[go: up one dir, main page]

JP6585830B2 - Wave rotor type automatic cascade refrigeration system and operation method thereof - Google Patents

Wave rotor type automatic cascade refrigeration system and operation method thereof Download PDF

Info

Publication number
JP6585830B2
JP6585830B2 JP2018509966A JP2018509966A JP6585830B2 JP 6585830 B2 JP6585830 B2 JP 6585830B2 JP 2018509966 A JP2018509966 A JP 2018509966A JP 2018509966 A JP2018509966 A JP 2018509966A JP 6585830 B2 JP6585830 B2 JP 6585830B2
Authority
JP
Japan
Prior art keywords
low
pressure
temperature
steam
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018509966A
Other languages
Japanese (ja)
Other versions
JP2018514747A (en
Inventor
玉強 代
玉強 代
大鵬 胡
大鵬 胡
盛洋 陶
盛洋 陶
頂 趙
頂 趙
徹 朱
徹 朱
久朋 鄒
久朋 鄒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Publication of JP2018514747A publication Critical patent/JP2018514747A/en
Application granted granted Critical
Publication of JP6585830B2 publication Critical patent/JP6585830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Supercharger (AREA)

Description

本発明は、機械冷凍技術分野に属し、相変化ウェーブロータ自動カスケード冷凍システム及びその動作方法に関する。   The present invention belongs to the field of mechanical refrigeration, and relates to a phase change wave rotor automatic cascade refrigeration system and an operation method thereof.

国民経済の急速な発展につれ、より低い温度の需要が益々高くなっている。現行の比較的低い温度を作る場合、シングルステージ蒸気圧縮式冷凍サイクルがすでに要求を満たすことができず、カスケード式冷凍サイクルはすでに幅広く応用されている。しかしながら、従来のカスケード冷凍システムは、カスケードステージ数の増加に伴ってシステム構造が複雑となり、コストが増加してしまう。従来のカスケード冷凍システムに比べると、自動カスケードシステムは、特殊なカスケードシステムとして構造が簡単で、信頼性が高く、コストが低い等といった利点を持つ。ただし、自動カスケードシステムの高温冷媒と低温冷媒の圧縮前の簡単な混合は、十分な低温増圧効果を奏することができないため、シングルステージ圧縮機の圧力比が大きすぎ、排気温度が高すぎ、冷凍性能が低下する等といった問題が生じてしまう。   With the rapid development of the national economy, the demand for lower temperatures is increasing. When producing the current relatively low temperatures, the single stage vapor compression refrigeration cycle cannot already meet the requirements, and the cascade refrigeration cycle is already widely applied. However, the conventional cascade refrigeration system has a complicated system structure with an increase in the number of cascade stages, resulting in an increase in cost. Compared to the conventional cascade refrigeration system, the automatic cascade system has advantages such as a simple structure as a special cascade system, high reliability, and low cost. However, the simple mixing before compression of the high-temperature refrigerant and low-temperature refrigerant in the automatic cascade system cannot produce a sufficient low-temperature pressure increase effect, so the pressure ratio of the single stage compressor is too large, the exhaust temperature is too high, Problems such as reduced refrigeration performance occur.

非定常増圧特性に基づく相変化ウェーブロータブースターを用い、その効率は、従来の安定した増圧過程の増圧効率より高い。該技術は、ピストン或いは羽根等の部材の必要がなく、発生する運動衝撃波のみを通じて高効率で高低圧流体間の直接エネルギー交換を完成させ、効果的に圧縮機の圧力比を低下させ、システム冷凍性能を向上できる。特許文献1、特許文献2、特許文献3及び特許文献4に開示されているコア設備の増圧メカニズムを自動カスケード冷凍システムとカスケードすると、本発明の主な構想を構成する。   Using a phase change wave rotor booster based on unsteady pressure increasing characteristics, its efficiency is higher than the pressure increasing efficiency of the conventional stable pressure increasing process. This technology eliminates the need for components such as pistons or vanes, completes direct energy exchange between high and low pressure fluids with high efficiency only through generated motion shock waves, effectively lowering the pressure ratio of the compressor, Performance can be improved. Cascading the pressure increasing mechanism of the core equipment disclosed in Patent Literature 1, Patent Literature 2, Patent Literature 3 and Patent Literature 4 with an automatic cascade refrigeration system constitutes the main concept of the present invention.

中国特許第CN102606547A号Chinese Patent No. CN102606547A 中国特許第CN102606548A号Chinese Patent No. CN102606548A 中国特許第CN103206801A号Chinese Patent No. CN103206801A 中国特許第CN103206800A号Chinese Patent No. CN103206800A

自動カスケードシステムの高温冷媒と低温冷媒の圧縮前の簡単な混合は、十分な低温増圧効果を奏することができないため、シングルステージ圧縮機の圧力比が大きすぎ、排気温度が高すぎ、冷凍性能が低下する等の問題が生じてしまう。   The simple mixing of the high-temperature refrigerant and low-temperature refrigerant before compression in the automatic cascade system cannot produce a sufficient low-temperature pressure increase effect, so the pressure ratio of the single stage compressor is too large, the exhaust temperature is too high, and the refrigeration performance This causes problems such as lowering.

そこで、本発明は、従来技術内に存在する課題を解決するため、自動カスケード冷凍サイクル装置内に相変化ウェーブロータブースターを導入し、相変化ウェーブロータブースターの特性を利用して低温上昇、あらかじめ増圧の目的を達成する相変化ウェーブロータ自動カスケード冷凍システム及びその動作方法を提供することを目的とする。   Therefore, in order to solve the problems existing in the prior art, the present invention introduces a phase change wave rotor booster in an automatic cascade refrigeration cycle apparatus and uses the characteristics of the phase change wave rotor booster to increase the temperature and increase the temperature in advance. It is an object of the present invention to provide a phase change wave rotor automatic cascade refrigeration system that achieves the purpose of pressure and its operating method.

本発明が用いる技術的解決策としては、相変化ウェーブロータ自動カスケード冷凍システムであって、自動カスケード冷凍装置と増圧装置とを含み、前記自動カスケード冷凍装置は、凝縮器と高温スロットルバルブと不凝縮ガスポンプと低温スロットルバルブと蒸発器とを含み、かつ前記自動カスケード冷凍装置が自動カスケードサブクーラーを更に含み、前記自動カスケードサブクーラーは高温冷媒と低温冷媒を熱交換させると共に不凝縮ガスを排出し、前記増圧装置が相変化ウェーブロータブースターと蒸気圧縮機とからなり、前記相変化ウェーブロータブースターの中圧蒸気出口が蒸気圧縮機の入口と接続し、蒸気圧縮機の出口が凝縮器の入口と接続し、凝縮器の出口は2つの経路に分かれ、1つ経路が自動カスケードサブクーラーのホット側入口と接続し、自動カスケードサブクーラーのホット側出口が低温スロットルバルブの入口と接続し、低温スロットルバルブの出口が蒸発器のコールド側入口と接続し、蒸発器のコールド側出口が相変化ウェーブロータブースターの低圧蒸気入口と接続し;別の経路は、高温スロットルバルブの入口と接続し、高温スロットルバルブの出口が自動カスケードサブクーラーのコールド側入口と接続し、自動カスケードサブクーラーのコールド側出口が相変化ウェーブロータブースターの駆動蒸気入口と接続し;自動カスケードサブクーラーの不凝縮ガス出口は、不凝縮ガスポンプと接続し;蒸発器のホット側入口及び出口は、同様に冷却媒体管路で接続される。   The technical solution used by the present invention is a phase change wave rotor automatic cascade refrigeration system, including an automatic cascade refrigeration device and a pressure booster, the automatic cascade refrigeration device including a condenser, a high-temperature throttle valve, A condensing gas pump, a low-temperature throttle valve, and an evaporator; and the automatic cascade refrigeration apparatus further includes an automatic cascade subcooler, wherein the automatic cascade subcooler exchanges heat between the high-temperature refrigerant and the low-temperature refrigerant and discharges non-condensable gas. The pressure increasing device comprises a phase change wave rotor booster and a steam compressor, the medium pressure steam outlet of the phase change wave rotor booster is connected to the inlet of the steam compressor, and the outlet of the steam compressor is the inlet of the condenser And the outlet of the condenser is divided into two paths, one path of the automatic cascade subcooler The hot-side outlet of the automatic cascade subcooler is connected to the inlet of the low-temperature throttle valve, the outlet of the low-temperature throttle valve is connected to the cold-side inlet of the evaporator, and the cold-side outlet of the evaporator is Connected to the low pressure steam inlet of the change wave rotor booster; the other path is connected to the inlet of the hot throttle valve, the outlet of the hot throttle valve is connected to the cold side inlet of the automatic cascade subcooler, and the cold of the automatic cascade subcooler The side outlet connects to the drive steam inlet of the phase change wave rotor booster; the non-condensable gas outlet of the autocascade subcooler connects to the non-condensable gas pump; the evaporator hot side inlet and outlet are likewise the cooling medium line Connected with.

相変化ウェーブロータ自動カスケード冷凍システムの動作方法であって、次のステップを用いる。
相変化ウェーブロータブースターの駆動蒸気入口に吹き込み、等エントロピー膨張過程を経た高圧蒸気と相変化ウェーブロータブースターの低圧蒸気入口に吹き込み、準等エントロピー圧縮を経た低圧飽和蒸気を中圧蒸気として等圧で混合し、そして増圧蒸気出口から排出し、また蒸気圧縮機に入って高温高圧の過熱蒸気として圧縮し、凝縮器を経由した後、高圧飽和液体の形で低温冷媒及び高温冷媒の2つの経路に分かれ;低温冷媒は、自動カスケードサブクーラーを通じて不凝縮ガスを排出して降温して過冷却液体となり、低温スロットルバルブを通じて設定温度まで降温降圧し、低温低圧の気液混合物の形で蒸発器に入り、吸熱定圧して低圧飽和蒸気に変換して冷凍サイクルを完成させてから相変化ウェーブロータブースターの低圧蒸気となり;高温冷媒は、高温スロットルバルブを通じて降温降圧した後、自動カスケードサブクーラーに吹き込んで吸熱し、高温高圧蒸気の形で相変化ウェーブロータブースターの駆動蒸気となる。
A method of operating a phase change wave rotor automatic cascade refrigeration system, using the following steps.
High pressure steam blown into the driving steam inlet of the phase change wave rotor booster and blown into the low pressure steam inlet of the phase change wave rotor booster through the isentropic expansion process. Mixing and discharging from the pressure-increasing steam outlet, entering the steam compressor, compressing as high-temperature and high-pressure superheated steam, passing through the condenser, then two paths of low-temperature refrigerant and high-temperature refrigerant in the form of high-pressure saturated liquid The low-temperature refrigerant is discharged into the supercooled liquid by discharging the non-condensable gas through the automatic cascade sub-cooler, and the temperature is lowered to the set temperature through the low-temperature throttle valve, and is supplied to the evaporator in the form of a low-temperature and low-pressure gas-liquid mixture. And endothermic constant pressure and converted to low-pressure saturated steam to complete the refrigeration cycle, then low-pressure steam of phase change wave rotor booster Next; high-temperature refrigerant, after cooling step down through the hot throttle valve, the refrigerant absorbs heat by blowing the autocascade subcooler, the motive steam phase change wave rotor booster in the form of high temperature and high pressure steam.

1、相変化ウェーブロータブースターの駆動蒸気は、自動カスケードシステムの余熱で提供され、省エネ、環境保全の目的を達成する。
2、相変化ウェーブロータブースターの非定常増圧特性は、効果的に蒸気圧縮機の圧力比を低下し、低温上昇、あらかじめ増圧の効果を奏する。
3、相変化ウェーブロータブースターは、増圧特性を持つ以外に、優れた帯液操作性も持ち、また構造寸法が小さく、回転速度が低く、設備を開発しやすい等の利点を有する。
4、自動カスケードサブクーラーの使用は、大幅に自動カスケードシステムの構造を簡略化し、コストを削減できる。
1. The driving steam of the phase change wave rotor booster is provided by the residual heat of the automatic cascade system, achieving the purpose of energy saving and environmental conservation.
2. The unsteady pressure increase characteristic of the phase change wave rotor booster effectively lowers the pressure ratio of the steam compressor, and has the effect of increasing the temperature and increasing pressure in advance.
3. The phase change wave rotor booster has not only the pressure-increasing property, but also has excellent liquid handling operability, small structural dimensions, low rotation speed, and easy development of equipment.
4. The use of an automatic cascade subcooler can greatly simplify the structure of the automatic cascade system and reduce the cost.

相変化ウェーブロータ自動カスケード冷凍システム回路図Phase change wave rotor automatic cascade refrigeration system circuit diagram 相変化ウェーブロータ自動カスケード冷凍システムのp−hグラフPh graph of phase change wave rotor automatic cascade refrigeration system

以下、実施例及び添付図面を組み合わせて本発明に対し詳細な説明を行う。   Hereinafter, the present invention will be described in detail by combining examples and the accompanying drawings.

混合冷媒を用いた相変化ウェーブロータ自動カスケード冷凍システム:
図1は、混合冷媒の相変化ウェーブロータ自動カスケード冷凍システムである。図内の混合冷媒の相変化ウェーブロータ自動カスケード冷凍システムは、自動カスケード冷凍装置と増圧装置とを含む。自動カスケード冷凍装置は、凝縮器3と高温スロットルバルブ4と不凝縮ガスポンプ5と低温スロットルバルブ7と蒸発器8と自動カスケードサブクーラー6とを含み、自動カスケードサブクーラー6を用いて高温冷媒と低温冷媒を熱交換させると共に不凝縮ガスを排出する。前記増圧装置は、相変化ウェーブロータブースター1と蒸気圧縮機2とからなり、前記相変化ウェーブロータブースター1の中圧蒸気出口Mpが蒸気圧縮機2の入口と接続し、蒸気圧縮機2の出口が凝縮器3の入口と接続し、凝縮器3の出口は2つの経路に分かれ、1つ経路が自動カスケードサブクーラー6のホット側入口と接続し、自動カスケードサブクーラー6のホット側出口が低温スロットルバルブ7の入口と接続し、低温スロットルバルブ7の出口が蒸発器8のコールド側入口と接続し、蒸発器8のコールド側出口が相変化ウェーブロータブースター1の低圧蒸気入口Lpと接続し;別の経路は、高温スロットルバルブ4の入口と接続し、高温スロットルバルブ4の出口が自動カスケードサブクーラー6のコールド側入口と接続し、自動カスケードサブクーラー6のコールド側出口が相変化ウェーブロータブースター1の駆動蒸気入口Hpと接続し;自動カスケードサブクーラー6の不凝縮ガス出口は、不凝縮ガスポンプ5と接続し;蒸発器8のホット側入口及び出口は、同様に冷却媒体管路で接続される。
Phase change wave rotor automatic cascade refrigeration system using mixed refrigerant:
FIG. 1 is a phase change wave rotor automatic cascade refrigeration system for mixed refrigerants. The mixed refrigerant phase change wave rotor automatic cascade refrigeration system in the figure includes an automatic cascade refrigeration apparatus and a pressure booster. The automatic cascade refrigeration apparatus includes a condenser 3, a high temperature throttle valve 4, a non-condensing gas pump 5, a low temperature throttle valve 7, an evaporator 8, and an automatic cascade subcooler 6. The refrigerant exchanges heat and discharges non-condensable gas. The pressure-increasing device comprises a phase change wave rotor booster 1 and a steam compressor 2, and the medium pressure steam outlet Mp of the phase change wave rotor booster 1 is connected to the inlet of the steam compressor 2. The outlet is connected to the inlet of the condenser 3, the outlet of the condenser 3 is divided into two paths, one path is connected to the hot side inlet of the automatic cascade subcooler 6, and the hot side outlet of the automatic cascade subcooler 6 is connected Connected to the inlet of the low temperature throttle valve 7, the outlet of the low temperature throttle valve 7 connected to the cold side inlet of the evaporator 8, and the cold side outlet of the evaporator 8 connected to the low pressure steam inlet Lp of the phase change wave rotor booster 1. Another path connects to the inlet of the hot throttle valve 4 and the outlet of the hot throttle valve 4 connects to the cold side inlet of the automatic cascade subcooler 6; The cold side outlet of the dynamic cascade subcooler 6 is connected to the driving steam inlet Hp of the phase change wave rotor booster 1; the noncondensable gas outlet of the automatic cascade subcooler 6 is connected to the noncondensable gas pump 5; The side inlet and outlet are likewise connected by a cooling medium line.

相変化ウェーブロータブースター1の駆動蒸気入口Hpに吹き込み、等エントロピー膨張過程を経た高圧蒸気と相変化ウェーブロータブースター1の低圧蒸気入口Lpに吹き込み、準等エントロピー圧縮を経た低圧飽和蒸気を中圧蒸気として等圧で混合し、そして増圧蒸気出口Mpから排出し、また蒸気圧縮機2に入って高温高圧の過熱蒸気として圧縮し、凝縮器3を経由した後、高圧飽和液体の形で低温冷媒及び高温冷媒の2つの経路に分かれ;低温冷媒は、自動カスケードサブクーラー6を通じて不凝縮ガスを排出して降温して過冷却液体となり、低温スロットルバルブ7を通じて設定温度まで降温降圧し、低温低圧の気液混合物の形で蒸発器8に入り、吸熱定圧して低圧飽和蒸気に変換して冷凍サイクルを完成させてから相変化ウェーブロータブースター1の低圧蒸気となり;高温冷媒は、高温スロットルバルブ4を通じて降温降圧した後、自動カスケードサブクーラー6に吹き込んで吸熱し、高温高圧蒸気の形で相変化ウェーブロータブースター1の駆動蒸気となる。   Medium pressure steam is blown into the driving steam inlet Hp of the phase change wave rotor booster 1 and blown into the low pressure steam inlet Lp of the phase change wave rotor booster 1 through the isentropic expansion process and low pressure saturated steam through quasi-isentropic compression. Are mixed at the same pressure and discharged from the pressure-increasing steam outlet Mp, and then enter the steam compressor 2 to be compressed as high-temperature and high-pressure superheated steam. After passing through the condenser 3, low-temperature refrigerant in the form of high-pressure saturated liquid The low-temperature refrigerant is discharged from the non-condensable gas through the automatic cascade subcooler 6 and cooled down to become a supercooled liquid. After entering the evaporator 8 in the form of a gas-liquid mixture, endothermic constant pressure and converted into low-pressure saturated steam to complete the refrigeration cycle, then the phase change way The low-pressure steam of the rotor booster 1 is obtained; after the temperature of the high-temperature refrigerant is lowered and lowered through the high-temperature throttle valve 4, the high-temperature refrigerant is blown into the automatic cascade subcooler 6 to absorb heat and become the driving steam of the phase change wave rotor booster 1 in the form of high-temperature high-pressure steam. .

図2は、混合冷媒の相変化ウェーブロータ自動カスケード冷凍システムのp−h線図である。図内から分かるように、相変化ウェーブロータブースター1において等エントロピーしてFa´まで膨張した点Faの高圧過熱蒸気と相変化ウェーブロータブースター1において点A´まで等エントロピー圧縮した点Aの低圧飽和蒸気を点Bまで等圧で混合し、点Bの過熱蒸気が蒸気圧縮機2で圧縮すると点Cの高温高圧の過熱蒸気になり、凝縮器3によって等圧で降温して点Dの高圧飽和液体となり、点Dの高圧飽和液体は低温冷媒及び高温冷媒の2つの経路に分かれ、低温冷媒が自動カスケードサブクーラー6によって熱交換して降温して点Gの高圧過冷却液になり、また不凝縮ガスポンプ5によって不凝縮ガスを排出し、低温スロットルバルブ7によりエンタルピー降温、降圧して点Hの低圧過飽和蒸気になり、蒸発器8により熱交換、昇温して点Aの低圧飽和蒸気になって冷凍サイクルを完成させ、そして相変化ウェーブロータブースター1の低圧蒸気入口Lpに吹き込み;高温冷媒は、高温スロットルバルブ4によってエンタルピー降温、降圧してEの高圧過飽和蒸気になり、自動カスケードサブクーラー6によって熱交換して昇温して点Faの高圧過熱及び蒸気状態になって相変化ウェーブロータブースター1の駆動蒸気入口Hpに吹き込む。   FIG. 2 is a ph diagram of a mixed refrigerant phase change wave rotor automatic cascade refrigeration system. As can be seen from the figure, the high pressure superheated steam at point Fa that is isentropically expanded to Fa ′ in the phase change wave rotor booster 1 and the low pressure saturation at point A that is isentropically compressed to point A ′ in the phase change wave rotor booster 1. When steam is mixed to point B at the same pressure and the superheated steam at point B is compressed by the steam compressor 2, it becomes high-temperature and high-pressure superheated steam at point C. The high-pressure saturated liquid at point D is divided into two paths, a low-temperature refrigerant and a high-temperature refrigerant, and the low-temperature refrigerant is heat-exchanged by the automatic cascade subcooler 6 to cool down to become a high-pressure supercooled liquid at point G. The non-condensable gas is discharged by the condensing gas pump 5, the enthalpy temperature is lowered by the low-temperature throttle valve 7, and the pressure is reduced to the low-pressure supersaturated steam at the point H. The temperature rises to low pressure saturated steam at point A to complete the refrigeration cycle, and is blown into the low pressure steam inlet Lp of the phase change wave rotor booster 1; The high-pressure supersaturated steam is exchanged by the automatic cascade subcooler 6, and the temperature is raised and the high-pressure superheated and steamed state at point Fa is reached and blown into the driving steam inlet Hp of the phase change wave rotor booster 1.

単一冷媒を用いたマルチステージ蒸気圧縮冷凍システム:
原則として流れ及び設備の配置方式は変わらず、混合冷媒を単一冷媒に変えて単一冷媒を用いたマルチステージ蒸気圧縮冷凍システムを実現できる。
Multistage vapor compression refrigeration system using a single refrigerant:
In principle, the flow and the arrangement of equipment are not changed, and the mixed refrigerant can be changed to a single refrigerant to realize a multi-stage vapor compression refrigeration system using a single refrigerant.

相変化ウェーブロータブースター1において等エントロピーしてFb´まで膨張した点Fbの高圧過飽和蒸気と相変化ウェーブロータブースター1において点A´まで等エントロピー圧縮した点Aの低圧飽和蒸気を点Bまで等圧で混合し、点Bの過熱蒸気が蒸気圧縮機2で圧縮すると点Cの高温高圧の過熱蒸気になり、凝縮器3によって等圧で降温して点Dの高圧飽和液体となり、点Dの高圧飽和液体は低温冷媒及び高温冷媒の2つの経路に分かれ、低温冷媒が自動カスケードサブクーラー6によって熱交換して降温して点Gの高圧過冷却液になり、また不凝縮ガスポンプ5によって不凝縮ガスを排出し、低温スロットルバルブ7によりエンタルピー降温、降圧して点Hの低圧過飽和蒸気になり、蒸発器8により熱交換、昇温して点Aの低圧飽和蒸気になって冷凍サイクルを完成させ、そして相変化ウェーブロータブースター1の低圧蒸気入口Lpに吹き込み;高温冷媒は、高温スロットルバルブ4によってエンタルピー降温、降圧してEの高圧過飽和蒸気になり、自動カスケードサブクーラー6によって熱交換して昇温して点Faの高圧過飽和及び蒸気状態になって相変化ウェーブロータブースター1の駆動蒸気入口Hpに吹き込む。   High pressure supersaturated steam at point Fb that is isentropically expanded to Fb ′ in the phase change wave rotor booster 1 and low pressure saturated steam at point A that is isentropically compressed to point A ′ in the phase change wave rotor booster 1 are isobaric to point B. When the superheated steam at point B is compressed by the steam compressor 2, it becomes high-temperature and high-pressure superheated steam at point C, and is cooled at a constant pressure by the condenser 3 to become a high-pressure saturated liquid at point D. The saturated liquid is divided into two paths, a low-temperature refrigerant and a high-temperature refrigerant. The low-temperature refrigerant exchanges heat by the automatic cascade subcooler 6 and cools down to become a high-pressure supercooled liquid at point G. The enthalpy temperature is lowered and lowered by the low-temperature throttle valve 7 to become a low-pressure supersaturated steam at point H, the heat is exchanged by the evaporator 8 and the temperature is raised to low-pressure saturated at point A. Completes the refrigeration cycle with Japanese steam and blows into the low-pressure steam inlet Lp of the phase change wave rotor booster 1; the high-temperature refrigerant is cooled down to enthalpy by the high-temperature throttle valve 4 and is reduced to E high-pressure supersaturated steam. The heat is exchanged by the cascade subcooler 6 and the temperature is raised to high pressure supersaturation and a steam state at the point Fa, and blown into the driving steam inlet Hp of the phase change wave rotor booster 1.

相変化ウェーブロータブースターの駆動蒸気は、自動カスケードシステムの余熱で提供され、省エネ、環境保全の目的を達成し;相変化ウェーブロータブースターの非定常増圧特性は、効果的に蒸気圧縮機の圧力比を低下し、低温上昇、あらかじめ増圧の効果を奏し;相変化ウェーブロータブースターは、増圧特性を持つ以外に、優れた帯液操作性も持ち、また構造寸法が小さく、回転速度が低く、設備を開発しやすい等の利点を有する。自動カスケードサブクーラーの使用は、大幅に自動カスケードシステムの構造を簡略化し、コストを削減できる。   The driving steam of the phase change wave rotor booster is provided by the residual heat of the automatic cascade system, achieving the purpose of energy saving and environmental protection; Reduced ratio, increased low temperature, pre-pressurized effect; phase change wave rotor booster has not only the pressure-increasing property, but also excellent liquid handling operability, small structure size and low rotation speed It has advantages such as easy development of equipment. The use of an automatic cascade subcooler can greatly simplify the structure of the automatic cascade system and reduce costs.

1 相変化ウェーブロータブースター
2 蒸気圧縮機
3 凝縮器
4 高温スロットルバルブ
5 不凝縮ガスポンプ
6 自動カスケードサブクーラー
7 低温スロットルバルブ
8 蒸発器
HP 駆動蒸気入口
LP 低圧蒸気入口
MP 増圧蒸気出口
DESCRIPTION OF SYMBOLS 1 Phase change wave rotor booster 2 Steam compressor 3 Condenser 4 High-temperature throttle valve 5 Non-condensable gas pump 6 Automatic cascade subcooler 7 Low-temperature throttle valve 8 Evaporator HP drive steam inlet LP Low-pressure steam inlet MP Boosting steam outlet

Claims (2)

凝縮器(3)と高温スロットルバルブ(4)と不凝縮ガスポンプ(5)と低温スロットルバルブ(7)と蒸発器(8)とを含む自動カスケード冷凍装置と、増圧装置と、を包括するウェーブロータ式自動カスケード冷凍システムであって、
前記自動カスケード冷凍装置が自動カスケードサブクーラー(6)を更に含み、前記自動カスケードサブクーラー(6)は高温冷媒と低温冷媒を熱交換させると共に不凝縮ガスを排出し、前記増圧装置が空気増圧手段であるウェーブロータ(1)と蒸気圧縮機(2)とを備え、前記ウェーブロータ(1)の中圧蒸気出口(Mp)が前記蒸気圧縮機(2)の入口と接続し、前記蒸気圧縮機(2)の出口が前記凝縮器(3)の入口と接続し、前記凝縮器(3)の出口は2つの経路に分かれ、1つ経路が前記自動カスケードサブクーラー(6)のホット側入口と接続し、前記自動カスケードサブクーラー(6)のホット側出口が前記低温スロットルバルブ(7)の入口と接続し、前記低温スロットルバルブ(7)の出口が前記蒸発器(8)のコールド側入口と接続し、前記蒸発器(8)のコールド側出口が前記ウェーブロータ(1)の低圧蒸気入口(Lp)と接続し;別の経路は、前記高温スロットルバルブ(4)の入口と接続し、前記高温スロットルバルブ(4)の出口が前記自動カスケードサブクーラー(6)のコールド側入口と接続し、前記自動カスケードサブクーラー(6)のコールド側出口が前記ウェーブロータ(1)の駆動蒸気入口(Hp)と接続し;前記自動カスケードサブクーラー(6)の不凝縮ガス出口は、前記不凝縮ガスポンプ(5)と接続し;前記蒸発器(8)のホット側入口及び出口は、同様に冷却媒体管路で接続される
ことを特徴とするウェーブロータ式自動カスケード冷凍システム。
A wave including an automatic cascade refrigeration apparatus including a condenser (3), a high temperature throttle valve (4), a non-condensing gas pump (5), a low temperature throttle valve (7), and an evaporator (8), and a pressure increasing device A rotor type automatic cascade refrigeration system,
The automatic cascade refrigeration system further comprises an automatic cascade subcooler (6), said automatic cascade subcooler (6) is discharged noncondensable gas hot refrigerant and the low-temperature refrigerant causes heat exchange, the pressure increasing device is increased air equipped wave low data is pressure means (1) and vapor compressor (2), said steam outlet in the wave row data (1) (Mp) is connected to an inlet of the vapor compressor (2), The outlet of the vapor compressor (2) is connected to the inlet of the condenser (3), the outlet of the condenser (3) is divided into two paths, one path of the automatic cascade subcooler (6). A hot side inlet is connected, a hot side outlet of the automatic cascade subcooler (6) is connected to an inlet of the low temperature throttle valve (7), and an outlet of the low temperature throttle valve (7) is connected to the evaporator (8). Co Connected to the de-side inlet, the low-pressure connecting steam inlet and (Lp) of the cold side outlet is the wave low motor (1) of the evaporator (8); a path different from the inlet of the hot throttle valve (4) connected to the outlet of the hot throttle valve (4) is connected to the cold side inlet of the autocascade subcooler (6), wherein the cold side outlet of the autocascade subcooler (6) is the wave low motor (1) The non-condensable gas outlet of the automatic cascade subcooler (6) is connected to the non-condensable gas pump (5); the hot side inlet and outlet of the evaporator (8) Similarly, a wave rotor type automatic cascade refrigeration system, which is connected by a cooling medium pipe.
請求項1に記載のウェーブロータ式自動カスケード冷凍システムの動作方法であって、
高温高圧蒸気をウェーブロータ(1)の駆動蒸気入口(Hp)に吹き込み、低圧飽和蒸気をウェーブロータ(1)の低圧蒸気入口(Lp)に吹き込み、両者を混合し、そして増圧蒸気出口(Mp)から排出し、また蒸気圧縮機(2)に入って高温高圧の過熱蒸気として圧縮し、凝縮器(3)を経由した後、高圧飽和液体の形で低温冷媒及び高温冷媒の2つの経路に分かれ;低温冷媒は、自動カスケードサブクーラー(6)を通じて不凝縮ガスを排出して降温して過冷却液体となり、低温スロットルバルブ(7)を通じて設定温度まで降温降圧し、低温低圧の気液混合物の形で蒸発器(8)に入り、吸熱定圧して低圧飽和蒸気に変換して冷凍サイクルを完成させてからウェーブロータ(1)の低圧蒸気となり;高温冷媒は、高温スロットルバルブ(4)を通じて降温降圧した後、自動カスケードサブクーラー(6)に吹き込んで吸熱し、高温高圧蒸気の形でウェーブロータ(1)の駆動蒸気となる
ことを特徴とする動作方法。
An operation method of the wave rotor type automatic cascade refrigeration system according to claim 1,
Blowing high-temperature high-pressure steam to the wave low motor (1) driving the steam inlet (Hp), blowing low pressure saturated steam to a low pressure steam inlet of the wave row data (1) (Lp), and mixing the two, and increasing steam outlet (Mp), and enters the vapor compressor (2) to be compressed as high-temperature and high-pressure superheated steam, and after passing through the condenser (3), the low-temperature refrigerant and the high-temperature refrigerant in the form of a high-pressure saturated liquid. The low-temperature refrigerant is discharged from the non-condensable gas through the automatic cascade subcooler (6) and cooled down to become a supercooled liquid, and the low-temperature refrigerant is cooled down to the set temperature through the low-temperature throttle valve (7). in the form of a mixture enters the evaporator (8), the refrigerant absorbs heat pressure becomes low-pressure steam wave low motor (1) from to complete the refrigeration cycle is converted into a low-pressure saturated steam; hot refrigerant, hot throttle Bas After the step-down cooling through blanking (4), the operation method by blowing the autocascade subcooler (6) absorbs heat, characterized in that the motive steam wave low motor (1) in the form of high temperature and high pressure steam.
JP2018509966A 2015-12-24 2016-09-18 Wave rotor type automatic cascade refrigeration system and operation method thereof Active JP6585830B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510984077.1 2015-12-24
CN201510984077.1A CN105509359B (en) 2015-12-24 2015-12-24 A phase change wave rotor self-cascading refrigeration system and its working method
PCT/CN2016/099196 WO2017107591A1 (en) 2015-12-24 2016-09-18 Auto-cascade refrigeration system using phase-change wave rotor and operation method thereof

Publications (2)

Publication Number Publication Date
JP2018514747A JP2018514747A (en) 2018-06-07
JP6585830B2 true JP6585830B2 (en) 2019-10-02

Family

ID=55717529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018509966A Active JP6585830B2 (en) 2015-12-24 2016-09-18 Wave rotor type automatic cascade refrigeration system and operation method thereof

Country Status (4)

Country Link
JP (1) JP6585830B2 (en)
KR (1) KR101980332B1 (en)
CN (1) CN105509359B (en)
WO (1) WO2017107591A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509359B (en) * 2015-12-24 2017-12-26 大连理工大学 A phase change wave rotor self-cascading refrigeration system and its working method
EP3642541A4 (en) * 2017-06-21 2021-03-24 Honeywell International Inc. COOLING SYSTEM AND METHOD
CN107726657A (en) * 2017-10-26 2018-02-23 焦景田 A kind of superposition type air-cooled heat pump water chiller-heater units
CN115388454A (en) * 2022-07-08 2022-11-25 中国建筑科学研究院有限公司 Heat supply system, heat supply control method, device, electronic equipment and storage medium
CN115361837B (en) * 2022-07-22 2024-12-13 西北工业大学 Organic Rankine cycle cooling system based on phase change microcapsule suspension
CN115468327B (en) * 2022-09-20 2023-09-15 河南科技大学 A self-cascading refrigeration system with graded decondenser

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033173U (en) * 1983-08-11 1985-03-06 三洋電機株式会社 Two-stage compression refrigeration equipment
JP2006505763A (en) * 2002-11-11 2006-02-16 ボルテックス エアコン Cooling system with bypass subcooling and component size deoptimization
EP2302172A1 (en) * 2004-11-12 2011-03-30 Board of Trustees of Michigan State University Machine comprising an electromagnetic woven rotor and manufacturing method
JP2007071421A (en) * 2005-09-05 2007-03-22 Hitachi Ltd Air conditioner
JP2010230256A (en) * 2009-03-27 2010-10-14 Fujitsu General Ltd Refrigerant-to-refrigerant heat exchanger
CN101603745B (en) * 2009-07-07 2011-01-19 河南科技大学 A pressurized absorption self-cascading absorption refrigeration cycle system
CN201555392U (en) * 2009-10-23 2010-08-18 南通康鑫药业有限公司 Folding type cooling system
CN102606547A (en) * 2012-03-23 2012-07-25 大连理工大学 Axial-flow type jet flow gas wave pressure supercharger
JP2013245850A (en) * 2012-05-24 2013-12-09 Hitachi Appliances Inc Air conditioner
CN103206801B (en) * 2013-03-11 2014-11-12 大连理工大学 Axial-flow type self-pressurization gas wave refrigerating device and refrigerating method thereof
CN203298518U (en) * 2013-04-18 2013-11-20 南京瑞柯徕姆环保科技有限公司 Overlaid cold capacity circulating and refrigerating device
CN203731731U (en) * 2014-03-02 2014-07-23 上海海洋大学 Energy-saving auto-cascade refrigerating device for ship
KR102242777B1 (en) * 2014-03-20 2021-04-20 엘지전자 주식회사 Air Conditioner
CN104399267B (en) * 2014-12-01 2016-04-13 大连理工大学 A flash wave vapor recompression continuous evaporation system
CN105180492B (en) * 2015-09-04 2017-07-21 大连理工大学 A two-stage vapor compression refrigeration system assisted by air wave supercharging and its working method
CN105135676A (en) * 2015-10-10 2015-12-09 浙江万宝新能源科技有限公司 Cascade heat accumulating type air source heat pump water heater
CN105180495B (en) * 2015-10-13 2017-12-26 大连理工大学 A wave rotor cascade refrigeration system and its working method
CN205261966U (en) * 2015-12-24 2016-05-25 大连理工大学 A phase change wave rotor self-cascading refrigeration system
CN105509359B (en) * 2015-12-24 2017-12-26 大连理工大学 A phase change wave rotor self-cascading refrigeration system and its working method

Also Published As

Publication number Publication date
KR101980332B1 (en) 2019-05-20
WO2017107591A1 (en) 2017-06-29
CN105509359B (en) 2017-12-26
CN105509359A (en) 2016-04-20
JP2018514747A (en) 2018-06-07
KR20180002632A (en) 2018-01-08

Similar Documents

Publication Publication Date Title
JP6585830B2 (en) Wave rotor type automatic cascade refrigeration system and operation method thereof
CN108005743B (en) A kind of cold synergy of contraction with pressure without pump organic Rankine cycle power generation system
JP5231002B2 (en) Vapor compression apparatus and method for performing a transcritical cycle associated therewith
CN109869940B (en) Injection type transcritical carbon dioxide double-stage compression refrigeration system
JP2013537614A (en) Energy efficient CO2 production using single stage expansion and evaporation promotion pumps
CN103775148A (en) Self-cooled thermal power acting method
CN103759449A (en) Two-stage steam compression circulating system with two ejectors for efficiency enhancement
CN105180492B (en) A two-stage vapor compression refrigeration system assisted by air wave supercharging and its working method
JP2018077041A (en) Multistage heat pump having two-stage expansion structure using co2 refrigerant, and circulation method thereof
US20110056219A1 (en) Utilization of Exhaust of Low Pressure Condensing Steam Turbine as Heat Input to Silica Gel-Water Working Pair Adsorption Chiller
CN108375233A (en) A kind of folding type cooling system with backheat and injection decompression
JP4041036B2 (en) Supercritical cooling system
CN210089175U (en) Jet type transcritical carbon dioxide two-stage compression refrigeration system
JP2007178072A (en) Air conditioner for vehicle
JP2004003804A (en) Vapor compression type refrigerating machine
CN210861850U (en) Double-stage throttling non-azeotropic working medium mechanical supercooling CO2Transcritical refrigeration cycle system
CN210089181U (en) Absorption type transcritical carbon dioxide two-stage compression refrigeration system
CN208222896U (en) A kind of Two-stage Compression cryogenic refrigerating system
CN117128657A (en) Transcritical CO 2 Refrigeration system and method
CN117804097A (en) A carbon dioxide transcritical ultra-high temperature heat pump system
CN205261966U (en) A phase change wave rotor self-cascading refrigeration system
JP2007212071A (en) Refrigerating cycle device
CN114608050A (en) Parallel compression transcritical CO with ejector2Air source heat pump heating system
CN109869945B (en) Absorption type transcritical carbon dioxide double-stage compression refrigeration system
CN105180495B (en) A wave rotor cascade refrigeration system and its working method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250