[go: up one dir, main page]

JP6619777B2 - Generation method of water-soluble cutting and grinding fluid - Google Patents

Generation method of water-soluble cutting and grinding fluid Download PDF

Info

Publication number
JP6619777B2
JP6619777B2 JP2017156458A JP2017156458A JP6619777B2 JP 6619777 B2 JP6619777 B2 JP 6619777B2 JP 2017156458 A JP2017156458 A JP 2017156458A JP 2017156458 A JP2017156458 A JP 2017156458A JP 6619777 B2 JP6619777 B2 JP 6619777B2
Authority
JP
Japan
Prior art keywords
water
grinding fluid
soluble cutting
reduction
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017156458A
Other languages
Japanese (ja)
Other versions
JP2019034363A (en
Inventor
納美 世古
納美 世古
忠彦 宮澤
忠彦 宮澤
Original Assignee
横浜マシンサービス有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜マシンサービス有限会社 filed Critical 横浜マシンサービス有限会社
Priority to JP2017156458A priority Critical patent/JP6619777B2/en
Priority to PH12017000330A priority patent/PH12017000330B1/en
Publication of JP2019034363A publication Critical patent/JP2019034363A/en
Application granted granted Critical
Publication of JP6619777B2 publication Critical patent/JP6619777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Lubricants (AREA)

Description

本発明は、切削・研削機械加工時に用いられる水溶性切削・研削液の生成方法及びその装置に関するもので、さらに詳しくは、水質(導電率、全硬度等)の異なる水を電気分解処理して還元水とする場合において、水質の如何に拘わらず電気分解処理後の還元電位を可能な限り長時間保持して、殺菌と、優れた機械加工性能を保持した水溶性切削・研削液を得るための生成方法に関するものである。
The present invention relates to a method and apparatus for producing a water-soluble cutting / grinding fluid used during cutting / grinding machining, and more particularly, by electrolyzing water having different water qualities (conductivity, total hardness, etc.). In the case of reducing water, in order to obtain a water-soluble cutting / grinding fluid that maintains sterilization and excellent machining performance by maintaining the reduction potential after electrolysis regardless of the water quality for as long as possible. it relates to the generation how.

切削・研削機械加工には、冷却、潤滑、切屑流しなどを目的として切削・研削液が使用される。
この切削・研削液は、油性と水溶性に大別される。油性液は、鉱物油を基油とし潤滑性に優れるが、火災、廃棄時の環境汚染の問題、使用時のべたつきなどがある。これに対し、水溶性液は、大半が水であり、上記油性の問題点が少なく有利である。
しかし、水溶性液には、ある程度のべたつきがあり、加工機械を汚したり、一定時間の使用により細菌が発生して皮膚にかぶれが発生したり、腐敗して異臭を発生したりして、作業者によっても、また、廃棄の際の環境への悪影響もある。
In cutting / grinding machining, a cutting / grinding fluid is used for the purpose of cooling, lubrication, chip flow and the like.
This cutting / grinding fluid is roughly classified into oily and water-soluble. Oily liquid is mineral oil and has excellent lubricity, but there are fires, environmental pollution problems during disposal, and stickiness during use. On the other hand, most of the water-soluble liquids are water, which is advantageous with few oily problems.
However, water-soluble liquids have a certain level of stickiness, which can contaminate processing machines, cause bacteria to develop due to use for a certain period of time, cause skin irritation, and rot to produce a strange odor. There is also a negative impact on the environment at the time of disposal.

優れた特性を有する水溶性切削・研削液とするために、水道水、工業用水(地下水)若しくはこれらの軟水化したもの又は使用済み液を、電気分解処理をして還元水にすると、殺菌、腐敗防止、加工性の向上となる。
還元水と鉱物油を比較すると以下の通りである。
1.気化熱:還元水586cal/g、鉱物油90cal/g以下、エタノール93cal/gで、還元水が断然優れている。
2.比熱:還元水1.00cal/g・deg、鉱物油0.44cal/g・deg、エタノール0.57cal/g・degで、還元水が最も温まりにくく、冷めにくい。
3.熱伝導率:還元水0.51W/m/K、鉱物油0.12W/m/K、エタノール0.18W/m/Kで、還元水が最も熱を伝えやすい。
このように、還元水は、気化熱、比熱、熱伝導率の何れにおいても鉱物油より数値が大きく切削・研削液として優れた性質を有している。
In order to make water-soluble cutting / grinding fluid with excellent properties, tap water, industrial water (groundwater) or their softened water or used liquid is subjected to electrolysis treatment to reduce water. Prevents corruption and improves processability.
A comparison of reduced water and mineral oil is as follows.
1. Heat of vaporization: reduced water 586 cal / g, mineral oil 90 cal / g or less, ethanol 93 cal / g, and reduced water is far superior.
2. Specific heat: 1.00 cal / g · deg of reduced water, 0.44 cal / g · deg of mineral oil, and 0.57 cal / g · deg of ethanol, the reduced water is most difficult to warm and hard to cool.
3. Thermal conductivity: Reduced water 0.51 W / m / K, mineral oil 0.12 W / m / K, ethanol 0.18 W / m / K, and reduced water is most easily transferred.
As described above, the reduced water has a larger value than mineral oil in any of heat of vaporization, specific heat, and thermal conductivity, and has excellent properties as a cutting / grinding fluid.

電気分解により還元水を得る方法として、特許文献1に示す方法が知られている。この特許文献1記載の方法によれば、対象とする水性研削・切削液中に、一対の交流電極板と2つの接地電極板を挿入し、該交流電極に交流電源を通電させて高周波交流により電気分解処理を行うに際し、交流の発振周波数約5〜100KHzを中心に変動幅±3〜5KHzのFM変調をかけ、ランダム信号発生器を内蔵した装置で、ゆるやかな上下周波数変動中に急激に周波数上昇又は下降の変化する部分をもたらすことによって電界干渉を発生させ衝撃波を作り、上記電気分解により発生する水素量を多くするとともにナノバブルまで小さくした酸素を発生させることを特徴としてなる水性研削・切削液の電気分解処理方法としている。   As a method for obtaining reduced water by electrolysis, a method shown in Patent Document 1 is known. According to the method described in Patent Document 1, a pair of AC electrode plates and two ground electrode plates are inserted into a target aqueous grinding / cutting fluid, and an AC power supply is passed through the AC electrodes to generate high frequency AC. When performing electrolysis, FM modulation with a fluctuation range of ± 3 to 5 KHz is applied around an oscillation frequency of about 5 to 100 KHz, and a random signal generator is built in. Water-based grinding / cutting fluid characterized by generating electric field interference by generating a part that changes up and down, creating shock waves, increasing the amount of hydrogen generated by the electrolysis and generating oxygen reduced to nanobubbles This is an electrolysis method.

本発明人がフィリピンの水(A)、タイの水(B)、日本の水道水(C)に、下記の同一条件で酸化還元電位の経時変化を測定したところ、図2、図3に示すように、フィリピンの水(A1:細い1点鎖線)、タイの水(B1:細い点線)、日本の水道水(C:細い実線)の異なる特性曲線で示す結果が得られた。
条件
・容器:アルカリ水製造装置
・水:フィリピンの水(A)、タイの水(B)、日本の水道水(C)
・水量:257リットル
・室温:25℃
・パルス波:10kHz、15V、7A
The inventors measured the time-dependent changes in redox potential in Philippine water (A), Thai water (B), and Japanese tap water (C) under the same conditions as shown in FIGS. 2 and 3. Thus, the result shown by the different characteristic curve of the Philippine water (A1: thin dotted line), the Thai water (B1: thin dotted line), and the Japanese tap water (C: thin solid line) was obtained.
Conditions / Container: Alkaline water production system / Water: Filipino water (A), Thai water (B), Japanese tap water (C)
-Water volume: 257 liters-Room temperature: 25 ° C
・ Pulse wave: 10kHz, 15V, 7A

これらの特性曲線において、フィリピンの水(A)は、初期値(+216.0mV)から水溶性切削・研削液として必要な還元電位−250mVに達するまでの時間は、特性線(A1)に示すように約50分であった。その後、電気分解処理を停止すると、特性線(A1)に示すように約9時間で、水溶性切削・研削液として望まれる−170mVに戻り、さらに約30時間で0mVに戻った。
タイの水(B)は、初期値(+147.0mV)から水溶性切削・研削液として必要な還元電位−250mVに達するまでの時間は、特性線(B1)に示すように約80分であった。その後、電気分解処理を停止すると、特性線(B1)に示すように約25時間で、水溶性切削・研削液として望まれる−170mVに戻り、さらに約40時間で0mVに戻った。
これに対し、日本の水(C)は、初期値(+521.0mV)から水溶性切削・研削液として必要な還元電位−250mVに達するまでの時間は、特性線(C)に示すように約120分であった。その後、電気分解処理を停止すると、特性線(C2)に示すように、水溶性切削・研削液として望まれる−170mVを約65時間継続し、さらに約195時間で0mVに戻った。
In these characteristic curves, the time required for Philippine water (A) to reach a reduction potential of −250 mV, which is necessary as a water-soluble cutting / grinding fluid, from the initial value (+216.0 mV) is as shown by the characteristic line (A1). About 50 minutes. Thereafter, when the electrolysis treatment was stopped, as shown by the characteristic line (A1), it returned to −170 mV, which was desired as a water-soluble cutting / grinding fluid, in about 9 hours, and further returned to 0 mV in about 30 hours.
Thai water (B) takes about 80 minutes from the initial value (+147.0 mV) to the reduction potential of -250 mV required as a water-soluble cutting / grinding fluid, as shown by the characteristic line (B1). It was. Thereafter, when the electrolysis treatment was stopped, as shown by the characteristic line (B1), it returned to −170 mV, which was desired as a water-soluble cutting / grinding fluid, in about 25 hours, and further returned to 0 mV in about 40 hours.
On the other hand, the time required for Japanese water (C) to reach the reduction potential of −250 mV required as a water-soluble cutting / grinding fluid from the initial value (+521.0 mV) is about It was 120 minutes. Thereafter, when the electrolysis treatment was stopped, as shown by the characteristic line (C2), −170 mV desired as a water-soluble cutting / grinding fluid was continued for about 65 hours, and then returned to 0 mV in about 195 hours.

このように、フィリピンの水(A)とタイの水(B)は、水質、すなわち、導電率又は全硬度が日本の水より高く、短時間で−250mVに達するが、電気分解処理を停止すると、急速に元の電位に戻り、水溶性切削・研削液として望まれる−170mVを最低限必要とされる作業時間(例えば、40時間以上)を持続することができないという問題があった。   Thus, Philippine water (A) and Thai water (B) have higher water quality, that is, conductivity or total hardness than Japanese water, and reach -250 mV in a short time. There was a problem that the working potential (for example, 40 hours or more) required to return to the original potential rapidly and to maintain −170 mV, which is desired as a water-soluble cutting / grinding fluid, cannot be maintained.

特開2013−46936号公報JP 2013-46936 A

本発明者は、種々研究を重ねた結果、水溶性切削・研削液として望まれる還元電位(例えば、−250mV)までに達する電気分解処理時間をできるだけ長い時間(例えば、日本の水と同程度の120分)をかけることで、電気分解処理を停止してからの水溶性切削・研削液として望まれる還元電位を従来の数倍に延長できることを発見した。また、目的の水を水溶性切削・研削液として望まれる還元電位に電気分解処理する時間は、その水の水質、特に、導電率又は全硬度に応じて印加するパルス幅を制御すればよいことが判明した。
本発明は、電気分解処理後の還元電位を、水質の如何に拘わらず可能な限り長時間保持することにより、殺菌と、優れた機械加工性能を保持した水溶性切削・研削液を得るための生成方法を提供することを目的とするものである。
As a result of various studies, the present inventor has made an electrolysis treatment time required to reach a reduction potential (for example, -250 mV) desired as a water-soluble cutting / grinding fluid as long as possible (for example, comparable to that of Japanese water). 120 minutes), it was found that the reduction potential desired as a water-soluble cutting / grinding fluid after the electrolysis treatment was stopped can be extended several times that of the prior art. In addition, the time for electrolyzing the target water to the reduction potential desired as the water-soluble cutting / grinding fluid should be controlled by the pulse width to be applied according to the water quality, particularly the conductivity or total hardness. There was found.
The present invention is to obtain a water-soluble cutting / grinding fluid that maintains sterilization and excellent machining performance by maintaining the reduction potential after the electrolysis treatment as long as possible regardless of the water quality. it is an object to provide a production how.

本発明は、水を還元槽18に入れて還元電極19に還元電位を印加し、電気分解処理をして還元水とする水溶性切削・研削液の生成方法において、前記還元電極19に印加するパルス電圧幅を、還元する水の性質に応じて調整するようにしたことを特徴とする。   The present invention applies water to the reducing electrode 18, applies a reducing potential to the reducing electrode 19, and applies the reducing potential to the reducing electrode 19 in a method for producing a water-soluble cutting / grinding fluid that is electrolyzed into reduced water. The pulse voltage width is adjusted according to the nature of the water to be reduced.

還元する水の性質としての導電率が高い場合、この導電率の高さに応じて還元電極19に印加するパルス電圧幅を小さくする。
また、還元する水の性質としての全硬度が高い場合、この全硬度の高さに応じて還元電極19に印加するパルス電圧幅を小さくする。
より具体的には、還元する水の性質としての導電率又は全硬度の高さに反比例して還元電極19に印加するパルス電圧幅を小さくして、所定の還元電位に到達する時間を延ばすようにする。
When the electrical conductivity as the nature of the water to be reduced is high, the pulse voltage width applied to the reducing electrode 19 is reduced according to the high electrical conductivity.
Further, when the total hardness as the nature of the water to be reduced is high, the pulse voltage width applied to the reduction electrode 19 is reduced according to the total hardness.
More specifically, the pulse voltage applied to the reduction electrode 19 is reduced in inverse proportion to the conductivity or the total hardness as the nature of the water to be reduced, so as to extend the time to reach a predetermined reduction potential. To.

水を還元槽18に入れて還元電極19に還元電位を印加し、電気分解処理をして還元水とする水溶性切削・研削液の生成装置は、
前記還元電極19に印加するパルス電圧を得るためのパルス信号を発振するPWM発振回路10と、
このPWM発振回路10に接続され、還元する水の性質としての導電率又は全硬度の高さに反比例して還元電極19に印加するパルス電圧幅を小さくして、所定の還元電位に到達する時間を延ばすためのデータを記憶したメモリ21と、
このPWM発振回路10で発生したパルス信号を、対をなす前記還元電極19に印加するために波形整形する波形整形回路11と
を具備したことを特徴とする。
An apparatus for producing a water-soluble cutting / grinding fluid that puts water into the reduction tank 18 and applies a reduction potential to the reduction electrode 19 and electrolyzes it into reduced water.
A PWM oscillation circuit 10 for oscillating a pulse signal for obtaining a pulse voltage to be applied to the reduction electrode 19;
Time to reach the predetermined reduction potential by reducing the pulse voltage width applied to the reduction electrode 19 in inverse proportion to the conductivity or the total hardness as the nature of the water to be reduced, connected to the PWM oscillation circuit 10 Memory 21 for storing data for extending
And a waveform shaping circuit 11 for shaping a pulse signal generated by the PWM oscillation circuit 10 so as to be applied to the pair of reduction electrodes 19.

請求項1記載の発明によれば、
水を還元槽に入れて還元電極に還元電位を印加し、電気分解処理をして還元水とする水溶性切削・研削液の生成方法において、
還元する水の導電率X(μs/cm)を求め、前記還元電極に印加するパルス電圧幅をY(%)としたときに、Y=C1/X(C1は定数80)の式から求められるパルス電圧幅Yの電位を還元電極に印加して、所定のマイナスの還元電位に到達する時間を延ばすことにより、電気分解停止後の水溶性切削・研削液のマイナスの還元電位を持続させるようにしたので、電気分解処理後の還元電位を、水質の如何に拘わらず可能な限り長時間保持することができ、殺菌と、優れた機械加工性能を保持した水溶性切削・研削液を得ることができる。具体的には、還元する水の性質としての導電率の高さに反比例して還元電極に印加するパルス電圧幅を小さくして、還元電位に到達する時間を軟水とほぼ同程度に延ばすことができ、殺菌と、優れた機械加工性能を保持した水溶性切削・研削液を得ることができる。
According to invention of Claim 1,
In a method for producing a water-soluble cutting / grinding fluid by putting water in a reduction tank, applying a reduction potential to the reduction electrode, and electrolyzing it into reduced water,
The electric conductivity X (μs / cm) of water to be reduced is obtained, and when the pulse voltage width applied to the reducing electrode is Y (%) , it is obtained from the equation : Y = C1 / X (C1 is a constant 80 ) that is applied to the potential reduction electrode of the pulse voltage width Y, by extending the time to reach a predetermined negative reduction potential to a negative reduction potential of the electrolysis stopped after the water-soluble cutting and grinding fluid sustainability is As a result, the reduction potential after the electrolysis treatment can be maintained for as long as possible regardless of the water quality, and a water-soluble cutting / grinding fluid that maintains sterilization and excellent machining performance is obtained. be able to. Specifically, the pulse voltage applied to the reduction electrode is reduced in inverse proportion to the high conductivity as the nature of the water to be reduced, and the time to reach the reduction potential can be extended to about the same level as that of soft water. It is possible to obtain a water-soluble cutting / grinding fluid that can be sterilized and has excellent machining performance.

請求項2記載の発明によれば、
還元電極に印加するパルス電圧幅は、パルス信号のデューティ比(パルス幅)で制御する方法で設定するようにしたので、この方法で駆動電流を一定に保つことができる。
According to the invention of claim 2 Symbol placement,
Since the pulse voltage width to be applied to the reduction electrode is set by a method that is controlled by the duty ratio (pulse width) of the pulse signal, the driving current can be kept constant by this method.

本発明による水溶性切削・研削液生成方法における水質(導電率又は全硬度)と印加するパルス幅の関係を表す特性図である。Is a characteristic diagram showing the relationship between the pulse width to be applied with the water quality definitive water-soluble cutting and grinding fluid produced how according to the present invention (conductivity or total hardness). 3種類の水(フィリピン、タイ、日本)の還元電位の特性図である。It is a characteristic figure of the reduction potential of three kinds of water (Philippines, Thailand, Japan). 3種類の水(フィリピン、タイ、日本)の還元電位の実測値を表す図である。It is a figure showing the measured value of the reduction potential of three types of water (Philippines, Thailand, Japan). 本発明による水溶性切削・研削液生成方法の実施例を示す電気回路ブロック図である。Examples of the water-soluble cutting and grinding fluid produced how according to the present invention is an electrical circuit block diagram showing. 図4において、PWM発振回路10でパルス幅を制御したときの各部の出力波形図である。FIG. 4 is an output waveform diagram of each part when the pulse width is controlled by the PWM oscillation circuit 10 in FIG. 4.

本発明は、
水を還元槽18に入れて還元電極19に還元電位を印加し、電気分解処理をして還元水とする水溶性切削・研削液の生成方法において、前記還元電極19に印加するパルス電圧幅を、還元する水の性質に応じて調整する。
還元する水の性質としての導電率が高さに応じて還元電極19に印加するパルス電圧幅を小さくする。
また、還元する水の性質としての全硬度が高さに応じて還元電極19に印加するパルス電圧幅を小さくする。
より具体的には、還元する水の性質としての導電率又は全硬度の高さに反比例して還元電極19に印加するパルス電圧幅を小さくして、所定の還元電位に到達する時間を延ばすようにする。
The present invention
In a method for producing a water-soluble cutting / grinding fluid in which water is put into the reduction tank 18 and a reduction potential is applied to the reduction electrode 19 and electrolyzed to obtain reduced water, the pulse voltage width applied to the reduction electrode 19 is Adjust according to the nature of the water to be reduced.
The pulse voltage width applied to the reduction electrode 19 is reduced according to the high conductivity as the nature of the water to be reduced.
Further, the width of the pulse voltage applied to the reduction electrode 19 is reduced according to the total hardness as the nature of the water to be reduced.
More specifically, the pulse voltage applied to the reduction electrode 19 is reduced in inverse proportion to the conductivity or the total hardness as the nature of the water to be reduced, so as to extend the time to reach a predetermined reduction potential. To.

水を還元槽18に入れて還元電極19に還元電位を印加し、電気分解処理をして還元水とする水溶性切削・研削液の生成装置は、
前記還元電極19に印加するパルス電圧を得るためのパルス信号を発振するPWM発振回路10と、
このPWM発振回路10に接続され、還元する水の性質としての導電率又は全硬度の高さに反比例して還元電極19に印加するパルス電圧幅を小さくして、所定の還元電位に到達する時間を延ばすためのデータを記憶したメモリ21と、
このPWM発振回路10で発生したパルス信号を、対をなす前記還元電極19に印加するために波形整形する波形整形回路11と
を具備したものとする。
An apparatus for producing a water-soluble cutting / grinding fluid that puts water into the reduction tank 18 and applies a reduction potential to the reduction electrode 19 and electrolyzes it into reduced water.
A PWM oscillation circuit 10 for oscillating a pulse signal for obtaining a pulse voltage to be applied to the reduction electrode 19;
Time to reach the predetermined reduction potential by reducing the pulse voltage width applied to the reduction electrode 19 in inverse proportion to the conductivity or the total hardness as the nature of the water to be reduced, connected to the PWM oscillation circuit 10 Memory 21 for storing data for extending
It is assumed that a waveform shaping circuit 11 for shaping a pulse signal generated by the PWM oscillation circuit 10 to be applied to the pair of reduction electrodes 19 is provided.

図4において、本発明の水溶性切削・研削液の生成方法を実現するための装置は、PWM(パルス幅制御)発振回路10と、波形整形回路11と、駆動回路12と、重畳直流電源13と、駆動直流電源14と、電流検出回路15と、増幅回路16と、切換え回路17と、還元槽18と、メモリ21とからなる。   In FIG. 4, the apparatus for realizing the water-soluble cutting / grinding fluid generation method of the present invention includes a PWM (pulse width control) oscillation circuit 10, a waveform shaping circuit 11, a drive circuit 12, and a superimposed DC power supply 13. And a driving DC power source 14, a current detection circuit 15, an amplification circuit 16, a switching circuit 17, a reduction tank 18, and a memory 21.

前記PWM発振回路10は、図5(a)に示すようなパルス(脈流)信号を発振し、発振周波数fは、5kHz〜30kHzの範囲で調整でき、かつ、オン、オフのデューティ比dは、0から100%の範囲で調整できるものとする。また、このPWM発振回路10に接続されたメモリ21には、各種、各地、各国の水の水質データが記録されている。この水質データには、導電率データ、全硬度データ(Caイオン濃度とMgイオン濃度に基づくデータ)、その他金属イオン濃度等を含み、これらのデータに基づき、図1における特性図からパルス幅を制御する信号が前記PWM発振回路10に出力される。
前記波形整形回路11は、図5(b)に示すように、前記PWM発振回路10のパルス信号を奇数番目のパルス信号b−1と偶数番目のパルス信号b−2に分離する。
前記重畳直流電源13は、パルス信号に重畳するための略フラットな直流電圧v1を出力する。
前記駆動直流電源14は、パルス信号のピーク電圧v1を制御する。
前記駆動回路12は、駆動直流電源14で設定したパルス電圧v1に重畳直流電源13で設定した略フラットな直流電圧v2を重畳して、図5(c)のc−1とc−2に示すように、互いに180度の位相のずれた信号として出力する。
The PWM oscillation circuit 10 oscillates a pulse (pulsation) signal as shown in FIG. 5A, the oscillation frequency f can be adjusted in the range of 5 kHz to 30 kHz, and the on / off duty ratio d is , And can be adjusted in the range of 0 to 100%. The memory 21 connected to the PWM oscillation circuit 10 stores water quality data of various types, each place, and each country. This water quality data includes conductivity data, total hardness data (data based on Ca ion concentration and Mg ion concentration), other metal ion concentrations, etc., and based on these data, the pulse width is controlled from the characteristic diagram in FIG. Is output to the PWM oscillation circuit 10.
As shown in FIG. 5B, the waveform shaping circuit 11 separates the pulse signal of the PWM oscillation circuit 10 into an odd-numbered pulse signal b-1 and an even-numbered pulse signal b-2.
The superimposed DC power supply 13 outputs a substantially flat DC voltage v1 to be superimposed on the pulse signal.
The drive DC power supply 14 controls the peak voltage v1 of the pulse signal.
The drive circuit 12 superimposes a substantially flat DC voltage v2 set by the superimposed DC power supply 13 on the pulse voltage v1 set by the drive DC power supply 14, and shows them as c-1 and c-2 in FIG. As described above, the signals are output as signals that are 180 degrees out of phase.

前記還元槽18は、2個を1対とする還元電極19が互いに対峙して設けられ、これらの還元電極19の間にコモン電極20が設けられる。これらの還元電極19は、2個1対に限られず、多数個を対としたものであってもよい。
前記駆動回路12のコモン端子c−0と前記コモン電極20の間に抵抗などからなる電流検出回路15が挿入され、この電流検出回路15の両端に、増幅回路16が接続され、この増幅回路16の出力側には、切換え回路17を介して前記PWM発振回路10と、前記重畳直流電源13と、前記駆動直流電源14が選択的に接続され、前記メモリ21の信号に基づき切換え回路17により、デューティ比dと、電圧値v2と、電圧値v1を選択的に切換える。
The reduction tank 18 is provided with two reduction electrodes 19 facing each other, and a common electrode 20 is provided between the reduction electrodes 19. These reduction electrodes 19 are not limited to a pair of two, but may be a plurality of pairs.
A current detection circuit 15 made of a resistor or the like is inserted between the common terminal c-0 of the drive circuit 12 and the common electrode 20, and an amplification circuit 16 is connected to both ends of the current detection circuit 15, and the amplification circuit 16 The PWM oscillation circuit 10, the superimposed DC power supply 13, and the driving DC power supply 14 are selectively connected to the output side of the memory 21 via a switching circuit 17. The duty ratio d, the voltage value v2, and the voltage value v1 are selectively switched.

まず、フィリピンの水(A)と、タイの水(B)と、日本の水道水(C)の特性を調べるために、これらの水の水質の違いに拘わらず、それぞれを還元槽18に水を入れてすべて同一条件で電気分解を開始する。
具体的には、還元槽18に257リットルの入れ、回路のスイッチを入れて7Aの電流を流して電気分解を開始する。
PWM発振回路10は、例えば、10kHzで、デューティ比80%のパルス信号を出力するものとする。このパルス信号は、波形整形回路11にて図5(b)の奇数番目のパルス信号b−1と偶数番目のパルス信号b−2に分離され、駆動回路12に送られる。パルス電圧の印加は、水に浸透性と親和性を付加するためである。
前記重畳直流電源13では、10〜24Vの略フラットな直流電圧v2を設定し、駆動回路12へ送る。
前記駆動直流電源14は、前記パルス信号に直流電圧v2を重畳したときのピーク値v1が48Vとなるように設定して駆動回路12に送る。
この駆動回路12のパルス信号に略フラットな直流電圧10〜24Vを重畳した図5(c)のc−1とc−2に示す電圧が2つの還元電極19間に印加される。
First, in order to investigate the characteristics of Philippine water (A), Thai water (B), and Japanese tap water (C), water is put into the reduction tank 18 regardless of the quality of these waters. And start electrolysis under the same conditions.
Specifically, 257 liters is placed in the reduction tank 18, the circuit is switched on, and a current of 7A is supplied to start electrolysis.
For example, the PWM oscillation circuit 10 outputs a pulse signal with a duty ratio of 80% at 10 kHz. This pulse signal is separated into an odd-numbered pulse signal b-1 and an even-numbered pulse signal b-2 in FIG. 5B by the waveform shaping circuit 11, and sent to the drive circuit 12. The application of the pulse voltage is to add permeability and affinity to water.
The superimposed DC power supply 13 sets a substantially flat DC voltage v <b> 2 of 10 to 24 V and sends it to the drive circuit 12.
The drive DC power supply 14 is set so that the peak value v1 when the DC voltage v2 is superimposed on the pulse signal is 48V, and sends it to the drive circuit 12.
A voltage indicated by c-1 and c-2 in FIG. 5C in which a substantially flat DC voltage of 10 to 24 V is superimposed on the pulse signal of the drive circuit 12 is applied between the two reduction electrodes 19.

還元槽18内の水溶性切削・研削液に、パルス電圧に略フラットな直流電圧10〜24Vを重畳した電圧が印加されたときの酸化還元電位の経時的変化を測定すると、フィリピンの水(A)、タイの水(B)、日本の水道水(C)は、図3に示すデータと図2に示す折れ線グラフのように、フィリピンの水(A1)、タイの水(B1)、日本の水道水(C)の特性曲線が得られた。
具体的には、フィリピンの水(A)の特性曲線(A1)は、初期値が+216.0mVからマイナス方向に向かい、水溶性切削・研削液として必要な−250.0mVに達するまで約50分であった。その後、電気分解処理を停止すると、特性線(A1)に示すように約9時間で、水溶性切削・研削液として望まれる−170mVに戻り、さらに約30時間で0mVに戻った。
When the change over time of the oxidation-reduction potential when a voltage in which a substantially flat DC voltage of 10 to 24 V is superimposed on the pulse voltage is applied to the water-soluble cutting / grinding fluid in the reduction tank 18, Filipino water (A ), Thai water (B), Japanese tap water (C), as shown in the data shown in FIG. 3 and the line graph shown in FIG. 2, the water in the Philippines (A1), the water in Thailand (B1), and the water in Japan A characteristic curve of tap water (C) was obtained.
Specifically, the characteristic curve (A1) of water (A) in the Philippines is about 50 minutes until the initial value reaches the minus direction from +216.0 mV and reaches -250.0 mV, which is necessary as a water-soluble cutting and grinding fluid. Met. Thereafter, when the electrolysis treatment was stopped, as shown by the characteristic line (A1), it returned to −170 mV, which was desired as a water-soluble cutting / grinding fluid, in about 9 hours, and further returned to 0 mV in about 30 hours.

タイの水(B)の特性曲線(B1)は、初期値が+147.0mVからマイナス方向に向かい、水溶性切削・研削液として必要な−250.0mVに達するまで約80分であった。その後、電気分解処理を停止すると、特性線(B1)に示すように約25時間で、水溶性切削・研削液として望まれる−170mVに戻り、さらに約40時間で0mVに戻った。   The characteristic curve (B1) of water (B) in Thailand was about 80 minutes until the initial value went from -147.0 mV in the negative direction until it reached -250.0 mV, which is necessary as a water-soluble cutting / grinding fluid. Thereafter, when the electrolysis treatment was stopped, as shown by the characteristic line (B1), it returned to −170 mV, which was desired as a water-soluble cutting / grinding fluid, in about 25 hours, and further returned to 0 mV in about 40 hours.

これに対し、日本の水(C)は、初期値(+521.0mV)から水溶性切削・研削液として必要な−250mVに達するまでは、特性線(C)に示すように約120分であった。その後、電気分解処理を停止すると、特性線(C2)に示すように、水溶性切削・研削液として望まれる−170mVを約65時間継続し、さらに約195時間で0mVに戻った。   On the other hand, the water (C) in Japan was about 120 minutes from the initial value (+521.0 mV) until reaching -250 mV, which is necessary as a water-soluble cutting / grinding fluid, as indicated by the characteristic line (C). It was. Thereafter, when the electrolysis treatment was stopped, as shown by the characteristic line (C2), −170 mV desired as a water-soluble cutting / grinding fluid was continued for about 65 hours, and then returned to 0 mV in about 195 hours.

次に本発明の作用を説明する。
以上のような原因は、フィリピンの水(A)とタイの水(B)が、水質、すなわち、導電率又は全硬度が日本の水より高いため、短時間で−250mVに達し、電気分解処理を停止すると、急速に元の電位に戻り、水溶性切削・研削液として望まれる−170mVを持続することができないということが判明した。
そこで、水溶性切削・研削液として望まれる還元電位を−250mV付近に持続させるためには、還元電位を−250mV付近まで達する電気分解処理時間を長くすれば、それに応じて水溶性切削・研削液として望まれる還元電位を持続させることができることを見出した。
Next, the operation of the present invention will be described.
The cause of the above is that the water in the Philippines (A) and the water in Thailand (B) have a higher water quality, that is, conductivity or total hardness than that of Japanese water. It was found that when it was stopped, it quickly returned to its original potential and could not sustain the desired -170 mV as a water-soluble cutting and grinding fluid.
Therefore, in order to maintain the reduction potential desired as the water-soluble cutting / grinding fluid in the vicinity of −250 mV, if the electrolysis time for reaching the reduction potential to near −250 mV is lengthened, the water-soluble cutting / grinding fluid is correspondingly increased. It was found that the desired reduction potential can be sustained.

フィリピンの水(A)とタイの水(B)は、水質、すなわち、導電率又は全硬度が日本の水より高いため、短時間で−250mVに達するが、電気分解処理を停止すると、急速に元の電位に戻り、水溶性切削・研削液として望まれる−170mVを所定時間(例えば、40時間以上)持続することができないということが判明した。
そこで、種々実験を重ねた結果、図1に示すように、導電率(又は全硬度)Xと印加するパルス幅Yとは、次式のように、略反比例し、このパルス幅Yの電位を印加することで、水溶性切削・研削液として望まれる還元電位(例えば、−250mV)までに達する電気分解処理時間をできるだけ長い時間(例えば、日本の水と同程度の120分)をかけることで、水溶性切削・研削液として望まれる還元電位を従来の数倍に延長できることを発見した。
XY=C1(導電率のとき約80(1±0.2))又は
XY=C2(全硬度のとき約20(1±0.2))
となる。
なお、水の性質は、導電率又は全硬度だけでは、正確に表されないので、定数C1又はC2を(1±0.2)とした。
Philippine water (A) and Thai water (B) reach -250 mV in a short time because water quality, that is, conductivity or total hardness is higher than that of Japanese water. Returning to the original potential, it was found that -170 mV, which is desired as a water-soluble cutting / grinding fluid, cannot be maintained for a predetermined time (for example, 40 hours or more).
As a result of repeated experiments, as shown in FIG. 1, the conductivity (or total hardness) X and the applied pulse width Y are approximately inversely proportional to each other as shown in the following equation. By applying the electrolysis treatment time required to reach the reduction potential (for example, -250 mV) desired as a water-soluble cutting / grinding fluid, as long as possible (for example, 120 minutes, which is about the same as water in Japan) They discovered that the reduction potential desired as a water-soluble cutting / grinding fluid can be extended several times the conventional reduction potential.
XY = C1 (about 80 (1 ± 0.2) for conductivity) or XY = C2 (about 20 (1 ± 0.2) for full hardness)
It becomes.
In addition, since the property of water is not represented correctly only by electrical conductivity or total hardness, the constant C1 or C2 was set to (1 ± 0.2).

この式に基づき、フィリピンの水(A)は、導電率がX=408(μ/cm)であるからPWM発振回路10で制御してY=約20%のパルス幅の電位を印加する。全硬度の場合もほぼ同様である。
また、この式に基づき、タイの水(B)は、導電率がX=345(μ/cm)であるからPWM発振回路10で制御してY=約23%のパルス幅の電位を印加する。全硬度の場合もほぼ同様である。
Based on this equation, the water (A) in the Philippines has a conductivity of X = 408 (μ / cm), so it is controlled by the PWM oscillation circuit 10 and applied with a potential having a pulse width of Y = about 20%. The same applies to the case of total hardness.
Further, based on this equation, Thai water (B) has a conductivity of X = 345 (μ / cm), so that it is controlled by the PWM oscillation circuit 10 to apply a potential having a pulse width of Y = about 23%. . The same applies to the case of total hardness.

これらの条件に基づき計測したフィリピンの水(A)とタイの水(B)についてのデータ(図3)と特性曲線(図2)は、それぞれ特性線(A2:太い1点鎖線)と(B2:太い点線)で表される。
図2及び図3から明らかなように、パルス幅調整後のフィリピンの水の特性線(A2)では、水溶性切削・研削液として必要な−250.0mVに達するまで時間が約110分に延長され、その後、電気分解処理を停止してから、約40時間で、水溶性切削・研削液として望まれる−170mVに戻り、さらに約95時間で0mVに戻り、従来の約3倍の時間延長となった。
また、パルス幅調整後のタイの水の特性線(B2)では、水溶性切削・研削液として必要な−250.0mVに達するまで時間が約120分に延長され、その後、電気分解処理を停止してから、約45時間で、水溶性切削・研削液として望まれる−170mVに戻り、さらに約120時間で0mVに戻り、この例でも従来の約3倍の時間延長となった。
Data (Fig. 3) and characteristic curve (Fig. 2) for Philippine water (A) and Thai water (B) measured under these conditions are characteristic line (A2: thick one-dot chain line) and (B2), respectively. : Thick dotted line)
As is clear from FIG. 2 and FIG. 3, in the Philippine water characteristic line (A2) after adjusting the pulse width, the time is extended to about 110 minutes until it reaches -250.0 mV required as a water-soluble cutting and grinding fluid. Then, after stopping the electrolysis process, it returns to -170 mV, which is desired as a water-soluble cutting / grinding fluid, in about 40 hours, and further returns to 0 mV in about 95 hours, and is about three times as long as the conventional method. became.
Moreover, in the characteristic line (B2) of Thailand water after the pulse width adjustment, the time is extended to about 120 minutes until it reaches -250.0 mV, which is necessary as a water-soluble cutting / grinding liquid, and then the electrolysis process is stopped. After that, in about 45 hours, it returned to -170 mV, which was desired as a water-soluble cutting / grinding fluid, and further returned to 0 mV in about 120 hours.

前記実施例では、駆動電流を一定に保つために、パルス信号のデューティ比(パルス幅)のみで制御する方法としたが、(1)パルス信号のデューティ比(パルス幅)で制御する方法と重畳電圧v2で制御する方法の組み合わせの方法、(2)パルス信号のデューティ比(パルス幅)で制御する方法とピーク電圧v1で制御する方法の組み合わせの方法、(3)パルス信号のデューティ比(パルス幅)で制御する方法と重畳電圧v2で制御する方法とピーク電圧v1で制御する方法の3つの組み合わせの方法とすることもできる。   In the above embodiment, in order to keep the driving current constant, the method is controlled only by the duty ratio (pulse width) of the pulse signal. However, (1) the method of controlling by the duty ratio (pulse width) of the pulse signal is superimposed. A method of combining the methods controlled by the voltage v2, (2) a method of combining the method controlled by the duty ratio (pulse width) of the pulse signal and the method controlled by the peak voltage v1, and (3) the duty ratio of the pulse signal (pulse Width), a method of controlling with the superimposed voltage v2, and a method of controlling with the peak voltage v1.

前記実施例では、水は、フィリピンの水(A)、タイの水(B)、日本の水道水(C)としたが、水質(導電率又は全硬度)の異なるあらゆる水、例えば、現在切削・研削に使用されているクーラント液、現に使用されている水溶性切削・研削液(水に、エマルジョン、ソリュブル、ソリューション、シンセティックなどを混合希釈したもの)であっても利用できる。   In the above embodiment, the water is Philippine water (A), Thai water (B), Japanese tap water (C), but any water having different water quality (conductivity or total hardness), for example, current cutting -Coolant fluid used for grinding and water-soluble cutting / grinding fluid currently used (water, emulsion, soluble, solution, synthetic etc. mixed and diluted) can also be used.

10…PWM発振回路、11…波形整形回路、12…駆動回路、13…重畳直流電源、14…駆動直流電源、15…電流検出回路、16…増幅回路、17…切換え回路、18…還元槽、19…還元電極、20…コモン電極、21…メモリ。   DESCRIPTION OF SYMBOLS 10 ... PWM oscillation circuit, 11 ... Waveform shaping circuit, 12 ... Drive circuit, 13 ... Superimposed DC power supply, 14 ... Drive DC power supply, 15 ... Current detection circuit, 16 ... Amplification circuit, 17 ... Switching circuit, 18 ... Reduction tank, 19 ... Reduction electrode, 20 ... Common electrode, 21 ... Memory.

Claims (2)

水を還元槽に入れて還元電極に還元電位を印加し、電気分解処理をして還元水とする水溶性切削・研削液の生成方法において、
還元する水の導電率X(μs/cm)を求め、前記還元電極に印加するパルス電圧幅をY(%)としたときに、Y=C1/X(C1は定数80)の式から求められるパルス電圧幅Yの電位を還元電極に印加して、所定のマイナスの還元電位に到達する時間を延ばすことにより、電気分解停止後の水溶性切削・研削液のマイナスの還元電位を持続させるようにしたことを特徴とする水溶性切削・研削液の生成方法。
In a method for producing a water-soluble cutting / grinding fluid by putting water in a reduction tank, applying a reduction potential to the reduction electrode, and electrolyzing it into reduced water,
The electric conductivity X (μs / cm) of water to be reduced is obtained, and when the pulse voltage width applied to the reducing electrode is Y (%) , it is obtained from the equation : Y = C1 / X (C1 is a constant 80 ) that is applied to the potential reduction electrode of the pulse voltage width Y, by extending the time to reach a predetermined negative reduction potential to a negative reduction potential of the electrolysis stopped after the water-soluble cutting and grinding fluid sustainability is A method for producing a water-soluble cutting / grinding fluid characterized by being made as described above.
還元電極に印加するパルス電圧幅は、パルス信号のデューティ比(パルス幅)で制御する方法で設定するようにしたことを特徴とする請求項1記載の水溶性切削・研削液の生成方法。
Pulse voltage width to be applied to the reduction electrode, the method generates a water-soluble cutting and grinding fluid according to claim 1, characterized in that so as to set in a way that controls a duty ratio of the pulse signal (pulse width).
JP2017156458A 2017-08-14 2017-08-14 Generation method of water-soluble cutting and grinding fluid Active JP6619777B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017156458A JP6619777B2 (en) 2017-08-14 2017-08-14 Generation method of water-soluble cutting and grinding fluid
PH12017000330A PH12017000330B1 (en) 2017-08-14 2017-11-20 Production method of water-soluble cutting/grinding solutions and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017156458A JP6619777B2 (en) 2017-08-14 2017-08-14 Generation method of water-soluble cutting and grinding fluid

Publications (2)

Publication Number Publication Date
JP2019034363A JP2019034363A (en) 2019-03-07
JP6619777B2 true JP6619777B2 (en) 2019-12-11

Family

ID=65636454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017156458A Active JP6619777B2 (en) 2017-08-14 2017-08-14 Generation method of water-soluble cutting and grinding fluid

Country Status (2)

Country Link
JP (1) JP6619777B2 (en)
PH (1) PH12017000330B1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2309224A (en) * 1940-01-11 1943-01-26 Matson C Terry Self-contained air conditioner
JPS585719B2 (en) * 1978-03-02 1983-02-01 株式会社井上ジャパックス研究所 water treatment equipment
JP3465367B2 (en) * 1994-08-23 2003-11-10 東陶機器株式会社 Ion-rich water generator
ATE296262T1 (en) * 2000-01-24 2005-06-15 Rev22 Ag DEVICE FOR TREATING WATER
JP3773764B2 (en) * 2000-07-07 2006-05-10 株式会社神戸製鋼所 Liquid processing method and apparatus
JP4730699B2 (en) * 2001-07-19 2011-07-20 Toto株式会社 Toilet bowl cleaning device with electrolyzed water supply function
JP2007190495A (en) * 2006-01-19 2007-08-02 Bunsei Jo Method of sterilization and calcium deposition removal in electrolytic cell
US20080237060A1 (en) * 2007-03-27 2008-10-02 Hegel Rudolph R Methods and apparatus for electrolytic treatment of water
JP2012161760A (en) * 2011-02-08 2012-08-30 Kuken Kogyo Co Ltd Water treatment apparatus, and cooling column
JP2013046936A (en) * 2011-08-29 2013-03-07 Hideo Hayakawa Electrolysis treatment method of aqueous grinding/cutting fluid
JP6239489B2 (en) * 2014-11-13 2017-11-29 横浜マシンサービス有限会社 Reduction potential generator for water-soluble cutting and grinding fluid generation
US10858268B2 (en) * 2015-07-29 2020-12-08 Semb-Eco R&D Pte Ltd Method and system for applying superimposed time-varying frequency electromagnetic wave to target object or target region

Also Published As

Publication number Publication date
PH12017000330B1 (en) 2021-04-23
JP2019034363A (en) 2019-03-07
PH12017000330A1 (en) 2019-03-18

Similar Documents

Publication Publication Date Title
RU2008145736A (en) METHOD OF ELECTROCHEMICAL PROCESSING
JP6619777B2 (en) Generation method of water-soluble cutting and grinding fluid
JP6239489B2 (en) Reduction potential generator for water-soluble cutting and grinding fluid generation
JP2018109224A (en) Method for electropolishing metal substrate
JP4194903B2 (en) ELECTROLYTIC WATER FOR CLEANING, METHOD FOR GENERATING THE SAME, AND GENERATING DEVICE
CN105347445A (en) Method for removing micropollutants in water by activating peroxysulphate through iron electrode
RU2010147377A (en) WELDING MACHINE METHOD
JP2013046936A (en) Electrolysis treatment method of aqueous grinding/cutting fluid
JP2004041829A (en) Method and apparatus for preparing electrolytic water, and water
JP4596937B2 (en) Water purification method using sodium hypochlorite
TW490445B (en) Reducing electrolytic water producing method
JP3705756B2 (en) Electrolytic solution and electrolyzed water produced by the electrolytic solution
JP2006346650A (en) Apparatus and method for producing alkali sterilization water
JP5893066B2 (en) Neutral electrolyte for stainless steel and electrolysis method
CN103771566A (en) Automatic power polarity reversing method for electric flocculation device
CN112441652A (en) Control device for water electrolysis equipment, water electrolysis device and air sterilizer
Samaranayake et al. Electrochemical reactions during ohmic heating and moderate electric field processing
JP5001236B2 (en) Method and apparatus for producing strong alkaline water and strong oxidized water by alternating current
JP2017192374A (en) High performance water and food and drink treatment method
JP2007307517A (en) Method and apparatus for electrolyzing liquid by using alternating current
JP2003136060A (en) Apparatus for producing reduced water
JP2003086468A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor, and dc power supply device used therefor
Mukouyama et al. Chaotic oscillations in H2O2-H2SO4-Pt electrochemical system
Kwon et al. A Data Collection Model of Vehicle Parts for the Evaluation of Electric Vehicle Process Based on DID
RU2426628C2 (en) Method of electrochemical processing to sizes (versions)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R150 Certificate of patent or registration of utility model

Ref document number: 6619777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250