[go: up one dir, main page]

JP6604479B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP6604479B2
JP6604479B2 JP2016125034A JP2016125034A JP6604479B2 JP 6604479 B2 JP6604479 B2 JP 6604479B2 JP 2016125034 A JP2016125034 A JP 2016125034A JP 2016125034 A JP2016125034 A JP 2016125034A JP 6604479 B2 JP6604479 B2 JP 6604479B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
functional layer
separation functional
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016125034A
Other languages
Japanese (ja)
Other versions
JP2017084765A (en
Inventor
佳謙 宍田
健二 伊達
孝雄 黒宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to CN201610811495.5A priority Critical patent/CN106654351B/en
Priority to US15/265,262 priority patent/US10367181B2/en
Publication of JP2017084765A publication Critical patent/JP2017084765A/en
Application granted granted Critical
Publication of JP6604479B2 publication Critical patent/JP6604479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極と負極の間にセパレータを備えるリチウムイオン電池に関するものである。   The present invention relates to a lithium ion battery including a separator between a positive electrode and a negative electrode.

リチウムイオン電池は、活物質としてリチウム遷移金属酸化物を含む正極と、活物質としてカーボンを含む負極と、リチウム塩が溶解した有機系溶媒を含む電解液と、正極と負極の間に配されるセパレータとを備える構成である。   A lithium ion battery is disposed between a positive electrode including a lithium transition metal oxide as an active material, a negative electrode including carbon as an active material, an electrolytic solution including an organic solvent in which a lithium salt is dissolved, and the positive electrode and the negative electrode. And a separator.

リチウムイオン電池の電極には、鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムなどの金属異物が混入する場合がある。混入した金属異物は、固体もしくはイオンの状態で電池内部に混入する可能性がある。リチウムイオン電池は、混入した金属異物に起因して出力電圧が低下したり発熱・発火不良が生じたりする場合がある。特に正極近傍に金属異物が混入されている場合、内部電界により金属異物がイオン化し負極側へ誘導される。このイオンが負極で析出することによりデンドライドが形成され、デンドライドが成長して負極から正極へ到達し、正負極を短絡させる。このような短絡は出力電圧が低下するOCV( Open Circuit Voltage )不良、さらには発熱・発火不良を引き起こす。   In some cases, foreign electrodes such as iron, copper, zinc, tin, cobalt, nickel, and chromium are mixed in the electrode of the lithium ion battery. The mixed metal foreign matter may be mixed into the battery in a solid or ionic state. Lithium ion batteries may have a reduced output voltage or heat generation / ignition failure due to mixed metal foreign matter. In particular, when metal foreign matter is mixed in the vicinity of the positive electrode, the metal foreign matter is ionized by the internal electric field and is induced to the negative electrode side. When these ions are deposited on the negative electrode, a dendride is formed, the dendride grows and reaches the positive electrode from the negative electrode, and the positive and negative electrodes are short-circuited. Such a short circuit causes an OCV (Open Circuit Voltage) failure in which the output voltage is lowered, and further causes a heat generation / ignition failure.

従来のリチウムイオン電池では、このような金属異物に起因する不良を抑制するために、正極・負極を塗布系セパレータと密着させてハンドリングする構成が提案されている。このような構造とすることで電極/セパレータ間に隙間が無くなり、組立時に混入した金属異物が電極に触れることが無く、金属異物起因のデンドライドが生じにくくなる(特許文献1参照)。   In the conventional lithium ion battery, in order to suppress such a defect caused by the metal foreign matter, a configuration in which the positive electrode and the negative electrode are handled in close contact with the coating separator has been proposed. With such a structure, there is no gap between the electrode / separator, metal foreign matter mixed during assembly does not touch the electrode, and dendrites caused by metal foreign matter are less likely to occur (see Patent Document 1).

特開2013−127857号公報JP 2013-127857 A

しかしながら、従来のリチウムイオン電池では、組立時に混入した金属異物は不活性化できるが、源泉工程ですでに正極に混入した金属異物は除去できず、正極で金属異物がイオン化すると、イオン化した金属異物が負極に移動し、負極でデンドライドが生成される。デンドライドが生成されることにより、正極と負極とが短絡し、リチウムイオン電池の出力電圧が低下したり、リチウムイオン電池が発熱・発火したりして電池性能と安全性が低下するという問題点がある。   However, in the conventional lithium ion battery, the metal foreign matter mixed at the time of assembly can be inactivated, but the metal foreign matter already mixed into the positive electrode in the source process cannot be removed. Moves to the negative electrode, and dendride is generated at the negative electrode. Due to the generation of dendrites, the positive electrode and the negative electrode are short-circuited, and the output voltage of the lithium ion battery decreases, or the lithium ion battery generates heat and ignites, resulting in a decrease in battery performance and safety. is there.

本発明は、上記問題を解決するもので、リチウムイオン電池の電池性能と安全性を確保することを目的とする。   This invention solves the said problem, and aims at ensuring the battery performance and safety | security of a lithium ion battery.

上記目的を達成するために、本発明のリチウムイオン電池は、正極活物質としてリチウム金属酸化物を含む正極極板と、負極活物質として炭素を含む負極極板と、第一面が前記負極極板と接し、前記第一面の裏面となる第二面が前記正極極板と接するように前記正極
極板と前記負極極板との間に配置されるセパレータと、有機溶媒に電解質としてリチウムイオンが溶解する電解液とを有し、前記セパレータが、支持層と前記支持層より空孔径が小さく空孔率が低い分離機能層とからなり、前記支持層および前記分離機能層の一方が前記第一面の側に配置され、他方が前記第二面の側に配置され、前記セパレータの前記第一面の側に前記分離機能層が配置され、前記第二面の側に前記支持層が配置され、前記分離機能層の空孔径の平均が、前記電解液で溶媒和した多価イオンより小さく前記電解液で溶媒和したリチウムイオンよりも大きいことを特徴とする。
In order to achieve the above object, a lithium ion battery according to the present invention includes a positive electrode plate including a lithium metal oxide as a positive electrode active material, a negative electrode plate including carbon as a negative electrode active material, and a first surface having the negative electrode. A separator disposed between the positive electrode plate and the negative electrode plate so that a second surface serving as a back surface of the first surface is in contact with the positive electrode plate; and lithium ion as an electrolyte in an organic solvent The separator is composed of a support layer and a separation functional layer having a smaller pore size and a lower porosity than the support layer, and one of the support layer and the separation functional layer is the first Arranged on one side, the other on the second side, the separation functional layer on the first side of the separator, and the support layer on the second side The average pore diameter of the separation functional layer is And greater than the lithium ions solvated by smaller the electrolyte from polyvalent ions solvated with solution liquid.

この構成によると、分離機能層と支持層とからなるセパレータを用い、支持層に比べて分離機能層を空孔径が小さく空孔率の低い緻密な構成とすることにより、金属異物の正極側から負極側への移動を抑制でき、これにより負極側での金属異物の析出が抑制されるので、電池性能と安全性を確保することができる。   According to this configuration, a separator composed of a separation functional layer and a support layer is used, and the separation functional layer has a dense structure with a small pore diameter and a low porosity as compared with the support layer. Since the movement to the negative electrode side can be suppressed, and the precipitation of metal foreign matters on the negative electrode side is thereby suppressed, battery performance and safety can be ensured.

本発明の一実施の形態として円筒型のリチウムイオン電池の構成について示す断面図Sectional drawing shown about the structure of a cylindrical lithium ion battery as one embodiment of this invention 本発明の一実施の形態における正極極板、負極極板、セパレータの要部構成を模式的に例示する断面図Sectional drawing which illustrates typically the principal part structure of the positive electrode plate in one embodiment of this invention, a negative electrode plate, and a separator. 実施例1におけるセパレータの構成を例示する図The figure which illustrates the structure of the separator in Example 1. 実施例2におけるセパレータの構成を例示する図The figure which illustrates the structure of the separator in Example 2. 実施例3におけるセパレータの構成を例示する図The figure which illustrates the structure of the separator in Example 3. 実施例と比較例におけるリチウムイオン電池の充放電サイクル特性評価の結果を示す図The figure which shows the result of the charge-discharge cycle characteristic evaluation of the lithium ion battery in an Example and a comparative example

以下本発明の実施の形態について、図面を参照しながら説明する。
なお、以下の説明においては、同様の作用をなす構成には同じ符号を付して、適宜説明を省略している。
Embodiments of the present invention will be described below with reference to the drawings.
Note that, in the following description, the same reference numerals are given to components having the same action, and the description is omitted as appropriate.

(実施の形態1)
図1は、本発明の一実施の形態として円筒型のリチウムイオン電池の構成について示す断面図である。図1に例示する円筒型のリチウムイオン電池は、正極極板1と負極極板2とを備え、正極極板1と負極極板2とが交互に積層される。正極極板1と負極極板2との間には、正極極板1と負極極板2とが物理的に接触することを防ぐようにセパレータ3が配置される。積層された正極極板1,負極極板2およびセパレータ3は円筒状に巻回され、正極タブ4、負極タブ5、電解液7などを有するケース6内に配置されて円筒型のリチウムイオン電池を構成する。電解液7は、例えば有機系溶媒にリチウム塩が溶解した溶液からなり、電解質としてリチウムイオンを含む。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of a cylindrical lithium ion battery as an embodiment of the present invention. The cylindrical lithium ion battery illustrated in FIG. 1 includes a positive electrode plate 1 and a negative electrode plate 2, and the positive electrode plate 1 and the negative electrode plate 2 are alternately stacked. A separator 3 is disposed between the positive electrode plate 1 and the negative electrode plate 2 so as to prevent the positive electrode plate 1 and the negative electrode plate 2 from being in physical contact. The laminated positive electrode plate 1, negative electrode plate 2 and separator 3 are wound in a cylindrical shape and arranged in a case 6 having a positive electrode tab 4, a negative electrode tab 5, an electrolyte solution 7 and the like, and a cylindrical lithium ion battery. Configure. The electrolytic solution 7 is made of, for example, a solution in which a lithium salt is dissolved in an organic solvent, and contains lithium ions as an electrolyte.

次に図2を用いてセパレータ3の構造を説明する。
図2は、本発明の一実施の形態における正極極板、負極極板、セパレータの要部構成を模式的に例示する断面図である。
Next, the structure of the separator 3 will be described with reference to FIG.
FIG. 2 is a cross-sectional view schematically illustrating main components of a positive electrode plate, a negative electrode plate, and a separator according to an embodiment of the present invention.

本発明の望ましいセパレータ3の構成は、空孔が形成される分離機能層3aと支持層3bとが積層して構成される。分離機能層3aは空孔径が小さく空孔率の低い緻密な構成であり、支持層3bは分離機能層3aより空孔径が大きく空孔率の高い、粗な構成である。   A desirable configuration of the separator 3 of the present invention is formed by laminating a separation functional layer 3a in which pores are formed and a support layer 3b. The separation functional layer 3a has a dense configuration with a small pore diameter and a low porosity, and the support layer 3b has a coarse configuration with a larger pore diameter and a higher porosity than the separation functional layer 3a.

なお、空孔径とは膜の空孔部分の長手方向と垂直な断面の径であり、空孔率とは膜の体積に占める空孔部分の体積の割合である。空孔径が大きく、空孔率が高いほど透液性は高くなるが、機械的な強度は低下する。また、空孔径が小さい程、阻止できる金属異物のサイズが小さくなる。空孔による物質の阻止率は空孔径の大きさ、その空孔の密度、その層の厚みによって決定される。例えば、混入される金属異物のイオンが溶媒和しており、その径が0.8nm以上1.0nm以下の場合、分離機能層3aの空孔の平均径を0.3nm以上0.8nm以下とし、空孔率を0%より大きく1%以下とすることができる。   The pore diameter is a diameter of a cross section perpendicular to the longitudinal direction of the pore portion of the membrane, and the porosity is a ratio of the volume of the pore portion to the volume of the membrane. The larger the pore diameter and the higher the porosity, the higher the liquid permeability, but the mechanical strength decreases. In addition, the smaller the hole diameter, the smaller the size of the metal foreign matter that can be blocked. The blocking rate of a substance by pores is determined by the size of the pore diameter, the density of the pores, and the thickness of the layer. For example, when the mixed foreign metal ions are solvated and the diameter is 0.8 nm or more and 1.0 nm or less, the average diameter of the pores of the separation functional layer 3a is 0.3 nm or more and 0.8 nm or less. The porosity can be made larger than 0% and not larger than 1%.

なお、表現上ここでは平均径0.3nm以上0.8nm以下の空孔としているが、このサイズでは膜を構成する分子の結合鎖の間隔がこの空孔となる。これは水銀ポロシメーターなどの通常の空孔径を測定する方法では測定が困難であり、陽電子消滅法など逆浸透膜の機能層の細孔を測定する手法で測定できるサイズである。   Here, for the sake of expression, vacancies having an average diameter of 0.3 nm or more and 0.8 nm or less are used, but at this size, the distance between the bond chains of the molecules constituting the film is the vacancies. This is a size that can be measured by a method of measuring the pore size of the functional layer of the reverse osmosis membrane, such as a positron annihilation method, which is difficult to measure by a method of measuring a normal pore diameter such as a mercury porosimeter.

セパレータ3において、分離機能層3aが露出する面を第一面とし、支持層3bが露出する面を第二面とする。つまり第一面側のセパレータ3の空孔径、空孔率は第二面側のセパレータ3の空孔径、空孔率よりそれぞれ小さい。   In the separator 3, a surface on which the separation functional layer 3a is exposed is a first surface, and a surface on which the support layer 3b is exposed is a second surface. That is, the pore diameter and porosity of the separator 3 on the first surface side are smaller than the pore diameter and porosity of the separator 3 on the second surface side, respectively.

ここで、本実施の形態における分離機能層3aとは、一定の大きさ以上のイオンや分子の透過を阻止し、一定の大きさ未満のイオンは透過させる機能を持つ層である。
本実施の形態で用いる分離機能層3aの厚さである平均膜厚は、特に限定されるものではないが、10nm以上100nm以下であることが好ましい。10nm未満であると強度不足により膜に欠陥が生じる可能性が高くなり、100nmより大きいと、電池反応に必要な透過対象物の移動が阻害されるため、電池性能の低下が生じる。また、分離機能層3aの平均膜厚は、支持層3bの平均膜厚より薄いことが好ましい。
Here, the separation functional layer 3a in the present embodiment is a layer having a function of blocking the transmission of ions and molecules having a certain size or larger and allowing ions having a smaller size to be transmitted.
The average film thickness, which is the thickness of the separation functional layer 3a used in the present embodiment, is not particularly limited, but is preferably 10 nm or more and 100 nm or less. If the thickness is less than 10 nm, there is a high possibility that defects will occur in the film due to insufficient strength. If the thickness is more than 100 nm, the movement of the permeation target necessary for the battery reaction is hindered, resulting in a decrease in battery performance. Moreover, it is preferable that the average film thickness of the isolation | separation functional layer 3a is thinner than the average film thickness of the support layer 3b.

分離機能層3aの材料としては、特に限定されるものではないが、再生セルロース、セルロースエステル、ポリアクリルニトリル、ポリテトラフルオロエチレン、ポリエステル系ポリマーアロイ、ポリアミド、ポリイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリビニルアルコール、エチレン−ビニル共重合体、及びポリ塩化ビニルの内の何れか一つが好ましい。特に芳香族ポリアミド、酢酸セルロースがより好ましい。   The material of the separation functional layer 3a is not particularly limited, but regenerated cellulose, cellulose ester, polyacrylonitrile, polytetrafluoroethylene, polyester polymer alloy, polyamide, polyimide, polysulfone, polyethersulfone, polyethylene , Polypropylene, polyvinylidene fluoride, polyvinyl alcohol, ethylene-vinyl copolymer, and polyvinyl chloride are preferable. In particular, aromatic polyamide and cellulose acetate are more preferable.

ここで、本実施の形態における支持層3bとは、分離機能層3aを支持する多孔性の層である。特に限定されるものではないが、例えば不織布、多孔質フィルム等が挙げられる。支持層3bは分離機能層3aより空孔径が大きく空孔率が高いため、分離機能層3aを透過したイオンは支持層3bを透過する。   Here, the support layer 3b in the present embodiment is a porous layer that supports the separation functional layer 3a. Although it does not specifically limit, a nonwoven fabric, a porous film, etc. are mentioned, for example. Since the support layer 3b has a larger pore diameter and a higher porosity than the separation functional layer 3a, ions that have passed through the separation functional layer 3a permeate the support layer 3b.

本実施の形態で用いる支持層3bの厚さである平均膜厚は特に限定されるものではないが、15μm以上100μm以下であることが好ましい。15μm未満であると強度不足により膜の破断が生じる可能性が高くなり、100μmより大きいと、アルカリ電池の内容積のうちセパレータの体積の比率が高く、正極活物質および負極活物質の比率は低くなるため、電池容量の低下に繋がる。   The average film thickness, which is the thickness of the support layer 3b used in the present embodiment, is not particularly limited, but is preferably 15 μm or more and 100 μm or less. If the thickness is less than 15 μm, there is a high possibility that the film breaks due to insufficient strength. If the thickness is more than 100 μm, the ratio of the separator volume in the internal volume of the alkaline battery is high, and the ratio of the positive electrode active material and the negative electrode active material is low. Therefore, the battery capacity is reduced.

また、支持層3bに形成される空孔径は、100nm以上1μm以下であることが好ましい。100nm未満であると電池反応に必要な透過対象物の移動が阻害されるため、電池性能の低下が生じ、1μmより大きいと、正極と負極の絶縁性が担保できなくなる可能性が高くなる。また空孔率としては、50%以上80%以下が好ましい。50%未満であると、電池反応に必要な透過対象物の移動が阻害されるため、電池性能の低下が生じ、80%より大きいと強度不足により膜の破断が生じる可能性が高くなる。   Moreover, it is preferable that the hole diameter formed in the support layer 3b is 100 nm or more and 1 micrometer or less. When the thickness is less than 100 nm, the movement of the permeation target necessary for the battery reaction is hindered, so that the battery performance is deteriorated. When the thickness is larger than 1 μm, there is a high possibility that the insulation between the positive electrode and the negative electrode cannot be secured. The porosity is preferably 50% or more and 80% or less. If it is less than 50%, the movement of the permeation target necessary for the battery reaction is hindered, resulting in a decrease in battery performance. If it is more than 80%, there is a high possibility that the film will break due to insufficient strength.

支持層3bの材料としては、特に限定されるものではないが、再生セルロース、セルロースエステル、ポリスルフォン、ポリエーテルスルフォン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ビニロン、ポリアミド、ポリイミド、ポリエチレン、ポリプロピレン、ポリエステル、及びポリフッ化ビニリデンの内の何れか一つが好ましい。   The material of the support layer 3b is not particularly limited, but regenerated cellulose, cellulose ester, polysulfone, polyether sulfone, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, vinylon, polyamide, polyimide, polyethylene, polypropylene , Polyester, and polyvinylidene fluoride are preferred.

本実施の形態のセパレータ3の製造方法としては、まず、支持層3bを作製し、その後支持層3b上に分離機能層3aを形成する。支持層3bは支持層3bの材料を溶融または所定の溶媒に溶解させた後に乾式延伸法、湿式抽出法、または発泡法などで作製することができる。次に支持層3b上に分離機能層3aの材料の溶液を、ダイコート法を用いて塗布・乾燥することでセパレータ3が得られる。   As a manufacturing method of the separator 3 of this Embodiment, the support layer 3b is produced first and the isolation | separation functional layer 3a is formed on the support layer 3b after that. The support layer 3b can be produced by a dry stretching method, a wet extraction method, a foaming method or the like after the material of the support layer 3b is melted or dissolved in a predetermined solvent. Next, the separator 3 is obtained by applying and drying a solution of the material of the separation functional layer 3a on the support layer 3b using a die coating method.

図2に示す正極極板1、負極極板2の断面構造を用いて、正極極板1、負極極板2の構造を説明する。正極極板1は、リチウム金属酸化物やバインダー剤を含む2つの正極活物質1aでアルミ箔などを用いた正極用集電材1bを挟み込んで、バインダー剤を用いて積層した構造となっている。また、負極極板2は、炭素やバインダー剤を含む2つの負極活物質2aで銅箔などを用いた負極用集電材2bを挟み込んで、バインダー剤を用いて積層した構造となっている。   The structures of the positive electrode plate 1 and the negative electrode plate 2 will be described using the cross-sectional structures of the positive electrode plate 1 and the negative electrode plate 2 shown in FIG. The positive electrode plate 1 has a structure in which a positive electrode current collector 1b using an aluminum foil or the like is sandwiched between two positive electrode active materials 1a containing a lithium metal oxide or a binder agent and laminated using a binder agent. Further, the negative electrode plate 2 has a structure in which a negative electrode current collector 2b using a copper foil or the like is sandwiched between two negative electrode active materials 2a containing carbon and a binder agent and laminated using a binder agent.

上記のような構造である正極極板1と負極極板2とセパレータ3を用い、図1に示すように正極極板1、セパレータ3、負極極板2、セパレータ3の順に積層し、巻回したものを、正極タブ4、負極タブ5、電解液7などと共にケース6内に挿入、封口してリチウムイオン電池が完成される。   Using the positive electrode plate 1, the negative electrode plate 2, and the separator 3 having the above structure, as shown in FIG. 1, the positive electrode plate 1, the separator 3, the negative electrode plate 2, and the separator 3 are laminated in this order and wound. The lithium ion battery is completed by inserting and sealing the product into the case 6 together with the positive electrode tab 4, the negative electrode tab 5, the electrolyte solution 7, and the like.

なお、図2に示す例では、巻回した際に支持層3bが正極活物質1aに、分離機能層3aが負極活物質2aに触れる向きに正極極板1、負極極板2、セパレータ3を配置している。ただし、支持層3bが負極活物質2aに接し、分離機能層3aが正極活物質1aに接するようにセパレータ3を配置しても良い。   In the example shown in FIG. 2, the positive electrode plate 1, the negative electrode plate 2, and the separator 3 are arranged so that the support layer 3 b comes into contact with the positive electrode active material 1 a and the separation functional layer 3 a comes into contact with the negative electrode active material 2 a when wound. It is arranged. However, the separator 3 may be disposed so that the support layer 3b is in contact with the negative electrode active material 2a and the separation functional layer 3a is in contact with the positive electrode active material 1a.

以上のように、分離機能層3aと支持層3bとからなるセパレータ3を用い、支持層3bに比べて分離機能層3aを空孔径が小さく空孔率の低い緻密な構成とすることにより、分離機能層3aに多価金属イオンの透過を抑制する機能を持たせ、支持層3bに液の透過性を低下させずにセパレータ3全体の機械的強度を確保させることができる。   As described above, the separator 3 composed of the separation functional layer 3a and the support layer 3b is used, and the separation functional layer 3a has a small structure with a small pore diameter and a low porosity as compared with the support layer 3b. The functional layer 3a can have a function of suppressing the permeation of polyvalent metal ions, and the support layer 3b can ensure the mechanical strength of the entire separator 3 without reducing the liquid permeability.

ここで、分離機能層3aは、空孔径や空孔率が電解液7中のリチウムイオンを十分に透過させながら金属異物イオンの透過を抑制させる程度であり、膜厚は電解液7とリチウムイオンの透過性を低下させないために一定以下の薄膜である。   Here, the separation functional layer 3a has such a pore diameter and porosity that it can sufficiently permeate lithium ions in the electrolytic solution 7 and suppress the permeation of foreign metal ions, and has a film thickness of the electrolytic solution 7 and the lithium ions. In order not to lower the permeability of the film, the film is below a certain level.

また、支持層3bは、セパレータ3の機械的強度を確保するために一定以上の膜厚であり、電解液7とリチウムイオンの透過性に影響を与えないために一定以上の空孔径,空孔率となる。これにより、源泉工程において正極極板1に金属異物が混入したとしてもデンドライド生成を阻止することができ、負極極板2での金属異物の析出を抑制することができるため、電池性能と安全性を確保することができる。   Further, the support layer 3b has a film thickness of a certain level or more in order to ensure the mechanical strength of the separator 3, and has a pore diameter and pores of a certain level or more so as not to affect the permeability of the electrolyte solution 7 and lithium ions. Become a rate. Thus, even if metal foreign matter is mixed into the positive electrode plate 1 in the source process, dendride generation can be prevented, and precipitation of the metal foreign matter on the negative electrode plate 2 can be suppressed. Can be secured.

以下、具体的な実施例についてさらに詳しく説明する。
図3は実施例1におけるセパレータの構成を例示する図、図4は実施例2におけるセパレータの構成を例示する図、図5は実施例3におけるセパレータの構成を例示する図、図6は実施例と比較例におけるリチウムイオン電池の充放電サイクル特性評価の結果を示す図である。
Hereinafter, specific examples will be described in more detail.
FIG. 3 is a diagram illustrating the configuration of the separator in the first embodiment, FIG. 4 is a diagram illustrating the configuration of the separator in the second embodiment, FIG. 5 is a diagram illustrating the configuration of the separator in the third embodiment, and FIG. It is a figure which shows the result of the charging / discharging cycle characteristic evaluation of the lithium ion battery in a comparative example.

(実施例1)
実施の形態1において、正極活物質1aに、金属異物として直径φ20μm以上30μm以下の鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムをそれぞれ正極活物質1aの質量に対して100ppm混入させたリチウムイオン電池を作製し、これを実施例1とする。この際、セパレータ3として分離機能層3aが支持層3bの側壁10には配置されていないものを用いる。
(Example 1)
In Embodiment 1, lithium in which positive electrode active material 1a is mixed with 100 ppm of iron, copper, zinc, tin, cobalt, nickel, and chromium, each having a diameter of 20 μm or more and 30 μm or less, as a metal foreign substance with respect to the mass of positive electrode active material 1a An ion battery is manufactured and is referred to as Example 1. At this time, a separator 3 in which the separation function layer 3a is not disposed on the side wall 10 of the support layer 3b is used.

つまり、実施例1におけるセパレータ3は、図3に示すように、分離機能層3aが表面となるセパレータ3の第一面8のみで負極極板2と接し、支持層3bが表面となるセパレータ3の第二面9のみで正極極板1と接する。そのため、支持層3bの正極タブ4および負極タブ5と向かい合う側壁10に接する位置には分離機能層3aが構成されていない。   That is, as shown in FIG. 3, the separator 3 in Example 1 is in contact with the negative electrode plate 2 only on the first surface 8 of the separator 3 whose surface is the separation functional layer 3a, and the separator 3 whose surface is the support layer 3b. The second electrode 9 is in contact with the positive electrode plate 1 only. Therefore, the separation functional layer 3a is not formed at a position in contact with the side wall 10 facing the positive electrode tab 4 and the negative electrode tab 5 of the support layer 3b.

(実施例2)
実施の形態1において、正極活物質1aに金属異物として直径φ20μm以上30μm以下の鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムをそれぞれ正極活物質1aの質量に対して100ppm混入させたリチウムイオン電池を作製し、これを実施例2とする。この際、図4に示すように、セパレータ3として分離機能層3aが支持層3bの側壁10にも接して配置されているものを用いる。つまり、分離機能層3aは負極極板2および支持層3bの側壁10に接する位置に形成される。
(Example 2)
In the first embodiment, lithium ions in which 100 ppm of iron, copper, zinc, tin, cobalt, nickel, and chromium having a diameter of 20 μm or more and 30 μm or less are mixed into the positive electrode active material 1a as metal foreign matter with respect to the mass of the positive electrode active material 1a. A battery is manufactured and is referred to as Example 2. At this time, as shown in FIG. 4, a separator 3 in which the separation functional layer 3a is disposed in contact with the side wall 10 of the support layer 3b is used. That is, the separation functional layer 3a is formed at a position in contact with the negative electrode plate 2 and the side wall 10 of the support layer 3b.

(実施例3)
実施の形態1において、正極活物質1aに金属異物として直径φ20μm以上30μm以下の鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムをそれぞれ正極活物質1aの質量に対して100ppm混入させたリチウムイオン電池を作製し、これを実施例3とする。この際、セパレータ3として分離機能層3aが支持層3bの側壁10にも配置されており、かつ分離機能層3aの中央部分の厚みが両端(正極タブ側および負極タブ側)の厚みより小さいものを用いる。つまり、分離機能層3aの膜厚T3aを、正極タブ4(図1参照)と負極タブ5(図1参照)との間である中央部分の膜厚が外周側である正極タブ4(図1参照),負極タブ5(図1参照)側の膜厚より厚くなるようにする。この際の局所的にかかる応力の集中を避けるため、徐々に膜厚が変化するようにしている。なお、実施例3では分離機能層3aが支持層3bの側壁10にも配置される構成を例に説明したが、支持層3bの側壁10に分離機能層3aが配置されない構成においても、分離機能層3aの中央部分の膜厚が両端の膜厚より薄い構成とすることもできる。
Example 3
In the first embodiment, lithium ions in which 100 ppm of iron, copper, zinc, tin, cobalt, nickel, and chromium having a diameter of 20 μm or more and 30 μm or less are mixed into the positive electrode active material 1a as metal foreign matter with respect to the mass of the positive electrode active material 1a. A battery is produced and is referred to as Example 3. At this time, the separation functional layer 3a is also disposed on the side wall 10 of the support layer 3b as the separator 3, and the thickness of the central portion of the separation functional layer 3a is smaller than the thickness of both ends (positive electrode tab side and negative electrode tab side). Is used. That is, the film thickness T3a of the separation functional layer 3a is set so that the film thickness of the central portion between the positive electrode tab 4 (see FIG. 1) and the negative electrode tab 5 (see FIG. 1) is the outer peripheral side. Reference), and the thickness is made larger than the film thickness on the negative electrode tab 5 (see FIG. 1) side. In order to avoid local concentration of stress at this time, the film thickness is gradually changed. In the third embodiment, the configuration in which the separation function layer 3a is also disposed on the side wall 10 of the support layer 3b has been described as an example. However, the separation function layer 3a is also disposed in the configuration in which the separation function layer 3a is not disposed on the side wall 10 of the support layer 3b. The film thickness of the center part of the layer 3a can also be made thinner than the film thickness of both ends.

(比較例1)
実施の形態1に対し、分離機能層を備えない従来のセパレータを用い、正極活物質1aに金属異物として直径φ20μm以上30μm以下の鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムをそれぞれ正極活物質1aの質量に対して100ppm混入させたリチウムイオン電池を作製し、これを比較例1とした。
(Comparative Example 1)
In contrast to the first embodiment, a conventional separator that does not include a separation functional layer is used, and iron, copper, zinc, tin, cobalt, nickel, and chromium having a diameter of 20 μm or more and 30 μm or less are used as the positive electrode active material 1a. A lithium ion battery in which 100 ppm was mixed with respect to the mass of the substance 1a was produced.

上記の条件で作製された実施例1〜3および比較例1のリチウムイオン電池について25℃の雰囲気下で充電電流1.8mA、電気量5.4mAhの定電流・定電気量充放電試験(上限電圧4.2V、下限電圧3.0V)を行った。その結果を図6に示す。   For the lithium ion batteries of Examples 1 to 3 and Comparative Example 1 manufactured under the above conditions, a constant current / constant electric charge / discharge test (upper limit) with a charging current of 1.8 mA and an electric charge of 5.4 mAh in an atmosphere at 25 ° C. Voltage 4.2V, lower limit voltage 3.0V). The result is shown in FIG.

図6の結果から明らかなように、実施例1〜3は比較例1よりも充放電サイクル特性が良いことがわかる。つまり、従来の構成のセパレータを備えるリチウムイオン電池に係る比較例1に比べて、分離機能層3aを備えるセパレータから構成される実施例1〜3に係るリチウムイオン電池では、充放電を繰り返しても電池容量の減少が小さい。   As is apparent from the results of FIG. 6, Examples 1 to 3 have better charge / discharge cycle characteristics than Comparative Example 1. That is, in the lithium ion batteries according to Examples 1 to 3 configured by the separator including the separation function layer 3a as compared with Comparative Example 1 according to the lithium ion battery including the separator having the conventional configuration, charging and discharging are repeated. Battery capacity decrease is small.

正極活物質1aに金属異物として直径φ20μm以上30μm以下の鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムをそれぞれ正極活物質1aの質量に対して100ppm混入した影響により、比較例1においては電池性能が大きく低下している。これは、正極側でイオン化された金属異物が負極側へ移動して負極極板2で金属異物が表面に析出し、この析出物が正極極板1に向かって成長することで、正極極板1と負極極板2とが内部短絡を引き起こした為と考えられる。   In Comparative Example 1, the positive active material 1a was charged with 100 ppm of iron, copper, zinc, tin, cobalt, nickel, and chromium, each having a diameter of 20 μm or more and 30 μm or less, as a foreign metal. The performance is greatly reduced. This is because the metal foreign matter ionized on the positive electrode side moves to the negative electrode side, and the metal foreign matter is deposited on the surface of the negative electrode plate 2, and this precipitate grows toward the positive electrode plate 1. 1 and the negative electrode plate 2 are considered to have caused an internal short circuit.

一方、少なくとも分離機能層3aを備えるセパレータ3を使用した実施例1〜3に係るリチウムイオン電池では、分離機能層の空孔径の平均が、前記電解液で溶媒和した多価イオンより小さくリチウムイオンよりも大きい。分離機能層3aの空孔径が0.6nm以上2nm以下で、空孔率が10%以上30%以下の空孔を備える。電解液中の各種イオンは電荷量に応じて溶媒を吸着する溶媒和の状態となっており、価数が大きいイオンほど溶媒和した大きさが大きい傾向にある。   On the other hand, in the lithium ion batteries according to Examples 1 to 3 using the separator 3 provided with at least the separation functional layer 3a, the average pore diameter of the separation functional layer is smaller than the polyvalent ions solvated with the electrolytic solution. Bigger than. The separation functional layer 3a includes pores having a pore diameter of 0.6 nm to 2 nm and a porosity of 10% to 30%. Various ions in the electrolytic solution are in a solvated state in which the solvent is adsorbed according to the amount of charge, and ions having a larger valence tend to have a larger solvated size.

このため一価のイオンであるリチウムイオンより2価以上のイオンとなる鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムなどのイオンのほうが溶媒和した状態では大きい。このため正極側から負極側へのリチウムイオンを透過して金属異物イオンの移動を抑制することができ、リチウムイオン電池の出力電圧が低下したり、リチウムイオン電池が発熱・発火したりして電池性能と安全性が低下することを抑制して、リチウムイオン電池の電池性能と安全性を確保することができる。   For this reason, ions such as iron, copper, zinc, tin, cobalt, nickel, and chromium that are divalent or higher ions are larger than lithium ions that are monovalent ions in a solvated state. For this reason, it is possible to suppress the movement of foreign metal ions by transmitting lithium ions from the positive electrode side to the negative electrode side, and the output voltage of the lithium ion battery decreases or the lithium ion battery generates heat and ignites. It can suppress that performance and safety fall, and can secure battery performance and safety of a lithium ion battery.

次に、実施例1〜3における充放電サイクル特性が実施例1、実施例2、実施例3の順に良好であったことに関して説明する。
実施例1では支持層3bと負極極板2との間にだけ分離機能層3aが配置されていて、支持層3bの側壁10に分離機能層3aが配置されていない。正極極板1に金属不純物が多く含まれてしまった場合、イオン化した金属不純物が正極極板1近傍を拡散し、分離機能層3aを通過して負極極板2に到達することは抑制されるものの、セパレータ3の支持層3bの側壁10と正極タブ4、負極タブ5の間を毛細管効果によって透過して負極極板2へ到達し、イオン化した金属不純物が負極極板2に析出されるものと考えられる。
Next, the charge / discharge cycle characteristics in Examples 1 to 3 will be described in the order of Example 1, Example 2, and Example 3.
In Example 1, the separation functional layer 3a is disposed only between the support layer 3b and the negative electrode plate 2, and the separation functional layer 3a is not disposed on the side wall 10 of the support layer 3b. If the positive electrode plate 1 contains a large amount of metal impurities, it is suppressed that ionized metal impurities diffuse near the positive electrode plate 1 and pass through the separation functional layer 3a to reach the negative electrode plate 2. However, between the side wall 10 of the support layer 3b of the separator 3 and the positive electrode tab 4 and the negative electrode tab 5, it penetrates by the capillary effect and reaches the negative electrode plate 2, and ionized metal impurities are deposited on the negative electrode plate 2. it is conceivable that.

一方、実施例2では分離機能層3aが支持層3bの側壁にも配置されているため、セパレータ3の支持層3bの側壁10と正極タブ4、負極タブ5の間を金属不純物が透過することを抑制することができ、実施例1で生じたようなイオン化した金属異物の透過がほとんど生じなかったものと考えられる。このため、実施例1に比べ、実施例2の方が充放電サイクル特性が良いものと考えられる。   On the other hand, in Example 2, since the separation functional layer 3a is also disposed on the side wall of the support layer 3b, the metal impurities permeate between the side wall 10 of the support layer 3b of the separator 3 and the positive electrode tab 4 and the negative electrode tab 5. It is considered that almost no permeation of the ionized metal foreign matter as occurred in Example 1 occurred. For this reason, it is thought that Example 2 has better charge / discharge cycle characteristics than Example 1.

なお、分離機能層3aは空孔径が小さく空孔率が低いことで膜が緻密なため、支持層3bに比べて電解液が通り難い。このため分離機能層3aの膜厚は電解液の流れを妨げず、金属異物イオンの透過を抑制する膜厚を用いる。実施例2の場合、図4に示すとおり、支持層3bの側壁に配置された分離機能層3aの電解液の流れる方向に対するセパレータ3の膜厚T3avは、分離機能層3aの膜厚T3aが十分に薄いため、支持層3bの膜厚T3bとほぼ同じとなり、前述の通り、この近傍での金属異物イオンの透過はほとんど生じない。一方、支持層3bの側壁10に配置された分離機能層3aの電解液の流れる方向と垂直方向の膜厚T3ahが厚いと電解液の流れに垂直方向の支持層3bの幅が狭くなり、その分電解液の流れが阻害される。このことから支持層3bの側壁に配置された分離機能層3aの膜厚T3ahは、支持層3b表面に配置されている分離機能層3aの膜厚T3aより薄い方が良い。   In addition, since the separation functional layer 3a has a small pore size and a low porosity, the membrane is dense, so that it is difficult for the electrolytic solution to pass through compared to the support layer 3b. For this reason, the separation functional layer 3a has a thickness that does not hinder the flow of the electrolyte and suppresses the passage of foreign metal ions. In the case of Example 2, as shown in FIG. 4, the film thickness T3av of the separator 3 with respect to the direction in which the electrolytic solution flows in the separation function layer 3a disposed on the side wall of the support layer 3b is sufficient as the film thickness T3a of the separation function layer 3a. Therefore, the thickness of the support layer 3b is almost the same as the film thickness T3b. As described above, almost no foreign metal ions are transmitted near the support layer 3b. On the other hand, if the thickness T3ah of the separation functional layer 3a disposed on the side wall 10 of the support layer 3b in the direction perpendicular to the electrolyte flow direction is thick, the width of the support layer 3b in the direction perpendicular to the flow of the electrolyte is reduced. The flow of the electrolyte is inhibited. Therefore, the thickness T3ah of the separation functional layer 3a disposed on the side wall of the support layer 3b is preferably smaller than the film thickness T3a of the separation functional layer 3a disposed on the surface of the support layer 3b.

ここで、一般的なリチウムイオン電池における充放電に伴う電極形状の変化について記載する。リチウムイオン電池の充電時には、極板仕様により値は変化するが負極極板2は約10%、正極極板1は約2%程度膨張する。一方放電時には、正極極板1、負極極板2ともほぼ元の状態に戻る。しかし、電解液は押出されたまま直ぐには戻らない。このような充電時の極板膨張により、極板群の最内側中央部は含有電解液量が半分になる程の圧力を受け、このストレスと電解液量の不均一化は充放電サイクル特性劣化の一因となっている。   Here, it describes about the change of the electrode shape accompanying charging / discharging in a general lithium ion battery. When the lithium ion battery is charged, the value varies depending on the electrode plate specifications, but the negative electrode plate 2 expands by about 10% and the positive electrode plate 1 expands by about 2%. On the other hand, at the time of discharging, both the positive electrode plate 1 and the negative electrode plate 2 return to the original state. However, the electrolyte does not return immediately after being extruded. Due to such expansion of the electrode plate during charging, the innermost central part of the electrode plate group is subjected to a pressure that halves the amount of electrolyte contained, and this non-uniformity of stress and electrolyte amount deteriorates the charge / discharge cycle characteristics. It is one of the causes.

ところで、実施例3の分離機能層3aは中央部分の膜厚が両端(正極タブ側および負極タブ側)の膜厚より小さい。このため実施例2に比べ、両端部より中央部における空孔率が低い層による液透過の妨げが小さくなるため中央部分の電解液が透過しやすく、電解液量の不均一化が抑制されている。このため、実施例2に比べ、実施例3の方が充放電サイクル特性が良いものと考えられる。   By the way, the separation functional layer 3a of Example 3 has a film thickness at the center portion smaller than the film thickness at both ends (positive electrode tab side and negative electrode tab side). For this reason, compared with Example 2, since the obstruction | occlusion of the liquid permeation by the layer with a low porosity in a center part from both ends becomes small, the electrolyte solution of a center part permeate | transmits easily, and the nonuniformity of the amount of electrolyte solution is suppressed. Yes. For this reason, it is thought that Example 3 has better charge / discharge cycle characteristics than Example 2.

なお、実施の形態1として、巻回した際に支持層3bが正極活物質1aに触れ、分離機能層3aが負極活物質2aに触れる向きに正極極板1、負極極板2、セパレータ3を配置しているが、巻回した際に分離機能層3aが正極活物質1aに触れ、支持層3bが負極活物質2aに触れる向きに正極極板1、負極極板2、セパレータ3を配置しても実施例1〜3のような金属異物イオンの移動を抑制する効果が得られる。   As Embodiment 1, the positive electrode plate 1, the negative electrode plate 2, and the separator 3 are arranged so that the support layer 3b touches the positive electrode active material 1a and the separation functional layer 3a touches the negative electrode active material 2a when wound. The positive electrode plate 1, the negative electrode plate 2, and the separator 3 are arranged in such a direction that the separation functional layer 3a touches the positive electrode active material 1a and the support layer 3b touches the negative electrode active material 2a when wound. However, the effect of suppressing the movement of foreign metal ions as in Examples 1 to 3 is obtained.

しかし、金属異物がイオン化しやすい正極活物質1aに分離機能層3aが接している場合、局所的に高濃度な金属異物イオンと分離機能層3aが接することになり、分離機能層3aの金属異物イオンの阻止率が高くても、分離機能層3aを透過する金属異物イオン量が多くなる。一方、正極活物質1aに支持層3bが接しており、金属異物イオンが支持層3bを透過して分離機能層3aに到達する場合、支持層3bを透過する際に金属異物イオンは拡散し低濃度化しているため、金属異物イオン量は比較的少なくなる。したがって負極極板2表面に析出する金属異物が少ない為、良好な充放電サイクル特性および安全性が得られる。   However, when the separation functional layer 3a is in contact with the positive electrode active material 1a in which the metal foreign matter is easily ionized, the separation functional layer 3a is locally in contact with the high-concentration metal foreign matter ions, and the metal foreign matter in the separation functional layer 3a. Even if the ion rejection is high, the amount of foreign metal ions that permeate the separation function layer 3a increases. On the other hand, when the support layer 3b is in contact with the positive electrode active material 1a, and the metal foreign matter ions permeate the support layer 3b and reach the separation function layer 3a, the metal foreign matter ions diffuse and pass through the support layer 3b. Since the concentration is increased, the amount of foreign metal ions is relatively small. Therefore, since there are few metal foreign substances deposited on the surface of the negative electrode plate 2, good charge / discharge cycle characteristics and safety can be obtained.

次に実施例3で使用したセパレータ3について、リチウムおよび金属異物である鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムの阻止率の評価を実施し、その結果を[表1]に示す。   Next, the separator 3 used in Example 3 was evaluated for the rejection rate of iron, copper, zinc, tin, cobalt, nickel, and chromium, which are lithium and metal foreign matters, and the results are shown in [Table 1].

ここで阻止率の評価とは、セパレータによる分離対象の阻止率Rを指標とし、セパレータを介した供給液側の対象物質の濃度C1と透過液側の対象物質の濃度C2で定義され、阻止率R=(1−C2÷C1)×100で得られる。ここで、供給液としてエチレンカーボネートにトリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸鉄、トリフルオロメタンスルホン酸銅、トリフルオロメタンスルホン酸亜鉛、トリフルオロメタンスルホン酸錫、トリフルオロメタンスルホン酸コバルト、トリフルオロメタンスルホン酸ニッケル、トリフルオロメタンスルホン酸クロムを一定量添加した溶液とした。   The evaluation of the rejection rate is defined by the concentration C1 of the target substance on the supply liquid side and the concentration C2 of the target substance on the permeate side through the separator, using the rejection rate R of the separation target by the separator as an index. R = (1−C2 ÷ C1) × 100. Here, lithium trifluoromethanesulfonate, iron trifluoromethanesulfonate, copper trifluoromethanesulfonate, zinc trifluoromethanesulfonate, tin trifluoromethanesulfonate, cobalt trifluoromethanesulfonate, nickel trifluoromethanesulfonate as ethylene carbonate to the supply liquid A solution containing a certain amount of chromium trifluoromethanesulfonate was added.

セパレータを介して供給液側に約0.3MPaの圧力をかけることで透過してきた溶液を透過液とした。その後、供給液と透過液に含有されるリチウム、鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムの濃度を測定し、上記数式によりそれぞれの物質の阻止率(%)を算出した。なお、それぞれの物質の阻止率をRLi、RFe、RCu、RZn、RSn、RCo、RNi、RCrとした。   The solution which permeated by applying a pressure of about 0.3 MPa to the supply liquid side through the separator was used as the permeate. Thereafter, the concentrations of lithium, iron, copper, zinc, tin, cobalt, nickel, and chromium contained in the supply liquid and permeate were measured, and the rejection rate (%) of each substance was calculated using the above formula. The rejection rate of each substance was RLi, RFe, RCu, RCn, RSn, RCo, RNi, RCr.

[表1]から明らかなように、実施例1で用いたセパレータ3については、リチウムの阻止率RLiに対して鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムの阻止率RFe、RCu、RZn、RSn、RCo、RNi、RCrのほうが高いことがわかる。これはリチウムが1価のイオンであることに対して鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムは多価のイオンであり、溶媒和した際のイオンサイズが大きく異なることに起因している。本実施の形態のリチウムイオン電池に用いているセパレータ3は上記のイオンサイズの違いを利用し、電池反応に必要なリチウムはセパレータを透過し、分離対象である金属異物の移動はセパレータ3により阻止する機能を有していることがこの結果からもわかる。 As is apparent from [Table 1], with respect to the separator 3 used in Example 1, the rejection rate RFe, RCu, RZn of iron, copper, zinc, tin, cobalt, nickel, and chromium with respect to the rejection rate RLi of lithium. It can be seen that RSn, RCo, RNi, and RCr are higher. This is because lithium, which is a monovalent ion, iron, copper, zinc, tin, cobalt, nickel, and chromium are polyvalent ions, and the ion size when solvated differs greatly. Yes. Separator 3 used in the lithium ion battery of the present embodiment utilizes the above difference in ion size, lithium necessary for the battery reaction permeates the separator, and movement of the metal foreign object to be separated is blocked by separator 3. This result also shows that it has the function to do.

次に、セパレータの分離機能と阻止率について述べる。
実施例1〜3で用いたセパレータ3に比べ、空孔径が小さく空孔率が小さく(50%未満)、阻止サイズが小さい場合、リチウムの阻止率RLiおよび金属異物である鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムの阻止率RFe、RCu、RZn、RSn,RCo、RNi、RCrが[表1]の値より大きくなる。つまり金属異物だけでなく、電池反応に必要なリチウムの移動が正負極間で阻害されることになるため、リチウムイオン電池のセパレータとしては適さない。
Next, the separator separation function and the rejection rate will be described.
Compared with the separator 3 used in Examples 1 to 3, when the pore diameter is small and the porosity is small (less than 50%) and the inhibition size is small, the lithium rejection rate RLi and metallic foreign substances such as iron, copper, zinc, The rejection ratios RFe, RCu, RZn, RSn, RCo, RNi, and RCr of tin, cobalt, nickel, and chromium are larger than the values in [Table 1]. That is, not only the metal foreign matter but also the movement of lithium necessary for the battery reaction is hindered between the positive and negative electrodes, so that it is not suitable as a separator for a lithium ion battery.

また実施例1〜3で用いたセパレータに比べ、空孔径が大きく空孔率が大きく(80%より大きい)、阻止サイズが大きい場合には、リチウムの阻止率RLiおよび金属異物である鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムの阻止率RFe、RCu、RZn、RSn、RCo、RNi、RCrが[表1]の値より小さくなる。つまりリチウムだけでなく、金属異物もセパレータを透過してしまうため、本発明の狙いとする効果が得られなくなる。   Further, in comparison with the separators used in Examples 1 to 3, when the pore diameter is large and the porosity is large (greater than 80%) and the inhibition size is large, the lithium rejection rate RLi and metallic foreign objects such as iron and copper Zinc, tin, cobalt, nickel, chromium rejection rate RFe, RCu, RZn, RSn, RCo, RNi, RCr are smaller than the values in [Table 1]. In other words, not only lithium but also foreign metal particles pass through the separator, so that the intended effect of the present invention cannot be obtained.

以上のことからリチウムの阻止率RLiより鉄、銅、亜鉛、錫、コバルト、ニッケル、クロムの阻止率RFe、RCu、RZn、RSn、RCo、RNi、RCrが十分に大きいことが必要であることがわかる。   From the above, the rejection rate RFe, RCu, RZn, RSn, RCo, RNi, RCr of iron, copper, zinc, tin, cobalt, nickel and chromium must be sufficiently larger than the rejection rate RLi of lithium. Understand.

本発明は、電池性能と安全性を確保することができ、正極と負極の間にセパレータを備えるリチウムイオン電池等に有用である。   INDUSTRIAL APPLICABILITY The present invention can ensure battery performance and safety, and is useful for a lithium ion battery or the like that includes a separator between a positive electrode and a negative electrode.

1 正極極板
1a 正極活物質
1b 正極用集電材
2 負極極板
2a 負極活物質
2b 負極用集電材
3 セパレータ
3a 分離機能層
3b 支持層
4 正極タブ
5 負極タブ
6 ケース
7 電解液
8 第一面
9 第二面
10 側壁
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode active material 1b Current collector for positive electrodes 2 Negative electrode plate 2a Negative electrode active material 2b Current collector for negative electrodes 3 Separator 3a Separation functional layer 3b Support layer 4 Positive electrode tab 5 Negative electrode tab 6 Case 7 Electrolytic solution 8 First surface 9 Second side 10 Side wall

Claims (7)

正極活物質としてリチウム金属酸化物を含む正極極板と、
負極活物質として炭素を含む負極極板と、
第一面が前記負極極板と接し、前記第一面の裏面となる第二面が前記正極極板と接するように前記正極極板と前記負極極板との間に配置されるセパレータと、
有機溶媒に電解質としてリチウムイオンが溶解する電解液と
を有し、
前記セパレータが、支持層と前記支持層より空孔径が小さく空孔率が低い分離機能層とからなり、
前記支持層および前記分離機能層の一方が前記第一面の側に配置され、他方が前記第二面の側に配置され
前記セパレータの前記第一面の側に前記分離機能層が配置され、前記第二面の側に前記支持層が配置され、
前記分離機能層の空孔径の平均が、前記電解液で溶媒和した多価イオンより小さく前記電解液で溶媒和したリチウムイオンよりも大きいことを特徴とする、
リチウムイオン電池。
A positive electrode plate containing a lithium metal oxide as a positive electrode active material;
A negative electrode plate containing carbon as a negative electrode active material;
A separator disposed between the positive electrode plate and the negative electrode plate such that a first surface is in contact with the negative electrode plate and a second surface which is the back surface of the first surface is in contact with the positive electrode plate;
An electrolyte solution in which lithium ions are dissolved as an electrolyte in an organic solvent,
The separator is composed of a support layer and a separation functional layer having a pore size smaller than that of the support layer and a low porosity.
One of the support layer and the separation functional layer is disposed on the first surface side, and the other is disposed on the second surface side ,
The separation functional layer is disposed on the first surface side of the separator, and the support layer is disposed on the second surface side;
The average pore diameter of the separation functional layer is smaller than multivalent ions solvated with the electrolyte solution and larger than lithium ions solvated with the electrolyte solution ,
Lithium ion battery.
前記分離機能層の平均膜厚が、前記支持層の平均膜厚より小さいことを特徴とする、
請求項記載のリチウムイオン電池。
The average film thickness of the separation functional layer is smaller than the average film thickness of the support layer,
The lithium ion battery according to claim 1 .
前記分離機能層の材料が、再生セルロース、セルロースエステル、ポリアクリルニトリル、テフロン、ポリエステル系ポリマーアロイ、ポリアミド、ポリイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリビニルアルコール、エチレン−ビニル共重合体、及びポリ塩化ビニルの内の何れか一つであることを特徴とする、
請求項1または2記載のリチウムイオン電池。
The material of the separation functional layer is regenerated cellulose, cellulose ester, polyacrylonitrile, Teflon, polyester polymer alloy, polyamide, polyimide, polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinylidene fluoride, polyvinyl alcohol, ethylene-vinyl. It is one of a copolymer and polyvinyl chloride,
The lithium ion battery according to claim 1 or 2.
前記支持層の材料が、再生セルロース、セルロースエステル、ポリスルフォン、ポリエーテルスルフォン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ビニロン、ポリアミド、ポリイミド、ポリエチレン、ポリプロピレン、ポリエステル、及びポリフッ化ビニリデンの内の何れか一つであることを特徴とする、
請求項1からの何れか一項に記載のリチウムイオン電池。
The material of the support layer is regenerated cellulose, cellulose ester, polysulfone, polyether sulfone, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, vinylon, polyamide, polyimide, polyethylene, polypropylene, polyester, and polyvinylidene fluoride. Any one of them,
The lithium ion battery according to any one of claims 1 to 3 .
前記分離機能層は、前記支持層の側壁に接する領域にも形成されることを特徴とする、
請求項1から4の何れか一項に記載のリチウムイオン電池。
The separation functional layer is also formed in a region in contact with the side wall of the support layer,
The lithium ion battery according to any one of claims 1 to 4 .
前記分離機能層は、前記正極極板または前記負極極板と接する部分の膜厚より、前記支持層の側壁と接する部分の膜厚の方が小さいことを特徴とする、
請求項記載のリチウムイオン電池。
The separation functional layer is characterized in that the thickness of the portion in contact with the side wall of the support layer is smaller than the thickness of the portion in contact with the positive electrode plate or the negative electrode plate.
The lithium ion battery according to claim 4 .
前記分離機能層の前記正極極板または前記負極極板と接する部分の膜厚は、前記支持層の側壁側に近づくほど厚いことを特徴とする、
請求項記載のリチウムイオン電池。
The thickness of the portion of the separation functional layer in contact with the positive electrode plate or the negative electrode plate is thicker toward the side wall side of the support layer ,
The lithium ion battery according to claim 1 .
JP2016125034A 2015-10-30 2016-06-24 Lithium ion battery Active JP6604479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610811495.5A CN106654351B (en) 2015-10-30 2016-09-08 Lithium ion battery
US15/265,262 US10367181B2 (en) 2015-10-30 2016-09-14 Lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015213564 2015-10-30
JP2015213564 2015-10-30

Publications (2)

Publication Number Publication Date
JP2017084765A JP2017084765A (en) 2017-05-18
JP6604479B2 true JP6604479B2 (en) 2019-11-13

Family

ID=58711030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125034A Active JP6604479B2 (en) 2015-10-30 2016-06-24 Lithium ion battery

Country Status (2)

Country Link
JP (1) JP6604479B2 (en)
CN (1) CN106654351B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107958981B (en) * 2017-06-24 2021-06-08 内蒙古中锂新材料有限公司 Composite diaphragm for lithium ion power battery and preparation method
CN118899625A (en) * 2023-05-04 2024-11-05 宁德时代新能源科技股份有限公司 Separator film for sodium battery, secondary battery and electrical device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255121B4 (en) * 2002-11-26 2017-09-14 Evonik Degussa Gmbh Separator with asymmetric pore structure for an electrochemical cell
CN101127392A (en) * 2006-08-17 2008-02-20 李鑫 A secure lithium ion electric core and its making method
JP5626607B2 (en) * 2010-12-17 2014-11-19 トヨタ自動車株式会社 Method for manufacturing lithium secondary battery
US8835058B2 (en) * 2010-12-21 2014-09-16 GM Global Technology Operations LLC Battery separators with variable porosity
JP2013127857A (en) * 2011-12-16 2013-06-27 Hitachi Ltd Lithium ion battery and manufacturing method of the same
EP2860789B1 (en) * 2012-04-30 2019-06-12 LG Chem, Ltd. Separator and an electro-chemical device having the same
JP5751454B2 (en) * 2012-12-14 2015-07-22 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2015170403A (en) * 2014-03-05 2015-09-28 パナソニックIpマネジメント株式会社 alkaline battery
CN104157812B (en) * 2014-04-23 2017-08-25 华南理工大学 Lithium ion battery separator and preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
CN106654351A (en) 2017-05-10
CN106654351B (en) 2021-01-05
JP2017084765A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6208663B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
EP3919269B1 (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
JP5572316B2 (en) Battery with improved fine fiber separator
JP6588070B2 (en) X-ray sensitive battery separator and related method
US20130183582A1 (en) Lithium ion battery
WO2019114692A1 (en) Separators, electrochemical devices comprising the separator, and methods for making the separator
An et al. Multilayered separator based on porous polyethylene layer, Al 2 O 3 layer, and electro-spun PVdF nanofiber layer for lithium batteries
WO2013183584A1 (en) Ion permeable diaphragm
JP2009510788A (en) Electrochemical double layer capacitor with improved nanofiber separator
CN110767864A (en) Multilayer hybrid battery separator for lithium ion secondary battery and method for manufacturing same
CN101663778B (en) Separator for nonaqueous electrolyte secondary battery and multilayer separator for nonaqueous electrolyte secondary battery
JPWO2013077162A1 (en) Separator for electric device and electric device using the same
EP4138200A1 (en) Separator for electrochemical device and electrochemical device comprising same
JPWO2014136838A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JPWO2018056307A1 (en) Air battery and patch
JP6604479B2 (en) Lithium ion battery
CN114556678A (en) Battery with improved gas to moisture permeability ratio
JPH11207888A (en) Composite porous body
CN103943803A (en) Enhanced-safety Galvanic Element
US20230411794A1 (en) Porous substrate for separator and separator for electrochemical device comprising same
KR102714011B1 (en) A method for manufacturing a separator for an electrode device and a separator thereby
KR20130070170A (en) A separator having porous coating and electrochemical device containing the same
US10367181B2 (en) Lithium-ion battery
JP2015170403A (en) alkaline battery
JP2007311367A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R151 Written notification of patent or utility model registration

Ref document number: 6604479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151