[go: up one dir, main page]

JP6607557B2 - Additive molding mold and injection molding method using the mold - Google Patents

Additive molding mold and injection molding method using the mold Download PDF

Info

Publication number
JP6607557B2
JP6607557B2 JP2015115349A JP2015115349A JP6607557B2 JP 6607557 B2 JP6607557 B2 JP 6607557B2 JP 2015115349 A JP2015115349 A JP 2015115349A JP 2015115349 A JP2015115349 A JP 2015115349A JP 6607557 B2 JP6607557 B2 JP 6607557B2
Authority
JP
Japan
Prior art keywords
mold
resin
temperature
manufacturing
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115349A
Other languages
Japanese (ja)
Other versions
JP2017001220A (en
Inventor
勉 横瀧
Original Assignee
株式会社シントー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シントー filed Critical 株式会社シントー
Priority to JP2015115349A priority Critical patent/JP6607557B2/en
Publication of JP2017001220A publication Critical patent/JP2017001220A/en
Application granted granted Critical
Publication of JP6607557B2 publication Critical patent/JP6607557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、射出成形用の積層造形成形型に関し、特に小ロットの生産の場合でも採算が取れるよう、成形型製造にかかる材料費を抑えることができると共に、NC加工機等による切削加工工程を必要とせず、製造期間並びに製造コストを極力減ずる事のできる積層造形成形型およびその成形型を用いた射出成形方法に関する。
The present invention relates to an additive manufacturing mold for injection molding, and in particular, can reduce the material cost for manufacturing a mold so that it can be profitable even in the case of production of a small lot, and a cutting process by an NC machine or the like. The present invention relates to an additive manufacturing mold capable of reducing the production period and production cost as much as possible, and an injection molding method using the mold.

従来より、金属粉末などの無機質粉末あるいは樹脂粉末などの有機粉末の層に対して、レーザビームなどの光ビームを照射して硬化させ、硬化層を積層して3次元形状造形物を形成する技術は知られている。かかる3次元形状造形技術では、粉末の層に光ビームを照射し、粉末を溶融固化(金属粉末の場合には焼結)させて結合させることによって結合層を形成し、この結合層の上にさらに粉末の層を被覆すると共に、この粉末に光ビームを照射して同様に結合させることによって下の結合層と一体になった結合層を形成し、これを繰り返すことによって、複数の結合層が積層一体化された粉末結合体を製造する事ができる。この方法で製造した3次元形状の積層造形物は、CADデータから直接変換したデータにより製造できる為、通常の機械加工で製造する場合よりも、迅速に加工が完了する。その為、該方法は、複雑な形状及び複数の部品を組み合わせた射出成形用の成形型を製造するのに好適であり、該方法を用いる事で成形型製造にかかる製造コスト及び製造期間を大幅に減じる事が可能になる。   Conventionally, a technique of forming a three-dimensional shaped object by irradiating a layer of inorganic powder such as metal powder or organic powder such as resin powder by irradiating with a light beam such as a laser beam and laminating the cured layer Is known. In such a three-dimensional shape forming technique, a powder layer is irradiated with a light beam, and the powder is melted and solidified (sintered in the case of a metal powder) to form a bond layer. Further, the powder layer is coated, and the powder is irradiated with a light beam and bonded in the same manner to form a bond layer integrated with the lower bond layer. By repeating this, a plurality of bond layers are formed. A laminated powder integrated body can be manufactured. Since the three-dimensional layered object manufactured by this method can be manufactured by data directly converted from CAD data, the processing is completed more quickly than in the case of manufacturing by normal machining. Therefore, this method is suitable for manufacturing a molding die for injection molding that combines a complicated shape and a plurality of parts. By using this method, the manufacturing cost and the manufacturing period for manufacturing the molding die are greatly increased. Can be reduced to

従前においても、3次元形状の積層造形物として射出成形用の成形型を製造する技術については種々検討され、提案されている。   Conventionally, various techniques for manufacturing a mold for injection molding as a three-dimensional layered object have been studied and proposed.

例えば、特許文献1(特開2008−101256号公報)では、光ビームを利用して金属の粉末を層状に連続的に硬化させて製造する3次元形状の積層造形物で、外形が100mmを超える大きさの造形物を、ベースプレートの反りを少なくすることで形状の歪みを少なくして製造できる、積層造形金型とその製作方法が提案されている。即ち、この特許文献1では、ベースプレート上に堆積した金属粉を硬化させた積層造形物からなる積層造形金型であって、 前記積層造形物と前記ベースプレートとの間に、前記ベースプレートとの接触面以外の面は前記積層造形物で囲まれてなる空間を有し、前記空間を前記積層造形物に形成したことを特徴とする積層造形金型が提案されている。   For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-101256), a three-dimensional layered structure manufactured by continuously curing a metal powder in a layer shape using a light beam, and the outer shape exceeds 100 mm. An additive manufacturing mold and a manufacturing method thereof have been proposed that can manufacture a large-sized shaped object with less warping of the base plate to reduce shape distortion. That is, in this patent document 1, it is a layered modeling die which consists of the layered modeling thing which hardened the metal powder deposited on the baseplate, Comprising: Between the said layered modeling thing and the said baseplate, the contact surface with the said baseplate The other surface has a space surrounded by the layered object, and a layered mold is proposed in which the space is formed in the layered object.

また、特許文献2(特開2002−322501号公報)では、粉末結合体内に最適な形状で、自由に形成した流体経路で各種の機能を持たせることができる成形金型が提案されている。即ち、該文献2では、粉末の層の所定箇所に光ビームを照射して溶融結合させることによって粉末が結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末の所定箇所に光ビームを照射して結合させることによって下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された粉末結合体で三次元形状造形物を作製するにあたって、光ビームの照射条件を変えて粉末結合体の密度を部分的に変化させることによって、密度が低い部分で入口と出口を有する流体経路を形成することを特徴とする三次元形状造形物の製造方法、及びその方法で製造された成形金型が提案されている。   Further, Patent Document 2 (Japanese Patent Laid-Open No. 2002-322501) proposes a molding die that can have various functions in a fluid path that is freely formed in an optimal shape in the powder binder. That is, in the literature 2, a bonding layer in which powder is bonded is formed by irradiating a predetermined portion of the powder layer with a light beam and melt-bonding, and a powder layer is coated on the bonding layer and the powder is coated. By irradiating and bonding a predetermined portion of the light beam to form a bonding layer that is integrated with the lower bonding layer, by repeating this, a three-dimensional powder combination in which a plurality of bonding layers are laminated and integrated In producing a shaped object, a fluid path having an inlet and an outlet is formed at a low density portion by changing the irradiation condition of the light beam to partially change the density of the powder combination. A manufacturing method of a three-dimensional shaped object and a molding die manufactured by the method have been proposed.

さらに、従前においては、樹脂製の成形型も提案されている。即ち、NC加工機等を用いた従来の切削方法により成形型を製造する場合において、成形型の材料として樹脂を用いる事で、型の製造期間の短縮並びに製造コストの削減を図る技術についても提案されている。   Furthermore, conventionally, a resin mold has also been proposed. In other words, when manufacturing a mold by a conventional cutting method using an NC machine or the like, a technique for shortening the mold manufacturing period and reducing the manufacturing cost by using a resin as the material of the mold is also proposed. Has been.

例えば、特許文献3(特開2009−034893号公報)では、ウレタンチップが充填される第1型と、前記第1型とキャビティを形成する第2型とを備え、前記第1型および前記第2型を型閉めした状態において、前記キャビティ内に充填圧縮された前記ウレタンチップを蒸気にて加熱してウレタン成形品に成形するウレタン成形型において、前記第1型および前記第2型は、合成樹脂にて構成されていることを特徴とするウレタン成形型が提案されている。   For example, Patent Document 3 (Japanese Patent Laid-Open No. 2009-034893) includes a first mold filled with a urethane chip, and a second mold that forms a cavity with the first mold, and the first mold and the first mold In a state where two molds are closed, the urethane chip filled in and compressed in the cavity is heated with steam and molded into a urethane molded product. The first mold and the second mold are synthesized. A urethane molding die characterized by being made of resin has been proposed.

また、特許文献4(特開2007−268999号公報)では、硬質の合成樹脂を切削し空隙を形成して樹脂型を製作し、該樹脂型の表面に金属の溶射の温度に耐え得る耐温保護膜を形成し、しかる後に該耐温保護膜が形成された前記樹脂型の表面に前記金属の溶射を施して金属被膜を形成し、内部が前記硬質の合成樹脂であり表面のみが金属である金型とすることを特徴とする金型及び金型の製造方法が提案されている。   Further, in Patent Document 4 (Japanese Patent Application Laid-Open No. 2007-268999), a resin mold is manufactured by cutting a hard synthetic resin to form a void, and can withstand the temperature of metal spraying on the surface of the resin mold. A protective film is formed, and then the metal mold is sprayed on the surface of the resin mold on which the temperature-resistant protective film is formed to form a metal film, and the inside is the hard synthetic resin and only the surface is metal. There have been proposed a mold and a method for manufacturing the mold, which are characterized by a certain mold.

特開2008−101256号公報JP 2008-101256 A 特開2002−322501号公報JP 2002-322501 A 特開2009−034893号公報JP 2009-034893 A 特開2007−268999号公報JP 2007-268999 A

前述の通り、従前においても3次元積層技術を利用して、3次元形状の積層造形物として射出成形用の成形型を製造する技術については種々検討され、提案されている。   As described above, various techniques for manufacturing a mold for injection molding as a three-dimensional layered object using a three-dimensional lamination technique have been studied and proposed.

しかしながら、かかる3次元積層技術を利用した成形型は、前記特許文献1や特許文献2で示されているように、金属粉末を使用して積層造形するものであった。射出成形は、複雑な形状の製品を大量生産するのに適している一方、数個から数百個という小ロットの生産の場合には、成形型加工にかかるコストと時間によって採算が取れないことが多かった。特に、金属粉末を用いて成形型を製造する場合には材料費が多くかかる為、小ロットの生産では金型費の償却が困難になる場合があった。また、金属粉末を利用した積層造形装置は大型かつ効果である事から、設置場所及び設置費用の点で未だ十分に普及していないのが実情である。 そこで、本発明では小ロットの生産の場合でも採算が取れるよう、製造装置の導入費用を低く抑え、また成形型製造にかかる材料費を抑えることができ、製造コストを極力減ずる事のできる積層造形成形型およびその成形型を用いた射出成形方法を提供する事を第1の課題とする。   However, as shown in Patent Document 1 and Patent Document 2, a mold using such a three-dimensional stacking technique is one that uses a metal powder to perform layered modeling. Injection molding is suitable for mass production of products with complex shapes, but in the case of production of small lots of several to hundreds, it cannot be profitable due to the cost and time required for mold processing. There were many. In particular, when a mold is manufactured using metal powder, the material cost is high. Therefore, it may be difficult to amortize the mold cost in the production of a small lot. In addition, since the additive manufacturing apparatus using metal powder is large and effective, the fact is that it has not yet been widely spread in terms of installation location and installation cost. Therefore, in the present invention, so as to be profitable even in the case of small-lot production, the introduction cost of the manufacturing apparatus can be kept low, the material cost for the mold manufacturing can be kept down, and the additive manufacturing that can reduce the manufacturing cost as much as possible It is a first object to provide a mold and an injection molding method using the mold.

また、金属粉末を用いて積層造形する場合には、金属の重量が問題となり、造形物の形状によっては別部材として造形物が落下しないよう支持するサポート材を用意する必要があった。このサポート材によって、例えば庇のように造形物の上部分が左右方向に拡がる形状の場合であっても、空中に留まることができ、造形物の落下を防ぐことができる。しかしながら、該サポート材は別部材として用意する必要がある為、結果として成形型製造にかかるコストをアップさせてしまう要因になっていた。   Further, when layered modeling is performed using metal powder, the weight of the metal becomes a problem, and depending on the shape of the modeled object, it is necessary to prepare a support material that supports the modeled object from falling as a separate member. With this support material, for example, even when the upper part of the shaped object expands in the left-right direction, such as a basket, it can stay in the air and prevent the shaped article from falling. However, since the support material needs to be prepared as a separate member, the cost for manufacturing the mold is increased as a result.

そこで、本発明では積層造形によって成形型を製造するに当たり、サポート材等の別部材を用意する必要が無く、製造コストを極力減ずることのできる積層造形成形型およびその成形型を用いた射出成形方法を提供する事を第2の課題とする。   Therefore, in the present invention, it is not necessary to prepare a separate member such as a support material when manufacturing a molding die by additive manufacturing, and an additive molding method that can reduce manufacturing costs as much as possible and an injection molding method using the forming die. It is the second problem to provide

さらに、金属製の成形型を用いて樹脂の射出成形を行う場合、成形型温度を高くして完全溶融させた樹脂を流動させやすくする為、成形型におけるクリアランス(例えばパーティングライン等)にバリが生じやすいものであった。また、成形型温度を高くして射出成形した場合には、積層造形された成形型が熱によって強度が脆くなる為に、剥離や欠けを生じやすいものとなっていた。   In addition, when resin injection molding is performed using a metal mold, it is necessary to increase the mold temperature so that the completely melted resin can flow easily. Was prone to occur. In addition, when injection molding is carried out at a high mold temperature, the laminate-molded mold becomes brittle in strength due to heat, so that peeling and chipping are likely to occur.

また、特許文献3や特許文献4のように、成形型の材料として樹脂を用いる事で、型の製造期間の短縮並びに製造コストの削減を図る技術についても提案されている。しかしながら、何れもNC加工機等による切削加工工程は変わらず必要である為、製造期間の大幅な短縮には繋がらなかった。特に、特許文献4では、合成樹脂によって樹脂型を製作し、さらに該樹脂型の表面に金属の溶射の温度に耐え得る耐温保護膜を形成する必要がある為、製造にかかる手間が多くなっていた。   Also, as in Patent Document 3 and Patent Document 4, a technique for shortening the mold manufacturing period and reducing the manufacturing cost by using a resin as the material of the mold is proposed. However, in any case, the cutting process using an NC machine or the like is still necessary, and thus the manufacturing period has not been significantly shortened. In particular, in Patent Document 4, it is necessary to manufacture a resin mold using a synthetic resin, and to form a temperature-resistant protective film that can withstand the temperature of metal spraying on the surface of the resin mold. It was.

そこで、本発明では成形型の製造に当たり、NC加工機等による切削加工工程を必要とせず、製造期間を極力減ずる事のできる積層造形成形型およびその成形型を用いた射出成形方法を提供する事を第4の課題とする。
Accordingly, in the present invention, there is provided an additive manufacturing mold that can reduce the manufacturing period as much as possible without requiring a cutting process by an NC processing machine or the like, and an injection molding method using the mold, in manufacturing the mold. Is a fourth problem.

前記課題の少なくとも何れかを解決するべく、本発明では3次元形状造形技術を用いて射出成形用の積層造形成形型を製造すると共に、当該成形型の材料には樹脂材料を用いる事で、型製造にかかる期間及びコストを効果的に減ずる事のできる積層造形成形型およびその成形型を用いた射出成形方法を提供する。   In order to solve at least one of the above problems, in the present invention, a three-dimensional shape forming technique is used to manufacture a layered shaping mold for injection molding, and a resin material is used as the material of the mold, thereby providing a mold. Provided is an additive manufacturing mold capable of effectively reducing the period and cost of manufacturing, and an injection molding method using the mold.

即ち、本発明では射出成形用の積層造形成形型であって、当該成形型の少なくとも一部は、樹脂材料を積層一体化してなる事を特徴とする積層造形成形型を提供するものである。   That is, the present invention provides a layered shaping mold for injection molding, wherein at least a part of the mold is formed by laminating and integrating resin materials.

本発明にかかる成形型は、前述の通り3次元形状造形技術を用いて製造される。3次元形状造形技術を用いて成形型を製造する事で、CADデータから直接変換したデータにより製造できる為、通常の機械加工で製造する場合よりも、迅速に加工が完了する。即ち、NC加工機等による切削加工工程を必要としない他、成形型における複数の部品を製作及び組立する必要が無い為、型製造にかかる期間及びコストを大幅に減ずる事ができる。また、3次元形状造形技術では、粉末材料、液体材料、及び流動状態である材料の少なくとも何れかの材料を硬化させた層を1層ずつ積層して形成する為、複雑な形状であっても加工ができ、例えば従来の切削加工では加工が困難であったアンダーカット部分等の加工も容易なものとなる。   The mold according to the present invention is manufactured using the three-dimensional shape forming technique as described above. By manufacturing a mold using 3D shape modeling technology, it is possible to manufacture by data directly converted from CAD data, so processing is completed more quickly than when manufacturing by normal machining. That is, it is not necessary to perform a cutting process by an NC machine or the like, and it is not necessary to manufacture and assemble a plurality of parts in the mold, so that the time and cost for mold manufacture can be greatly reduced. In the three-dimensional shape forming technique, since a layer obtained by curing at least one of a powder material, a liquid material, and a fluid material is laminated one by one, even if it is a complicated shape For example, undercut portions that are difficult to process by conventional cutting can be easily processed.

なお、使用する3次元形状造形技術としては特段の制限は無く、樹脂材料を用いて成形型を製造できれば良い為、要求される表面精度及び寸法精度等を加味して適宜選定する事ができる。例えば、光造形やインクジェット方式、或いは粉末焼結造形や、熱溶融積層造形等の方法を選択使用する事ができ、3Dプリンターなどを用いて実施する事ができる。但し、本発明においてはインクジェット方式を用いて成形型を製造するのが望ましい。これは、インクジェット方式における3次元造形技術を用いて成形型を製造する事で、滑らかな表面状態が確保できる他、高精度な微細積層が可能な為、高品質な成形品を成形できる成形型を製造できる為である。   In addition, there is no special restriction | limiting as a three-dimensional shape shaping | molding technique to be used, and what is necessary is just to be able to manufacture a shaping | molding die using a resin material, Therefore It can select suitably considering the surface accuracy, dimensional accuracy, etc. which are requested | required. For example, a method such as stereolithography, an inkjet method, powder sintering modeling, hot melt lamination modeling, or the like can be selected and used, and can be implemented using a 3D printer or the like. However, in the present invention, it is desirable to manufacture the mold using the ink jet method. This is a mold that can be molded using a 3D modeling technique in the ink jet system, and a smooth surface state can be secured, as well as high-precision fine lamination is possible, so that a high-quality molded product can be molded. It is because it can manufacture.

また、本発明では当該成形型の少なくとも一部を、樹脂材料を用いて形成する。即ち、成形型における入れ子部分のみを樹脂材料で形成しても良いし、取付板や型板等のモールドベース部分についても樹脂材料で形成しても構わない。但し、当該成形型を用いて射出成形する場合の型の摺動性、強度、或いは破損した場合の交換性等を鑑みると、入れ子のみを樹脂材料で形成するのが望ましい。樹脂材料を用いて成形型を製造する事によって、金属材料を用いて製造した場合と比較して材料費用を安価に抑える事ができる。また、全体重量を軽量化することができる為、積層造形する際に造形物が落下しないよう支持するサポート材等を別途用意する必要が無い。その結果、樹脂材料を用いて成形型を製造する事によって成形型製造にかかる期間及びコストを大幅に減ずる事ができる。   In the present invention, at least a part of the mold is formed using a resin material. That is, only the nesting part in the mold may be formed of a resin material, and the mold base part such as a mounting plate or a mold plate may be formed of a resin material. However, in view of the slidability and strength of the mold in the case of injection molding using the mold, or the exchangeability in the case of breakage, it is desirable to form only the nesting with a resin material. By manufacturing a mold using a resin material, material costs can be reduced compared to the case of manufacturing using a metal material. In addition, since the overall weight can be reduced, it is not necessary to separately prepare a support material or the like that supports the modeled object so that it does not fall when layered. As a result, it is possible to significantly reduce the time and cost for manufacturing the mold by manufacturing the mold using the resin material.

なお、成形型に使用できる樹脂材料の種類としては天然樹脂、合成樹脂等を広く利用する事ができるが、本発明にあってはPP(ポリプロピレン)、ABS、アクリル等を含む熱可塑性樹脂や光硬化樹脂を用いるのが望ましい。熱可塑性樹脂を用いて成形型を製造する事によって、3次元形状造形技術として熱溶融積層造形を用いた場合にも熱で溶融及び積層するのが容易となり、寸法精度の高い成形型を製造する事ができる為である。3次元形状造形技術を用いて成形型を製造するに当たり、当該樹脂材料は単体で使用しても良いし、3次元形状造形技術として前述したような光造形やインクジェット方式等を用いる場合には、エポキシ系の紫外線硬化性樹脂(或いは光硬化性樹脂)を用いたり、樹脂材料に別途硬化剤を混合させたり、金属やガラスなどの無機又は有機充填剤を配合して使用する等しても構わない。金属やガラスなどの無機充填剤を配合する事により、機械的強度を高める事ができる他、熱電ろう率を高めて冷却効率を高める事ができる。特に、エポキシ系の紫外線硬化性樹脂として、ABS等の樹脂材料に近い性質を持つ樹脂を用いる事で強度と剛性にも優れた成形型を製造する事ができる。ABS等の樹脂材料に近い性質を持つ樹脂としては、例えば、ABSライク樹脂(Stratasys製RGD5160-DM)等が挙げられる。   Note that natural resins and synthetic resins can be widely used as the types of resin materials that can be used for the mold, but in the present invention, thermoplastic resins including PP (polypropylene), ABS, acrylic, etc. It is desirable to use a cured resin. By manufacturing a mold using a thermoplastic resin, it becomes easy to melt and laminate with heat even when using hot melt additive manufacturing as a three-dimensional shape forming technique, and manufacture a mold with high dimensional accuracy. This is because things can be done. In manufacturing the mold using the three-dimensional shape modeling technique, the resin material may be used alone, or when using the optical modeling or ink jet method as described above as the three-dimensional shape modeling technique, An epoxy-based ultraviolet curable resin (or photo-curable resin) may be used, a curing agent may be mixed with a resin material, or an inorganic or organic filler such as metal or glass may be used. Absent. By blending inorganic fillers such as metal and glass, the mechanical strength can be increased, and the thermoelectric brazing rate can be increased to increase the cooling efficiency. In particular, a mold having excellent strength and rigidity can be manufactured by using a resin having properties close to a resin material such as ABS as an epoxy-based ultraviolet curable resin. Examples of the resin having properties close to resin materials such as ABS include ABS-like resin (RGD5160-DM manufactured by Stratasys).

また、樹脂材料を用いて成形型を製造する事によって、金属特有の錆びが発生する事も無く、メンテナンス性にも優れる。一方で、熱伝導率が金属と比べて低い為に、成形型の大きさを縮小化して、冷却効果を高める事が望ましい。具体的には、当該成形型の外側面から樹脂材料が充填されるキャビティまでの距離が2mm以上、10mm以下となるよう形成する事ができる。成形型の外側面から樹脂材料が充填されるキャビティまでの距離を2mm以上、10mm以下に形成する事で、成形型の外枠からキャビティまでの距離を短くする事ができる為、成形型をコンパクトに形成でき、製造にかかるコストを抑える事ができるのみならず、冷却効率を高める事ができる。これを例えば、成形型の外側面から樹脂材料が充填されるキャビティまでの距離が10mmより大きくなるよう形成した場合(即ち、成形型の外枠からキャビティまでの距離を長くした場合)には、成形型が大きく形成される為、結果製造コストが嵩んでしまい、また樹脂製の成形型に熱が蓄積されることになる。一方で、成形型の外側面から樹脂材料が充填されるキャビティまでの距離が2mmより小さくなるよう形成した場合(即ち、成形型の外枠からキャビティまでの距離を極端に短くした場合)には、温調用孔やゲート等を配置するスペースが少なくなる為、修正が必要な場合にも修正が困難になる可能性があり、要求される品質の成形品が得られない可能性が生ずる。   In addition, by producing a mold using a resin material, there is no occurrence of metal-specific rust and excellent maintainability. On the other hand, since the thermal conductivity is lower than that of metal, it is desirable to reduce the size of the mold and enhance the cooling effect. Specifically, the distance from the outer surface of the mold to the cavity filled with the resin material can be formed to be 2 mm or more and 10 mm or less. By forming the distance from the outer surface of the mold to the cavity filled with the resin material to 2 mm or more and 10 mm or less, the distance from the outer frame of the mold to the cavity can be shortened, so the mold is compact. In addition to being able to reduce manufacturing costs, cooling efficiency can be increased. For example, when the distance from the outer surface of the mold to the cavity filled with the resin material is made larger than 10 mm (that is, when the distance from the outer frame of the mold to the cavity is increased), Since the molding die is formed in a large size, the manufacturing cost increases as a result, and heat is accumulated in the resin molding die. On the other hand, when the distance from the outer surface of the mold to the cavity filled with the resin material is smaller than 2 mm (that is, when the distance from the outer frame of the mold to the cavity is extremely short) Further, since the space for arranging the temperature adjusting hole and the gate is reduced, there is a possibility that the correction may be difficult even when correction is necessary, and a molded product having a required quality may not be obtained.

本発明では、上記積層造形成形型を用いた樹脂の射出成形方法を用いる事で、より一層品質の良い成形品を得る事が可能となる。その具体的な構成を説明する。本発明にかかる射出成形方法では、成形型に使用する材料のガラス転移温度と、成形する樹脂材料のガラス転移温度との温度比(即ち、成形型に使用する材料のガラス転移温度:成形する樹脂材料のガラス転移温度)が1:1.5〜1:3.0となる材料で形成した成形型を使用し、当該温度比となる樹脂材料を、そのキャビティ内に射出するのが望ましい。かかる構成とする事で、成形する樹脂材料を成形型のキャビティ内で確実に固化させる事ができ、確実な成形が可能になる為である。使用する具体的な材料としては、例えば成形型の材料としてエポキシ系の紫外線硬化性樹脂であるABSライク樹脂(Stratasys製RGD5160-DM:ガラス転移温度47℃〜53℃)を使用した場合には、成形する樹脂材料としてABS(ガラス転移温度80℃〜125℃)や、ポリスチレン(ガラス転移温度100℃)、或いはポリメタクリル酸メチル(ガラス転移温度90℃)、等を使用するのが望ましい。   In the present invention, it is possible to obtain a molded product with even better quality by using the resin injection molding method using the layered shaping mold. The specific configuration will be described. In the injection molding method according to the present invention, the temperature ratio between the glass transition temperature of the material used for the mold and the glass transition temperature of the resin material to be molded (that is, the glass transition temperature of the material used for the mold: resin to be molded) It is desirable to use a molding die formed of a material having a glass transition temperature of 1: 1.5 to 1: 3.0 and inject a resin material having the temperature ratio into the cavity. By adopting such a configuration, the resin material to be molded can be surely solidified in the cavity of the mold, so that reliable molding is possible. As a specific material to be used, for example, when an ABS-like resin (Stratasys RGD5160-DM: glass transition temperature 47 ° C. to 53 ° C.), which is an epoxy-based ultraviolet curable resin, is used as a mold material, As the resin material to be molded, it is desirable to use ABS (glass transition temperature 80 ° C. to 125 ° C.), polystyrene (glass transition temperature 100 ° C.), polymethyl methacrylate (glass transition temperature 90 ° C.), or the like.

なお、上記構成にした場合、射出充填中の成形型温度が、成形型が変形しない温度になるように、望ましくは成形型に使用する材料のガラス転移温度より低い温度になるよう冷却手段を設けるのが尚望ましい。射出充填中の成形型温度が、成形型に使用する材料のガラス転移温度より低い温度になるよう構成する事で、成形型が熱による変形が生じる事無く、高品質の成形品を得る事が可能になる。具体的には、射出充填中の成形型温度が、成形型に使用する材料のガラス転移温度より低い温度になるよう構成する事で、成形品の成形後の収縮を効果的に抑える事ができると共に、パーティングライン等のクリアランスからバリが生じる可能性や、成形型に剥離や欠けが生じる可能性を効果的に減じる事ができる。即ち、射出成形にて射出される熱可塑性樹脂は溶融すると膨らみ、冷却固化を始めると収縮する性質がある。   In the case of the above configuration, a cooling means is provided so that the temperature of the mold during injection filling is preferably lower than the glass transition temperature of the material used for the mold so that the mold does not deform. It is still desirable. By configuring the mold temperature during injection filling to be lower than the glass transition temperature of the material used for the mold, it is possible to obtain a high-quality molded product without the mold being deformed by heat. It becomes possible. Specifically, by configuring the mold temperature during injection filling to be lower than the glass transition temperature of the material used for the mold, shrinkage after molding of the molded product can be effectively suppressed. At the same time, it is possible to effectively reduce the possibility of burrs from clearances such as parting lines and the possibility of peeling or chipping in the mold. That is, the thermoplastic resin injected by injection molding has a property of expanding when it melts and contracting when it starts to cool and solidify.

通常、成形型に注入された樹脂は成形型に接している部分、即ち「スキン層」が最初に形成され、徐々に内部に樹脂が流れ、冷却固化していく。そして、表面が固化する(スキン層が形成される)と、成形収縮が小さくなり、寸法が安定する。一方で、成形型温度を高くした場合には、本来形成される「スキン層」が安定せずに内部(特に肉厚部)は完全に固化していない状態となる。つまり、冷却が不十分な状態で成形型から取り出される為、成形品内部の熱により「スキン層」も不活性化せず、室温等によって成形品が常温まで冷却固化するまでの間に収縮が続くことになる。よって、射出充填中の成形型温度が、成形型に使用する材料のガラス転移温度より低い温度になるよう構成する事で、成形後の寸法変化の極力少ない高品質な成形品を得る事が可能となる。   Normally, a portion of the resin injected into the mold is in contact with the mold, that is, a “skin layer” is formed first, and the resin gradually flows into the interior and cools and solidifies. When the surface is solidified (a skin layer is formed), molding shrinkage is reduced and the dimensions are stabilized. On the other hand, when the mold temperature is increased, the originally formed “skin layer” is not stabilized and the inside (particularly the thick portion) is not completely solidified. In other words, since it is removed from the mold with insufficient cooling, the “skin layer” is not inactivated by the heat inside the molded product, and shrinkage occurs until the molded product cools and solidifies to room temperature due to room temperature or the like. It will continue. Therefore, by configuring the mold temperature during injection filling to be lower than the glass transition temperature of the material used for the mold, it is possible to obtain a high-quality molded product with as little dimensional change as possible after molding. It becomes.

特に、当該冷却手段によって、成形する樹脂材料のガラス転移温度と成形型温度の温度比(即ち、成形する樹脂材料のガラス転移温度:成形型温度)が1.2:1~4.2:1となるよう調整した状態で、樹脂材料が充填されるキャビティに対して樹脂材料を射出する事で、より変形の少ない高品質の成形品を製造する事ができる。即ち、成形する樹脂材料のガラス転移温度と成形型温度の温度比が1.2:1~4.2:1となるよう調整した状態で射出成形を行う事で、射出される樹脂が完全溶融されない状態でキャビティ内に充填されていく為、スキン層の形成を速める事ができ、成形後の寸法変化を抑えることができる他、パーティングライン等のクリアランスからバリが生じる可能性を効果的に減ずる事ができる。かかるスキン層の形成を早める為に、キャビティ内に射出する樹脂も完全溶融されない温度であることが望ましく、ガラス転移温度以下であることが望ましい。そして成形型温も、ガラス転移温度の50%以下の温度、望ましくは1/4以下の温度であることが望ましい。 なお、当該冷却手段としては、成形型の型温を均一に冷却できる手段であれば良く、特段の制約は無い。具体的には、ヒータ等を用いて成形型の温度を調節しても良いし、成形型に温調用孔を設け、水や温水、或いはエアー(空気)や油等の温度調節媒体を成形型内に流動させる事で温度を調節しても構わない。よって、例えば樹脂の熱がこもり易く冷却が遅い厚肉部を成形する成形型部分には前述した温度調節媒体を流動させ、冷却が早い薄肉部を成形する成形型部分にはヒータ等を用いて温度を調節する事もできる。上記、冷却手段によって成形型の型温を均一に冷却する事で、成形品全体としての冷却速度を均一化でき、成形品に反りや歪み等が発生する可能性を抑制する事ができる。   In particular, the cooling means adjusts the temperature ratio between the glass transition temperature of the resin material to be molded and the mold temperature (that is, the glass transition temperature of the resin material to be molded: mold temperature) to be 1.2: 1 to 4.2: 1. In this state, by injecting the resin material into the cavity filled with the resin material, it is possible to manufacture a high-quality molded product with less deformation. In other words, by performing injection molding in a state where the temperature ratio of the glass transition temperature of the resin material to be molded and the mold temperature is adjusted to 1.2: 1 to 4.2: 1, the cavity is formed in a state where the injected resin is not completely melted. Since it fills the inside, the formation of the skin layer can be accelerated, the dimensional change after molding can be suppressed, and the possibility of burr from the clearance of the parting line etc. can be effectively reduced. . In order to expedite the formation of such a skin layer, the temperature of the resin injected into the cavity is preferably not completely melted, and is preferably not higher than the glass transition temperature. The mold temperature is also desirably 50% or less of the glass transition temperature, desirably 1/4 or less. The cooling means may be any means that can cool the mold temperature of the mold uniformly, and there is no particular limitation. Specifically, the temperature of the mold may be adjusted using a heater or the like, or a temperature adjusting hole is provided in the mold, and a temperature adjusting medium such as water, hot water, air (air) or oil is used as the mold. You may adjust temperature by making it flow in. Therefore, for example, the above-described temperature control medium is flowed in the mold part that molds the thick part where the heat of the resin is easily trapped and the cooling is slow, and a heater or the like is used for the mold part that molds the thin part that is cooled quickly. You can also adjust the temperature. By uniformly cooling the mold temperature of the mold by the cooling means, the cooling rate of the entire molded product can be made uniform, and the possibility of warping or distortion of the molded product can be suppressed.

また、当該成形型に形成するゲート仕様については特に制限は無く、例えばダイレクトゲートやサイドゲート、サブマリンゲートやピンゲート等のゲート仕様を利用する事ができる。特に、サイドゲートを利用する事によって、構造を簡易なものとする事ができると共に、コストを安価に抑える事ができる。さらに、ゲート付近のみを金属材料で形成する等すれば、熱によって成形型に剥離や欠けが生じる可能性をさらに減じる事もでき、より安定した成形が可能となる。   Moreover, there is no restriction | limiting in particular about the gate specification formed in the said shaping | molding die, For example, gate specifications, such as a direct gate, a side gate, a submarine gate, and a pin gate, can be utilized. In particular, by using the side gate, the structure can be simplified and the cost can be reduced. Furthermore, if only the vicinity of the gate is made of a metal material, the possibility of peeling or chipping in the mold due to heat can be further reduced, and more stable molding becomes possible.

そして、上記射出成形方法によって成形された成形品は、成形後の寸法変化やバリの極力少ない高品質なものとして成形される。また、当該成形品を得る為の成形型は、3Dプリンターなどの3次元形状造形技術を利用し、樹脂材料によって形成される為、従来の機械加工による製造方法と比較して、製造にかかる期間及びコストを大幅に減ずる事ができる。よって、数個から数百個という小ロットの生産の場合であっても、所望の成形品を得る為の製造期間及びコストを極力抑える事が出来る為、採算が取れない事態が生ずる可能性を回避でき、効率の良い製品製造が可能となる。   And the molded product shape | molded by the said injection molding method is shape | molded as a high quality thing with few dimensional changes after a shaping | molding, and a burr | flash as much as possible. In addition, since the mold for obtaining the molded product is formed of a resin material using a three-dimensional shape forming technique such as a 3D printer, the time required for manufacturing is longer than that of a conventional machining method. In addition, the cost can be greatly reduced. Therefore, even in the production of small lots of several to several hundred pieces, the production period and cost for obtaining the desired molded product can be suppressed as much as possible. It can be avoided and efficient product production becomes possible.

特に、上記本発明にかかる成形型は、ブロー成型用の型として利用する他、射出成型用の型として利用する事ができる。特に、樹脂を用いた成形型でありながら、樹脂の射出成型用の型として利用する為には、前記した温度の相互関係を保持する事が必要である。
In particular, the mold according to the present invention can be used as a mold for injection molding in addition to being used as a mold for blow molding. In particular, in order to use as a mold for resin injection molding, although it is a mold using resin, it is necessary to maintain the above-described temperature correlation.

本発明では射出成形用の積層造形成形型であって、当該成形型の少なくとも一部は、樹脂材料を積層一体化してなる事を特徴とする積層造形成形型及びその成形型を用いた射出成形方法を提供する。   In the present invention, there is a layered molding mold for injection molding, and at least a part of the mold is formed by laminating and integrating resin materials, and injection molding using the mold Provide a method.

本発明では、樹脂材料を用いて成形型を製造する事によって、金属材料を用いて製造した場合と比較して材料費用を安価に抑える事ができる。また、全体重量を軽量化することができる為、積層造形する際に造形物が落下しないよう支持するサポート材等を別途用意する必要が無い。結果、樹脂材料を用いて成形型を製造する事によって成形型製造にかかる期間及びコストを大幅に減ずる事ができる。   In the present invention, by manufacturing the mold using the resin material, the material cost can be reduced as compared with the case of manufacturing using the metal material. In addition, since the overall weight can be reduced, it is not necessary to separately prepare a support material or the like that supports the modeled object so that it does not fall when layered. As a result, it is possible to significantly reduce the time and cost for manufacturing the mold by manufacturing the mold using the resin material.

また、本発明では3次元形状造形技術を用いて成形型を製造する。その為、CADデータから直接変換したデータにより製造できる為、通常の機械加工で製造する場合よりも、迅速に加工が完了する。即ち、NC加工機等による切削加工工程を必要としない他、成形型における複数の部品を製作及び組立する必要が無い為に、型製造にかかる期間及びコストを大幅に減ずる事ができる。   Moreover, in this invention, a shaping | molding die is manufactured using a three-dimensional shape modeling technique. Therefore, since it can be manufactured by data directly converted from CAD data, the processing is completed more quickly than in the case of manufacturing by normal machining. In other words, since a cutting process by an NC machine or the like is not required, and it is not necessary to manufacture and assemble a plurality of parts in a molding die, the time and cost required for die manufacture can be greatly reduced.

その結果、本発明では、従来の機械加工による製造方法と比較して、製造にかかる期間及びコストを大幅に減ずる事ができる為、数個から数百個という小ロットの生産の場合であっても、所望の成形品を得る為の製造期間及びコストを極力抑える事が出来る為、採算が取れない事態が生ずる可能性を回避でき、効率の良い製品製造が可能となる。   As a result, the present invention can greatly reduce the time and cost of manufacturing compared to the conventional manufacturing method by machining, and therefore, in the case of production of a small lot of several to several hundred pieces. However, since the production period and cost for obtaining a desired molded product can be suppressed as much as possible, the possibility of unprofitable situations can be avoided, and efficient product production becomes possible.

さらに、本発明にかかる積層造形成形型を用いた樹脂の射出成形方法を用いる事で、より一層品質の良い成形品を得る事が可能となる。本発明にかかる樹脂の射出成形方法では、射出充填中の成形型温度が、成形型に使用する材料のガラス転移温度より低い温度になるよう冷却手段を設けるのが望ましく、上記構成とする事で成形品の成形後の収縮を効果的に抑える事ができると共に、パーティングライン等のクリアランスからバリが生じる可能性や剥離や欠けが生じる可能性を効果的に減じる事ができる。   Furthermore, by using the resin injection molding method using the layered shaping mold according to the present invention, it becomes possible to obtain a molded product with even better quality. In the resin injection molding method according to the present invention, it is desirable to provide cooling means so that the molding die temperature during injection filling is lower than the glass transition temperature of the material used for the molding die. The shrinkage after the molding of the molded product can be effectively suppressed, and the possibility of the occurrence of burrs from the clearance of the parting line and the like, and the possibility of peeling and chipping can be effectively reduced.

特に、当該冷却手段によって、成形する樹脂材料のガラス転移温度と成形型温度の温度比が1.2~4.2:1となるよう調整した状態で、樹脂材料が充填されるキャビティに対して樹脂材料を射出する事で、より一層上記効果を奏する事が可能となる。即ち、成形する樹脂材料のガラス転移温度と成形型温度の温度比が1.2~4.2:1となるよう調整した状態で射出成形を行う事で、射出される樹脂が完全溶融されない状態でキャビティ内に充填されていく為、スキン層の形成を速める事ができ、成形後の寸法変化を抑えることができる他、パーティングライン等のクリアランスからバリが生じる可能性を効果的に減ずる事ができる。
In particular, the resin material is injected into the cavity filled with the resin material in a state where the temperature ratio between the glass transition temperature of the resin material to be molded and the mold temperature is adjusted to 1.2 to 4.2: 1 by the cooling means. By doing so, the above effects can be further achieved. That is, by performing injection molding in a state where the temperature ratio of the glass transition temperature of the resin material to be molded and the mold temperature is adjusted to 1.2 to 4.2: 1, the resin to be injected is not completely melted in the cavity. Since filling is performed, the formation of the skin layer can be speeded up, dimensional change after molding can be suppressed, and the possibility of burrs from clearances such as parting lines can be effectively reduced.

本実施の形態にかかる積層造形成形型を示す図であり、(A)積層造形成形型(キャビ側)の斜視図、(B)積層造形成形型(コア側)の斜視図。It is a figure which shows the additive manufacturing shaping | molding die concerning this Embodiment, (A) The perspective view of an additive manufacturing shaping die (cavity side), (B) The perspective view of an additive manufacturing shaping die (core side). 本実施の形態にかかる積層造形成形型(キャビ側)を示す図であり、(A)平面図、(B)正面図、(C)側面図。It is a figure which shows the additive manufacturing shaping | molding die (cavity side) concerning this Embodiment, (A) Top view, (B) Front view, (C) Side view. 本実施の形態にかかる積層造形成形型(コア側)を示す図であり、(A)平面図、(B)正面図、(C)側面図。It is a figure which shows the additive manufacturing shaping | molding die (core side) concerning this Embodiment, (A) Top view, (B) Front view, (C) Side view. 実施例1で使用する積層造形成形型を示す図であり、(A)積層造形成形型(コア側)の正面図、(B)積層造形成形型(キャビ側)の正面図。It is a figure which shows the additive manufacturing shaping | molding die used in Example 1, (A) The front view of an additive manufacturing shaping die (core side), (B) The front view of an additive manufacturing shaping die (cavity side). 実施例1にかかる積層造形成形型の成形型温度をサーモグラフィを使用して温度測定した画像であり、(A)6ショット目(コア側)の画像、(B)6ショット目(キャビ側)の画像、(C)6ショット目(成形品)の画像。It is the image which measured the mold temperature of the layered shaping mold concerning Example 1 using thermography, (A) 6th shot (core side) image, (B) 6th shot (cavity side) Image, (C) Image of the sixth shot (molded product). 実施例1にかかる積層造形成形型の成形型温度をサーモグラフィを使用して温度測定した画像であり、(A)7ショット目(コア側)の画像、(B)7ショット目(キャビ側)の画像、(C)7ショット目(成形品)の画像、(D)8ショット目(コア側)の画像、(E)8ショット目(キャビ側)の画像、(F)8ショット目(成形品)の画像。It is the image which measured the mold temperature of the layered shaping mold concerning Example 1 using thermography, (A) 7th shot (core side) image, (B) 7th shot (mold side) Image, (C) 7th shot (molded product) image, (D) 8th shot (core side) image, (E) 8th shot (cavity side) image, (F) 8th shot (molded product) )Image of. 実施例1にかかる積層造形成形型の成形型温度をサーモグラフィを使用して温度測定した画像であり、(A)9ショット目(キャビ側)の画像、(B)9ショット目(成形品)の画像、(C)10ショット目(コア側)の画像、(D)10ショット目(キャビ側)の画像、(E)10ショット目(成形品)の画像。It is the image which measured the mold temperature of the layered shaping mold concerning Example 1 using thermography, (A) 9th shot (cavity side) image, (B) 9th shot (molded product) (C) 10th shot (core side) image, (D) 10th shot (cavity side) image, (E) 10th shot (molded product) image. 実施例1にかかる積層造形成形型の成形型温度をサーモグラフィを使用して温度測定した画像であり、(A)11ショット目(コア側)の画像、(B)11ショット目(成形品)の画像、(C)12ショット目(コア側)の画像、(D)12ショット目(成形品)の画像。It is the image which measured the mold temperature of the layered shaping mold concerning Example 1 using thermography, (A) The 11th shot (core side) image, (B) The 11th shot (molded product) Image, (C) 12th shot (core side) image, (D) 12th shot (molded product) image. 実施例1にかかる積層造形成形型の成形型温度をサーモグラフィを使用して温度測定した画像であり、(A)13ショット目(コア側)の画像、(B)13ショット目(成形品)の画像、(C)14ショット目(コア側)の画像、(D)14ショット目(成形品)の画像。It is the image which measured the mold temperature of the layered shaping mold concerning Example 1 using thermography, (A) 13th shot (core side) image, (B) 13th shot (molded product) Image, (C) 14th shot (core side) image, (D) 14th shot (molded product) image. 実施例1にかかる積層造形成形型の成形型温度をサーモグラフィを使用して温度測定した画像、及び成形品と成形型の不具合の様態を示す画像であり、(A)15ショット目(コア側)の画像、(B)15ショット目(成形品)の画像、(C)得られた成形品のバリの様態を示す画像、(D)成形型の欠けを示す画像。It is the image which measured the mold temperature of the layered shaping mold concerning Example 1 using thermography, and the image which shows the mode of the malfunction of a molded product and a mold, (A) 15th shot (core side) (B) Image of 15th shot (molded product), (C) Image showing the state of burrs of the obtained molded product, (D) Image showing chipping of mold. 実施例1にかかる積層造形成形型の成形型温度をサーモグラフィを使用して温度測定した画像、及び成形品の不具合の様態を示す画像であり、(A)16ショット目(コア側)の画像、(B)16ショット目(成形品)の画像、(C)得られた成形品のバリの様態を示す画像、(D)得られた成形品の変形の様態を示す画像。It is the image which measured the mold temperature of the layered shaping | molding shaping | molding die concerning Example 1 using thermography, and the image which shows the mode of the malfunction of a molded article, (A) 16th shot (core side) image, (B) Image of 16th shot (molded product), (C) Image showing the state of burrs of the obtained molded product, (D) Image showing the state of deformation of the obtained molded product. 実施例2で使用する積層造形成形型を示す図であり、(A)積層造形成形型(キャビ側)の正面図、(B)積層造形成形型(コア側)の正面図。It is a figure which shows the additive manufacturing shaping | molding die used in Example 2, (A) The front view of an additive manufacturing shaping die (cavity side), (B) The front view of an additive manufacturing shaping die (core side).

以下、図面を参照しながら、本実施の形態にかかる積層造形成形型およびその成形型を用いた射出成形方法を具体的に説明する。   Hereinafter, an additive manufacturing mold according to the present embodiment and an injection molding method using the mold will be specifically described with reference to the drawings.

図1に示すように、本実施の形態にかかる積層造形成形型(10及び20)は、射出成形用の成形型として、積層造形成形型(キャビ側)10と積層造形成形型(コア側)20とで構成している。当該積層造形成形型(キャビ側)10と積層造形成形型(コア側)20を入れ子として使用して射出成形する事によって、所望の成形品を得る事ができる。本実施の形態にかかる積層造形成形型(10及び20)は、3次元形状造形技術を用いて造形しており、インクジェット方式(使用機材:Stratasys社製Objet 260 Connex)を利用して造形している。3次元形状造形技術を用いて成形型を製造する事で、CADデータから直接変換したデータにより製造できる為、通常の機械加工で製造する場合よりも、迅速に加工が完了する。   As shown in FIG. 1, the layered shaping mold (10 and 20) according to the present embodiment is a layered shaping mold (cavity side) 10 and a layered shaping mold (core side) as a mold for injection molding. It consists of twenty. A desired molded product can be obtained by injection molding using the additive manufacturing mold (cavity side) 10 and additive manufacturing mold (core side) 20 as a nest. The additive manufacturing molds (10 and 20) according to the present embodiment are formed using a three-dimensional shape forming technique, and are formed using an inkjet method (equipment used: Objet 260 Connex manufactured by Stratasys). Yes. By manufacturing a mold using 3D shape modeling technology, it is possible to manufacture by data directly converted from CAD data, so processing is completed more quickly than when manufacturing by normal machining.

即ち、NC加工機等による切削加工工程を必要としない他、成形型における複数の部品を製作及び組立する必要が無い為に、型製造にかかる期間及びコストを大幅に減ずる事ができる。特に、インクジェット方式は、インクジェットヘッドを使用し、紫外線硬化性の樹脂を高解像度で噴射する方法であり、噴射した樹脂を紫外線で固めながら積層していく為、滑らかな表面状態が確保できる他、高精度な微細積層が可能である。よって、インクジェット方式における3次元造形技術を用いて成形型を製造する事で高品質な成形品を成形できる成形型を製造できる。本実施の形態にかかる積層造形成形型(10及び20)は、エポキシ系の紫外線硬化性樹脂であるABSライク樹脂(Stratasys製RGD5160-DM)を用いて造形している。   In other words, since a cutting process by an NC machine or the like is not required, and it is not necessary to manufacture and assemble a plurality of parts in a molding die, the time and cost required for die manufacture can be greatly reduced. In particular, the inkjet method uses an inkjet head, and is a method of jetting an ultraviolet curable resin with high resolution. Since the jetted resin is laminated while being cured with ultraviolet rays, a smooth surface state can be secured, High-precision fine lamination is possible. Therefore, it is possible to manufacture a mold that can form a high-quality molded product by manufacturing the mold using the three-dimensional modeling technique in the inkjet method. The additive manufacturing molds (10 and 20) according to the present embodiment are formed using an ABS-like resin (RGD5160-DM manufactured by Stratasys) which is an epoxy-based ultraviolet curable resin.

図1〜図3を用いて本実施の形態にかかる積層造形成形型(10及び20)を具体的に説明する。本実施の形態にかかる積層造形成形型(10及び20)は、積層造形成形型(キャビ側)10と積層造形成形型(コア側)20とで構成し、どちらも縦寸法を107mm、横寸法を56mmで形成している。積層造形成形型(キャビ側)10は、射出される樹脂材料が充填され、成形品形状を付与する凹部として機能し、中央部にスプルー孔13を設け、上下に各1箇所ずつモールドベース部分とボルトで締結する為の締結孔11を設けている。また、角には積層造形成形型(コア側)20と重なり合った際のズレを防止する為の突起部12を設けている。   The additive manufacturing molds (10 and 20) according to the present embodiment will be specifically described with reference to FIGS. The additive manufacturing mold (10 and 20) according to the present embodiment is composed of an additive manufacturing mold (cavity side) 10 and an additive manufacturing mold (core side) 20, both of which have a vertical dimension of 107 mm and a horizontal dimension. Is formed with 56mm. The additive manufacturing mold (cavity side) 10 is filled with the resin material to be injected and functions as a concave portion that gives the shape of the molded product. A sprue hole 13 is provided in the central portion, and a mold base portion is provided at each of the upper and lower portions. Fastening holes 11 for fastening with bolts are provided. In addition, a protrusion 12 is provided at the corner to prevent misalignment when overlapping with the additive manufacturing mold (core side) 20.

一方で、積層造形成形型(コア側)20は、射出される樹脂材料が充填され、成形品形状を付与する凸部として機能し、前述した積層造形成形型(キャビ側)10と同様に、上下に各1箇所ずつモールドベース部分とボルトで締結する為の締結孔21を設け、角には積層造形成形型(キャビ側)10と重なり合った際のズレを防止する為の突起部22を設けている。当該積層造形成形型(キャビ側)10と積層造形成形型(コア側)20とを重ね合わせる事で、中央部に樹脂材料が充填される空洞部分(いわゆるキャビティ)ができ、当該キャビティに樹脂材料が射出されることで成形品を得る事ができる。   On the other hand, the layered shaping mold (core side) 20 is filled with the resin material to be injected and functions as a convex portion that gives the shape of the molded product. Like the layered shaping mold (cavity side) 10 described above, Fastening holes 21 for fastening with the mold base part and bolts are provided one above each at the top and bottom, and protrusions 22 are provided at the corners to prevent misalignment when overlapping with the additive manufacturing mold (cavity side) 10 ing. By overlaying the additive manufacturing mold (cavity side) 10 and additive manufacturing mold (core side) 20, a hollow portion (so-called cavity) filled with a resin material is formed in the center, and the resin material is formed in the cavity. A molded product can be obtained by injecting.

また、本実施の形態では樹脂材料を用いて成形型を製造する事によって、金属特有の錆びが発生する事無く、メンテナンス性にも優れる他、熱伝導率が金属と比べて低い為に、成形型の大きさを縮小化できている。具体的には、積層造形成形型(キャビ側)10における成形型の側面からキャビティまでの距離W1を4mmに形成すると共に、成形型の下面からキャビティまでの距離h1を10mmに形成している。また、積層造形成形型(コア側)20における成形型の側面からキャビティまでの距離W2を4mmに形成すると共に、成形型の上面からキャビティまでの距離h2を10mmに形成している。よって、成形型の外枠からキャビティまでの距離を短く形成する事で、成形型をコンパクトに形成でき、製造にかかるコストを効果的に抑えている。 In addition, in this embodiment, by forming a mold using a resin material, there is no occurrence of rust peculiar to metal, it is excellent in maintainability, and the thermal conductivity is lower than that of metal. The size of the mold can be reduced. Specifically, the distance W 1 from the side of the mold to the cavity in the additive manufacturing mold (cavity side) 10 is formed to 4 mm, and the distance h 1 from the lower surface of the mold to the cavity is formed to 10 mm. Yes. The layered manufacturing mold to form the distance W 2 from the mold side of the (core side) 20 to the cavity to 4 mm, to form a distance h 2 to the cavity to 10mm from the upper surface of the mold. Therefore, by forming the distance from the outer frame of the molding die to the cavity short, the molding die can be compactly formed, and the manufacturing cost is effectively suppressed.

本実施の形態では、上記によって形成された積層造形成形型(10及び20)を用いて樹脂の射出成形を行った。成形する樹脂材料としてはABS(ガラス転移温度80℃〜125℃)を採用し、成形型に使用する材料のガラス転移温度と、成形する樹脂材料のガラス転移温度との温度比が1:1.5〜3.0程度となるよう、ABSライク樹脂(ガラス転移温度47℃〜53℃)で形成された成形型のキャビティに対して、成形する樹脂材料を射出している。上記構成とする事で、成形する樹脂材料を成形型のキャビティ内で確実に固化させる事ができ、確実な成形を可能にしている。   In the present embodiment, resin injection molding is performed using the additive manufacturing mold (10 and 20) formed as described above. As the resin material to be molded, ABS (glass transition temperature 80 ° C to 125 ° C) is adopted, and the temperature ratio between the glass transition temperature of the material used for the mold and the glass transition temperature of the resin material to be molded is 1: 1.5 to The resin material to be molded is injected into the cavity of the molding die formed of ABS-like resin (glass transition temperature 47 ° C. to 53 ° C.) so as to be about 3.0. With the above configuration, the resin material to be molded can be reliably solidified in the cavity of the molding die, thereby enabling reliable molding.

その射出成形条件を具体的に説明する。本実施の形態では射出成形機として日本製鋼所製J35ELIIKを使用し、型締めトン数を110t、シリンダー温度を165℃〜190℃程度に設定し、射出圧40%、射出速度3%、保圧切替位置5.8mm、計量位置16mm、スクリュー回転30%、背圧20%、サックバック位置4mmに設定し、冷却を30秒に設定した。なお、本実施の形態にかかる成形型では、射出充填中の成形型温度が、成形型に使用する材料のガラス転移温度より低い温度になるよう冷却手段を設けている。具体的には図示しないモールドベース部分に対して温調用孔を設け、エアー(空気)を成形型内に流動させる事で温度を調節し、成形型温が30℃前後になるよう構成している。よって、射出される樹脂が完全溶融されない状態でキャビティ内に充填されていく為、スキン層の形成を速める事ができ、成形後の寸法変化を抑えることができる他、パーティングライン等のクリアランスからバリが生じる可能性を効果的に減ずる事ができている。その結果、30ショット成形後でもバリの極力少ない品質の良い成形品を得る事ができた。   The injection molding conditions will be specifically described. In this embodiment, J35ELIIK manufactured by Nippon Steel Works is used as an injection molding machine, the clamping tonnage is set to 110 t, the cylinder temperature is set to about 165 ° C. to 190 ° C., injection pressure 40%, injection speed 3%, pressure holding Switching position was set to 5.8mm, weighing position 16mm, screw rotation 30%, back pressure 20%, suck back position 4mm, and cooling was set to 30 seconds. In the mold according to the present embodiment, the cooling means is provided so that the mold temperature during injection filling is lower than the glass transition temperature of the material used for the mold. Specifically, a temperature control hole is provided in the mold base portion (not shown), and the temperature is adjusted by flowing air into the mold so that the mold temperature is about 30 ° C. . Therefore, since the injected resin is filled in the cavity in a state where it is not completely melted, the formation of the skin layer can be accelerated, the dimensional change after molding can be suppressed, and the clearance of the parting line etc. The possibility of burrs can be effectively reduced. As a result, it was possible to obtain a high-quality molded product with as little burr as possible even after 30-shot molding.

ここで、実施例1として図4に示すように、別の形状の積層造形成形型(40及び50)を使用して、成形型温別における成形品及び成形型の不具合の発生有無を確認した。実施例1で使用した積層造形成形型(40及び50)は、積層造形成形型(キャビ側)40と積層造形成形型(コア側)50とで構成し、双方とも3次元形状造形技術(インクジェット方式)を用いて造形している。そして、当該積層造形成形型(40及び50)を入れ子として機能させ、両型の上下端部に形成した締結孔(41及び51)にボルトを嵌め込む事で、モールドベース部44と締結している。ゲート仕様としてはサイドゲートを採用し、2種類の成形品(片方は50mm角の板形状、他方は50mm角の格子状、共に板厚2mm)が得られるようSET取りできるよう形成している。なお、成形型(40及び50)に使用する材料は前述同様、ABSライク樹脂を採用し、成形する樹脂材料としてはABSを採用している。   Here, as shown in FIG. 4 as Example 1, using a layered shaping mold (40 and 50) having a different shape, it was confirmed whether or not a defect occurred in the molded product and the mold in the mold mold temperature distinction. . The additive manufacturing mold (40 and 50) used in Example 1 is composed of an additive manufacturing mold (cavity side) 40 and an additive manufacturing mold (core side) 50, both of which are three-dimensional shape forming techniques (inkjet) Method). Then, the layered shaping mold (40 and 50) functions as a nesting, and the bolts are fitted into the fastening holes (41 and 51) formed in the upper and lower ends of both molds to fasten with the mold base 44. Yes. Side gate is adopted as the gate specification, and it is formed so as to be able to take SET so that two types of molded products (one side is 50 mm square plate shape, the other is 50 mm square lattice shape, both are 2 mm thick). The material used for the molding die (40 and 50) is the same as the above, using ABS-like resin, and the resin material to be molded is ABS.

そして、当該積層造形成形型(キャビ側)40と積層造形成形型(コア側)50、及び成形品の表面温度をサーモグラフィ(株式会社チノー製CPA-E5)を使用して測定し、成形型温を変化させながら得られる成形品の状態を確認した。図5〜図11は当該サーモグラフィを使用して温度測定した画像、及び成形品と成形型の不具合の様態を示す画像である。なお、図では当該「成形品」を「製品」と表示しているが、これらは同義である。   Then, the surface temperature of the additive manufacturing mold (cavity side) 40, additive manufacturing mold (core side) 50, and the molded product is measured using thermography (CPA-E5 manufactured by Chino Corporation), and the mold temperature The state of the obtained molded product was confirmed while changing. 5 to 11 are images obtained by measuring the temperature using the thermography, and images showing the state of defects between the molded product and the mold. In addition, although the said "molded product" is displayed as a "product" in the figure, these are synonymous.

まず、1〜11ショット目までは、成形直後から冷却して成形型温度が30℃前後に下がるまで待ち、30℃前後に下がった時点で次の成形へと移る方式で実施した。そして、12ショット目からは徐々に成形型温を上げ、40℃前後で成形開始し、13ショット目は50〜60℃前後で成形開始した。そして、14ショット目は成形型温が約60℃、15ショット目は約65℃、16ショット目は約70℃に上がった時点で成形開始した。   First, from the 1st to 11th shots, cooling was performed immediately after molding, waiting until the mold temperature dropped to around 30 ° C., and when the temperature dropped to around 30 ° C., the next molding was performed. Then, the mold temperature was gradually raised from the 12th shot and molding started at around 40 ° C, and molding started at around 50-60 ° C in the 13th shot. The 14th shot started molding when the mold temperature rose to about 60 ° C, the 15th shot to about 65 ° C, and the 16th shot to about 70 ° C.

その結果、12ショット目まではバリの発生が無く、良質な成形品を得る事ができた。しかし、13ショット目でランナー付近にバリが発生し始め、15ショット目では図10(C)のように成形品100の格子部分にバリが発生している。また、15ショット目では図10(D)のように、成形型(コア側)50が熱によって欠けが生じた。そして、16ショット目では図11(C)のように成形品100の格子部分のバリがさらに大きくなり、図11(D)のように成形後収縮による変形(反り)が生じた。よって、射出充填中の成形型温度が、成形型に使用する材料のガラス転移温度より低い温度になるよう構成する事で、成形品の成形後の収縮を効果的に抑える事ができると共に、パーティングライン等のクリアランスからバリが生じる可能性や、成形型に剥離や欠けが生じる可能性を効果的に減じる事ができることが確認できた。後述する実施例2では、成形型温度を成形型に使用する材料のガラス転移温度より低い温度になるよう調整しながら成形する事での成形性を確認した。   As a result, no burrs were generated up to the 12th shot, and a high-quality molded product could be obtained. However, burrs begin to occur in the vicinity of the runner at the 13th shot, and burrs are generated at the lattice portion of the molded product 100 at the 15th shot as shown in FIG. In the 15th shot, as shown in FIG. 10D, the mold (core side) 50 was chipped by heat. In the 16th shot, the burrs in the lattice portion of the molded product 100 were further increased as shown in FIG. 11C, and deformation (warping) due to shrinkage after molding occurred as shown in FIG. 11D. Therefore, by configuring the mold temperature during injection filling to be lower than the glass transition temperature of the material used for the mold, shrinkage after molding of the molded product can be effectively suppressed, and the party It was confirmed that it is possible to effectively reduce the possibility of burrs from clearances such as the contours and the possibility of peeling or chipping in the mold. In Example 2, which will be described later, the moldability was confirmed by molding while adjusting the mold temperature to be lower than the glass transition temperature of the material used for the mold.

即ち、実施例2では、サーモグラフィではなく、表面温度計(安立計器株式会社製HD-1200E)を用いて成形型温を測定しながら成形を行い、何ショット目まで良質な成形品が得られるかを確認した。実施例2では、図12に示すように、積層造形成形型(キャビ側)120と積層造形成形型(コア側)130とで入れ子を形成し、測定箇所A〜Fの成形型温を測定しながら成形を行った。なお、実施例2で使用した成形型の樹脂材料、及び成形する樹脂材料は実施例1と同じである。その成形型温の温度測定結果及び成形品の品質確認結果を下記、表1に示す。
That is, in Example 2, how many shots can be obtained by performing molding while measuring the mold temperature using a surface thermometer (HD-1200E manufactured by Anritsu Keiki Co., Ltd.) instead of thermography? It was confirmed. In Example 2, as shown in FIG. 12, a layered mold (mold side) 120 and a layered mold (core side) 130 are nested, and the mold temperatures at measurement locations A to F are measured. Molding was performed. The resin material of the mold used in Example 2 and the resin material to be molded are the same as in Example 1. The temperature measurement result of the mold temperature and the quality confirmation result of the molded product are shown in Table 1 below.

即ち、表1に示すように表面温度計を使用して成形型温が30℃〜50℃になるよう確認しながら成形する事で、20ショット目の段階でもバリの極力少ない良質の成形品を得る事ができた。
In other words, as shown in Table 1, by using a surface thermometer to confirm that the mold temperature is between 30 ° C and 50 ° C, a good quality molded product with as little burr as possible can be obtained even at the 20th shot stage. I was able to get it.

10 積層造形成形型(キャビ側)
20 積層造形成形型(コア側)
11 締結孔
12 突起部
13 スプルー孔
44 モールドベース部
100 成形品
10 additive manufacturing mold (cavity side)
20 additive manufacturing mold (core side)
11 Fastening hole
12 Protrusion
13 Sprue hole
44 Mold base
100 molded products

Claims (2)

積層造形によって形成されると共に、その少なくとも一部は、樹脂材料を積層造形によって積層一体化してなる積層造形成形型を用いた樹脂の射出成形方法であって、
成形型に使用する材料のガラス転移温度(摂氏)と、成形する樹脂材料のガラス転移温度(摂氏)との温度比が1:1.5 〜 1:3.0となる材料で形成された成形型のキャビティに対して、成形する樹脂材料を射出し
成形する樹脂材料のガラス転移温度(摂氏)と成形型温度(摂氏)の温度比を1.2:1 〜 4.2:1とし、
前記成形型は、その外側面から樹脂材料が充填されるキャビティまでの距離が2mm以上、10mm以下である事を特徴とする、樹脂の射出成形方法。
While being formed by additive manufacturing, at least a part thereof is a resin injection molding method using an additive manufacturing mold formed by integrating and integrating resin materials by additive manufacturing,
In the cavity of a mold formed of a material whose temperature ratio between the glass transition temperature (Celsius) of the material used for the mold and the glass transition temperature (Celsius) of the resin material to be molded is 1: 1.5 to 1: 3.0 In contrast, the resin material to be molded is injected ,
The temperature ratio between the glass transition temperature (Celsius) and the mold temperature (Celsius) of the resin material to be molded is 1.2: 1 to 4.2: 1,
The mold, its distance from the outer surface to the cavity resin material is filled is 2mm or more, and wherein the Ru der below 10 mm, an injection molding method of a resin.
請求項1に記載の樹脂の射出成形方法であって、
射出充填中の成形型温度が、成形型に使用する材料のガラス転移温度より低い温度になるよう冷却手段を設けており、
当該冷却手段によって、成形する樹脂材料のガラス転移温度(摂氏)と成形型温度(摂氏)の温度比が1.2:1 〜 4.2:1となるよう調整した状態で、樹脂材料が充填されるキャビティに対して樹脂材料を射出する事を特徴とする、樹脂の射出成形方法。
A resin injection molding method according to claim 1,
Cooling means is provided so that the mold temperature during injection filling is lower than the glass transition temperature of the material used for the mold,
In the state in which the temperature ratio of the glass transition temperature (Celsius) and the mold temperature (Celsius) of the resin material to be molded is adjusted to 1.2: 1 to 4.2: 1 by the cooling means, the cavity filled with the resin material A resin injection molding method characterized by injecting a resin material.
JP2015115349A 2015-06-06 2015-06-06 Additive molding mold and injection molding method using the mold Active JP6607557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115349A JP6607557B2 (en) 2015-06-06 2015-06-06 Additive molding mold and injection molding method using the mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115349A JP6607557B2 (en) 2015-06-06 2015-06-06 Additive molding mold and injection molding method using the mold

Publications (2)

Publication Number Publication Date
JP2017001220A JP2017001220A (en) 2017-01-05
JP6607557B2 true JP6607557B2 (en) 2019-11-20

Family

ID=57753390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115349A Active JP6607557B2 (en) 2015-06-06 2015-06-06 Additive molding mold and injection molding method using the mold

Country Status (1)

Country Link
JP (1) JP6607557B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700116676A1 (en) * 2017-10-17 2019-04-17 Salvatore Botrugno PROCEDURE FOR THE MANUFACTURE OF MOLDS, AND MOLD
KR102550506B1 (en) * 2019-09-03 2023-07-03 인하대학교 산학협력단 Mold with heat exchange channel formed inside
JP7505331B2 (en) 2020-08-27 2024-06-25 セイコーエプソン株式会社 Method for manufacturing a mold, and mold

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246954A (en) * 1986-03-17 1987-10-28 Daicel Chem Ind Ltd Heat-resistant, impact-resistant resin composition
JP3657057B2 (en) * 1996-05-30 2005-06-08 Jsr株式会社 Photocurable resin composition for molding resin mold production and method for producing molding resin mold
JP3650216B2 (en) * 1996-05-30 2005-05-18 Jsr株式会社 Manufacturing method of resin mold used for molding method
JPH106346A (en) * 1996-06-19 1998-01-13 Takemoto Oil & Fat Co Ltd Manufacturing method of plastic mold and plastic mold
JPH10193464A (en) * 1997-01-17 1998-07-28 Olympus Optical Co Ltd Optical stereo-shaping method
JPH11300838A (en) * 1998-04-16 1999-11-02 Jsr Corp Stereoscopic shape article, resin mold and manufacture of stereoscopic shape article
JP3379907B2 (en) * 1998-06-09 2003-02-24 東北ムネカタ株式会社 Mold for injection molding of plastic products and method of manufacturing this mold
JP2000084943A (en) * 1998-09-10 2000-03-28 Teijin Chem Ltd Insulating mold and molding method using the same
JP2001328175A (en) * 2000-05-22 2001-11-27 Teijin Chem Ltd Stereolithography capable of reducing warpage and resin mold for molding
JP5390804B2 (en) * 2007-07-31 2014-01-15 テクノポリマー株式会社 Laminated body
JP2009144075A (en) * 2007-12-14 2009-07-02 Fuji Xerox Co Ltd Resin composition and resin molded article
JP5114362B2 (en) * 2008-10-30 2013-01-09 独立行政法人科学技術振興機構 3D object made by stereolithography and cell-adapted

Also Published As

Publication number Publication date
JP2017001220A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP7043574B2 (en) Methods and thermal structures for laminated molding methods
CN102939177B (en) The manufacture method of three dimensional structure and the three dimensional structure obtained thus
JP6500047B2 (en) Method for additive manufacturing and connection support
CA3031220C (en) Methods using ghost supports for additive manufacturing
US10799951B2 (en) Method and conformal supports for additive manufacturing
US6936212B1 (en) Selective deposition modeling build style providing enhanced dimensional accuracy
Dizon et al. 3D printed injection molds using various 3D printing technologies
JP6321812B2 (en) Single monolithic injection molding device
CN102333607A (en) Process for producing three-dimensional shape and three-dimensional shape obtained thereby
JP6471975B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP6628024B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP2010121187A (en) Three-dimensional shaped article and method for producing the same
JP6607557B2 (en) Additive molding mold and injection molding method using the mold
CN109080055A (en) The manufacturing method of forming tool member for die quenching tool
JP7262986B2 (en) Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method
Tuteski et al. Mold design and production by using additive manufacturing (AM)–present status and future perspectives
US20210354369A1 (en) Shell and fill fabrication for three-dimensional (3d) printing
Martinho et al. Hybrid moulds: the use of combined techniques for the rapid manufacturing of injection moulds
KR100833332B1 (en) High-temperature conductive material with high strength and stiffness, different material laminated mold of mold steel and manufacturing method thereof
KR100848707B1 (en) Injection mold for cleaner manufactured using molding method
JP6820529B2 (en) Mold equipment, manufacturing method of molded products using mold equipment, and manufacturing method of mold equipment
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
JP6964266B2 (en) Spur bush
JP6706803B2 (en) Sprue bush
Kain et al. ENHANCEMENT OF MOLD EFFICIENCY USING CONFORMAL COOLING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6607557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350