[go: up one dir, main page]

JP6602885B2 - Exhaust gas aftertreatment method and exhaust gas aftertreatment system - Google Patents

Exhaust gas aftertreatment method and exhaust gas aftertreatment system Download PDF

Info

Publication number
JP6602885B2
JP6602885B2 JP2017548418A JP2017548418A JP6602885B2 JP 6602885 B2 JP6602885 B2 JP 6602885B2 JP 2017548418 A JP2017548418 A JP 2017548418A JP 2017548418 A JP2017548418 A JP 2017548418A JP 6602885 B2 JP6602885 B2 JP 6602885B2
Authority
JP
Japan
Prior art keywords
exhaust gas
absorbent
internal combustion
combustion engine
filtration unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017548418A
Other languages
Japanese (ja)
Other versions
JP2018507985A (en
Inventor
ニコラウス・ケーニッヒ
ゲルハルト・ヴェークマン
ルドルフ・トーラント
シュテファン・シェーファー
シェン・チェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Energy Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Energy Solutions SE filed Critical MAN Energy Solutions SE
Publication of JP2018507985A publication Critical patent/JP2018507985A/en
Application granted granted Critical
Publication of JP6602885B2 publication Critical patent/JP6602885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/949Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/12Adding substances to exhaust gases the substance being in solid form, e.g. pellets or powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、排ガス後処理方法に関する。さらに、本発明は、排ガス後処理システムに関する。   The present invention relates to an exhaust gas aftertreatment method. Furthermore, the present invention relates to an exhaust gas aftertreatment system.

内燃機関の運転の際に、排ガス後処理が果たす役割は益々大きくなっている。従って、排ガスの放出を低減するための触媒コンバータ及び/又は粒子フィルタを介して内燃機関から排出される排ガスを導くことが、実践から知られている。さらに、排ガスに含有される熱エネルギを利用可能とするために、熱回収のための回収セクションを介して内燃機関から排出される排ガスを導くことが、他の排ガス後処理システムから知られている。   The role of exhaust gas aftertreatment plays an increasing role in the operation of internal combustion engines. Therefore, it is known from practice to guide the exhaust gas discharged from the internal combustion engine via a catalytic converter and / or particle filter for reducing the emission of exhaust gas. Furthermore, it is known from other exhaust gas aftertreatment systems to direct exhaust gas discharged from an internal combustion engine via a recovery section for heat recovery in order to make available the thermal energy contained in the exhaust gas. .

排ガスの熱エネルギのためにこのような回収セクションを具備する排ガス後処理システムの効果的な動作を実現することは、大きな課題であり、現在においても顕著な改善の可能性を提供するものである。従って、硫黄化合物と当該処理にとって悪影響を及ぼす粒子及びさらなる構成物質とを排ガスから除去する回収セクションの領域において、排ガスから熱エネルギを一層効果的に回収可能とする、排ガス後処理方法及び排ガス後処理システムに対するニーズが存在する。熱回収のために調整された排ガスは、排ガス後処理の他の後続する処理工程すべてに対して優位であるに違いない。   Realizing the effective operation of an exhaust gas aftertreatment system with such a recovery section for the thermal energy of the exhaust gas is a major challenge and still offers significant improvement possibilities today. . Therefore, an exhaust gas post-treatment method and exhaust gas post-treatment that enable more effective recovery of thermal energy from exhaust gas in the area of the recovery section where sulfur compounds and particles and further constituents that adversely affect the treatment are removed from the exhaust gas. There is a need for a system. Exhaust gas conditioned for heat recovery must dominate all other subsequent processing steps of exhaust gas aftertreatment.

このような見地から、本発明は、新しいタイプの排ガス後処理方法及び排ガス後処理システムを生み出すという目的に基づいている。当該目的は、請求項1に記載の方法を通じて解決される。本発明では、熱回収及び排ガス後処理の他の処理工程のために排ガスを調整するために、吸収剤が、排ガスの流れ方向に関する内燃機関の下流において、排ガスに導入され、排ガスと混合され、その後に、硫黄化合物及びさらなる有害物質で満たされた吸収剤が、さらなる粒子状の排ガス物質と共に、濾過装置の補助を受けて排ガスから除去される。   From this point of view, the present invention is based on the object of creating a new type of exhaust gas aftertreatment method and exhaust gas aftertreatment system. This object is solved through the method according to claim 1. In the present invention, an absorbent is introduced into the exhaust gas downstream of the internal combustion engine with respect to the flow direction of the exhaust gas and mixed with the exhaust gas in order to adjust the exhaust gas for heat recovery and other processing steps of the exhaust gas post-treatment. Thereafter, the absorbent filled with sulfur compounds and further harmful substances, together with further particulate exhaust gas substances, is removed from the exhaust gas with the aid of a filtration device.

本発明における排ガスの調整方法は、吸収剤を導入するステップと、吸収剤を排ガスに含有される上述の汚染物質と反応させるステップと、汚染物質及びさらなる粒子状の排ガス物質で満たされた吸収剤を除去するステップとを備えており、当該方法によって、回収セクションの領域において利用可能とされる排ガスから、熱エネルギを一層効果的に抽出することができ、排ガス後処理のさらなる処理工程すべてにおいて、さらに利点を提供することができる。これにより、内燃機関に装備されると共に排ガス後処理システムを具備する発電システム又は推進システムにおいて、高い全体効率を実現することができる。   The exhaust gas control method of the present invention comprises the steps of introducing an absorbent, reacting the absorbent with the above-mentioned pollutants contained in the exhaust gas, and an absorbent filled with the pollutants and further particulate exhaust gas substances. And the method can more effectively extract thermal energy from the exhaust gas that is made available in the region of the recovery section, and in all further processing steps of the exhaust gas aftertreatment, Further advantages can be provided. As a result, high overall efficiency can be realized in the power generation system or the propulsion system that is mounted on the internal combustion engine and includes the exhaust gas aftertreatment system.

本発明の優位なさらなる発展形態では、吸収剤が、内燃機関の下流において排ガスに導入され、排ガスと混合され、吸収剤の導入の際における排ガスの温度が、好ましくは250℃より高く、吸収剤が、硫黄化合物を化学吸着により低減させるように、好ましくはさらに、排ガスに含有されるさらなる汚染物質と結合するように構成されている。これにより、熱回収及び排ガス後処理システムのさらなる処理工程すべてのために、排ガスを特に有効に調整することができる。好ましくは、吸収剤は、乾燥した紛体として排ガスに導入される。乾燥した紛体を吸収剤として導入することによって、熱回収の範囲内において利用可能とされるエンタルピーを増大させることができるので、システム全体の効率を高めることができる。さらなる好ましい効果は、流体の給排のための技術的処理及び技術的設備を省略することができることに由来する。   In an advantageous further development of the invention, the absorbent is introduced into the exhaust gas downstream of the internal combustion engine, mixed with the exhaust gas, and the temperature of the exhaust gas upon introduction of the absorbent is preferably higher than 250 ° C. Is preferably further configured to combine with further contaminants contained in the exhaust gas so as to reduce sulfur compounds by chemisorption. This makes it possible to adjust the exhaust gas particularly effectively for all further processing steps of the heat recovery and exhaust gas aftertreatment system. Preferably, the absorbent is introduced into the exhaust gas as a dry powder. By introducing the dried powder as an absorbent, the enthalpy that can be used within the range of heat recovery can be increased, so that the efficiency of the entire system can be increased. A further favorable effect is derived from the fact that technical processing and technical equipment for supplying and discharging the fluid can be omitted.

本発明の優位なさらなる発展形態では、排ガスの温度が、排ガス清浄フィルタ内における脱硫及び脱塵の際であっても250℃より高い。   In an advantageous further development of the invention, the temperature of the exhaust gas is higher than 250 ° C. even during desulfurization and dedusting in the exhaust gas cleaning filter.

本発明における排ガス後処理システムは、請求項9に規定されている。   The exhaust gas aftertreatment system according to the present invention is defined in claim 9.

本発明の好ましいさらなる発展形態については、従属請求項及び発明の詳細な説明から理解可能とされる。本発明の典型的な実施例については、添付図面を介して一層詳細に説明するが、本発明を限定する訳ではない。   Preferred further developments of the invention can be understood from the dependent claims and the detailed description of the invention. Exemplary embodiments of the present invention will be described in greater detail through the accompanying drawings, but are not intended to limit the present invention.

排ガス後処理システムのブロック図である。It is a block diagram of an exhaust gas aftertreatment system.

本発明は、内燃機関から排出された排ガスを排ガス後処理するための方法、及び、当該方法を実施するための排ガス後処理システムに関する。   The present invention relates to a method for exhaust gas aftertreatment of exhaust gas discharged from an internal combustion engine and an exhaust gas aftertreatment system for carrying out the method.

図1は、内燃機関10と内燃機関10の排ガス15を清浄するために利用される排ガス後処理システムとから成る概略的な系統図である。排ガス後処理システムは、排ガス15に含まれている利用可能な熱エネルギ11を回収又は生成するために、熱エネルギのための回収セクション11を備えている。回収セクション11としては、例えば熱交換器等が挙げられる。   FIG. 1 is a schematic system diagram including an internal combustion engine 10 and an exhaust gas aftertreatment system used to clean the exhaust gas 15 of the internal combustion engine 10. The exhaust gas aftertreatment system comprises a recovery section 11 for thermal energy in order to recover or generate the available thermal energy 11 contained in the exhaust gas 15. An example of the recovery section 11 is a heat exchanger.

本発明は、排ガス15を分離セクション11の上流において熱分解されるように調整することを提案する。   The present invention proposes to adjust the exhaust gas 15 to be pyrolyzed upstream of the separation section 11.

本発明に従って熱回収のために排ガス15を調整することによって、吸収剤16が、排ガスの流れ方向に関する内燃機関10の下流において、具体的には計量装置12の補助を受けて排ガス15に導入される。排ガスに導入された吸収剤16は、混合セクション14の領域において排ガス15と混合される。好ましくは、汚染物質、特に硫黄化合物及びその他が、計量装置12と濾過ユニット13との間に配置されている混合セクション14の領域において吸収剤と結合された後に、濾過ユニット13において排ガスから除去される。   By adjusting the exhaust gas 15 for heat recovery according to the invention, the absorbent 16 is introduced into the exhaust gas 15 downstream of the internal combustion engine 10 with respect to the flow direction of the exhaust gas, specifically with the assistance of the metering device 12. The The absorbent 16 introduced into the exhaust gas is mixed with the exhaust gas 15 in the region of the mixing section 14. Preferably, pollutants, in particular sulfur compounds and others, are removed from the exhaust gas in the filtration unit 13 after being combined with the absorbent in the region of the mixing section 14 located between the metering device 12 and the filtration unit 13. The

吸収剤16は、内燃機関10の下流且つ濾過ユニット13及び回収セクション11の上流において、具体的には250℃より高い排ガス温度で排ガス15に強制的に導入される。当該実施例では、吸収剤16は、具体的には例えばノズルとして構成されている計量装置12を介して、乾燥した紛体として排ガス15に導入される。   The absorbent 16 is forcibly introduced into the exhaust gas 15 at an exhaust gas temperature higher than 250 ° C., specifically downstream of the internal combustion engine 10 and upstream of the filtration unit 13 and the recovery section 11. In this embodiment, the absorbent 16 is introduced into the exhaust gas 15 as a dry powder, specifically via a metering device 12 configured as a nozzle, for example.

排ガス15に導入された吸収剤16は、少なくとも硫黄化合物を化学吸着によって低減するように、好ましくはさらに、排ガスに含有されると共に後続の処理工程にとって問題となる、さらなる汚染物質と結合するように構成されている。後続の処理工程は、エネルギ回収及びさらなる排ガス後処理の両方の目的に対して有効である。   The absorbent 16 introduced into the exhaust gas 15 is preferably further combined with further pollutants that are contained in the exhaust gas and are problematic for subsequent processing steps so as to reduce at least sulfur compounds by chemisorption. It is configured. Subsequent processing steps are effective for both energy recovery and further exhaust gas aftertreatment purposes.

例えば、上述の方法の特に優位な実施例では超微粒子の形態とされる、ナトリウム化合物群又はカルシウム化合物群に属する物質が、吸収剤として利用される For example, a substance belonging to the sodium compound group or calcium compound group, which is in the form of ultrafine particles in a particularly advantageous embodiment of the above-described method, is used as the absorbent .

上述のように、排ガス15に導入された吸収剤16は、排ガス15と混合され、吸収剤16の大部分が、混合セクション14の領域並びに計量装置12及び濾過ユニット13の領域において、排ガス15に含有される汚染物質と反応する。   As described above, the absorbent 16 introduced into the exhaust gas 15 is mixed with the exhaust gas 15, and most of the absorbent 16 is converted into the exhaust gas 15 in the region of the mixing section 14 and in the region of the metering device 12 and the filtration unit 13. Reacts with contained contaminants.

同様に上述のように、その後に、硫黄化合物及びさらなる汚染物質並びにさらなる粒子状の排ガス物質で満たされた吸収剤が、濾過ユニットの補助を受けて排ガスから除去される。濾過ユニット13は、排ガスを清浄するためのフィルタであって、250℃より高い温度に適合する、例えばセラミック材料又は金属材料から成る濾過要素を利用している。同様に、脱硫及び脱塵の際において、排ガス温度は250℃より高い。   Also as described above, thereafter, the absorbent filled with sulfur compounds and further pollutants and further particulate exhaust gas substances is removed from the exhaust gas with the aid of a filtration unit. The filter unit 13 is a filter for purifying exhaust gas, and uses a filter element made of, for example, a ceramic material or a metal material, which is adapted to a temperature higher than 250 ° C. Similarly, the exhaust gas temperature is higher than 250 ° C. during desulfurization and dedusting.

濾過ユニット13で濾過する際には、汚染物質及びさらなる粒子状の排ガス物質で満たされた吸収剤が、排ガスから濾過され、排ガス後処理システムから除去される。   When filtering with the filtration unit 13, the absorbent filled with pollutants and further particulate exhaust gas material is filtered from the exhaust gas and removed from the exhaust gas aftertreatment system.

利用された吸収剤の機能として、当該方法は、濾過ユニット13の領域において依然として汚染物質結合能を完全に使い切っておらず、且つ、計量システム12の領域において排ガス15に再び導入可能とされる、再循環システムによって拡張可能とされる。   As a function of the absorbent used, the method still does not use up the contaminant binding capacity in the area of the filtration unit 13 and can be reintroduced into the exhaust gas 15 in the area of the metering system 12. Can be extended by a recirculation system.

本発明は、例えば大型の内燃機関において利用される。このような大型の内燃機関としては、液体燃料若しくは気体燃料又は石炭若しくは再生燃料のような様々な種類の燃料で動作する、例えば発電所や船舶で利用される大型の内燃機関が挙げられる。   The present invention is used, for example, in a large internal combustion engine. Such large internal combustion engines include, for example, large internal combustion engines that operate on various types of fuel, such as liquid fuel or gaseous fuel, or coal or recycled fuel, and are used in power plants and ships.

本発明では、内燃機関10から排出される排ガス15を最適に調整することによって、その結果として発生する熱エネルギを回収セクション11の領域において回収することができる。さらに、調整された排ガスの優位な特徴は、排ガス後処理方法の実施可能なさらなるステップに対して有効な効果を有している。このために、吸収剤16は、好ましくは乾燥した紛体として排ガス15に導入され、排ガス15と混合され、その後に濾過ユニット13において粒子状の物質と汚染物質で満たされた吸収剤とを除去する。調整の全体が、内燃機関10の下流で且つ熱回収セクション11の構成部品の上流において、250℃より高い温度で強制的に実施される。これにより、熱回収及び排ガス後処理方法の実施可能なさらなるステップのための、排ガス15の最適な調整が可能となる。   In the present invention, by adjusting the exhaust gas 15 discharged from the internal combustion engine 10 optimally, the resulting thermal energy can be recovered in the region of the recovery section 11. Furthermore, the advantageous features of the conditioned exhaust gas have an effective effect on the further possible steps of the exhaust gas aftertreatment method. For this purpose, the absorbent 16 is introduced into the exhaust gas 15, preferably as a dry powder, mixed with the exhaust gas 15, and then the filtration unit 13 removes the particulate material and the absorbent filled with contaminants. . The entire adjustment is forcibly performed at a temperature higher than 250 ° C. downstream of the internal combustion engine 10 and upstream of the components of the heat recovery section 11. This allows an optimal adjustment of the exhaust gas 15 for further steps where the heat recovery and exhaust gas aftertreatment methods can be implemented.

10 内燃機関
11 回収セクション(分離セクション)
12 計量装置
13 濾過ユニット
14 混合セクション
15 排ガス
16 吸収剤
10 Internal combustion engine 11 Recovery section (separation section)
12 Metering device 13 Filtration unit 14 Mixing section 15 Exhaust gas 16 Absorbent

Claims (9)

内燃機関から排出される排ガス(15)を排ガス後処理するための方法であって、前記排ガス(15)が、前記排ガスの熱エネルギのための回収セクション(11)を介して導かれる、前記方法において、
熱を回収するために前記排ガス(15)を調整するために、及び、排ガス後処理プロセスのさらなるステップを実施可能とするために、吸収剤(16)が、前記排ガスの流れ方向に関する前記内燃機関(10)の下流において且つ濾過ユニット(13)及び前記回収セクション(11)の上流において250℃より高い温度で前記排ガス(15)に導入され、混合セクション(14)において前記排ガス(15)と混合され、その後に汚染物質で満たされた前記吸収剤(16)が、前記濾過ユニット(13)において他の粒子状の排ガス物質と共に分離され、前記排ガス(15)が、前記回収セクション(11)の上流において熱分解されることを特徴とする方法。
A method for after-treatment of exhaust gas (15) discharged from an internal combustion engine, wherein the exhaust gas (15) is routed through a recovery section (11) for thermal energy of the exhaust gas In
In order to condition the exhaust gas (15) to recover heat and to enable further steps of the exhaust gas aftertreatment process, an absorbent (16) is connected to the internal combustion engine with respect to the flow direction of the exhaust gas. Downstream of (10) and upstream of the filtration unit (13) and the recovery section (11) at a temperature higher than 250 ° C. and introduced into the exhaust gas (15) and mixed with the exhaust gas (15) in a mixing section (14) is, the absorbent filled in subsequent contaminant (16), in the filtration unit (13) is separated along with other particulate exhaust gas substance, the exhaust gas (15), said recovery section (11) A method characterized by being pyrolyzed upstream.
前記吸収剤(16)が、前記排ガス(15)に導入され、
前記吸収剤(16)が、硫黄化合物を化学吸着によって低減するように機能することを特徴とする請求項1に記載の方法。
The absorbent (16) is introduced into the exhaust gas (15);
The method of claim 1, wherein the absorbent (16) functions to reduce sulfur compounds by chemisorption.
前記吸収剤(16)が、前記排ガス(15)に導入され、
前記吸収剤(16)が、前記排ガスに含有されると共に後続の処理工程にとって問題となる、さらなる汚染物質と結合するように機能することを特徴とする請求項1又は2に記載の方法。
The absorbent (16) is introduced into the exhaust gas (15);
3. A method according to claim 1 or 2, characterized in that the absorbent (16) functions to bind further pollutants which are contained in the exhaust gas and which are problematic for subsequent processing steps.
前記吸収剤(16)を導入する際における前記排ガスの温度が、250℃より高いことを特徴とする請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the temperature of the exhaust gas when the absorbent (16) is introduced is higher than 250 ° C. 前記吸収剤(16)が、乾燥した紛体として前記排ガス(15)に導入されることを特徴とする請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, characterized in that the absorbent (16) is introduced into the exhaust gas (15) as a dry powder. 前記排ガスの温度が、脱硫及び脱塵の際であっても250℃より高いことを特徴とする請求項1〜5のいずれか一項に記載の方法。   The method according to any one of claims 1 to 5, wherein the temperature of the exhaust gas is higher than 250 ° C even during desulfurization and dust removal. 前記濾過ユニット(13)の内部の前記排ガスが、例えばセラミック材料や金属材料から成ると共に高温に適応可能とされる濾過要素を介して、濾過されるように導かれることを特徴とする請求項1〜6のいずれか一項に記載の方法。   The exhaust gas inside the filtration unit (13) is guided to be filtered through a filtration element made of, for example, a ceramic material or a metal material and adapted to high temperatures. The method as described in any one of -6. 内燃機関(10)から排出される排ガス(15)を排ガス後処理するための排ガス後処理システムであって、前記排ガスの熱エネルギのための回収セクション(11)を有している前記排ガス後処理システムにおいて、
計量装置(12)が、前記排ガス(15)の流れ方向に関する前記内燃機関(10)の下流に位置決めされており、
吸収剤(16)が、前記排ガスの流れ方向に関する前記内燃機関(10)の下流において且つ濾過ユニット(13)及び前記回収セクション(11)の上流において250℃より高い温度で前記計量装置(12)を介して前記排ガス(15)に導入され、その後に、前記吸収剤を含有する前記排ガスが、脱硫及び脱塵のために、前記濾過ユニット(13)を介して導かれ、前記排ガス(15)が、前記回収セクション(11)の上流において熱分解されることを特徴とする排ガス後処理システム。
An exhaust gas aftertreatment system for exhaust gas aftertreatment of exhaust gas (15) discharged from an internal combustion engine (10), the exhaust gas aftertreatment having a recovery section (11) for thermal energy of the exhaust gas In the system,
A metering device (12) is positioned downstream of the internal combustion engine (10) with respect to the flow direction of the exhaust gas (15);
An absorbent (16) is disposed at the metering device (12) at a temperature higher than 250 ° C. downstream of the internal combustion engine (10) with respect to the flow direction of the exhaust gas and upstream of the filtration unit (13) and the recovery section (11 ). is introduced into the exhaust gas (15) through, subsequently, the exhaust gas containing said absorber is for the desulfurization and dedusted, is led through the filtration unit (13), the flue gas (15) The exhaust gas aftertreatment system is characterized in that it is pyrolyzed upstream of the recovery section (11).
前記濾過ユニット(13)が、例えばセラミック材料や金属材料から成るフィルタ要素のような高温に適応可能とされるフィルタ要素を具備する、排ガス清浄フィルタとされることを特徴とする請求項8に記載の排ガス後処理システム。   9. The exhaust gas purification filter according to claim 8, characterized in that the filtration unit (13) is an exhaust gas purification filter comprising a filter element which can be adapted to high temperatures, for example a filter element made of ceramic material or metal material. Exhaust gas aftertreatment system.
JP2017548418A 2015-03-16 2016-03-15 Exhaust gas aftertreatment method and exhaust gas aftertreatment system Active JP6602885B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015003255.0 2015-03-16
DE102015003255.0A DE102015003255A1 (en) 2015-03-16 2015-03-16 Process for exhaust aftertreatment and exhaust aftertreatment system
PCT/EP2016/055597 WO2016146637A1 (en) 2015-03-16 2016-03-15 Method for exhaust gas aftertreatment, and an exhaust gas aftertreatment system

Publications (2)

Publication Number Publication Date
JP2018507985A JP2018507985A (en) 2018-03-22
JP6602885B2 true JP6602885B2 (en) 2019-11-06

Family

ID=55589814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017548418A Active JP6602885B2 (en) 2015-03-16 2016-03-15 Exhaust gas aftertreatment method and exhaust gas aftertreatment system

Country Status (6)

Country Link
EP (1) EP3271052A1 (en)
JP (1) JP6602885B2 (en)
KR (1) KR20170104587A (en)
CN (1) CN107429587A (en)
DE (1) DE102015003255A1 (en)
WO (1) WO2016146637A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT523651B1 (en) * 2020-04-21 2021-10-15 Scheuch Gmbh Exhaust aftertreatment device
JP2023170353A (en) * 2022-05-19 2023-12-01 三菱重工業株式会社 Treatment method for exhaust gas, and facility executing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE58648T1 (en) * 1984-04-19 1990-12-15 Waagner Biro Ag METHOD AND DEVICE FOR FLUE GAS DESULPHURIZATION OF COMBUSTION PLANTS.
US4650647A (en) * 1984-12-05 1987-03-17 Takuma Co., Ltd. Apparatus for removing acid constituents from waste-gas
JPS61178022A (en) * 1985-02-05 1986-08-09 Mitsubishi Heavy Ind Ltd Simultaneous treatment of so2, so3 and dust
JP3091064U (en) * 2002-05-08 2003-01-17 三共技研工業株式会社 Exhaust gas treatment equipment
DE102008041530A1 (en) * 2008-08-25 2010-03-04 Dirk Dombrowski Process and exhaust system for the purification of SOx-containing exhaust gases, in particular marine propulsion engines
DE102010016004A1 (en) * 2009-03-17 2010-09-23 Hellmich Gmbh U. Co Kg Flue gas cleaning method for operation of e.g. ship, involves removing sulfur-containing constituents from gas stream by dry adsorption, and discharging gases through smokestack, where dry adsorption is performed by granules
DE102010042271A1 (en) * 2010-10-11 2012-04-12 Robert Bosch Gmbh Method for temperature management of emission control system in exhaust duct of internal combustion engine, involves including operation modes of thermoelectric generators in temperature management of emission control system
DE102010042419A1 (en) * 2010-10-13 2012-04-19 Wolfgang Bengel Method for cleaning exhaust gas mass flow of marine engine, involves utilizing fine dust filter behind marine engine for cleaning of exhaust gases of marine engine
JP2014043814A (en) * 2012-08-27 2014-03-13 National Maritime Research Institute Exhaust gas purification system and vessel mounted with the same
JP2014094352A (en) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd Device and method for exhaust gas treatment
JP2014126298A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Instrument for measuring so3 content in exhaust gas, heavy fuel burning boiler system and operation method of the same

Also Published As

Publication number Publication date
EP3271052A1 (en) 2018-01-24
DE102015003255A1 (en) 2016-09-22
CN107429587A (en) 2017-12-01
KR20170104587A (en) 2017-09-15
WO2016146637A1 (en) 2016-09-22
JP2018507985A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2012153706A1 (en) Wet exhaust gas purification device
WO2012153705A1 (en) Wet exhaust gas purification device
TW201231147A (en) Exhaust gas treatment method and apparatus
RU2015143277A (en) CYCLONE FOR FILTRATION OF SOLID PARTICLES IN ENGINES OPERATING ON POOR MIXTURE
WO2018120052A1 (en) Two-section flue gas purification system of garbage incinerator
WO2012154868A1 (en) SIMULTANEOUS TREATMENT OF FLUE GAS WITH SOx ABSORBENT REAGENT AND NOx REDUCING AGENT
CN107737527A (en) Marine exhaust dedusting denitrification integral system
CN104607015A (en) Multi-pollutant co-purification method and multi-pollutant co-purification system for sintering flue gas
KR20130061280A (en) Ceramic catalyst filter-type particle collecting and exhaust gas clean-up device for the exhaust gas of ship diesel engines
CA2820516C (en) High performance mercury capture
JP6602885B2 (en) Exhaust gas aftertreatment method and exhaust gas aftertreatment system
DK179506B1 (en) Exhaust gas aftertreatment system and method of aftertreatment of the exhaust gas
CN106540529A (en) A kind of gas pollutant integrated treatment unit
DK3219689T3 (en) Cement clinker line and method for operating a cement clinker line
JP6530222B2 (en) Exhaust gas aftertreatment system and method for exhaust gas aftertreatment
FI127568B (en) Exhaust gas after-treatment system and method for the exhaust gas after-treatment
CN206463755U (en) A kind of gas pollutant integrated treatment unit
KR101487303B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas Having Scrubber and Filter Part Having Ceramic Filter
JP2017089652A (en) Internal combustion engine, method for purifying exhaust from internal combustion engine, and method for repairing internal combustion engine
JP6848598B2 (en) How to reuse denitration catalyst
JP2002022140A (en) Apparatus for exhaust-gas treatment for coal fired boiler
KR101505578B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas
JP5113788B2 (en) Exhaust gas treatment system
JP2004105843A (en) Method of treating harmful substance in exhaust gas
KR101516251B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas Having Filter Part Having Ceramic Filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250