好ましい範囲は32.0〜48.0%である。SiO 2 is a component that forms the skeleton of glass in the glass phase, and its content is 30.0 to 50.0%. When the content of SiO 2 is increased, the thermal expansion coefficient of the glass phase tends to be small, the thermal expansion coefficients of the crystal phase and the glass phase are not offset, and the thermal expansion coefficient of the crystallized glass tends to increase in the negative direction. This makes it difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. On the other hand, when the content is small, the thermal expansion coefficient of the glass phase tends to increase, and the thermal expansion coefficient changes due to the structural change of the glass phase during heat treatment, or the thermal expansion coefficient of the crystallized glass increases in the positive direction. And it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of SiO 2 is 32.0 to 48.0%.
Al2O3は、SiO2と同様に、ガラス相において、ガラスの骨格を形成する成分であり、その含有量は31.0〜45.0%である。Al2O3の含有量が多くなると、ガラス相の熱膨張係数が小さくなりやすく、結晶相とガラス相の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が負の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が少なくなると、ガラス相の熱膨張係数が大きくなりやすく、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。Al2O3のより好ましい範囲は32.0〜42.0%である。Al 2 O 3 , like SiO 2 , is a component that forms a glass skeleton in a glass phase, and its content is 31.0 to 45.0%. When the content of Al 2 O 3 increases, the thermal expansion coefficient of the glass phase tends to decrease, and the thermal expansion coefficients of the crystal phase and the glass phase are not canceled out, and the thermal expansion coefficient of the crystallized glass increases in the negative direction. This tends to make it difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. On the other hand, when the content is small, the thermal expansion coefficient of the glass phase tends to increase, and the thermal expansion coefficient changes due to the structural change of the glass phase during heat treatment, or the thermal expansion coefficient of the crystallized glass increases in the positive direction. And it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of Al 2 O 3 is from 32.0 to 42.0%.
Li2Oは、ガラス相において、ガラス修飾成分であり、その含有量は1.0〜3.0である。Li2Oの含有量が多くなると、ガラス相の熱膨張係数が大きくなりやすく、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が少なくなると、ガラス相の熱膨張係数が小さくなりやすく、結晶相とガラス相の熱膨張係数が相殺されず、結晶化ガラスの熱膨張係数が負の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。Li2Oのより好ましい範囲は1.5〜3.0%である。Li 2 O is a glass modifying component in the glass phase, and its content is 1.0 to 3.0. When the content of Li 2 O increases, the coefficient of thermal expansion of the glass phase tends to increase, and the coefficient of thermal expansion changes due to structural change of the glass phase during heat treatment, or the coefficient of thermal expansion of crystallized glass is positive. And it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. On the other hand, when the content is small, the thermal expansion coefficient of the glass phase tends to be small, the thermal expansion coefficients of the crystal phase and the glass phase are not offset, and the thermal expansion coefficient of the crystallized glass tends to increase in the negative direction. In addition, it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of Li 2 O is 1.5 to 3.0%.
MgO及びZnOは、ガラス相において、ガラス修飾成分であり、これら成分の含有量はそれぞれ0〜1.0%である。これら成分の含有量が多くなると、ガラス相の熱膨張係数が大きくなりやすく、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。また、失透しやすくなり、均質なガラスが得にくくなる。MgO及びZnOのより好ましい範囲は、それぞれ0〜0.8%である。 MgO and ZnO are glass modifying components in the glass phase, and the content of each of these components is 0 to 1.0%. When the content of these components increases, the thermal expansion coefficient of the glass phase tends to increase, and the thermal expansion coefficient changes due to the structural change of the glass phase during heat treatment, or the thermal expansion coefficient of the crystallized glass increases in the positive direction. It tends to be large, making it difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. In addition, the glass tends to be devitrified, making it difficult to obtain a homogeneous glass. The more preferred ranges of MgO and ZnO are each 0 to 0.8%.
TiO2及びZrO2は、ガラス相において、ガラス修飾成分であり、これら成分の含有量はそれぞれ0〜5.0%である。これら成分の含有量が多くなると、失透しやすくなり、均質なガラスが得にくくなる。TiO2及びZrO2のより好ましい範囲は、それぞれ0〜4.0%である。TiO 2 and ZrO 2 are glass modifying components in the glass phase, and the content of each of these components is 0 to 5.0%. When the content of these components is large, the glass tends to be devitrified, and it is difficult to obtain a homogeneous glass. A more preferable range of the TiO 2 and ZrO 2 are each from 0 to 4.0%.
P2O5は、ガラス相において、ガラスの骨格を形成する成分であり、その含有量は0〜9.0%である。P2O5の含有量が多くなると、結晶化ガラスの熱膨張係数が正の方向に著しく大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。また、失透しやすくなり、均質なガラスが得にくくなる。P2O5のより好ましい範囲は0〜7.0%である。P 2 O 5 is a component that forms the skeleton of glass in the glass phase, and its content is 0 to 9.0%. When the content of P 2 O 5 increases, the coefficient of thermal expansion of the crystallized glass tends to increase significantly in the positive direction, and it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. In addition, the glass tends to be devitrified, making it difficult to obtain a homogeneous glass. A more preferable range of P 2 O 5 is 0 to 7.0%.
BaOは、ガラス相において、ガラス修飾成分であり、その含有量は0〜8.0%である。BaOの含有量が多くなると、結晶化ガラスの熱膨張係数が正の方向に著しく大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。また、失透しやすくなり、均質なガラスが得にくくなる。BaOのより好ましい範囲は0〜7.0%である。 BaO is a glass modifying component in the glass phase, and its content is 0 to 8.0%. When the content of BaO increases, the coefficient of thermal expansion of the crystallized glass tends to increase significantly in the positive direction, and it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. In addition, the glass tends to be devitrified, making it difficult to obtain a homogeneous glass. A more preferred range of BaO is 0 to 7.0%.
Na2O及びK2Oは、ガラス相において、ガラス修飾成分であり、これら成分の含有量はそれぞれ0〜4.0%である。これら成分の含有量が多くなると、ガラス相の熱膨張係数が正の方向に大きくなり、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。Na2O及びK2Oのより好ましい範囲は、それぞれ0〜3.0%である。Na 2 O and K 2 O are glass modifying components in the glass phase, and the content of each of these components is 0 to 4.0%. When the content of these components increases, the thermal expansion coefficient of the glass phase increases in the positive direction, and the thermal expansion coefficient changes due to the structural change of the glass phase during heat treatment, or the thermal expansion coefficient of the crystallized glass increases. And it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of Na 2 O and K 2 O are respectively 0 to 3.0%.
また、本発明の結晶化ガラスは、質量百分率で、SiO2 55.0〜70.0%、Al2O3 15.0〜30.0%、Li2O 2.0〜6.0%、MgO 0〜2.0%、ZnO 0〜2.0%、TiO2 0〜4.0%、ZrO2 0〜4.0%、P2O5 0〜4.0%、BaO 0〜2.0%、Na2O 0〜4.0%、K2O 0〜4.0%の組成を有することが好ましい。結晶化ガラスがこのような組成を有するものであれば、上記のような結晶相及びガラス相となりやすく、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得やすくなる。結晶化ガラスの組成範囲を上記のように決定した理由は以下の通りである。In addition, the crystallized glass of the present invention has, by mass percentage, 55.0 to 70.0% of SiO 2, 15.0 to 30.0% of Al 2 O 3, and 2.0 to 6.0% of Li 2 O; MgO 0~2.0%, ZnO 0~2.0%, TiO 2 0~4.0%, ZrO 2 0~4.0%, P 2 O 5 0~4.0%, BaO 0~2. 0%, Na 2 O 0~4.0% , preferably has a composition of K 2 O 0~4.0%. If the crystallized glass has such a composition, the crystallized glass and the glassy phase are easily formed as described above, and the crystallized glass having a small dimensional change due to heat treatment or temperature change is easily obtained. The reasons for determining the composition range of the crystallized glass as described above are as follows.
SiO2はガラスの骨格を形成する成分であると共に結晶を構成する成分であり、その含有量は55.0〜70.0%である。SiO2の含有量が少なくなると、所定の結晶の析出が難しくなる共に、ガラス相中のSiO2の含有量が少なくなってガラス相の熱膨張係数が正の方向に大きくなり、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が多くなると、ガラスの溶融性が悪化しやすく、均質なガラスが得にくくなる。SiO2のより好ましい範囲は60.0〜70.0%である。SiO 2 is a component that forms a skeleton of glass and also a component that forms a crystal, and its content is 55.0 to 70.0%. When the content of SiO 2 is reduced, the precipitation of predetermined crystals becomes difficult, and the content of SiO 2 in the glass phase is reduced, so that the coefficient of thermal expansion of the glass phase increases in the positive direction. The thermal expansion coefficient tends to change due to the structural change of the glass phase, and the thermal expansion coefficient of the crystallized glass tends to increase in the positive direction, making it difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. On the other hand, when the content is large, the melting property of the glass tends to deteriorate, and it is difficult to obtain a homogeneous glass. A more preferred range of SiO 2 is 60.0 to 70.0%.
Al2O3は、SiO2と同様にガラスの骨格を形成する成分であると共に結晶を構成する成分であり、その含有量は15.0〜30.0%である。Al2O3の含有量が少なくなると、所定の結晶の析出が難しくなる共に、ガラス相中のAl2O3の含有量が少なくなってガラス相の熱膨張係数が正の方向に大きくなり、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、含有量が多くなると、ガラスの溶融性が悪化しやすく、均質なガラスが得にくくなる。Al2O3のより好ましい範囲は17.0〜28.0%である。Al 2 O 3 is a component that forms a skeleton of glass as well as SiO 2, and is a component that constitutes a crystal, and its content is 15.0 to 30.0%. When the content of Al 2 O 3 decreases, the precipitation of a predetermined crystal becomes difficult, and the content of Al 2 O 3 in the glass phase decreases, and the thermal expansion coefficient of the glass phase increases in the positive direction. The coefficient of thermal expansion changes due to the structural change of the glass phase during heat treatment, and the coefficient of thermal expansion of crystallized glass tends to increase in the positive direction. It becomes difficult. On the other hand, when the content is large, the melting property of the glass tends to deteriorate, and it is difficult to obtain a homogeneous glass. A more preferred range for Al 2 O 3 is 17.0 to 28.0%.
Li2Oは、結晶を構成する成分であると共に、ガラス修飾成分であり、その含有量は2.0〜6.0%である。Li2Oの含有量が少なくなると、所望の結晶の析出が難しくなる。一方、含有量が多くなると、ガラス相中のLi2Oの含有量が多くなってガラス相の熱膨張係数が正の方向に大きくなり、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。Li2Oのより好ましい範囲は2.0〜5.5%である。Li 2 O is a component constituting the crystal and is also a glass modifying component, and its content is 2.0 to 6.0%. If the content of Li 2 O is small, it becomes difficult to deposit desired crystals. On the other hand, if the content increases, the content of Li 2 O in the glass phase increases, and the thermal expansion coefficient of the glass phase increases in the positive direction. Or the coefficient of thermal expansion of the crystallized glass tends to increase in the positive direction, making it difficult to obtain a crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of Li 2 O is a 2.0 to 5.5%.
MgO及びZnOは、結晶に固溶する成分であり、これら成分の含有量はそれぞれ0〜2.0%である。これら成分の含有量が多くなると、β−石英固溶体又はβ−ユークリプタイト固溶体の他に、スピネルやガーナイト等の異種結晶も析出しやすくなり、熱処理や使用時の温度変化で破損する恐れがある。MgO及びZnOのより好ましい範囲は、それぞれ0〜1.5%である。 MgO and ZnO are components that form a solid solution in the crystal, and the content of each of these components is 0 to 2.0%. When the content of these components is increased, in addition to the β-quartz solid solution or β-eucryptite solid solution, heterogeneous crystals such as spinel and garnite are also likely to precipitate, and may be damaged by heat treatment or temperature change during use. . The more preferred ranges of MgO and ZnO are each 0 to 1.5%.
TiO2及びZrO2は結晶化工程で結晶を析出させるための核形成成分であり、これら成分の含有量はそれぞれ0〜4.0%である。これら成分の含有量が多くなると、ガラスを溶融、成形する際に失透しやすくなり、均質なガラスが得にくくなる。TiO2及びZrO2のより好ましい範囲は、それぞれ0〜3.5%である。尚、TiO2とZrO2の合計量が少なすぎると、所望の結晶化度が得にくくなったり、核形成作用が不十分となり、所望の粒径の結晶が得られず、結晶を析出させる際に析出したβ−石英固溶体又はβ−ユークリプタイト固溶体が低温でβ−スポジュメン固溶体に転移しやすくなり、その結果、結晶化ガラスの熱膨張係数を0×10−7/℃(ゼロ)に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。また、一方、TiO2とZrO2の合計量が多くなりすぎると、ガラスを溶融、成形する際に失透しやすくなり、均質なガラスが得にくくなる。TiO2とZrO2の合計量は1.5〜6.0%であることがより好ましい。TiO 2 and ZrO 2 are nucleation components for precipitating crystals in the crystallization step, and the content of each of these components is 0 to 4.0%. When the content of these components is large, the glass tends to be devitrified when being melted and formed, and it is difficult to obtain a homogeneous glass. A more preferable range of the TiO 2 and ZrO 2 are each from 0 to 3.5%. If the total amount of TiO 2 and ZrO 2 is too small, it is difficult to obtain a desired degree of crystallinity or the nucleating action becomes insufficient, and crystals having a desired particle size cannot be obtained. The β-quartz solid solution or β-eucryptite solid solution easily precipitates at low temperature and easily transforms to β-spodumene solid solution, and as a result, the thermal expansion coefficient of the crystallized glass approaches 0 × 10 −7 / ° C. (zero). It becomes difficult to obtain crystallized glass having a small dimensional change due to a temperature change. On the other hand, if the total amount of TiO 2 and ZrO 2 is too large, the glass tends to be devitrified when being melted and formed, and it is difficult to obtain a homogeneous glass. More preferably, the total amount of TiO 2 and ZrO 2 is 1.5 to 6.0%.
P2O5は、ガラスの核形成を容易にする成分であり、その含有量は0〜4.0%である。P2O5の含有量が多くなると、ガラスが分相しやすくなり、均質なガラスが得にくくなる。P2O5の好ましい範囲は0〜3.0%である。P 2 O 5 is a component that facilitates nucleation of glass, and its content is 0 to 4.0%. When the content of P 2 O 5 is increased, the phase of the glass is easily separated, and it is difficult to obtain a homogeneous glass. The preferred range of P 2 O 5 is 0 to 3.0%.
BaOは、ガラスの粘性を低下させて、ガラス溶融性及び成形性を向上させる成分であり、その含有量は、0〜2.0%である。BaOの含有量が多くなると、ガラスを溶融、成形する際に失透しやすくなり、均質なガラスが得にくくなる。BaOのより好ましい範囲は0〜1.8%である。 BaO is a component that lowers the viscosity of the glass and improves the glass meltability and moldability, and its content is 0 to 2.0%. When the content of BaO is large, the glass tends to be devitrified when being melted and formed, and it is difficult to obtain a homogeneous glass. A more preferable range of BaO is 0 to 1.8%.
Na2O及びK2Oは、ガラスの粘性を低下させて、ガラス溶融性及び成形性を向上させる成分であり、これら成分の含有量はそれぞれ0〜4.0%である。これら成分の含有量が多くなると、ガラス相の熱膨張係数が正の方向に大きくなり、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。Na2O及びK2Oのより好ましい範囲は、それぞれ0〜2.0%である。Na 2 O and K 2 O are components that reduce the viscosity of glass to improve glass meltability and moldability, and the content of each of these components is 0 to 4.0%. When the content of these components increases, the thermal expansion coefficient of the glass phase increases in the positive direction, and the thermal expansion coefficient changes due to the structural change of the glass phase during heat treatment, or the thermal expansion coefficient of the crystallized glass increases. And it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. A more preferred range of Na 2 O and K 2 O are respectively 0 to 2.0%.
また、所定の特性を損なわない範囲で、ガラスの粘性を低下させて、ガラス溶融性及び成形性を向上させる成分であるSrO、CaO、B2O3等や、清澄剤であるSnO2、Cl、Sb2O3、As2O3等を合量で10%まで含有させることができる。これら成分の含有量が多くなると、ガラス相の熱膨張係数が正の方向に大きくなり、熱処理の際にガラス相の構造変化によって熱膨張係数が変化したり、結晶化ガラスの熱膨張係数が正の方向に大きくなる傾向にあり、熱処理や温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。また、所望の結晶が析出しにくくなる。Further, SrO, CaO, B 2 O 3, etc., which are components that reduce the viscosity of the glass and improve the glass meltability and formability, and SnO 2 , Cl, which are fining agents, as long as the predetermined characteristics are not impaired. , Sb 2 O 3 , As 2 O 3, etc., in a total amount of up to 10%. When the content of these components increases, the thermal expansion coefficient of the glass phase increases in the positive direction, and the thermal expansion coefficient changes due to the structural change of the glass phase during heat treatment, or the thermal expansion coefficient of the crystallized glass increases. And it becomes difficult to obtain crystallized glass having a small dimensional change due to heat treatment or temperature change. In addition, it becomes difficult for desired crystals to precipitate.
本発明の結晶化ガラスは、以下のようにして製造することができる。 The crystallized glass of the present invention can be manufactured as follows.
まず、質量百分率で、SiO2 55.0〜70.0%、Al2O3 15.0〜30.0%、Li2O 2.0〜6.0%、MgO 0〜2.0%、ZnO 0〜2.0%、TiO2 0〜4.0%、ZrO2 0〜4.0%、P2O5 0〜4.0%、BaO 0〜2.0%、Na2O 0〜4.0%、K2O 0〜4.0%の組成を有するようにガラス原料を調合する。尚、必要に応じて、ガラスの溶融性及び成形性を向上させるための成分及び清澄剤等を添加してもよい。First, by mass percentage, SiO 2 55.0~70.0%, Al 2 O 3 15.0~30.0%, Li 2 O 2.0~6.0%, MgO 0~2.0%, ZnO 0-2.0%, TiO 2 0-4.0%, ZrO 2 0-4.0%, P 2 O 5 0-4.0%, BaO 0-2.0%, Na 2 O 0-0 A glass raw material is prepared so as to have a composition of 4.0% and K 2 O of 0 to 4.0%. In addition, you may add the component for improving the meltability and formability of glass, a fining agent, etc. as needed.
次に、調合したガラス原料を1550〜1750℃の温度で溶融した後、成形し、結晶性ガラスを得る。尚、成形方法としては、フロート法、プレス法、ロールアウト法等の様々な成形方法で成形することができる。 Next, the prepared glass raw material is melted at a temperature of 1550 to 1750 ° C., and then molded to obtain a crystalline glass. In addition, as a molding method, it can be molded by various molding methods such as a float method, a press method, and a roll-out method.
続いて、成形した結晶性ガラスを600〜800℃で1〜10時間熱処理して結晶核を形成させた後、さらに、800〜1000℃で0.5〜5時間熱処理を行い主結晶としてLi2O・Al2O3・nSiO2系の結晶を析出させることで、本発明の結晶化ガラスとすることができる。Subsequently, the formed crystalline glass is heat-treated at 600 to 800 ° C. for 1 to 10 hours to form a crystal nucleus, and further heat-treated at 800 to 1000 ° C. for 0.5 to 5 hours to obtain Li 2 as a main crystal. The crystallized glass of the present invention can be obtained by precipitating O.Al 2 O 3 .nSiO 2 based crystals.
尚、核形成温度が高すぎたり、低すぎる、若しくは、核形成時間が短すぎると、核形成作用が不十分となり、所望の粒径の結晶が得られず、結晶を析出させる際に析出するβ−石英固溶体又はβ−ユークリプタイト固溶体が、低温でβ−スポジュメン固溶体に転移しやすくなり、その結果、結晶化ガラスの熱膨張係数を0×10−7/℃(ゼロ)に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。また、核形成時間が長すぎる場合、核形成の効果は変わらないため、製造コストの上昇を招くことになる。If the nucleation temperature is too high or too low, or if the nucleation time is too short, the nucleation action becomes insufficient, crystals having a desired particle size cannot be obtained, and crystals are precipitated when the crystals are precipitated. β-quartz solid solution or β-eucryptite solid solution tends to be transformed into β-spodumene solid solution at a low temperature, and as a result, the thermal expansion coefficient of the crystallized glass is hard to approach 0 × 10 −7 / ° C. (zero). In addition, it becomes difficult to obtain crystallized glass having a small dimensional change due to a temperature change. If the nucleation time is too long, the effect of nucleation does not change, resulting in an increase in manufacturing cost.
また、結晶化温度が高すぎると、析出したβ−石英固溶体又はβ−ユークリプタイト固溶体が、β−スポジュメン固溶体に転移しやすくなり、その結果、結晶化ガラスの熱膨張係数を0×10−7/℃(ゼロ)に近づけにくくなり、温度変化による寸法変化の小さい結晶化ガラスが得にくくなる。一方、結晶化温度が低すぎたり、結晶化時間が短すぎると、結晶化度が低くなりすぎ、結晶化ガラスの熱膨張係数が負の方向に大きくなる傾向にあり、温度変化による寸法変化が大きくなりやすい。また、結晶化時間が長すぎる場合、結晶化の効果は変わらないため、製造コストの上昇を招くことになる。On the other hand, if the crystallization temperature is too high, the precipitated β-quartz solid solution or β-eucryptite solid solution tends to be transformed into β-spodumene solid solution, and as a result, the thermal expansion coefficient of the crystallized glass becomes 0 × 10 −. 7 / ° C. (zero), making it difficult to obtain a crystallized glass having a small dimensional change due to a temperature change. On the other hand, if the crystallization temperature is too low or the crystallization time is too short, the degree of crystallinity becomes too low, and the thermal expansion coefficient of the crystallized glass tends to increase in the negative direction, and the dimensional change due to temperature change is reduced. Easy to grow. If the crystallization time is too long, the effect of crystallization does not change, which leads to an increase in manufacturing cost.
また、本発明の結晶化ガラスは、上述したように、析出する結晶の種類、結晶化度(析出する結晶の割合)、結晶の組成、ガラス相の割合、ガラス相の組成等を調整することで、熱処理前後における熱膨張係数の差(Δα)を小さくし、しかも、熱処理後の−40〜80℃における結晶化ガラスの熱処理後の熱膨張係数を0に近づけているため、熱処理や温度変化による寸法変化を抑えることができる。 Further, as described above, the crystallized glass of the present invention is capable of adjusting the type of the crystal to be precipitated, the degree of crystallinity (the ratio of the crystal to be precipitated), the composition of the crystal, the ratio of the glass phase, the composition of the glass phase, and the like. Therefore, the difference (Δα) in the coefficient of thermal expansion before and after the heat treatment is reduced, and the coefficient of thermal expansion of the crystallized glass at −40 to 80 ° C. after the heat treatment is close to 0, so that the heat treatment and the temperature change Dimensional change due to the above can be suppressed.
また、得られた結晶化ガラスは、切断、研磨、成膜等の後加工を施してもよい。 The obtained crystallized glass may be subjected to post-processing such as cutting, polishing and film formation.
以下、本発明の結晶化ガラスを実施例に基づいて詳細に説明する。 Hereinafter, the crystallized glass of the present invention will be described in detail based on examples.
表1は、本発明の実施例及び比較例を示すものである。 Table 1 shows Examples and Comparative Examples of the present invention.
表中の各試料は、次のようにして作製した。 Each sample in the table was prepared as follows.
まず、質量%で表に示すガラス組成となるように原料を調合し、均一に混合した後、白金ルツボに入れて1600℃で20時間溶融した。次いで、溶融ガラスをカーボン定盤上に流し出し、ローラーを用いて5mm厚の板状体に成形した後、徐冷炉を用いて700℃から室温まで100℃/時間の降温速度で冷却して結晶性ガラス板を作製した。 First, raw materials were prepared so as to have the glass composition shown in the table in terms of mass%, and after mixing uniformly, the mixture was put in a platinum crucible and melted at 1600 ° C. for 20 hours. Next, the molten glass was poured out onto a carbon platen, formed into a plate having a thickness of 5 mm using a roller, and then cooled from 700 ° C. to room temperature at a rate of 100 ° C./hour using a slow cooling furnace to obtain crystallinity. A glass plate was produced.
次に、得られた結晶性ガラス板に対し、780℃、1時間の核形成処理を施した後、925℃の結晶化温度で1時間の結晶化処理し、室温まで冷却して、結晶化ガラスを作製し、各試料とした。 Next, the obtained crystalline glass plate is subjected to a nucleation treatment at 780 ° C. for 1 hour, then a crystallization treatment at a crystallization temperature of 925 ° C. for 1 hour, and cooled to room temperature. Glass was prepared and used as each sample.
尚、室温から核形成温度までの昇温速度を250℃/時間、核形成温度から結晶成長温度までの昇温速度を54℃/時間とし、結晶成長温度から室温までの降温速度を54℃/時間とした。 The rate of temperature rise from room temperature to the nucleation temperature was 250 ° C./hour, the rate of temperature rise from the nucleation temperature to the crystal growth temperature was 54 ° C./hour, and the rate of temperature decrease from the crystal growth temperature to room temperature was 54 ° C./hour. Time.
このようにして得られた各試料について、結晶相、ガラス相及び結晶化ガラスの組成、結晶の種類、結晶化度、固溶度n、結晶相の熱膨張係数、熱処理前後における熱膨張係数の差及び寸法変化、熱処理後の温度変化による熱膨張係数及び寸法変化を測定した。 For each sample thus obtained, the crystal phase, the composition of the glass phase and the crystallized glass, the type of crystal, the degree of crystallinity, the solid solubility n, the thermal expansion coefficient of the crystal phase, and the thermal expansion coefficient before and after heat treatment The difference and the dimensional change, the coefficient of thermal expansion and the dimensional change due to the temperature change after the heat treatment were measured.
表1から明らかなように、実施例は、析出結晶として、負の熱膨張係数を有するβ−石英固溶体が析出し、結晶化度は75%であった。また、固溶度nも7.6と高かった。また、熱処理前後における熱膨張係数の差(Δα)は0.09×10−7/℃であり、熱処理による熱膨張係数の変化は小さく、熱処理による寸法変化も0mmと小さかった。さらに、熱処理後の−40〜80℃における熱膨張係数は−0.09×10−7/℃と小さく、熱処理後の温度変化による寸法変化も−2.2×10−5mmと小さいものであった。As is clear from Table 1, in Examples, β-quartz solid solution having a negative coefficient of thermal expansion was precipitated as precipitated crystals, and the crystallinity was 75%. The solid solubility n was as high as 7.6. The difference (Δα) between the coefficients of thermal expansion before and after the heat treatment was 0.09 × 10 −7 / ° C., and the change in the coefficient of thermal expansion due to the heat treatment was small, and the dimensional change due to the heat treatment was as small as 0 mm. Furthermore, the coefficient of thermal expansion at -40 to 80 ° C. after the heat treatment is as small as −0.09 × 10 −7 / ° C., and the dimensional change due to the temperature change after the heat treatment is as small as −2.2 × 10 −5 mm. there were.
これに対し、比較例は、負の熱膨張係数を有するβ−石英固溶体が析出したものの、結晶化度は80%と高く、固溶度nは6.8と低かった。また、熱処理前後における熱膨張係数の差(Δα)は0.35×10−7/℃であり、熱処理による熱膨張係数の変化は大きく、熱処理による寸法変化も0mmであった。さらに、熱処理後の−40〜80℃における熱膨張係数は0.48×10−7/℃と大きく、熱処理後の温度変化による寸法変化も11.5×10−5mmと大きいものであった。On the other hand, in the comparative example, the β-quartz solid solution having a negative coefficient of thermal expansion was precipitated, but the crystallinity was as high as 80% and the solid solubility n was as low as 6.8. The difference (Δα) between the coefficients of thermal expansion before and after the heat treatment was 0.35 × 10 −7 / ° C., the change in the coefficient of thermal expansion due to the heat treatment was large, and the dimensional change due to the heat treatment was 0 mm. Furthermore, the coefficient of thermal expansion at −40 to 80 ° C. after the heat treatment was as large as 0.48 × 10 −7 / ° C., and the dimensional change due to the temperature change after the heat treatment was as large as 11.5 × 10 −5 mm. .
尚、結晶の種類及び結晶化度、固溶度nについては、X線回折法(株式会社リガク製 SmartLab)を用いて測定した。 The type of crystal, the degree of crystallinity, and the solid solubility n were measured using an X-ray diffraction method (SmartLab, manufactured by Rigaku Corporation).
具体的には、結晶化度については、X線回折法により得られた結晶化ガラスの回折パターンをRietveld法で解析することによって、β−石英固溶体又はβ−ユークリプタイト固溶体の結晶量(質量%)、ZrTiO4系結晶の結晶量(質量%)およびガラス相の含有量(質量%)を求め、各結晶相の結晶量の合計を結晶化度(質量%)として算出した。Specifically, regarding the degree of crystallinity, the diffraction pattern of the crystallized glass obtained by the X-ray diffraction method is analyzed by the Rietveld method, and the crystal amount (mass) of the β-quartz solid solution or β-eucryptite solid solution is determined. %), The crystal amount (% by mass) of the ZrTiO 4 system crystal and the content of the glass phase (% by mass) were calculated, and the total of the crystal amounts of the respective crystal phases was calculated as the crystallinity (% by mass).
また、固溶度nについては、次の手順により決定した。まず、X線回折法によってβ−石英固溶体又はβ−ユークリプタイト固溶体の面間隔を測定する。次に、X線回折法によって測定した面間隔を用いて、式(1)より結晶相におけるSiO2含有量x(モル%)を算出し、続いて、式(2)より固溶度n(モル比)を算出した。The solid solubility n was determined according to the following procedure. First, the plane spacing of the β-quartz solid solution or β-eucryptite solid solution is measured by the X-ray diffraction method. Next, using the lattice distance measured by X-ray diffraction method, calculates a SiO 2 content x (mole%) in the crystalline phase from the equation (1), followed by solid solubility equation (2) n ( (Molar ratio) was calculated.
式(1):SiO2含有量x=(0.1004−d(406))/6.752×10−5
式(2):固溶度n=2x/(100−x)
尚、日本化学会誌(1974年)の505−510頁に記載のように、β−石英固溶体又はβ−ユークリプタイト固溶体中のSiO2含有量と結晶格子における特定の面間隔との間には、比例関係が成立することから、面間隔を測定することにより結晶相におけるSiO2含有量x(モル%)を求めることができる。式(1)において、d(406)は、β−石英固溶体又はβ−ユークリプタイト固溶体(六方晶)の結晶格子における(406)面の面間隔(nm)を表す。Equation (1): SiO 2 content x = (0.1004-d (406 )) / 6.752 × 10 -5
Formula (2): Solid solubility n = 2x / (100-x)
As described on pages 505-510 of the journal of the Chemical Society of Japan (1974), the difference between the SiO 2 content in the β-quartz solid solution or β-eucryptite solid solution and the specific interplanar spacing in the crystal lattice was determined. Since the proportional relationship holds, the SiO 2 content x (mol%) in the crystal phase can be obtained by measuring the plane spacing. In the formula (1), d (406) represents the plane spacing (nm) of the (406) plane in the crystal lattice of β-quartz solid solution or β-eucryptite solid solution (hexagonal).
結晶化ガラスの組成については、Li2O含有量を原子吸光分析法で、B2O3含有量を誘導結合プラズマ(ICP)発光分析法で、それ以外の成分含有量を蛍光X線分析法で測定した。Regarding the composition of the crystallized glass, the content of Li 2 O was determined by atomic absorption spectrometry, the content of B 2 O 3 was determined by inductively coupled plasma (ICP) emission spectrometry, and the content of other components was determined by fluorescent X-ray analysis. Was measured.
結晶相の組成については、前記のX線回折法により算出した固溶度n及びZrTiO4系結晶の結晶量から結晶相の各成分の含有量を算出することで求めた。尚、MgOとZnOについては、それぞれ結晶化ガラスに含まれる全量がβ−石英固溶体又はβ−ユークリプタイト固溶体に固溶したものとして求めた。The composition of the crystal phase was determined by calculating the content of each component of the crystal phase from the solid solubility n calculated by the X-ray diffraction method and the crystal amount of the ZrTiO 4 system crystal. Note that MgO and ZnO were determined as those in which the total amount contained in the crystallized glass was dissolved in β-quartz solid solution or β-eucryptite solid solution.
ガラス相の組成については、前記の結晶化ガラスの各成分の含有量から前記の結晶相の各成分の含有量を差し引くことによって、残存ガラス相に含まれる各成分含有量を決定した。なお、SiO2、Al2O3、Li2O、MgO、ZnO、TiO2、ZrO2以外の成分は、全てガラス相に含まれるものとして求めた。Regarding the composition of the glass phase, the content of each component contained in the residual glass phase was determined by subtracting the content of each component of the crystal phase from the content of each component of the crystallized glass. The components other than SiO 2 , Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , and ZrO 2 were all determined to be contained in the glass phase.
結晶相の熱膨張係数については、X線回折法(株式会社リガク製SmartLab)によって、20℃から300℃までの温度域で、β−石英固溶体又はβ−ユークリプタイト固溶体の格子定数(a軸長、c軸長)の温度依存性を測定し、a軸長とc軸長から単位格子の体積を算出することで体積膨張係数を求め、体積膨張係数を3で除することにより熱膨張係数を算出した。 Regarding the thermal expansion coefficient of the crystalline phase, the lattice constant (a-axis) of β-quartz solid solution or β-eucryptite solid solution was determined by X-ray diffraction (SmartLab manufactured by Rigaku Corporation) in a temperature range of 20 ° C. to 300 ° C. Length, c-axis length), the volume expansion coefficient is obtained by calculating the volume of the unit cell from the a-axis length and the c-axis length, and the thermal expansion coefficient is obtained by dividing the volume expansion coefficient by 3. Was calculated.
熱処理による寸法変化については、熱処理前後における熱膨張係数の差(Δα)及び熱処理前後における寸法変化を、熱処理後の温度変化による寸法変化については、熱処理後の−40〜80℃における寸法変化を測定することで評価した。 For the dimensional change due to heat treatment, the difference in thermal expansion coefficient (Δα) before and after heat treatment and the dimensional change before and after heat treatment are measured. For the dimensional change due to temperature change after heat treatment, the dimensional change at -40 to 80 ° C. after heat treatment is measured. It was evaluated by doing.
尚、熱処理前後における熱膨張係数の差(Δα)及び熱処理後の−40〜80℃における寸法変化については、直径4.0mm、長さ20mmの円柱状に加工した試料を作製し、−40〜80℃における平均熱膨張係数をディラトメーターを用いて測定した。続いて、試料を400℃、24時間の条件で熱処理した後、再度、−40〜80℃における平均熱膨張係数及び膨張量を測定し、平均熱膨張係数の差を熱処理前後における熱膨張係数の差(Δα)として示し、−40〜80℃における膨張量を熱処理後の−40〜80℃における寸法変化として示した。 The difference in thermal expansion coefficient (Δα) before and after the heat treatment and the dimensional change at −40 to 80 ° C. after the heat treatment were determined by preparing a column-shaped sample having a diameter of 4.0 mm and a length of 20 mm. The average coefficient of thermal expansion at 80 ° C. was measured using a dilatometer. Subsequently, after heat-treating the sample at 400 ° C. for 24 hours, the average coefficient of thermal expansion and the amount of expansion at −40 to 80 ° C. were measured again, and the difference in the average coefficient of thermal expansion was calculated as the difference between the coefficient of thermal expansion before and after the heat treatment. The amount of expansion at −40 to 80 ° C. was shown as a dimensional change at −40 to 80 ° C. after the heat treatment.
また、熱処理前後における寸法変化については、熱処理前後の試料の長さを差動トランス式変位センサーを用いて測定し、熱処理前後におけるその差を寸法変化として示した。 Regarding the dimensional change before and after the heat treatment, the length of the sample before and after the heat treatment was measured using a differential transformer type displacement sensor, and the difference before and after the heat treatment was shown as the dimensional change.
本発明の結晶化ガラスは、エタロン用のスペーサー用途に限られるものではなく、例えば、光波長合分波器の基板、リニアエンコーダポジションスケール等の精密スケール用の部材、精密機器の構造部材、精密ミラーの基材として用いることも可能である。
The crystallized glass of the present invention is not limited to spacer applications for etalons, for example, substrates for optical wavelength multiplexer / demultiplexers, members for precision scales such as linear encoder position scales, structural members for precision equipment, precision It is also possible to use as a base material of a mirror.
Claims (4)
主結晶としてβ−石英固溶体又はβ−ユークリプタイト固溶体を析出してなり、且つ、結晶化度が質量百分率で72〜79%であり、
Li 2 O・Al 2 O 3 ・nSiO 2 で表わされるβ−石英固溶体又はβ−ユークリプタイト固溶体におけるSiO 2 の固溶度nがモル比で6.9以上であり、
質量百分率で、SiO 2 55.0〜70.0%、Al 2 O 3 15.0〜30.0%、Li 2 O 2.0〜6.0%、MgO 0〜2.0%、ZnO 0〜2.0%、TiO 2 0〜4.0%、ZrO 2 0〜4.0%、P 2 O 5 0〜4.0%、BaO 0〜2.0%、Na 2 O 0〜4.0%、K 2 O 0〜4.0%の組成を有する結晶化ガラス。 If the 300 ° C. ~ Tsu rows 24 hours heat treatment at a temperature of glass transition point, the difference in thermal expansion coefficient between before and after heat treatment ([Delta] [alpha]) is within ± 0.20 × 10 -7 / ℃, and the heat treatment Ri der thermal expansion coefficient of 0 ± 0.3 × 10 -7 / ℃ within at -40 to 80 ° C. after,
Β-quartz solid solution or β-eucryptite solid solution is precipitated as a main crystal, and the crystallinity is 72 to 79% by mass percentage,
The solid solubility n of SiO 2 in the β-quartz solid solution or β-eucryptite solid solution represented by Li 2 O · Al 2 O 3 · nSiO 2 is 6.9 or more in molar ratio,
In terms of mass percentage, SiO 2 55.0 to 70.0%, Al 2 O 3 15.0 to 30.0%, Li 2 O 2.0 to 6.0%, MgO 0 to 2.0%, ZnO 0 ~2.0%, TiO 2 0~4.0%, ZrO 2 0~4.0%, P 2 O 5 0~4.0%, BaO 0~2.0%, Na 2 O 0~4. 0%, K 2 O 0~4.0% of the crystallized glass that have a composition.
The glass phase is, by mass percentage, 30.0 to 50.0% of SiO 2, 31.0 to 45.0% of Al 2 O 3 , 1.0 to 3.0% of Li 2 O, and 0 to 1.0 of MgO. %, ZnO 0-1.0%, TiO 2 0-5.0%, ZrO 2 0-5.0%, P 2 O 5 0-9.0%, BaO 0-8.0%, Na 2 O 0 to 4.0%, the crystallized glass according to any one of claims 1 to 3, characterized in that the K 2 O 0 to 4.0%.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014154646 | 2014-07-30 | ||
JP2014154646 | 2014-07-30 | ||
PCT/JP2015/070369 WO2016017435A1 (en) | 2014-07-30 | 2015-07-16 | Crystallized glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016017435A1 JPWO2016017435A1 (en) | 2017-04-27 |
JP6627760B2 true JP6627760B2 (en) | 2020-01-08 |
Family
ID=55217340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016538265A Active JP6627760B2 (en) | 2014-07-30 | 2015-07-16 | Crystallized glass |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6627760B2 (en) |
CN (1) | CN106573826A (en) |
TW (1) | TW201609581A (en) |
WO (1) | WO2016017435A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11104607B2 (en) * | 2017-02-24 | 2021-08-31 | Ohara Inc. | Crystallized glass |
CN109867447B (en) * | 2017-12-01 | 2022-02-01 | 成都光明光电股份有限公司 | Glass ceramics and substrate thereof |
JPWO2020189115A1 (en) * | 2019-03-15 | 2020-09-24 | ||
JP7626979B2 (en) * | 2019-04-23 | 2025-02-05 | 日本電気硝子株式会社 | Li2O-Al2O3-SiO2-based crystallized glass |
CN111646704B (en) * | 2020-06-08 | 2022-02-22 | 重庆鑫景特种玻璃有限公司 | Glass ceramic doped with beta-eucryptite whisker, preparation method thereof and chemically strengthened glass ceramic |
CN115884947A (en) * | 2020-08-21 | 2023-03-31 | Agc株式会社 | Glass ceramics |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4285728A (en) * | 1975-02-06 | 1981-08-25 | Owens-Illinois, Inc. | Method of making low expansion crystallized glass-ceramics and telescope mirror blanks made thereby |
JP4773608B2 (en) * | 2000-09-28 | 2011-09-14 | 株式会社オハラ | Glass ceramics and temperature compensation members |
JP4582679B2 (en) * | 2001-04-24 | 2010-11-17 | Agcテクノグラス株式会社 | Crystallized glass for anodic bonding |
JP2003020254A (en) * | 2001-07-04 | 2003-01-24 | National Institute Of Advanced Industrial & Technology | Crystallized glass |
JP2004029723A (en) * | 2002-05-09 | 2004-01-29 | Nippon Electric Glass Co Ltd | Spacer for resonator |
JP2005343702A (en) * | 2004-05-31 | 2005-12-15 | National Institute Of Advanced Industrial & Technology | Optical material, optical device and etalon |
JP2006193398A (en) * | 2005-01-17 | 2006-07-27 | National Institute Of Advanced Industrial & Technology | Crystallized glass, optical device and etalon |
US9611170B2 (en) * | 2013-02-21 | 2017-04-04 | Nippon Electric Glass Co., Ltd. | Crystallized glass and method for manufacturing same |
-
2015
- 2015-07-16 WO PCT/JP2015/070369 patent/WO2016017435A1/en active Application Filing
- 2015-07-16 JP JP2016538265A patent/JP6627760B2/en active Active
- 2015-07-16 CN CN201580041093.5A patent/CN106573826A/en active Pending
- 2015-07-21 TW TW104123575A patent/TW201609581A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW201609581A (en) | 2016-03-16 |
CN106573826A (en) | 2017-04-19 |
JPWO2016017435A1 (en) | 2017-04-27 |
WO2016017435A1 (en) | 2016-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6627760B2 (en) | Crystallized glass | |
KR100590346B1 (en) | Low expansion glass-ceramics | |
JP6899938B2 (en) | Highly uniform glass-ceramic element | |
CN1676484B (en) | Glass-ceramic and method for its production | |
KR101647526B1 (en) | Intermediate thermal expansion coefficient glass | |
US7645714B2 (en) | Crystallized glass, and method for producing crystallized glass | |
JP3421284B2 (en) | Negatively heat-expandable glass ceramics and method for producing the same | |
KR20030040438A (en) | Glass-ceramics | |
CN102066273A (en) | Rare-earth-containing glass material and substrate and device comprising such substrate | |
KR20020025629A (en) | Glass ceramic and temperature compensating member | |
JP5173123B2 (en) | Inorganic composition | |
TW201317192A (en) | Glass substrate and manufacturing method thereof | |
CN104926135A (en) | Glass ceramics and multi-layered inorganic membrane filter | |
JP5650387B2 (en) | Crystallized glass | |
JP4647256B2 (en) | Glass ceramics | |
JP2016060650A (en) | Li2O-Al2O3-SiO2-BASED CRYSTALLIZATION GLASS AND MANUFACTURING METHOD THEREFOR | |
JP2010030848A (en) | Glass | |
JP4476529B2 (en) | Glass ceramics and temperature compensation members | |
Yaowakulpattana et al. | Effect of B2O3 on crystallization behavior of ZnO–Al2O3–SiO2 glasses | |
WO2005009916A1 (en) | Negative thermal expansion glass ceramic | |
JP5762677B2 (en) | Method for producing crystallized glass | |
JP6451317B2 (en) | Crystallized glass and manufacturing method thereof | |
JP2014144915A (en) | Crystallized glass | |
JP2010053013A (en) | Glass | |
JP2006193398A (en) | Crystallized glass, optical device and etalon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6627760 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |