JP6592166B2 - 磁気テープおよび磁気テープ装置 - Google Patents
磁気テープおよび磁気テープ装置 Download PDFInfo
- Publication number
- JP6592166B2 JP6592166B2 JP2018209059A JP2018209059A JP6592166B2 JP 6592166 B2 JP6592166 B2 JP 6592166B2 JP 2018209059 A JP2018209059 A JP 2018209059A JP 2018209059 A JP2018209059 A JP 2018209059A JP 6592166 B2 JP6592166 B2 JP 6592166B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- servo
- magnetic tape
- magnetic layer
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Magnetic Record Carriers (AREA)
Description
まずサーボヘッドで、磁性層に形成されているサーボ信号を読み取る。読み取ったサーボ信号に応じて、磁気テープの幅方向における磁気ヘッドの位置をコントロールする。これにより、磁気信号(情報)の記録および/または再生のために磁気テープ装置内で磁気テープを走行させる際、磁気テープの位置が磁気ヘッドに対して幅方向に変動しても、磁気ヘッドがデータトラックに追従する精度を高めることができる。こうして、磁気テープに正確に情報を記録すること、および/または、磁気テープに記録されている情報を正確に再生すること、が可能となる。
しかるに本発明者らが検討を重ねる中で、磁気テープの磁性層の表面平滑性が高くなると、タイミングベースサーボシステムにおいて磁気ヘッドをデータトラックに追従させる精度(以下、「ヘッド位置決め精度」という。)が低下してしまうという、従来知られていなかった現象が発生することが明らかとなった。
非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
磁性層は、タイミングベースサーボパターンを有し、
磁性層の表面において測定される中心線平均表面粗さRaは、1.8nm以下であり、かつ
磁性層の表面の素地部分において測定される摩擦係数は、0.35以下である磁気テープ、
に関する。
AFM(Veeco社製Nanoscope4)で磁気テープの磁性層表面の面積40μm×40μmの領域を測定する。スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとする。
原子間力顕微鏡(Atomic Force Microscope:AFM)によって測定された、視野中の凸成分と凹成分の体積が等しくなる面を基準面として定め、その基準面から15nm以上の高さの突起を、突起と定義する。そして、かかる突起の数がゼロ個である部分、即ち磁気テープの磁性層表面において基準面から15nm以上の高さの突起が検出されない部分を、素地部分と特定する。
また、素地部分において測定される摩擦係数とは、以下の方法により測定される値とする。
素地部分において(測定箇所:磁気テープの長手方向10μm長)、半径1μmのダイヤモンド製球状圧子を荷重100μNおよび速度1μm/秒で1回往復させて摩擦力(水平力)および垂直抗力を測定する。ここで測定される摩擦力および垂直抗力は、上記1回の往復中に摩擦力および垂直抗力を常時測定して得られる算術平均である。以上の測定は、例えばHysitron社TI−950型トライボインデンターにて行うことができる。そして、測定された摩擦力の算術平均および垂直抗力の算術平均から、摩擦係数μ値を算出する。なお摩擦係数は、摩擦力(水平力)F(単位:ニュートン(N))と垂直抗力N(単位:ニュートン(N))から、次式:F=μN、により求められる値である。上記の測定および摩擦係数μ値の算出を、磁気テープの磁性層表面で無作為に決定した素地部分の3箇所において行い得られた3つの測定値の算術平均を、素地部分において測定される摩擦係数とする。以下において、素地部分において測定される摩擦係数を、「素地摩擦」ともいう。
本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、磁性層は、タイミングベースサーボパターンを有し、磁性層の表面において測定される中心線平均表面粗さRaは、1.8nm以下であり、かつ磁性層の表面の素地部分において測定される摩擦係数は、0.35以下である磁気テープに関する。
以下、上記磁気テープについて、更に詳細に説明する。なお以下の記載には、本発明者らの推察が含まれる。かかる推察によって本発明は限定されるものではない。また、以下では、図面に基づき例示的に説明することがある。ただし、例示される態様に本発明は限定されるものではない。
上記磁気テープは、磁性層にタイミングベースサーボパターンを有する。タイミングベースサーボパターンとは、先に説明したサーボパターンである。例えば、磁気テープ装置の記録方式として広く用いられているリニア記録方式に適用される磁気テープには、通常、磁性層に、サーボパターンが形成された領域(「サーボバンド」と呼ばれる)が磁気テープの長手方向に沿って複数存在する。2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。情報(磁気信号)の記録はデータバンド上で行われ、各データバンドには複数のデータトラックが長手方向に沿って形成される。
磁性層表面の平滑性を高めた磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度の低下が生じる理由は、上記の時間間隔の設定値からのズレの要因が、磁気テープの幅方向の位置変動以外の要因(以下、「他の要因」と記載する。)も含むことにあると考えられる。タイミングベースサーボシステムが、他の要因によってもたらされるズレも磁気テープの幅方向の位置変動によりもたらされるズレと認識する結果、磁気ヘッドを、磁気テープの幅方向の位置変動に追従させるために要する移動距離より多く移動させてしまうことが、タイミングベースサーボシステムにおけるヘッド位置決め精度の要因と推察される。
本発明者らは、上記の他の要因について、サーボヘッドの走行速度の変動が生じることが、他の要因となる(即ち、上記の時間間隔の設定値からのズレの要因となる)と考え、更に検討を重ねた。その結果、素地摩擦を0.35以下とすることにより、磁性層表面Raが1.8nm以下の磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度を向上することが可能になることを、新たに見出した。この点について更に説明する。
磁性層表面Raが1.8nm以下の磁気テープでは、これより磁性層表面が粗い磁気テープと比べて、サーボヘッドが走行時に素地部分と接触する確率が高いと考えられる。したがって、磁性層表面Raが1.8nm以下の磁気テープでは、サーボヘッドの走行速度の変動に素地摩擦が与える影響が、磁性層表面Raが1.8nmを超える磁気テープと比べて大きいと、本発明者らは考えている。素地摩擦の値が大きいほど、素地部分と接触したサーボヘッドの摺動性が低下し、走行速度の変動が生じると考えられる。これに対し、素地摩擦を0.35以下とすることが、磁性層表面Raが1.8nm以下の磁気テープ上を走行するサーボヘッドが素地部分と接触する際の摺動性を高めることに寄与し、サーボヘッドの走行速度の変動が抑制されると、本発明者らは推察している。これにより上記の時間間隔の設定値からのズレに対する他の要因の影響を低減できることが、磁性層表面Raが1.8nm以下の磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度向上をもたらすと、本発明者らは考えている。
ただし、以上は本発明者らの推察であって、本発明を何ら限定するものではない。
上記磁気テープの磁性層表面において測定される中心線平均表面粗さRa(磁性層表面Ra)は、1.8nm以下である。磁性層表面Raが1.8nm以下の磁気テープは、何ら対策を施さなければ、タイミングベースサーボシステムにおいてヘッド位置決め精度が低下する現象が発生してしまう。これに対し、素地摩擦が0.35以下である上記磁気テープは、磁性層表面Raが1.8nm以下であるにもかかわらず、タイミングベースサーボシステムにおけるヘッド位置決め精度の低下を抑制することができる。この点に関する本発明者らの推察は、先に記載した通りである。磁性層表面Raが1.8nm以下である上記磁気テープは、優れた電磁変換特性を示すことができる。電磁変換特性の更なる向上の観点からは、磁性層表面Raは、1.7nm以下であることが好ましく、1.6nm以下であることが更に好ましく、1.5nm以下であることが一層好ましい。また、磁性層表面Raは、例えば1.2nm以上であることができる。ただし電磁変換特性向上の観点からは磁性層表面Raが低いほど好ましいため、上記例示した値を下回ってもよい。
上記磁気テープの磁性層表面の素地部分において測定される摩擦係数(素地摩擦)は、0.35以下である。先に記載したように、素地摩擦が0.35以下であることが、タイミングベースサーボシステムにおけるヘッド位置決め精度向上に寄与すると、本発明者らは推察している。タイミングベースサーボシステムにおけるヘッド位置決め精度を更に向上する観点から、素地摩擦は0.33以下であることが好ましく、0.30以下であることがより好ましい。また、素地摩擦は、例えば0.10以上、0.15以上または0.20以上であることができる。ただし、磁性層表面Raが1.8nm以下の磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度の低下を抑制する観点からは、素地摩擦は低いほど好ましいため、上記例示した値を下回ってもよい。
また他の手段として、本発明者らは、素地部分の凹凸の形状を制御すべく、磁性層表面に基準面から15nm以上の高さの突起を形成可能な研磨剤等の非磁性粉末に加えて、強磁性粉末より平均粒子サイズの大きな他の非磁性粉末を用いて磁性層を形成したところ、素地摩擦を様々な値に制御することが可能であった。したがって、素地摩擦を調整するための手段の1つとしては、磁性層形成時に上記の他の非磁性粉末を用いることが挙げられる。より詳しくは、上記の他の非磁性粉末が凸部となることで素地部分に上記の微視的な凹凸を形成することができ、かかる非磁性粉末の混合比を高めることにより素地部分における凸部の存在率を高めることができる(または逆に混合比を下げることにより素地部分における凸部の存在率を低下させることができる)と、本発明者らは考えている。詳細は更に後述する。
加えて、上記二種の手段を組み合わせることにより、素地摩擦を調整することも可能である。
ただし上記の調整手段は例示であって、素地摩擦を調整可能な任意の手段によって、0.35以下の素地摩擦を実現することができ、そのような態様も本発明に包含される。
(強磁性粉末)
上記の通り、素地摩擦の調整手段の1つとしては、強磁性粉末によって調整することが挙げられる。上記磁気テープの磁性層に含有される強磁性粉末としては、磁気テープの磁性層において強磁性粉末として通常用いられる各種粉末を使用することができる。
強磁性粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして強磁性粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、強磁性粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H−9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS−400を用いて行うことができる。
本発明および本明細書において、強磁性粉末、およびその他の粉末についての平均粒子サイズとは、特記しない限り、上記方法により求められる平均粒子サイズをいうものとする。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H−9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS−400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤および/または添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語を、粉末を表すために用いることもある。
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚さまたは高さが板面または底面の最大長径より小さい)場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
そして、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径であり、平均板状比とは、(最大長径/厚さまたは高さ)の算術平均である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
上記磁気テープは塗布型磁気テープであって、磁性層に、強磁性粉末とともに結合剤を含む。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から単独または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、後述する非磁性層やバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010−24113号公報の段落0028〜0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。なお本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算の値である。測定条件としては、下記条件を挙げることができる。後述の実施例に示す重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC−8120(東ソー製)
カラム:TSK gel Multipore HXL−M(東ソー製、7.8mmID(inner diameter(内径))×30.0cm)
溶離液:テトラヒドロフラン(THF)
磁性層には、強磁性粉末および結合剤が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。なお硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。また、磁性層に含まれ得る添加剤としては、非磁性粉末、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤、カーボンブラック等を挙げることができる。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。
次に非磁性層について説明する。上記磁気テープは、非磁性支持体表面に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に、非磁性粉末と結合剤を含む非磁性層を有することもできる。非磁性層に使用される非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011−216149号公報の段落0146〜0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010−24113号公報の段落0040〜0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。
次に、非磁性支持体(単に「支持体」とも記載する。)について説明する。非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリアミドが好ましい。これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
非磁性支持体の厚みは、好ましくは3.00〜20.00μm、より好ましくは3.00〜10.00μm、更に好ましくは3.00〜6.00μmであり、特に好ましくは3.00〜4.50μmである。
上記磁気テープは、非磁性支持体の磁性層を有する側とは反対側にバックコート層を有することもできる。バックコート層は、非磁性粉末および結合剤を含む層である。バックコート層は、非磁性粉末として、カーボンブラックと無機粉末のいずれか一方または両方を含むことが好ましい。バックコート層形成用組成物の処方(例えば結合剤、各種添加剤の種類、含有量等)については、バックコート層に関する公知の処方を適用することができる。バックコート層の厚みは、0.90μm以下が好ましく、0.10〜0.70μmが更に好ましい。
<<サーボパターンが形成される磁気テープの製造>>
(各層形成用組成物の調製)
磁性層、または任意に設けられる非磁性層もしくはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、一般に塗布型磁気記録媒体製造のために使用される有機溶媒を挙げることができる。各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性粉末、非磁性粉末、結合剤、各種添加剤、溶媒等のすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、磁性層形成用組成物については、一態様では、強磁性粉末を含有する分散液(磁性液)と研磨剤を含有する分散液(研磨剤液)とをそれぞれ別分散して調製した後、同時または順次、他の成分と混合し磁性層形成用組成物を調製することができる。その他、各層形成用組成物の調製については、特開2010−231843号公報の段落0065も参照できる。
(1)第一の強磁性粉末の平均粒子サイズは、10〜80nmの範囲である。
(2)第一の強磁性粉末より平均粒子サイズの大きい強磁性粉末の平均粒子サイズと第一の強磁性粉末の平均粒子サイズとの差は、10〜50nmの範囲である。
(3)第一の強磁性粉末と第一の強磁性粉末より平均粒子サイズの大きい強磁性粉末との混合比は、質量基準で、前者:後者=90.0:10.0〜99.9:0.1の範囲である。
(4)上記の他の非磁性粉末の平均粒子サイズは、強磁性粉末の平均粒子サイズより大きい。
(5)強磁性粉末の平均粒子サイズと上記の他の非磁性粉末の平均粒子サイズとの差は、10〜80nmの範囲である。
(6)強磁性粉末と上記の他の非磁性粉末との混合比は、質量基準で、前者:後者=90.0:10.0〜99.9:0.1の範囲である。
磁性層は、磁性層形成用組成物を非磁性支持体表面に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側の表面に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010−231843号公報の段落0066を参照できる。
磁気テープ製造のためのその他の各種工程については、特開2010−231843号公報の段落0067〜0070を参照できる。その他工程で行われる処理の一例としては、磁性層表面の表面処理を挙げることもできる。表面処理することは、磁性層の表面平滑性を高めるうえで好ましい。一例として、磁性層表面の表面処理としては、特開平5−62174号公報に記載の研磨手段を用いる研磨処理を挙げることができる。上記表面処理については、同公報の段落0005〜0032および全図面を参照できる。
上記磁気テープは、磁性層に、タイミングベースサーボパターンを有する。タイミングベースサーボパターンが形成された領域(サーボバンド)および2本のサーボバンドに挟まれた領域(データバンド)の配置例が、図1に示されている。タイミングベースサーボパターンの配置例は、図2に示されている。ただし、各図面に示す配置例は例示であって、磁気テープ装置(ドライブ)の方式に応じた配置でサーボパターン、サーボバンドおよびデータバンドを配置すればよい。また、タイミングベースサーボパターンの形状および配置については、例えば、米国特許第5689384号のFIG.4、FIG.5、FIG.6、FIG.9、FIG.17、FIG.20等に例示された配置例等の公知技術を何ら制限なく適用することができる。
本発明の一態様は、上記磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置に関する。
<実施例1>
各層形成用組成物の処方を、下記に示す。
(磁性層形成用組成物)
(磁性液)
強磁性六方晶バリウムフェライト粉末(1):表1参照
(平均粒子サイズ(平均板径):表1参照)
強磁性六方晶バリウムフェライト粉末(2):表1参照
(平均粒子サイズ(平均板径):表1参照)
オレイン酸:2.0部
塩化ビニル共重合体(日本ゼオン製MR−104):10.0部
SO3Na基含有ポリウレタン樹脂:4.0部
(重量平均分子量70,000、SO3Na基:0.07meq/g)
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α−アルミナ(BET比表面積19m2/g):6.0部
SO3Na基含有ポリウレタン樹脂
(重量平均分子量70,000、SO3Na基:0.1meq/g):0.6部
2,3−ジヒドロキシナフタレン:0.6部
シクロヘキサノン:23.0部
(突起形成剤液)
コロイダルシリカ(平均粒子サイズ120nm):2.0部
メチルエチルケトン:8.0部
(潤滑剤、硬化剤液)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(日本ポリウレタン製コロネート(登録商標)L):3.0部
カーボンブラック(平均粒子サイズ16nm、DBP(Dibutyl phthalate)吸油量74cm3/100g):100.0部
トリオクチルアミン:4.0部
塩化ビニル共重合体(日本ゼオン製MR−104):19.0部
SO3Na基含有ポリウレタン樹脂
(重量平均分子量50,000、SO3Na基:0.07meq/g):12.0部
メチルエチルケトン:370.0部
シクロヘキサノン:370.0部
ステアリン酸:2.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:2.0部
ベンガラ(平均粒子サイズ:0.15μm、平均針状比:7、BET比表面積:52m2/g):80.0部
カーボンブラック(平均粒子サイズ16nm、DBP吸油量74cm3/100g):20.0部
フェニルホスホン酸:3.0部
塩化ビニル共重合体(日本ゼオン製MR−104):12.0部
SO3Na基含有ポリウレタン樹脂
(重量平均分子量50,000、SO3Na基:0.07meq/g):8.0部
α−アルミナ(BET比表面積17m2/g):5.0部
メチルエチルケトン:370.0部
シクロヘキサノン:370.0部
ステアリン酸:1.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:2.0部
ポリイソシアネート(日本ポリウレタン製コロネートL):5.0部
磁性層形成用組成物は以下の方法によって調製した。
上記磁性液をオープンニーダにより混練および希釈処理後、横型ビーズミル分散機により、ビーズ径0.1mmのジルコニア(ZrO2)ビーズ(以下、「Zrビーズ」と記載する。)を用い、ビーズ充填率80体積%、ローター先端周速10m/秒で、1パス滞留時間を2分とし、30パスの分散処理を行った。
研磨剤液については、上記成分を混合してビーズ径0.3mmのZrビーズとともに横型ビーズミル分散機に入れ、ビーズ体積/(研磨剤液体積+ビーズ体積)が80%になるように調整し、120分間ビーズミル分散処理を行った。処理後の液を取り出し、フロー式の超音波分散濾過装置を用いて、超音波分散濾過処理を施した。
磁性液、研磨剤液および突起形成剤液と、その他の成分としての潤滑剤、硬化剤液をディゾルバー攪拌機に導入し、周速10m/秒で30分間攪拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタで濾過して磁性層形成用組成物を調製した。
非磁性層形成用組成物は以下の方法によって調製した。
潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を除く上記成分を、オープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を添加して、ディゾルバー攪拌機にて攪拌および混合処理を施して非磁性層形成用組成物を調製した。
バックコート層形成用組成物は以下の方法によって調製した。
ポリイソシアネートおよび潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を除く上記成分を、ディゾルバー攪拌機に導入し、周速10m/秒で30分間攪拌した後、横型ビーズミル分散機により分散処理を実施した。その後、ポリイソシアネートおよび潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を添加して、ディゾルバー攪拌機にて攪拌および混合処理を施し、バックコート層形成用組成物を調製した。
厚さ4.00μmの非磁性支持体(ポリアミド支持体)の一方の表面上に、乾燥後の厚さが0.10μmになるように非磁性層形成用組成物を塗布し乾燥させた。その後、バックコート層形成用組成物を、非磁性支持体の反対側の表面上に乾燥後の厚さが0.50μmになるように塗布し乾燥させた。一度巻き取りロールに巻き取った非磁性支持体を雰囲気温度70℃の環境下で36時間熱処理した。
熱処理後の非磁性層上に、乾燥後の厚さが70nmになるように磁性層形成用組成物を塗布し乾燥させた。
上記の各層の厚さは、製造条件から算出された設計厚みである。
その後、金属ロールのみから構成されるカレンダで速度100m/min、線圧300kg/cm(294kN/m)、カレンダロールの表面温度100℃で表面平滑化処理(カレンダ処理)を行った。カレンダ処理条件を強化するほど(例えばカレンダロールの表面温度を高くするほど)、磁性層表面Raは小さくなる傾向がある。
その後、雰囲気温度70℃の環境下で36時間熱処理を行った。熱処理後、1/2インチ(0.0127メートル)幅にスリットを行った。
続いて、特開平5−62174号公報に記載のダイヤモンドホイールを用いる表面処理(同公報の図1〜図3に示されている態様)を行って得られた磁気テープをロール状にリールに巻き取った後、下記の評価方法によりその特性を評価した。
作製した磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッドによって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
表1に示すように磁性層形成用組成物の処方および/または製造条件を変更した点以外、実施例1と同様の方法で磁気テープを作製した。
(1)磁性層表面Ra
原子間力顕微鏡(AFM、Veeco社製Nanoscope4)を用い、測定面積40μm×40μmの範囲を測定し、磁気テープの磁性層表面において、中心線平均表面粗さRaを求めた。スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとした。
まず、測定面に予めレーザーマーカーで罫書きをいれ、そこから一定距離(約100μm)離れた部分の原子間力顕微鏡(AFM)像を測定した。視野面積は7μm×7μmで行った。このとき、後述するように同一箇所の走査型電子顕微鏡(SEM(Scanning Electron Microscope))画像を撮りやすいように、カンチレバーを硬いもの(単結晶シリコン)に変えて、AFM上で罫書きを入れた。こうして測定したAFM画像から、基準面から15nm以上の高さにある突起を全て抽出した。そして突起が存在しないと判定された箇所を素地部分と特定し、Hysitron社TI−950型トライボインデンターを用いて先に記載した方法により素地摩擦を測定した。
更に、AFMを測定したところと同一箇所のSEM画像を測定して成分マップを取得し、抽出した基準面から15nm以上の高さの突起がアルミナまたはコロイダルシリカにより形成された突起であることを確認した。また、実施例1〜6では、上記SEMを用いた成分マップにおいて、素地部分にアルミナおよびコロイダルシリカは確認されなかった。なお、ここではSEMにより成分分析を行ったが、成分分析は、SEMに限らず、エネルギー分散型X線分光法(EDS:Energy Dispersive X−ray Spectrometry)、オージェ電子分光法(AES:Auger Electron Spectroscopy)等の公知の方法により行うことができる。
上記タイミングベースサーボパターンが形成された磁気テープについて、サーボパターンの形成に用いたサーボライター上のベリファイ(verify)ヘッドでサーボパターンを読み取った。ベリファイヘッドは、磁気テープに形成されたサーボパターンの品質を確認するための読取用磁気ヘッドであり、公知の磁気テープ装置(ドライブ)の磁気ヘッドと同様に、サーボパターンの位置(磁気テープの幅方向の位置)に対応した位置に読取用の素子が配置されている。
ベリファイヘッドには、ベリファイヘッドでサーボパターンを読み取って得た電気信号から、サーボシステムにおけるヘッド位置決め精度をPESとして演算する公知のPES演算回路が接続されている。PES演算回路は、入力された電気信号(パルス信号)から磁気テープの幅方向への変位を随時計算し、この変位の時間的変化情報(信号)に対してハイパスフィルタ(カットオフ:500cycles/m)を適用した値を、PESとして算出した。
雰囲気温度23℃±1℃、相対湿度50%の環境下にて、上記で作製した磁気テープについて、記録ヘッド(MIG(Metal−in−gap)ヘッド、ギャップ長0.15μm、1.8T)と再生用GMR(Giant Magnetoresistive)ヘッド(再生トラック幅1μm)をループテスターに取り付けて、線記録密度325kfciの信号を記録した。その後、再生出力を測定し、再生出力とノイズとの比としてSNRを求めた。比較例1のSNRを0dBとした時にSNRが2.0dB以上であれば、高密度記録化に伴う今後の厳しいニーズに対応し得る性能を有すると評価することができる。
比較例1〜3と比較例4との対比により、磁性層表面Raが1.8nm以下の磁気テープでは、PESが9.0nmを大きく超える現象(ヘッド位置決め精度の低下)が発生することが確認された。
比較例5の磁気テープは、サーボヘッドの摺動性がきわめて低く、サーボヘッドを走行させることができなかったため、PESを評価することができなかった。磁性層表面Raが1.5nm以下であり磁性層表面の平滑性が高いためサーボヘッドが素地部分と接触する確率が高いにもかかわらず、素地摩擦が0.45と高いことが原因と考えられる。
これに対し実施例1〜6の磁気テープは、磁性層表面Raが1.8nm以下であるものの、9.0nm以下のPESを達成すること、即ちタイミングベースサーボシステムにおけるヘッド位置決め精度の向上が可能であった。
更に、実施例1〜6の磁気テープが2.0nm以上のSNRを示したことには、磁性層表面Raが1.8nm以下であり磁性層の表面平滑性が高いことが寄与していると考えられる。
Claims (5)
- 非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
前記磁性層は、タイミングベースサーボパターンを有し、かつ
前記磁性層の表面の素地部分において測定される摩擦係数は、0.35以下である磁気テープ。 - 前記素地部分において測定される摩擦係数は、0.15〜0.35の範囲である請求項1に記載の磁気テープ。
- 前記素地部分において測定される摩擦係数は、0.15〜0.30の範囲である請求項1または2に記載の磁気テープ。
- 前記非磁性支持体と磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する請求項1〜3のいずれか1項に記載の磁気テープ。
- 請求項1〜4のいずれか1項に記載の磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018209059A JP6592166B2 (ja) | 2018-11-06 | 2018-11-06 | 磁気テープおよび磁気テープ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018209059A JP6592166B2 (ja) | 2018-11-06 | 2018-11-06 | 磁気テープおよび磁気テープ装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016056850A Division JP6433449B2 (ja) | 2016-03-22 | 2016-03-22 | 磁気テープおよび磁気テープ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019016422A JP2019016422A (ja) | 2019-01-31 |
JP6592166B2 true JP6592166B2 (ja) | 2019-10-16 |
Family
ID=65356905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018209059A Active JP6592166B2 (ja) | 2018-11-06 | 2018-11-06 | 磁気テープおよび磁気テープ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6592166B2 (ja) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4459248B2 (ja) * | 2006-03-31 | 2010-04-28 | 富士フイルム株式会社 | 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法 |
JP6175422B2 (ja) * | 2014-09-29 | 2017-08-02 | 富士フイルム株式会社 | 磁気テープ |
JP6143825B2 (ja) * | 2015-10-15 | 2017-06-07 | 日立マクセル株式会社 | 磁気テープ及びその製造方法 |
-
2018
- 2018-11-06 JP JP2018209059A patent/JP6592166B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019016422A (ja) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6433449B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6556096B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6701072B2 (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP6556101B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6615816B2 (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP6556102B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6694844B2 (ja) | 磁気テープ装置、磁気再生方法およびヘッドトラッキングサーボ方法 | |
JP6632561B2 (ja) | 磁気テープ装置および磁気再生方法 | |
JP6714548B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6660336B2 (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP6615815B2 (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP6717787B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6717786B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6684237B2 (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP6701073B2 (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP6521855B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP2018106781A (ja) | 磁気テープ装置および磁気再生方法 | |
JP2018106783A (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP2018106782A (ja) | 磁気テープ装置および磁気再生方法 | |
JP2018137010A (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP2018170053A (ja) | 磁気テープ装置および磁気再生方法 | |
JP2018106790A (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP2018137011A (ja) | 磁気テープ装置および磁気再生方法 | |
JP2018106784A (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP2018170061A (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190919 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6592166 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |