[go: up one dir, main page]

JP6600854B2 - 圧力式流量制御装置、その流量算出方法および流量制御方法 - Google Patents

圧力式流量制御装置、その流量算出方法および流量制御方法 Download PDF

Info

Publication number
JP6600854B2
JP6600854B2 JP2016163883A JP2016163883A JP6600854B2 JP 6600854 B2 JP6600854 B2 JP 6600854B2 JP 2016163883 A JP2016163883 A JP 2016163883A JP 2016163883 A JP2016163883 A JP 2016163883A JP 6600854 B2 JP6600854 B2 JP 6600854B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
orifice
pressure
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016163883A
Other languages
English (en)
Other versions
JP2018031666A (ja
Inventor
正明 永瀬
薫 平田
功二 西野
信一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2016163883A priority Critical patent/JP6600854B2/ja
Priority to US16/327,305 priority patent/US10884435B2/en
Priority to KR1020187034437A priority patent/KR102127647B1/ko
Priority to PCT/JP2017/030251 priority patent/WO2018038193A1/ja
Priority to TW106128767A priority patent/TWI631446B/zh
Priority to CN201780032215.3A priority patent/CN109564119B/zh
Publication of JP2018031666A publication Critical patent/JP2018031666A/ja
Application granted granted Critical
Publication of JP6600854B2 publication Critical patent/JP6600854B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37371Flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37399Pressure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、半導体製造設備又は化学プラント等で使用される圧力式流量制御装置、その流量算出方法および流量制御方法に関し、特に、複数のガスが混合された混合ガスを供給するために使用される圧力式流量制御装置、その流量算出方法および流量制御方法に関する。
半導体製造設備又は化学プラント等においては、ガスを精度よく供給することが要求される。ガス流量の制御装置として、マスフローコントローラ(熱式質量流量制御器)が知られている。
また、別の原理に基づき、熱式質量流量制御器よりも簡単な構成のガス流量の制御装置として、圧力式流量制御システムが知られている。例えば、下記特許文献1及び2には、入力するガスの流量をコントロール弁により調節し、オリフィスを介して排出する圧力式流量制御装置が開示されている。この圧力式流量制御装置は、オリフィスの上流側の圧力P1と下流側の圧力P2との関係が、所定の条件を満たす場合のガスの流量Qを、上流側の圧力P1を測定することにより制御する。オリフィス流出時のガスの流速が、そのガス温度での音速に達するとの仮定の下で、即ち、オリフィスの上流側の圧力P1と下流側の圧力P2との関係が、臨界膨張条件P1/P2≧約2を満たす場合に、流速Qは、Q=FF・S・P1(1/T11/2で表され、上流側の圧力P1に比例する。ここで、FFは、
FF=(k/γs){2/(κ+1)}1/(κ-1)[κ/{(κ+1)R}]1/2で表されるフローファクター(m31/2/kgsec)である。
kは定数であり(gを重力加速度(m/sec2)として、k=(2g)1/2=4.429)、Q(m3/sec)は標準状態に於ける体積流量、S(m2)はオリフィス断面積、P1(kg/m2abs)は上流側絶対圧力、T1(K)は上流側ガス温度、γs(kg/m3)はガスの標準状態における密度、κ(無次元)はガスの比熱比、R(m/K)は気体定数である。
したがって、上流側の圧力P1を測定して流量Qを算出し、算出された流量Qが所望の流量になるようにコントロール弁を制御することにより、所望の流量を実現することができる。
特開平8−338546号公報 特開2000−322130号公報
特許文献1及び2に開示された、オリフィスの上流側の圧力P1を測定することによりガスの流量を計算して、所望の流量を実現する制御方法は、単一種類のガスに関して適用することはできるが、混合ガスに関して適用することができない。このことは、フローファクターFFが、各ガスの特性値(密度γs、比熱比κ、気体定数R)を含むからである。
混合ガスを構成する各ガスのフローファクターFFを、混合されているガスの比率で重み付け処理(以下、「掛け合わせ」ともいう)して得られた値を、混合ガスのフローファクターFFとすることが考えられる。例えば、ガスA及びBの混合ガスに関して、ガスAの割合をX(0≦X≦1)、ガスBの割合を(1−X)とし(ガスA:ガスB=1:(1−X))、ガスA及びBのフローファクターFFをそれぞれ、FF(A)及びFF(B)として、混合ガスのフローファクターFF(AB)を、
FF(AB)=X・FF(A)+(1−X)・FF(B)
により算出し、流量Qを、Q=FF(AB)・S・P1(1/T11/2により算出することが考えられる。しかし、この方法では、実測結果との誤差が大きい問題がある。
本発明は、上記問題を解決し、混合ガスの流量を精度よく算出し、その算出値を用いて混合ガスの流量を所望の値に制御する圧力式流量制御装置、その流量算出方法および流量制御方法を提供することを目的とする。
上記目的を達成するために、本発明の実施形態に係る圧力式流量制御装置は、オリフィスの上流側圧力P1を下流側圧力P2の約2倍以上に保持した状態で前記オリフィスを通過する混合ガスの流量Qを、フローファクターFFから算出する圧力式流量制御装置であって、前記混合ガスは第1ガス及び第2ガスからなり、前記第1ガスと前記第2ガスとの混合比は第1ガス:第2ガス=X:(1−X)となり、前記混合ガスの平均密度ρAV、平均比熱比κAV及び平均気体定数RAVを、前記第1ガスの密度ρ(A)、前記第2ガスの密度ρ(B)、前記第1ガスの比熱比κ(A)、前記第2ガスの比熱比κ(B)、前記第1ガスの気体定数R(A)、及び前記第2ガスの気体定数R(B)を用いて、
ρAV=X・ρ(A)+(1−X)・ρ(B)、
κAV=X・κ(A)+(1−X)・κ(B)、及び、
AV=X・R(A)+(1−X)・R(B)により計算する第1演算手段と、kを定数とし、前記平均密度ρAV、前記平均比熱比κAV(κAV)及び前記平均気体定数RAVを用いて、前記混合ガスのフローファクターFFを、FF=(k/ρAV){2/(κAV+1)}1/(κAV-1)AV/{(κAV+1)RAV}]1/2により算出する第2演算手段と、前記混合ガスのフローファクターFFを用いて、前記オリフィスから出力される前記混合ガスの流量Qを、Q=FF・S・P1(1/T11/2(ただし、オリフィス断面積S、前記オリフィスの上流側のガスの温度T1)により算出する第3演算手段とを備える。
上記の圧力式流量制御装置は、前記オリフィスの上流側に配置され、入力される前記混合ガスの、前記オリフィスへの供給量を調節するための調節手段と、算出された前記混合ガスの前記流量Qが、所定の目標流量Q0になるように、前記調節手段による供給量を制御する制御手段とをさらに備えることができる。
上記の圧力式流量制御装置は、3種類以上のガスのそれぞれに関して、密度、比熱比及び気体定数を記憶する記憶手段と、外部から前記第1ガス及び前記第2ガスを特定する特定情報を受付ける受信手段とをさらに備え、前記第1演算手段は、前記特定情報に対応する前記ガスの前記密度ρ(A)及びρ(B)、前記比熱比κ(A)及びκ(B)、並びに、前記気体定数R(A)及びR(B)を前記記憶手段から読み出して、前記混合ガスの前記平均密度ρAV、前記平均比熱比κAV及び前記平均気体定数RAVを計算することができる。
本発明の実施形態に係る圧力式流量制御装置の流量算出方法は、オリフィスの上流側圧力P1を下流側圧力P2の約2倍以上に保持した状態で前記オリフィスを通過する混合ガスの流量Qを、フローファクターFFから算出する圧力式流量制御装置であって、前記混合ガスは第1ガス及び第2ガスからなり、前記第1ガスと前記第2ガスとの混合比は第1ガス:第2ガス=X:(1−X)となり、前記第1ガスの密度ρ(A)、前記第2ガスの密度ρ(B)、前記第1ガスの比熱比κ(A)、前記第2ガスの比熱比κ(B)、前記第1ガスの気体定数R(A)、及び前記第2ガスの気体定数R(B)を用いて、前記混合ガスの平均密度ρAV、平均比熱比κAV及び平均気体定数RAVを、
ρAV=X・ρ(A)+(1−X)・ρ(B)、
κAV=X・κ(A)+(1−X)・κ(B)、及び、
AV=X・R(A)+(1−X)・R(B)により計算する第1ステップと、
kを定数とし、前記平均密度ρAV、前記平均比熱比κAV(κAV)及び前記平均気体定数RAVを用いて、前記混合ガスのフローファクターFFを、FF=(k/ρAV){2/(κAV+1)}1/(κAV-1)AV/{(κAV+1)RAV}]1/2により算出する第2ステップと、前記混合ガスのフローファクターFFを用いて、前記オリフィスから出力される前記混合ガスの流量Qを、Q=FF・S・P1(1/T11/2(ただし、オリフィス断面積S、前記オリフィスの上流側のガスの温度T1)により算出する第3ステップとを備える。
本発明の実施形態に係る圧力式流量制御装置の流量制御方法は、混合ガスが通過するオリフィスの上流側に流量調節手段が配置された圧力式流量制御装置の流量制御方法であって、上記の流量算出方法によって前記オリフィスを通過する前記混合ガスの流量Qを算出するステップと、算出された前記流量Qが所定の目標流量Q0になるように前記流量調節手段を調整するステップとを備える。
本発明の実施形態に係る圧力式流量制御装置によれば、混合ガスの流量を精度よく算出することができるので、その算出値を用いて混合ガスの流量を精度よく所望の値に制御することができる。
本発明の実施の形態に係る圧力式流量制御装置の概略構成を示すブロック図である。 図1の制御部の内部構成を示すブロック図である。 図1の圧力式流量制御装置の動作を示すフローチャートである。
本発明に係る圧力式流量制御装置の実施形態について、以下に図面を参照しつつ説明する。なお、全図及び全実施形態を通じて、同一又は類似の構成部分には同符号を付した。
図1は本発明の実施の形態に係る圧力式流量制御装置を示している。圧力式流量制御装置1は、混合ガス供給路2、コントロール弁3、上流側流路4、オリフィス5、排出流路6、圧力検出器7、温度検出器8、駆動部9、制御部10を備えて構成されている。コントロール弁3は、オリフィス5の上流側において流量調節手段として設けられ、駆動部9の制御を受けて、圧力式流量制御装置1の外部から混合ガス供給路2を介して供給されるガスの供給量を制御し、上流側流路4に排出する。
混合ガス供給路2、上流側流路4および排出流路6は、配管によって形成されていてもよいし、コントロール弁3などが取り付けられた本体ブロック内に形成されたものであってもよい。コントロール弁3には、ダイヤフラムが使用され、例えば、ダイレクトタッチ型のメタルダイヤフラム弁が使用される。駆動部9には、例えば、圧電素子型駆動装置(ピエゾアクチュエータ)が使用される。これに限らず、駆動部9には、磁歪素子型駆動装置、ソレノイド型駆動装置、モータ型駆動装置、空気圧型駆動装置、又は熱膨張型駆動装置が使用され得る。
オリフィス5は、上流側流路4から入力されるガスを絞りながらその流量を制御して、下流側の排出流路6に出力する。排出流路6は、ガスを供給する対象の装置(反応炉等)に接続されている。オリフィス5には、例えば、板状の金属薄板製ガスケットに切削加工によって孔部を設けたものが使用される。この他に、エッチング又は放電加工により金属膜に孔を形成したオリフィスを使用することができる。さらに、オリフィス5には、音速ノズルや素子等で流路を絞った流量の制限器も含まれる。ガスの流量は、オリフィス5に依存する。
圧力検出器7は、上流側流路4内のガスの圧力を測定する。圧力検出器7には、例えば、半導体歪型圧力センサーが使用される。これに限らず、圧力検出器7には、金属箔歪型圧力センサー、静電容量型圧力センサー、又は磁気抵抗型圧力センサー等を使用することができる。
温度検出器8は、上流側流路4内のガスの温度を測定する。温度検出器8には、例えば、サーミスタが使用される。これに限らず、熱電対型温度センサーや測温抵抗型温度センサー等の公知の各種温度センサーが使用され得る。
制御部10は、圧力式流量制御装置1全体を制御する。制御部10は、図2を参照して、CPU(Central Processing Unit)20、ROM(Read Only Memory)21、RAM(Random Access Memory)22、I/O部23及びバス24を備えて構成されている。なお、図2においては、図1に示した圧力式流量制御装置1の構成要素のうち、圧力検出器7及び温度検出器8以外のものを省略している。
CPU20は、ROM21に記録されたプログラムを実行することにより、圧力式流量制御装置1の機能を実現する。ROM21は、例えば、電気的に書込み可能な不揮発性メモリであり、所定のプログラムと、プログラムを実行する上で必要なデータ(パラメータ等)が記憶されている。RAM22は、揮発性メモリであり、CPU20がプログラムを実行する際のワークエリアとして、また、演算結果の値を一次的に記憶するために使用される。
I/O部23は、外部とデータを交換するためのインターフェイスである。I/O部23は、圧力検出器7及び温度検出器8から出力されるアナログ信号を、CPU20が扱うことができるデジタル信号に変換するために、A/D変換器(図示せず)を備えている。A/D変換器は、所定の周期でデジタル信号を生成して、バッファ(図示せず)に記憶する。したがって、バッファのデータは所定の周期で更新される。バッファに記憶されたデータは、所定のタイミングでCPU20により読み出され、後述する演算に使用される。なお、A/D変換器の入力側に、圧力検出器7及び温度検出器8から出力されるアナログ信号を所定のレベルに増幅するための増幅器(アンプ)等を備えていてもよい。I/O部23は、駆動部9の制御信号を出力しても良い。
なお、I/O部23は、図示していないが、コンピュータ等の外部装置と情報を交換するためのインターフェイスを備えていてもよい。これにより、外部装置とのインターフェイスを介して、ROM21へのプログラム及びデータの書込みを行うことができる。外部装置とのインターフェイスを備えていない場合には、ROM21を着脱式に構成しておけば、ROM21を新たなものに交換することでプログラム及びパラメータを更新することができる。また、外部装置を用いてROM21のデータを更新することもできる。
バス24は、CPU20、ROM21、RAM22及びI/O部23の間で相互にデータを交換するためのバスである。また、図1及び図2において図示していないが、圧力式流量制御装置1は、各部を同期して動作させるためのクロック信号発生器、電源回路等、動作上必要な構成要素も備えている。なお、制御部10の構成要素(CPU20など)は、装置内に一体的に構成されている必要はなく、CPU20などの一部の構成要素を別の場所(装置外)に配置し、バス24で相互に接続する構成としても良い。その際、装置内と装置外とを、有線だけでなく無線で通信する構成にしても良い。
このように構成されていることにより、圧力式流量制御装置1は、オリフィス5の上流側の圧力P1と下流側の圧力P2との関係が、臨界膨張条件P1/P2≧約2を満たす場合に、混合ガス供給路2を介して外部から供給され、コントロール弁3及びオリフィス5を通過して排出流路6に出力される混合ガスの流量Qを、圧力検出器7により測定した混合ガスの圧力P1を用いて算出し、流量Qが予め設定された流量Q0になるように、駆動部9を制御してコントロール弁3を調節することができる。
図3のフローチャートを参照して、圧力式流量制御装置1の動作を、より具体的に説明する。図3のフローチャートの各ステップは、圧力式流量制御装置1の電源がONされて、CPU20が、ROM21から読み出した所定のプログラムを実行することにより、実現される。
ここでは、混合ガス供給路2に供給される混合ガスは、2種類のガスA及びBがX:(1−X)の比率で混合されたガスであるとする。流量Qの算出式には、Q=FF・S・P1(1/T11/2を使用する。ROM21には、流量Qの算出に必要なパラメータとして、ガスAの割合X、ガスA及びBそれぞれの密度ρ(A)及びρ(B)(kg/m3)、ガス比熱比κ(A)及びκ(B)(無次元)、並びに、気体定数R(A)及びR(B)(m/K)が記憶されている。また、ROM21には、オリフィス5のオリフィス断面積S(m2)も記憶されている。
ステップ40において、ガスAの混合比X、目標流量Q0、ガスA及びBそれぞれの密度ρ(A)及びρ(B)、ガス比熱比κ(A)及びκ(B)、並びに、気体定数R(A)及びR(B)をROM21から読出す。
ステップ41において、圧力検出器7により上流側流路4の混合ガスの圧力を測定し、温度検出器8により上流側流路4の混合ガスの温度を測定する。具体的には、圧力検出器7及び温度検出器8から出力され、A/D変換されたデジタルデータである圧力P1(kg/m2abs)及び温度T1(K)を、RAM22に記憶する。
ステップ42において、平均密度ρAV、平均比熱比κAV(またはκAV)、及び平均気体定数RAVを、次式により計算する。
ρAV=X・ρ(A)+(1−X)・ρ(B)
κAV=X・κ(A)+(1−X)・κ(B)
AV=X・R(A)+(1−X)・R(B)
ステップ43において、
FF=(k/ρAV){2/(κAV+1)}1/(κAV-1)AV/{(κAV+1)RAV}]1/2により混合ガスのフローファクターFFを算出し、算出されたフローファクターFFと、ステップ40で読み出したオリフィス断面積Sと、ステップ41で取得した圧力P1及び温度T1とを用いて、Q=FF・S・P1(1/T11/2により、流量Q(m3/sec)を計算する。
ここで、kは定数(k=4.429)であり、ステップ42で算出された混合ガスの平均密度ρAV、平均比熱比κAV、及び平均気体定数RAVを用いてフローファクターFFおよび流量Qが算出される。
ステップ44において、ステップ43で算出された流量Qと、ステップ40で読み出した目標流量Q0との差分Dを、D=Q−Q0により計算する。
ステップ45において、ステップ44で算出されたDの絶対値が所定のしきい値D0よりも小さいか否かを判定し、D0よりも小さければ、制御はステップ41に戻り、D0以上であれば、制御はステップ46に移行する。
ステップ46において、コントロール弁3を制御するための制御値を決定する。現状のコントロール弁3の開閉状態を、Dが正であれば閉じる方向に、Dが負であれば開く方向に、Dの大きさに応じた制御値を決定する。なお、Dの正負に応じて、コントロール弁3の開閉方向を正しく設定すれば、Dの大きさに応じて制御値をどのように決定するかは、任意である。例えば、Dが大きければ、制御値を大きく変化させ、Dが小さければ制御値を小さく変化させることができる。また、Dの大きさによらず、毎回所定量だけ変化させてもよい。いずれにしても、ステップ41〜46が繰り返されることにより、流量Qを目標流量Q0にすることができる。
ステップ47において、決定された制御値を駆動部9に出力する。これによって、コントロール弁3の開閉状態が調節される。
ステップ48において、終了の指示がなされたか否かを判定し、終了の指示を受けた場合、制御を終了し、そうでなければ、制御はステップ41に戻る。終了の指示は、例えば電源のOFFによりなされる。
以上により、圧力式流量制御装置1の排出流路6から出力される混合ガスの流量Qを目標値Q0に調整することができる。
フローファクターFFには、基準となるガス(例えば窒素(N2))のフローファクターFFとの比(以下、比FFともいう)を用いることもできる。比FFを用いる場合には、算出された流量Qに、基準となるガスの流量を乗算して実際の混合ガスの流量を算出すればよい。
上記では、混合ガスの混合比(具体的には、混合する一方のガスAの割合X)をROM21に記憶しておく場合を説明したが、これに限定されない。混合比は、外部装置からI/O部23を介して、制御部10に入力されてもよい。
また、上記では、所定の2種類のガスに関して、それらのパラメータ(ガス密度、ガス比熱比及び気体定数)をROM21に記憶しておく場合を説明したがこれに限定されない。3種類以上のガスのパラメータ(ガス密度、ガス比熱比及び気体定数)をROM21に記憶しておいてもよい。その場合には、外部から供給される混合ガスの種類の情報及びその混合比を、外部装置から制御部10に入力することにより、ROM21に記憶された任意の2種類のガスを、任意の混合比で混合した混合ガスに関して、上記と同様に流量を制御することができる。
また、制御部10の構成は、図2に限定されない。CPU20、ROM21、RAM22等を個々の半導体素子として構成することも、それらの全て、又は一部を、ASIC(Application Specific Integrated Circuit)等により1つの半導体素子として一体に構成してもよい。
以下に実験結果を示し、本発明の有効性を示す。
図1と同様の構成の装置を作製し、2種類のガスが混合された混合ガスをコントロール弁3に入力し、所定のオリフィス5から混合ガスを排出し、上記したように上流側流路4内のガスの圧力P1及び温度T1を実測してフローファクターFFを計算した。一方、公知のビルドアップ法により、同じ混合ガスの流量Qを実測し、その値を用いて、Q=FF・S・P1(1/T11/2により、フローファクターFFを計算した。
表1は種々の混合ガスに関して、実験結果をまとめたものである。
Figure 0006600854
表1の左端の「ガス」の列には、スラッシュ(/)の左側に、第1のガスをその割合を付して示し、スラッシュの右側に、第2のガスを示している。第2のガスの割合(%)は、100から第1のガスの割合を減算したものである。例えば、「5%B26/H2」は、5%のB26と95%のH2との混合ガスを表している。
「FF」の「計算」の列に、本発明の方法で計算されたフローファクターFFの値を示す。ここで、FFとは比FFを意味する。上記したように、混合ガスの平均密度ρAV、平均比熱比κAV、及び平均気体定数RAVを算出し、それらの値を用いて、
FF=(k/ρAV){2/(κAV+1)}1/(κAV-1)AV/{(κAV+1)RAV}]1/2
により計算された比FFである。
「FF」の「掛け合わせ」の列は、表2の比FFを用いて、
FF(AB)=X・FF(A)+(1−X)・FF(B)により計算された値を示す。
Figure 0006600854
「Range」の列は、定格流量を示しており、オリフィス断面積を特定するための情報を含む。それぞれに対応するオリフィス断面積は、ビルドアップ法によるフローファクターFFの算出に利用した。F600、F200、F1600、F5L、F130、F20はそれぞれN2でのガス流量を表しており、例えばF600は600SCCMを表している。
「N2」の列は、基準ガスとした窒素ガスの流量を示し、「実ガス」の列は、混合ガスのビルドアップ法による測定値を示す。「実測FF」の列は、混合ガスの実測値から算出した比FFを示す。
「誤差」のうち「計算」の列は、「実測FF」の値から、FFの「計算」の値を減算し、その減算値を、「実測FF」で除して得られた値を示す。同様に、「誤差」のうち「掛け合わせ」の列は、「実測FF」の値から、FFの「掛け合わせ」の値を減算し、その減算値を、「実測FF」で除して得られた値である。
これらの値を対比すると、何れの混合ガスに関しても、本発明の方法で算出した比FFの方が、誤差が小さく、比FFが精度よく計算できていることが分かる。特に、混合される2種類のガスの比FFの差が大きい場合においても、比FFを精度よく算出できており、本発明の有効性が実証されている。
なお、本発明を適用可能なガスは、表1及び表2に示したガスに限定されない。
以上、実施の形態を説明することにより本発明を説明したが、上記した実施の形態は例示であって、本発明は上記した実施の形態に限定されるものではなく、種々変更して実施することができる。
1 圧力式流量制御装置
2 混合ガス供給路
3 コントロール弁
4 上流側流路
5 オリフィス
6 排出流路
7 圧力検出器
8 温度検出器
9 駆動部
10 制御部
20 CPU
21 ROM
22 RAM
23 I/O部
24 バス

Claims (5)

  1. オリフィスの上流側圧力P1を下流側圧力P2の約2倍以上に保持した状態で前記オリフィスを通過する混合ガスの流量Qを、フローファクターFFから算出する圧力式流量制御装置であって、
    前記混合ガスは第1ガス及び第2ガスからなり、前記第1ガスと前記第2ガスとの混合比は第1ガス:第2ガス=X:(1−X)となり、
    前記混合ガスの平均密度ρAV、平均比熱比κAV及び平均気体定数RAVを、
    前記第1ガスの密度ρ(A)、前記第2ガスの密度ρ(B)、前記第1ガスの比熱比κ(A)、前記第2ガスの比熱比κ(B)、前記第1ガスの気体定数R(A)、及び前記第2ガスの気体定数R(B)を用いて、
    ρAV=X・ρ(A)+(1−X)・ρ(B)、
    κAV=X・κ(A)+(1−X)・κ(B)、及び、
    AV=X・R(A)+(1−X)・R(B)により計算する第1演算手段と、
    kを定数とし、前記平均密度ρAV、前記平均比熱比κAV及び前記平均気体定数RAVを用いて、前記混合ガスのフローファクターFFを、
    FF=(k/ρAV){2/(κAV+1)}1/(κAV-1)AV/{(κAV+1)RAV}]1/2
    により算出する第2演算手段と、
    前記混合ガスのフローファクターFFを用いて、前記オリフィスから出力される前記混合ガスの流量Qを、Q=FF・S・P1(1/T11/2(ただし、オリフィス断面積S、前記オリフィスの上流側のガスの温度T1)により算出する第3演算手段と
    を備える、圧力式流量制御装置。
  2. 前記オリフィスの上流側に配置され、前記混合ガスの、前記オリフィスへの供給量を調節するための調節手段と、
    算出された前記混合ガスの前記流量Qが、所定の目標流量Q0になるように、前記調節手段による供給量を制御する制御手段とをさらに備える、請求項1に記載の圧力式流量制御装置。
  3. 3種類以上のガスのそれぞれに関して、密度、比熱比及び気体定数を記憶する記憶手段と、
    外部から前記第1ガス及び前記第2ガスを特定する特定情報を受付ける受信手段とをさらに備え、
    前記第1演算手段は、前記特定情報に対応する前記ガスの前記密度ρ(A)及びρ(B)、前記比熱比κ(A)及びκ(B)、並びに、前記気体定数R(A)及びR(B)を前記記憶手段から読み出して、前記混合ガスの前記平均密度ρAV、前記平均比熱比κAV及び前記平均気体定数RAVを計算する、請求項1又は2に記載の圧力式流量制御装置。
  4. オリフィスの上流側圧力P1を下流側圧力P2の約2倍以上に保持した状態で、前記オリフィスを通過する混合ガスの流量Qを算出する、圧力式流量制御装置の流量算出方法であって、
    前記混合ガスは第1ガス及び第2ガスからなり、前記第1ガスと前記第2ガスとの混合比は第1ガス:第2ガス=X:(1−X)となり、
    前記第1ガスの密度ρ(A)、前記第2ガスの密度ρ(B)、前記第1ガスの比熱比κ(A)、前記第2ガスの比熱比κ(B)、前記第1ガスの気体定数R(A)、及び前記第2ガスの気体定数R(B)を用いて、前記混合ガスの平均密度ρAV、平均比熱比κAV及び平均気体定数RAVを、
    ρAV=X・ρ(A)+(1−X)・ρ(B)、
    κAV=X・κ(A)+(1−X)・κ(B)、及び、
    AV=X・R(A)+(1−X)・R(B)により計算する第1ステップと、
    kを定数とし、前記平均密度ρAV、前記平均比熱比κAV及び前記平均気体定数RAVを用いて、前記混合ガスのフローファクターFFを、
    FF=(k/ρAV){2/(κAV+1)}1/(κAV-1)AV/{(κAV+1)RAV}]1/2
    により算出する第2ステップと、
    前記混合ガスのフローファクターFFを用いて、前記オリフィスから出力される前記混合ガスの流量Qを、Q=FF・S・P1(1/T11/2(ただし、オリフィス断面積S、前記オリフィスの上流側のガスの温度T1)により算出する第3ステップと
    を備える、圧力式流量制御装置の流量算出方法。
  5. 混合ガスが通過するオリフィスの上流側に流量調節手段が配置された圧力式流量制御装置の流量制御方法であって、
    請求項4に記載の流量算出方法によって前記オリフィスを通過する前記混合ガスの流量Qを算出するステップと、
    算出された前記流量Qが所定の目標流量Q0になるように前記流量調節手段を調整するステップと
    を備える、圧力式流量制御装置の流量制御方法。
JP2016163883A 2016-08-24 2016-08-24 圧力式流量制御装置、その流量算出方法および流量制御方法 Active JP6600854B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016163883A JP6600854B2 (ja) 2016-08-24 2016-08-24 圧力式流量制御装置、その流量算出方法および流量制御方法
US16/327,305 US10884435B2 (en) 2016-08-24 2017-08-24 Pressure type flow rate control device, and flow rate calculating method and flow rate control method for same
KR1020187034437A KR102127647B1 (ko) 2016-08-24 2017-08-24 압력식 유량 제어 장치, 그 유량 산출 방법 및 유량 제어 방법
PCT/JP2017/030251 WO2018038193A1 (ja) 2016-08-24 2017-08-24 圧力式流量制御装置、その流量算出方法および流量制御方法
TW106128767A TWI631446B (zh) 2016-08-24 2017-08-24 壓力式流量控制裝置、其流量算出方法及流量控制方法
CN201780032215.3A CN109564119B (zh) 2016-08-24 2017-08-24 压力式流量控制装置、其流量算出方法以及流量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163883A JP6600854B2 (ja) 2016-08-24 2016-08-24 圧力式流量制御装置、その流量算出方法および流量制御方法

Publications (2)

Publication Number Publication Date
JP2018031666A JP2018031666A (ja) 2018-03-01
JP6600854B2 true JP6600854B2 (ja) 2019-11-06

Family

ID=61246182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163883A Active JP6600854B2 (ja) 2016-08-24 2016-08-24 圧力式流量制御装置、その流量算出方法および流量制御方法

Country Status (6)

Country Link
US (1) US10884435B2 (ja)
JP (1) JP6600854B2 (ja)
KR (1) KR102127647B1 (ja)
CN (1) CN109564119B (ja)
TW (1) TWI631446B (ja)
WO (1) WO2018038193A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164938B2 (ja) * 2017-07-31 2022-11-02 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860594A (en) * 1988-03-01 1989-08-29 Gmi Engineering & Management Institute Apparatus and method for measuring mass flow and density
JP3040555B2 (ja) * 1991-10-09 2000-05-15 三菱重工業株式会社 自動校正ガス流量計
CN2109594U (zh) * 1991-10-28 1992-07-08 侯明 混合气体自动控制仪
CN2172462Y (zh) * 1993-06-23 1994-07-20 陕西省计量测试研究所 气体质量流量计
JP3291161B2 (ja) 1995-06-12 2002-06-10 株式会社フジキン 圧力式流量制御装置
GB9523278D0 (en) * 1995-11-14 1996-01-17 Jordan Kent Metering Systems L A wet gas multiphase meter
US5868159A (en) * 1996-07-12 1999-02-09 Mks Instruments, Inc. Pressure-based mass flow controller
US6345536B1 (en) * 1998-09-10 2002-02-12 The Texas A&M University System Multiple-phase flow meter
EP1096351A4 (en) * 1999-04-16 2004-12-15 Fujikin Kk FLUID SUPPLY DEVICE OF THE PARALLEL BYPASS TYPE, AND METHOD AND DEVICE FOR CONTROLLING THE FLOW OF A VARIABLE FLUID TYPE PRESSURE SYSTEM USED IN SAID DEVICE
JP3387849B2 (ja) * 1999-05-10 2003-03-17 株式会社フジキン フローファクターによる流体可変型流量制御方法およびその装置
JP2001259400A (ja) * 2000-03-16 2001-09-25 Air Water Inc ガス混合装置およびその制御方法
EP1213566A3 (en) * 2000-12-06 2007-03-07 Haldor Topsoe A/S Method for determination of mass flow and density of a process stream
US6564824B2 (en) * 2001-04-13 2003-05-20 Flowmatrix, Inc. Mass flow meter systems and methods
JP4102564B2 (ja) * 2001-12-28 2008-06-18 忠弘 大見 改良型圧力式流量制御装置
JP4204400B2 (ja) * 2003-07-03 2009-01-07 忠弘 大見 差圧式流量計及び差圧式流量制御装置
US7437944B2 (en) * 2003-12-04 2008-10-21 Applied Materials, Inc. Method and apparatus for pressure and mix ratio control
US20070021935A1 (en) * 2005-07-12 2007-01-25 Larson Dean J Methods for verifying gas flow rates from a gas supply system into a plasma processing chamber
JP2008039513A (ja) * 2006-08-03 2008-02-21 Hitachi Metals Ltd 質量流量制御装置の流量制御補正方法
JP5001908B2 (ja) * 2008-06-25 2012-08-15 東京瓦斯株式会社 混合ガスの成分測定装置及び成分測定方法
WO2011067877A1 (ja) * 2009-12-01 2011-06-09 株式会社フジキン 圧力式流量制御装置
JP5647083B2 (ja) * 2011-09-06 2014-12-24 株式会社フジキン 原料濃度検出機構を備えた原料気化供給装置
US9644796B2 (en) * 2011-09-29 2017-05-09 Applied Materials, Inc. Methods for in-situ calibration of a flow controller
PL2667276T3 (pl) * 2012-05-24 2018-04-30 Air Products And Chemicals, Inc. Sposób i urządzenie do dostarczania mieszaniny gazu
PL2667160T3 (pl) * 2012-05-24 2021-05-04 Air Products And Chemicals, Inc. Sposób i urządzenie do regulowania masowego natężenia przepływu gazu
PL2667277T3 (pl) * 2012-05-24 2018-05-30 Air Products And Chemicals, Inc. Sposób i urządzenia do dostarczania mieszaniny gazu
US9146563B2 (en) * 2013-03-01 2015-09-29 Hitachi Metals, Ltd. Mass flow controller and method for improved performance across fluid types

Also Published As

Publication number Publication date
KR20190002610A (ko) 2019-01-08
CN109564119B (zh) 2020-06-23
TW201809942A (zh) 2018-03-16
US10884435B2 (en) 2021-01-05
JP2018031666A (ja) 2018-03-01
US20190227577A1 (en) 2019-07-25
KR102127647B1 (ko) 2020-06-29
WO2018038193A1 (ja) 2018-03-01
CN109564119A (zh) 2019-04-02
TWI631446B (zh) 2018-08-01

Similar Documents

Publication Publication Date Title
US11416011B2 (en) Pressure-type flow control device and flow control method
JP2022010221A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
US10969259B2 (en) Flow rate control device, method of calibrating flow rate of flow rate control device, flow rate measuring device, and method of measuring flow rate using flow rate measuring device
US10705546B2 (en) Flow rate control apparatus, flow rate control method, and program recording medium
JP2010079827A (ja) マスフローコントローラ
JP7148302B2 (ja) 流量制御装置
JP2011204265A (ja) マスフローコントローラ
KR20120049148A (ko) 매스 플로우 컨트롤러 및 유량 제어 프로그램이 저장된 저장 매체
KR102333901B1 (ko) 유량 제어 장치 및 유량 제어 장치용 프로그램이 기억된 기억 매체
JP2019159687A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
US10705544B2 (en) Fluid control unit and program storage media for fluid control unit
JP4763031B2 (ja) マスフローコントローラ
JP6600854B2 (ja) 圧力式流量制御装置、その流量算出方法および流量制御方法
JP3893115B2 (ja) マスフローコントローラ
CN108398962B (zh) 维护时期预测装置、流量控制装置及维护时期预测方法
CN105988487B (zh) 控制装置及控制方法
US10884436B2 (en) Flow rate signal correction method and flow rate control device employing same
KR101668483B1 (ko) 매스플로우 컨트롤러
WO2023013381A1 (ja) バルブ制御装置、バルブ制御方法、バルブ制御プログラム、及び、流体制御装置
JP2012168822A (ja) 流体制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R150 Certificate of patent or registration of utility model

Ref document number: 6600854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250