JP6569559B2 - Evaporator - Google Patents
Evaporator Download PDFInfo
- Publication number
- JP6569559B2 JP6569559B2 JP2016031597A JP2016031597A JP6569559B2 JP 6569559 B2 JP6569559 B2 JP 6569559B2 JP 2016031597 A JP2016031597 A JP 2016031597A JP 2016031597 A JP2016031597 A JP 2016031597A JP 6569559 B2 JP6569559 B2 JP 6569559B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- core
- space
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Description
本発明は、外部を流れる空気との熱交換により、内部で冷媒を蒸発させる蒸発器に関する。 The present invention relates to an evaporator that evaporates a refrigerant inside by heat exchange with air flowing outside.
例えば車両用の空調装置等に用いられる冷凍サイクルには、蒸発器が備えられる。蒸発器は、複数本のチューブを積層することによって構成された熱交換コア部を有している。冷凍サイクルが動作しているときには、蒸発器よりも上流側の絞り弁を通過して減圧された低温且つ液相の冷媒が、蒸発器の熱交換コア部に供給される。 For example, a refrigeration cycle used in a vehicle air conditioner or the like is provided with an evaporator. The evaporator has a heat exchange core portion configured by stacking a plurality of tubes. When the refrigeration cycle is in operation, the low-temperature and liquid-phase refrigerant that has been decompressed through the throttle valve upstream of the evaporator is supplied to the heat exchange core of the evaporator.
熱交換コア部では、チューブの外側を流れる空気と、チューブの内側を流れる冷媒との間で熱交換が行われる。当該熱交換により、外側を流れる空気は冷却され、内側を流れる冷媒は加熱される。熱交換コア部では、冷媒が蒸発して液相から気相へと変化する。 In the heat exchange core part, heat exchange is performed between the air flowing outside the tube and the refrigerant flowing inside the tube. By the heat exchange, the air flowing outside is cooled, and the refrigerant flowing inside is heated. In the heat exchange core part, the refrigerant evaporates and changes from the liquid phase to the gas phase.
熱交換コア部を通過した後における空気の温度は、冷凍サイクルを循環する冷媒の流量によって調整することができる。例えば、圧縮機の回転数を増加させて冷媒の流量を大きくすれば、冷媒の温度が低下することに伴い、熱交換コア部を通過する空気の温度も低下する。逆に、圧縮機の回転数を低下させて冷媒の流量を小さくすれば、冷媒の温度が上昇することに伴い、熱交換コア部を通過する空気の温度も上昇する。 The temperature of the air after passing through the heat exchange core can be adjusted by the flow rate of the refrigerant circulating in the refrigeration cycle. For example, if the flow rate of the refrigerant is increased by increasing the number of rotations of the compressor, the temperature of the air passing through the heat exchange core portion is also lowered as the temperature of the refrigerant is lowered. Conversely, if the number of rotations of the compressor is reduced to reduce the flow rate of the refrigerant, the temperature of the air passing through the heat exchange core portion also increases as the temperature of the refrigerant increases.
空気の温度調整は、熱交換コア部を流れる液相冷媒の温度を測定しながら、当該温度を目標温度に一致させるように行われる。下記特許文献1には、冷媒の温度を測定するための温度センサを備えた蒸発器が記載されている。温度センサは、熱交換コア部のうち、互いに隣り合う2本のチューブの間となる位置に取り付けられている。 The temperature of the air is adjusted so that the temperature matches the target temperature while measuring the temperature of the liquid-phase refrigerant flowing through the heat exchange core. The following Patent Document 1 describes an evaporator provided with a temperature sensor for measuring the temperature of a refrigerant. The temperature sensor is attached to a position between the two adjacent tubes in the heat exchange core part.
本発明者らは、空気の冷却をより効率的に行うことができるよう、空気の流れ方向に沿って2つの熱交換コア部を重ねた構成の蒸発器について検討を行ってきた。このような構成の蒸発器では、冷媒の流量が比較的小さくなったときにおいて、一部のチューブには液相の冷媒が流れず、気相の冷媒のみが流れる状態となることがある。その際、気相の冷媒のみが流れるチューブにおいては、空気との熱交換(すなわち空気の冷却)が効率的には行われない。このため、熱交換コア部を通過する空気の温度分布が不均一なものとなってしまうことがある。 The present inventors have studied an evaporator having a configuration in which two heat exchange core portions are stacked along the air flow direction so that air can be cooled more efficiently. In the evaporator having such a configuration, when the flow rate of the refrigerant becomes relatively small, the liquid phase refrigerant does not flow in some tubes, and only the gas phase refrigerant may flow. At that time, heat exchange with air (that is, cooling of the air) is not efficiently performed in the tube through which only the gas-phase refrigerant flows. For this reason, the temperature distribution of the air passing through the heat exchange core may be uneven.
通過する空気の温度分布を均一なものとするためには、2つの熱交換コア部を繋ぐ接続流路を交差させればよい。例えば、一方の熱交換コア部のうち左側部分を通った冷媒が、他方の熱交換コア部のうち右側部分を通り、上記一方の熱交換コア部のうち右側部分を通った冷媒が、上記他方の熱交換コア部のうち左側部分を通るように、上記の接続流路を交差した流路として形成すればよい。 In order to make the temperature distribution of the passing air uniform, the connection flow path connecting the two heat exchange core portions may be crossed. For example, the refrigerant that has passed through the left part of one heat exchange core part passes through the right part of the other heat exchange core part, and the refrigerant that has passed through the right part of the one heat exchange core part is What is necessary is just to form the said connection flow path as a crossing flow path so that the left side part may be passed among these heat exchange core parts.
このような構成においては、それぞれの熱交換コア部のうち気相の冷媒が流れる部分が、空気の流れ方向に沿って重なってしまう可能性を低減することができる。つまり、一方の熱交換コア部において一部のチューブを気相の冷媒が流れている状態になったとしても、他方の熱交換コア部のうち上記チューブと重なる部分には、液相の冷媒が流れている状態とすることができる。 In such a configuration, it is possible to reduce the possibility that the portion of each heat exchange core portion where the gas-phase refrigerant flows overlaps in the air flow direction. In other words, even if one of the heat exchange cores is in a state where a gas-phase refrigerant is flowing through some of the tubes, the liquid-phase refrigerant is not present in the portion of the other heat exchange core that overlaps the tube. It can be in a flowing state.
2つの熱交換コア部のそれぞれを空気が通過する際には、少なくとも一方の熱交換コア部において、液相の冷媒と空気との間で熱交換が行われることとなる。その結果、熱交換コア部を通過する空気の温度分布を均一なものとすることができる。 When air passes through each of the two heat exchange core parts, heat exchange is performed between the liquid-phase refrigerant and air in at least one of the heat exchange core parts. As a result, the temperature distribution of the air passing through the heat exchange core can be made uniform.
ところで、熱交換コア部のうち気相の冷媒が流れてしまう部分の範囲は、冷凍サイクルを循環する冷媒の流量によって変化する。もし、温度センサが設けられている部分を気相の冷媒が流れてしまうと、温度センサによって測定される温度は、液相の冷媒における実際の温度よりも高い温度となる。 By the way, the range of the portion where the gas-phase refrigerant flows in the heat exchange core portion varies depending on the flow rate of the refrigerant circulating in the refrigeration cycle. If the gas-phase refrigerant flows through the portion where the temperature sensor is provided, the temperature measured by the temperature sensor is higher than the actual temperature of the liquid-phase refrigerant.
その場合、冷媒の温度を下げるために、圧縮機の回転数を増加させる制御が行われることとなるので、冷媒の温度は更に低くなる。つまり、液相冷媒の温度が適温であるにも拘らず、冷媒の温度を更に下げるような制御が行われてしまう。その結果、冷媒の温度が低下し過ぎてしまい、チューブの表面に付着した凝縮水が凍結する現象、所謂フロストが生じることがある。 In this case, control for increasing the number of revolutions of the compressor is performed in order to lower the temperature of the refrigerant, so that the temperature of the refrigerant is further lowered. That is, although the temperature of the liquid-phase refrigerant is appropriate, control is performed to further reduce the temperature of the refrigerant. As a result, the temperature of the refrigerant is excessively lowered, and the phenomenon that the condensed water adhering to the surface of the tube freezes, so-called frost may occur.
本発明はこのような課題に鑑みてなされたものであり、その目的は、冷媒の流量が変化した場合であっても、冷媒の温度を正確に測定することができ、これによりフロストの発生を防止することのできる蒸発器を提供することにある。 The present invention has been made in view of such a problem, and the object thereof is to accurately measure the temperature of the refrigerant even when the flow rate of the refrigerant changes, thereby preventing the occurrence of frost. An object of the present invention is to provide an evaporator that can be prevented.
上記課題を解決するために、本発明に係る蒸発器は、外部を流れる空気との熱交換により、内部で冷媒を蒸発させる蒸発器(10)であって、空気の流れ方向に沿って並ぶように配置された第1蒸発部(100)及び第2蒸発部(200)と、冷媒の温度を測定する温度測定部(40)と、を備えている。第1蒸発部及び第2蒸発部は、それぞれ、冷媒が流れる複数のチューブ(115,215)を積層して構成された熱交換コア部(110,210)と、それぞれのチューブの一端側が接続された上部タンク(120,220)と、それぞれのチューブの他端側が接続された下部タンク(130,230)と、を有している。第1蒸発部における下部タンクと、第2蒸発部における下部タンクとの間には、第1蒸発部から第2蒸発部へと冷媒を流すための接続流路(30)が形成されている。また、本発明に係る蒸発器は、第1蒸発部における上部タンクに形成された入口部(121)から冷媒が供給され、当該冷媒が接続流路を通って第1蒸発部から第2蒸発部へと流入し、第2蒸発部における上部タンクに形成された出口部(221)から排出されるように構成されている。第1蒸発部における熱交換コア部は、複数のチューブのうち一部のチューブ群で構成された第1コア部(111)と、複数のチューブのうち、第1コア部に含まれないチューブ群の少なくとも一部で構成された第2コア部(112)と、を有しており、第1コア部が、第2コア部よりも入口部寄りとなる位置に配置されたものである。第2蒸発部における熱交換コア部は、複数のチューブのうち一部のチューブ群で構成された第3コア部(213)と、複数のチューブのうち、第3コア部に含まれないチューブ群の少なくとも一部で構成された第4コア部(214)と、を有しており、第3コア部は、空気の流れ方向に沿って第2コア部と重なる位置に配置され、第4コア部は、空気の流れ方向に沿って第1コア部と重なる位置に配置されている。接続流路は、第1コア部を流れた冷媒が第3コア部を流れ、第2コア部を流れた冷媒が第4コア部を流れるように、第1蒸発部における下部タンクと、第2蒸発部における下部タンクとを接続するものである。温度測定部は、第3コア部を流れている冷媒の温度を直接又は間接的に測定し得る位置、に設けられている。第1蒸発部における下部タンクの内部空間は、第1コア部を構成するチューブが接続されている第1空間(131)と、第2コア部を構成するチューブが接続されている第2空間(132)と、に分かれるよう区画されている。第2蒸発部における下部タンクの内部空間は、第3コア部を構成するチューブが接続されている第3空間(233)と、第4コア部を構成するチューブが接続されている第4空間(234)と、に分かれるよう区画されている。第3空間は更に、貫通穴(237)が形成された絞りプレート(236)によって、上流側空間(233a)と下流側空間(233b)とに分かれるよう区画されており、上流側空間には接続流路を通った冷媒が直接流入し、下流側空間には接続流路を通った冷媒が直接流入せず、上流側空間から貫通穴を通った冷媒のみが流入するように構成されている。温度測定部が、下流側空間に接続されたチューブの一部に設けられている。 In order to solve the above-mentioned problems, an evaporator according to the present invention is an evaporator (10) that evaporates a refrigerant inside by heat exchange with air flowing outside, and is arranged along the air flow direction. The first evaporation unit (100) and the second evaporation unit (200) arranged in the above, and a temperature measurement unit (40) for measuring the temperature of the refrigerant. Each of the first and second evaporators is connected to a heat exchange core (110, 210) configured by stacking a plurality of tubes (115, 215) through which a refrigerant flows, and one end of each tube. And an upper tank (120, 220) and a lower tank (130, 230) to which the other end of each tube is connected. Between the lower tank in the first evaporator and the lower tank in the second evaporator, a connection channel (30) is formed for flowing the refrigerant from the first evaporator to the second evaporator. In the evaporator according to the present invention, the refrigerant is supplied from an inlet portion (121) formed in the upper tank in the first evaporation section, and the refrigerant passes through the connection flow path from the first evaporation section to the second evaporation section. And is discharged from an outlet portion (221) formed in the upper tank in the second evaporator. The heat exchange core part in the first evaporating part includes a first core part (111) constituted by a part of the plurality of tubes and a tube group not included in the first core part among the plurality of tubes. And a second core portion (112) composed of at least a part of the first core portion, and the first core portion is arranged at a position closer to the inlet portion than the second core portion. The heat exchange core part in the second evaporation part is a third core part (213) constituted by a part of the plurality of tubes, and a tube group not included in the third core part among the plurality of tubes. A fourth core portion (214) configured of at least a part of the fourth core portion, and the third core portion is disposed at a position overlapping the second core portion along the air flow direction. The part is disposed at a position overlapping the first core part along the air flow direction. The connecting flow path includes a lower tank in the first evaporation section, a second tank such that the refrigerant that has flowed through the first core section flows through the third core section, and the refrigerant that has flowed through the second core section flows through the fourth core section It connects with the lower tank in an evaporation part. The temperature measurement unit is provided at a position where the temperature of the refrigerant flowing through the third core unit can be measured directly or indirectly. The internal space of the lower tank in the first evaporation section includes a first space (131) to which a tube constituting the first core part is connected, and a second space (to which the tube constituting the second core part is connected). 132). The internal space of the lower tank in the second evaporation section includes a third space (233) to which a tube constituting the third core portion is connected and a fourth space (to which the tube constituting the fourth core portion is connected). 234). The third space is further divided into an upstream space (233a) and a downstream space (233b) by a throttle plate (236) in which a through hole (237) is formed, and is connected to the upstream space. The refrigerant that has passed through the flow path directly flows in, and the refrigerant that has passed through the connection flow path does not flow directly into the downstream space, but only the refrigerant that has passed through the through hole flows from the upstream space. The temperature measurement part is provided in a part of the tube connected to the downstream space.
このような蒸発器は、第1蒸発部と第2蒸発部とを備えており、これらが空気の流れ方向に沿って並ぶように配置されている。このため、空気と冷媒との熱交換を効率的に行うことが可能となっている。 Such an evaporator includes a first evaporator and a second evaporator, and these evaporators are arranged along the air flow direction. For this reason, it is possible to efficiently perform heat exchange between the air and the refrigerant.
第1蒸発部と第2蒸発部を繋ぐ接続流路は、第1コア部を流れた冷媒が第3コア部を流れ、第2コア部を流れた冷媒が第4コア部を流れるように形成されている。また、空気の流れ方向に沿って第1コア部と第4コア部とが重なっており、第2コア部と第3コア部とが重なっている。このような構成により、一部のチューブを気相の冷媒が流れるような状態になったとしても、蒸発器を通過する空気の温度分布を均一なものとすることができる。 The connection flow path connecting the first evaporation section and the second evaporation section is formed such that the refrigerant flowing through the first core section flows through the third core section, and the refrigerant flowing through the second core section flows through the fourth core section. Has been. Moreover, the 1st core part and the 4th core part have overlapped along the flow direction of air, and the 2nd core part and the 3rd core part have overlapped. With such a configuration, the temperature distribution of the air passing through the evaporator can be made uniform even when a gas-phase refrigerant flows through some tubes.
本発明者らが検討したところによれば、上記のような構成の蒸発器においては、通常動作の範囲で冷媒の流量が変化したとしても、第3コア部においては常に液相の冷媒が存在していることが判明している。そこで、本発明に係る蒸発器では、温度測定部が、第3コア部を流れている冷媒の温度を直接又は間接的に測定し得る位置に設けられている。これにより、温度測定部によって気相の冷媒の温度が測定されてしまうことが防止され、その結果としてフロストの発生も防止される。 According to a study by the present inventors, in the evaporator having the above-described configuration, even when the flow rate of the refrigerant changes in the normal operation range, the liquid refrigerant is always present in the third core portion. It has been found that Therefore, in the evaporator according to the present invention, the temperature measuring unit is provided at a position where the temperature of the refrigerant flowing through the third core unit can be measured directly or indirectly. Thereby, it is prevented that the temperature of the gas-phase refrigerant is measured by the temperature measuring unit, and as a result, generation of frost is also prevented.
本発明によれば、冷媒の流量が変化した場合であっても、冷媒の温度を正確に測定することができ、これによりフロストの発生を防止することのできる蒸発器が提供される。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the flow volume of a refrigerant | coolant changes, the temperature of a refrigerant | coolant can be measured correctly and, thereby, the evaporator which can prevent generation | occurrence | production of frost is provided.
以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
図1を参照しながら、本発明の実施形態に係る蒸発器10の構成について説明する。蒸発器10は、空調装置用の冷凍サイクル(不図示)の一部として用いられるものである。従来の蒸発器と同様に、蒸発器10は、外部を流れる空気との熱交換により、内部で冷媒を蒸発させるための装置として構成されている。
The configuration of the
蒸発器10は、第1蒸発部100と、第2蒸発部200と、接続タンク30とを備えている。第1蒸発部100と第2蒸発部200は、互いに略同一な構成の熱交換器であって、矢印Xで示される空気の流れ方向に沿って並ぶように配置されている。接続タンク30は、第1蒸発部100及び第2蒸発部200の下方側において、これらを接続する冷媒流路を形成している部分である。後に詳しく説明するように、蒸発器10の外部から供給された冷媒は、第1蒸発部100、接続タンク30、及び第2蒸発部200を順に通った後、蒸発器10の外部へと排出される。
The
第1蒸発部100は、熱交換コア部110と、上部タンク120と、下部タンク130とを有している。
The
熱交換コア部110は、冷媒が流れる複数本のチューブ115を、それぞれの間にフィン116を介して積層することにより構成された部分である。チューブ115は、内部を冷媒が通るよう筒状に形成された金属製の配管である。冷媒の流れ方向に対して垂直な(つまり水平な)断面におけるチューブ115の形状は扁平形状となっており、その長手方向は空気の流れ方向(矢印X)に沿っている。
The heat
チューブ115は上下方向に沿って伸びる配管となっている。チューブ115の上端は、後述の上部タンク120に接続されている。また、チューブ115の下端は、後述の下部タンク130に接続されている。これにより、上部タンク120の内部空間と、下部タンク130の内部空間とが、複数のチューブ115によって連通されている。
The
フィン116は、波状に折り曲げられた金属板であって、隣り合うチューブ115の間に挿入されている。波状となっているフィン116のそれぞれの頂部は、チューブ115の側面にろう付けされている。冷凍サイクルの動作中においては、通過する空気の熱がチューブ115に直接伝達される他、フィン116を介してもチューブ115に伝達される。つまり、空気との接触面積がフィン116によって大きくなっており、これにより空気と冷媒との熱交換が効率的に行われる。
The
積層された全てのチューブ115及びフィン116が配置された部分、すなわち熱交換コア部110は、上記のように空気と冷媒との熱交換が行われる部分となっている。空気の流れ方向に沿って見た場合において、熱交換コア部110の左右両側となる位置には、平坦な金属板であるサイドプレート117が設けられている。サイドプレート117は、熱交換コア部110を左右両側から挟み込むことにより、熱交換コア部110を補強してその形状を維持するためのものである。
The portion where all the
上部タンク120は、冷媒を内部に貯えるための円筒形状の容器である。上部タンク120は、その中心軸を水平方向に略沿わせた状態で、熱交換コア部110の上方側に配置されている。既に述べたように、上部タンク120には、それぞれのチューブ115の上端が接続されている。上部タンク120の長手方向は、チューブ115の積層方向と一致している。
The
上部タンク120の長手方向における一端側(図1では左側)には、入口部121が形成されている。入口部121は、冷凍サイクルの絞り弁(不図示)から伸びる配管が接続される部分であって、冷凍サイクルを循環する冷媒が蒸発器10に供給される際の入口として機能する部分である。冷凍サイクルの動作中においては、入口部121から上部タンク120の内部に冷媒が供給される。このとき、冷媒は低温となっており、そのほぼ全体が液相の状態となっている。
An
冷媒は、上部タンク120からそれぞれのチューブ115に分配され、チューブ115の内部を下部タンク130側に向かって流れることとなる。このとき、既に述べたように空気と冷媒との熱交換が行われる。当該熱交換により、冷媒は空気によって加熱され、その温度を上昇させる。その際、一部の冷媒がチューブ115の内部において液相から気相へと変化することがある。気相に変化する冷媒の量は、蒸発器10に供給される冷媒の流量(冷凍サイクルに設けられた圧縮機の回転数といってもよい)によって変化する。
The refrigerant is distributed from the
下部タンク130は、上部タンク120と同様に、冷媒を内部に貯えるための円筒形状の容器である。下部タンク130は、その中心軸を上部タンク120の中心軸と平行とした状態で、熱交換コア部110の下方側に配置されている。既に述べたように、下部タンク130には、それぞれのチューブ115の下端が接続されている。
Similar to the
下部タンク130には、それぞれのチューブ115を下方側に向かって流れた冷媒が流入する。その後、冷媒は接続タンク30によって形成された流路(接続流路)を通り、第2蒸発部200へと供給される。接続タンク30の内部の構成については、後に説明する。
The refrigerant that has flowed downward through the
第2蒸発部200は、上記のような第1蒸発部100と概ね同一に構成された熱交換器である。第2蒸発部200は、空気の流れ方向において第1蒸発部100よりも上流側となる位置に配置されている。
The
第2蒸発部200は、熱交換コア部210と、下部タンク230と、上部タンク220とを有している。
The
熱交換コア部210は、冷媒が流れる複数本のチューブ215を、それぞれの間にフィン216を介して積層することにより構成された部分である。熱交換コア部210の構成は、既に説明した熱交換コア部110の構成と同一であるから、その具体的な説明を省略する。
The heat
熱交換コア部210は、熱交換コア部110と同様に空気と冷媒との熱交換が行われる部分となっている。熱交換コア部210は、空気の流れ方向に沿って見た場合におけるその外形が、熱交換コア部110の外形と完全に重なるような位置に配置されている。
The heat
空気の流れ方向に沿って見た場合において、熱交換コア部210の左右両側となる位置には、平坦な金属板であるサイドプレート217が設けられている。サイドプレート217は、熱交換コア部210を左右両側から挟み込むことにより、熱交換コア部210を補強してその形状を維持するためのものである。
When viewed along the air flow direction,
下部タンク230は、冷媒を内部に貯えるための円筒形状の容器である。下部タンク230は、その中心軸を水平方向に略沿わせた状態で、熱交換コア部210の下方側に配置されている。下部タンク230には、それぞれのチューブ215の下端が接続されている。下部タンク230の長手方向は、チューブ215の積層方向と一致している。
The
接続タンク30を介して第1蒸発部100から第2蒸発部200へと供給される冷媒は、先ず下部タンク230の内部に流入する。その後、冷媒は下部タンク230からそれぞれのチューブ215に分配され、チューブ215の内部を上部タンク220側に向かって流れることとなる。
The refrigerant supplied from the
このとき、熱交換コア部110の場合と同様に、チューブ215を流れる冷媒と空気との熱交換が行われる。当該熱交換により、冷媒は空気によって加熱され、その温度を上昇させる。その際、一部又は全ての冷媒がチューブ215の内部において液相から気相へと変化する。気相に変化する冷媒の量は、蒸発器10に供給される冷媒の流量によって変化する。
At this time, as in the case of the heat
上部タンク220は、下部タンク230と同様に、冷媒を内部に貯えるための円筒形状の容器である。上部タンク220は、その中心軸を下部タンク230の中心軸と平行とした状態で、熱交換コア部210の上方側に配置されている。上部タンク220には、それぞれのチューブ215の上端が接続されている。
Similar to the
上部タンク220の長手方向における一端側(図1では左側)には、出口部221が形成されている。出口部221は、冷凍サイクルの圧縮機へと延びる配管が接続される部分であって、冷凍サイクルを循環する冷媒が蒸発器10から排出される際の出口として機能する部分である。冷凍サイクルの動作中においては、蒸発器10において熱交換が行われた後の冷媒が、出口部221から圧縮機に向けて排出される。このとき、排出される冷媒の一部又は全部が気相の状態となっている。
An
図2を参照しながら、蒸発器10の具体的な内部構成について説明する。下部タンク130の内部のうち、下部タンク130の長手方向における中央となる位置には、円板状のセパレータ135が設けられている。下部タンク130の内部空間は、このセパレータ135によって2つの空間(第1空間131、第2空間132)に分けられている。第1空間131は図2における左側の空間であり、第2空間132は図2における右側の空間である。つまり、第1空間131の位置は、第2空間132の位置よりも入口部121寄りとなっている。第1空間131及び第2空間132の一方から他方へと冷媒が直接移動することは、セパレータ135によりできなくなっている。
A specific internal configuration of the
下部タンク130には、下部タンク130から接続タンク30に向かう冷媒の出口となる開口133及び開口134が形成されている。開口133は第1空間131側に形成されており、開口134は第2空間132側に形成されている。
The
熱交換コア部110を構成する複数のチューブ115は、下部タンク130の第1空間131に繋がる一群のチューブと、第2空間132に繋がる一群のチューブとに分類することができる。以下の説明においては、熱交換コア部110のうち第1空間131に繋がるチューブ群で構成された部分を「第1コア部111」とも表記する。また、熱交換コア部110のうち第2空間132に繋がるチューブ群で構成された部分を「第2コア部112」とも表記する。第1コア部111の位置は、第2コア部112よりも入口部121寄りとなる位置となっている。
The plurality of
下部タンク230の内部のうち、下部タンク230の長手方向における中央となる位置には、円板状のセパレータ235が設けられている。下部タンク230の内部空間は、このセパレータ235によって2つの空間(第3空間233、第4空間234)に分けられている。第3空間233は図2における右側の空間であり、第4空間234は図2における左側の空間である。つまり、第4空間234の位置は、第3空間233の位置よりも出口部221寄りとなっている。第3空間233及び第4空間234の一方から他方へと冷媒が直接移動することは、セパレータ235によりできなくなっている。
A disk-shaped
下部タンク230には、接続タンク30から下部タンク230に向かう冷媒の入口となる開口231及び開口232が形成されている。開口231は第3空間233側に形成されており、開口232は第4空間234側に形成されている。
The
熱交換コア部210を構成する複数のチューブ215は、下部タンク230の第3空間233に繋がる一群のチューブと、第4空間234に繋がる一群のチューブとに分類することができる。以下の説明においては、熱交換コア部210のうち第3空間233に繋がるチューブ群で構成された部分を「第3コア部213」とも表記する。また、熱交換コア部210のうち第4空間234に繋がるチューブ群で構成された部分を「第4コア部214」とも表記する。第3コア部213は、空気の流れ方向に沿って第2コア部112の全体と重なる位置に配置されている。第4コア部214は、空気の流れ方向に沿って第1コア部111の全体と重なる位置に配置されている。
The plurality of
下部タンク230の内部には、円板状の絞りプレート236が設けられている。第3空間233は、この絞りプレート236によって更に2つの空間(上流側空間233a、下流側空間233b)に分けられている。上流側空間233aは図2における右側の空間であり、下流側空間233bは図2における左側、つまりセパレータ235側の空間である。尚、絞りプレート236は、セパレータ235と開口231との間となる位置に設けられている。つまり、開口231は上流側空間233a側に形成されている。
A disc-shaped
図3に示されるように、絞りプレート236には円形の貫通穴237が形成されている。このため、上流側空間233aと下流側空間233bとは貫通穴237によって連通されており、両者の間で冷媒が行き来することが可能となっている。貫通穴237は、その下端部が絞りプレート236の下端部よりも高い位置となるように形成されている。図3では、絞りプレート236の下端部から貫通穴237の下端部までの高さが符号「g」で示されている。
As shown in FIG. 3, a circular through
図2を再び参照しながら、接続タンク30の構成について説明する。接続タンク30は、下部タンク130や下部タンク230と同様な円筒形状の容器である。接続タンク30は、その中心軸を下部タンク130等の中心軸と平行とした状態で、下部タンク130と下部タンク230との間となる位置(且つ、これらよりも僅かに下方となる位置)に設けられている。
The configuration of the
接続タンク30の内部空間は、下部タンク130から下部タンク230へと向かう冷媒が通る接続流路となっている。接続タンク30の内部空間は、当該空間内に配置された仕切り部材305によって2つの空間(第5空間325、第6空間326)に分けられている。第5空間325及び第6空間326の一方から他方へと冷媒が直接移動することは、仕切り部材305によりできなくなっている。
The internal space of the
接続タンク30のうち、第5空間325を区画する壁面の一部には、開口311と開口312とが形成されている。接続タンク30のうち開口311の縁と、下部タンク130のうち開口133の縁とは、互いに重ね合わせられた状態で接合されている。このため、第1空間131と第5空間325とは、開口133及び開口311を介して連通されている。尚、開口133と開口311との接続が、例えば金属製の配管を介して行われることとしてもよい。
An
同様に、接続タンク30のうち開口312の縁と、下部タンク230のうち開口231の縁とは、互いに重ね合わせられた状態で接合されている。このため、第5空間325と第3空間233(上流側空間233a)とは、開口312及び開口231を介して連通されている。開口312と開口231との接続が、例えば金属製の配管を介して行われることとしてもよい。
Similarly, the edge of the
以上のような構成により、第1空間131と上流側空間233aとが、接続タンク30の第5空間325を介して連通されている。このため、第1空間131から開口133を通じて排出された冷媒は、開口231を通じて上流側空間233aに流入することとなる。その後、当該冷媒は貫通穴237を通って下流側空間233bにも流入する。つまり、上流側空間233aには接続タンク30を通った冷媒が直接流入する一方で、下流側空間233bには接続タンク30を通った冷媒が直接流入せず、上流側空間233aから貫通穴237を通った冷媒のみが流入するような構成となっている。
With the configuration as described above, the
接続タンク30のうち、第6空間326を区画する壁面の一部には、開口313と開口314とが形成されている。接続タンク30のうち開口313の縁と、下部タンク130のうち開口134の縁とは、互いに重ね合わせられた状態で接合されている。このため、第2空間132と第6空間326とは、開口134及び開口313を介して連通されている。尚、開口134と開口313との接続が、例えば金属製の配管を介して行われることとしてもよい。
In the
同様に、接続タンク30のうち開口314の縁と、下部タンク230のうち開口232の縁とは、互いに重ね合わせられた状態で接合されている。このため、第6空間326と第4空間234とは、開口314及び開口232を介して連通されている。開口314と開口232との接続が、例えば金属製の配管を介して行われることとしてもよい。
Similarly, the edge of the
以上のような構成により、第2空間132と第4空間234とが、接続タンク30の第6空間326を介して連通されている。このため、第2空間132から開口134を通じて排出された冷媒は、開口232を通じて第4空間234に流入することとなる。
With the configuration as described above, the
冷凍サイクルが動作しているときにおける冷媒の流れについて、図4を参照しながら説明する。図4では、冷媒の流れる経路が複数の矢印で示されている。尚、経路が見やすくなるように、接続タンク30や開口133等の図示は省略されている。
The refrigerant flow when the refrigeration cycle is operating will be described with reference to FIG. In FIG. 4, the path through which the refrigerant flows is indicated by a plurality of arrows. In addition, illustration of the
入口部121から上部タンク120に流入した冷媒は、その一部が第1コア部111を通って第1空間131に流入する。当該冷媒は、接続タンク30を介して第3空間233に流入した後、第3コア部213を通って上部タンク220に流入し、出口部221から外部へと排出される。
A part of the refrigerant that has flowed into the
入口部121から上部タンク120に流入した冷媒のうち上記以外のものは、第2コア部112を通って第2空間132に流入する。当該冷媒は、接続タンク30を介して第4空間234に流入した後、第4コア部214を通って上部タンク220に流入する。ここで、第3空間233を通った冷媒の流れに合流し、出口部221から外部へと排出される。
Of the refrigerant that has flowed into the
以上のように、接続タンク30によって形成される接続流路は、第1コア部111を流れた冷媒が第3コア部213を流れ、第2コア部112を流れた冷媒が第4コア部214を流れるように、下部タンク130と下部タンク230との間を接続している。
As described above, in the connection flow path formed by the
蒸発器10を通過した直後における空気の温度、すなわち空調風の吹き出し温度は、第1コア部111等を液相の状態で流れている冷媒の温度に応じて定まる。このため、吹き出し温度を適切な温度とするには、蒸発器10の内部における液相冷媒の温度を調整する必要がある。
The temperature of the air immediately after passing through the
液相冷媒の温度は、冷凍サイクルを循環する冷媒の流量によって調整することができる。例えば、圧縮機の回転数を増加させて冷媒の流量を大きくすれば、蒸発器10の内部における液相冷媒の温度が低下する。逆に、圧縮機の回転数を低下させて冷媒の流量を小さくすれば、蒸発器10の内部における液相冷媒の温度が上昇する。
The temperature of the liquid phase refrigerant can be adjusted by the flow rate of the refrigerant circulating in the refrigeration cycle. For example, if the rotation speed of the compressor is increased to increase the flow rate of the refrigerant, the temperature of the liquid-phase refrigerant in the
本実施形態では、液相冷媒の温度を測定するための温度センサ40が設けられている。これにより、液相冷媒の温度をフィードバックしながら圧縮機の回転数を制御することが可能となっている。このような制御、すなわち、温度センサ40の測定値に基づいて圧縮機の回転数を調整する制御は、冷凍サイクルに設けられた不図示の制御装置によって行われる。尚、これまでの説明に用いた図1乃至図4においては、温度センサ40の図示が省略されている。図3及び図4に符号「MP」で示されているのは、温度センサ40によって温度測定が行われる測定点である。以下、当該測定点のことを「測定点MP」と表記する。測定点MPは、第3コア部213に含まれる複数のチューブ215のうち、特定のチューブ215の表面上の点として設定されている。
In the present embodiment, a
温度センサ40の構成について、図5を参照しながら説明する。温度センサ40は、サーミスタ41と、ケーシング42と、一対の信号線43とを有している。サーミスタ41は、所謂測温抵抗体であり、その温度に応じて抵抗値を変化させる素子である。
The configuration of the
ケーシング42は、金属によって形成された細長い容器である。ケーシング42の外径は、第2コア部112におけるチューブ115間の隙間、及び第3コア部213におけるチューブ215間の隙間のいずれよりも、僅かに大きい程度となっている。ケーシング42の先端部分には、先に説明したサーミスタ41が内部に固定されている。このため、ケーシング42のうちサーミスタ41が固定されている部分と、その内部のサーミスタ41とを合わせたものは、接触した物体の表面温度を検知する検知部として機能する。
The
信号線43は、サーミスタ41に電圧を印加して電流を流すための導線である。このとき、サーミスタ41及び信号線43に流れる電流に基づいて、上記検知部が接触している物体の表面温度を測定することが可能となっている。このため、信号線43は、上記表面温度に基づく電気信号を外部に出力するためのもの、ということもできる。それぞれの信号線43は、その一端がサーミスタ41に接続されており、ケーシング42の内部を通り外側に向かって伸びている。
The
図6に示されるように、温度センサ40は、サーミスタ41が設けられている先端部分を風上側に向けた状態で、第2コア部112側から第3コア部213側に向けて水平に挿入されている。温度センサ40が取り付けられた状態においては、ケーシング42のうちサーミスタ41が固定されている部分(検知部)が、第3コア部213における2本のチューブ215間に挟まれており、且つ測定点MPに当接した状態となっている。
As shown in FIG. 6, the
また、ケーシング42のうち検知部よりも風下側の部分は、第2コア部112における2本のチューブ115間に挟まれた状態となっている。その結果、一対の信号線43は、風下側から、第2コア部112におけるチューブ115の間の隙間を通ってサーミスタ41(検知部)に繋がっている。このような構成においては、温度センサ40は蒸発器10のうち風上側(図6では右側)に向けては露出しておらず、風下側(図6では左側)に向けてのみその一部が露出している。例えば、外気と共に導入された酸性成分(酸性雨等)に触れて温度センサ40が腐食してしまうようなことが防止されるので、温度センサ40を長期間に亘り使用することができる。
Further, a portion of the
更に具体的な温度センサ40の取り付け位置、すなわち測定点MPの詳細な位置について、図7を参照しながら説明する。図7は、第2蒸発部200を、空気の流れ方向における下流側から見て模式的に描いた図である。測定点MPは、第3コア部213を構成する複数のチューブ215のうち、下流側空間233bに接続されたチューブ215の表面上に設定されている。つまり、絞りプレート236の位置(図7では点線DLで示される位置)よりも出口部221側に配置されたチューブ215の表面温度を測定し得るような位置に、温度センサ40の検知部が配置されている。また、この測定点MPは、チューブ215の上下方向における中央よりも下方側、すなわち下部タンク230寄りとなる部分に設定されている。
Further, a specific mounting position of the
測定点MPが上記のような位置に設定されている理由について説明する。図8には、冷凍サイクルの動作中において液相冷媒が存在する領域が斜線で示されている。図8(A)に示されるのは、圧縮機の回転数が比較的大きく、蒸発器10の内部における冷媒の流量及び圧力が大きいときにおける液相冷媒の存在範囲である。同図に示されるように、圧縮機の回転数が大きいときには、第1コア部111、第2コア部112、第3コア部213、第4コア部214のいずれにおいても、そのほぼ全体を液相冷媒が流れる状態となっている。このため、測定点MPの箇所においても当然に液相冷媒が流れている。
The reason why the measurement point MP is set at the above position will be described. In FIG. 8, the region where the liquid-phase refrigerant exists during the operation of the refrigeration cycle is indicated by hatching. FIG. 8A shows the existence range of the liquid-phase refrigerant when the rotation speed of the compressor is relatively large and the flow rate and pressure of the refrigerant in the
図8(B)に示されるのは、圧縮機の回転数が図8(A)の場合よりも小さくなっているときにおける液相冷媒の存在範囲である。図8(B)の例でも、第1コア部111及び第3コア部213においては、そのほぼ全体を液相冷媒が流れる状態となっている。一方、第2コア部112の一部においては液相冷媒が流れておらず、気相冷媒が流れる状態となっている。それに伴い、第4コア部214の一部においても気相冷媒が流れる状態となっている。これは、圧縮機の回転数が減少したことに伴って冷媒の温度が上昇し、冷凍サイクル全体における液相冷媒の比率が低下した結果として生じる現象である。ただし、この場合であっても、測定点MPの箇所(第3コア部213)では液相冷媒が流れている。
FIG. 8B shows the existence range of the liquid-phase refrigerant when the rotation speed of the compressor is smaller than that in FIG. 8A. In the example of FIG. 8B as well, in the
図8(C)に示されるのは、圧縮機の回転数が図8(B)の場合よりも更に小さくなっているときにおける液相冷媒の存在範囲である。このときにおける圧縮機の回転数は、冷凍サイクルの通常動作中において変化し得る回転数の範囲のうち、最も小さな回転数となっている。図8(C)の例では、第2コア部112及び第4コア部214では液相冷媒が流れておらず、ほぼ全ての冷媒が気相の状態で流れている。また、第1コア部111の一部においても液相冷媒が流れておらず、気相冷媒が流れる状態となっている。それに伴い、第3コア部213の一部においても気相冷媒が流れる状態となっている。
FIG. 8C shows the existence range of the liquid-phase refrigerant when the rotation speed of the compressor is smaller than that in the case of FIG. 8B. The rotation speed of the compressor at this time is the smallest rotation speed in the range of the rotation speed that can be changed during the normal operation of the refrigeration cycle. In the example of FIG. 8C, liquid phase refrigerant does not flow in the
第3コア部213では、第3空間233に一旦貯えられた冷媒が上方に向かって流れる。このため、第3コア部213のうち少なくとも高さ方向の中央よりも下方側の部分、すなわち測定点MPを含む部分では、図8(C)の例においても液相冷媒が流れる状態となっている。
In the
仮に、測定点MPの箇所を気相冷媒が流れてしまうと、温度センサ40によって測定される温度は、他の部分を流れている液相冷媒の温度よりも高くなる。その場合、冷媒の温度を下げるために、圧縮機の回転数を増加させる制御が行われることとなるので、冷媒の温度は更に低くなる。つまり、循環している液相冷媒の温度が適温であるにも拘らず、冷媒の温度を更に下げるような制御が行われてしまう。その結果、冷媒の温度が低下し過ぎてしまい、チューブ115、215の表面に付着した凝縮水が凍結する現象、所謂フロストが生じてしまう。
If the gas-phase refrigerant flows through the measurement point MP, the temperature measured by the
本実施形態に係る蒸発器10においては、第3コア部213の下方側部分に設定された測定点MP、の温度を測定し得るような位置に温度センサ40が設けられている。冷媒の流量が変化したとしても、当該位置では気相冷媒が流れることが無い。これにより、液相冷媒の温度が常に正確に測定されるので、フロストの発生が防止される。
In the
尚、本実施形態では、温度センサ40による液相冷媒の温度測定が、チューブ215の壁面を介して行われる。このような態様に替えて、チューブ215にろう付けされたフィン216の表面温度を温度センサ40によって測定し、測定された温度を液相冷媒の温度として用いるような態様であってもよい。同様に、当該部分を通過する空気の温度を温度センサ40によって測定し、測定された温度を液相冷媒の温度として用いるような態様であってもよい。
In the present embodiment, the temperature measurement of the liquid-phase refrigerant by the
更に、第3コア部213を流れる液相冷媒の温度が、上記のようにチューブ215の壁面等を介して間接的に測定されるのではなく、直接的に測定されるような態様であってもよい。すなわち、温度センサ40が液相冷媒に直接触れるような構成としてもよい。
Furthermore, the temperature of the liquid-phase refrigerant flowing through the
冷凍サイクルの動作が停止し、冷媒の循環が止まった直後においては、蒸発器10の内部に存在していた液相冷媒は蒸発し、その殆どが気相になる。しかしながら、一部の液相冷媒は、液相の状態のままで蒸発器10の内部に残留する。冷凍サイクルの再始動時の制御を適切に行うこと等に鑑みれば、冷凍サイクルの動作が停止した後においても、上記のように残留している液相冷媒の温度を計測し続けることが望ましい。
Immediately after the operation of the refrigeration cycle is stopped and the circulation of the refrigerant is stopped, the liquid-phase refrigerant present in the
図9は、冷凍サイクルの動作が停止した直後における第2蒸発部200を、空気の流れ方向における下流側から見て模式的に描いた図である。本実施形態では、下部タンク230の内部に、貫通穴237が形成された絞りプレート236が設けられている。このため、下流側空間233bから上流側空間233aに向かうような液相冷媒の流れが、絞りプレート236によって抑制される。従って、下流側空間233b及びこれに繋がるチューブ215の内部は、上記のような液相冷媒の残留が最も生じやすい部分となっている。特に、貫通穴237の下端部の位置が、絞りプレート236の下端部よりも高い位置となっているので、下流側空間233bの内部には液相冷媒が残留しやすい。図9では、液相冷媒が残留している範囲が斜線で示されている。
FIG. 9 is a diagram schematically illustrating the
本実施形態では、測定点MPの位置が、絞りプレート236の位置(図7では点線DLで示される位置)よりも出口部221側に配置されたチューブ215の表面温度を測定し得るような位置となるように設定されている。すなわち、上記のような液相冷媒の残留が最も生じやすい部分において、温度センサ40による温度測定が行われる。このため、冷凍サイクルの動作が停止した後においても、残留している液相冷媒の温度を計測し続けることが可能となっている。
In the present embodiment, the position of the measurement point MP is a position at which the surface temperature of the
尚、絞りプレート236は、冷凍サイクルの動作中においても効果を発揮する。冷凍サイクルの動作中においては、上部タンク220に貯えられた冷媒が外部の圧縮機によって引き込まれる。この影響により、第3コア部213を上方に向かって流れる冷媒の流量は、第4コア部214に近い部分(図9では左側)に配置されたチューブ215において大きくなり、他の部分においては小さくなる傾向がある。その結果、第4コア部214に近いチューブ215においては、冷媒が蒸発することなく(液相のままで)上部タンク220に到達してしまい、空気の冷却が効率的に行われなくなる可能性がある。
The
しかしながら、本実施形態では、上流側空間233aから下流側空間233bへと向かう冷媒の流量が絞りプレート236によって低減される。このため、第3コア部213を上方に向かって流れる冷媒の流量が概ね均一となり、上記のように一部のチューブ215において蒸発が生じない現象の発生が防止される。
However, in the present embodiment, the flow rate of the refrigerant from the
本実施形態では、蒸発器10に設けられたチューブ115、215の全てが、第1コア部111、第2コア部112、第3コア部213、及び第4コア部214のいずれか一つに属する構成となっている。このような態様に替えて、上記のいずれにも属さないチューブが更に設けられたような構成としてもよい。
In the present embodiment, all of the
例えば、図2において、第1コア部111の左側部分に追加のチューブ115を設け、第4コア部214の左側部分にも追加のチューブ215を設けた構成とした上で、これら追加のチューブ同士が接続タンク30を介して接続されているような態様であってもよい。このように、第1コア部111、第2コア部112、第3コア部213、及び第4コア部214に含まれない経路を冷媒が通るような構成においても、以上に説明した蒸発器10の効果を奏することができる。
For example, in FIG. 2, an
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention. For example, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, but can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.
10:蒸発器
30:接続タンク
40:温度センサ
100:第1蒸発部
110:熱交換コア部
120:上部タンク
130:下部タンク
200:第2蒸発部
210:熱交換コア部
220:上部タンク
230:下部タンク
10: evaporator 30: connection tank 40: temperature sensor 100: first evaporator 110: heat exchange core 120: upper tank 130: lower tank 200: second evaporator 210: heat exchange core 220: upper tank 230: Lower tank
Claims (4)
空気の流れ方向に沿って並ぶように配置された第1蒸発部(100)及び第2蒸発部(200)と、
冷媒の温度を測定する温度測定部(40)と、を備え、
前記第1蒸発部及び前記第2蒸発部は、それぞれ、
冷媒が流れる複数のチューブ(115,215)を積層して構成された熱交換コア部(110,210)と、
それぞれの前記チューブの一端側が接続された上部タンク(120,220)と、
それぞれの前記チューブの他端側が接続された下部タンク(130,230)と、を有し、
前記第1蒸発部における前記下部タンクと、前記第2蒸発部における前記下部タンクとの間には、前記第1蒸発部から前記第2蒸発部へと冷媒を流すための接続流路(30)が形成され、
前記第1蒸発部における前記上部タンクに形成された入口部(121)から冷媒が供給され、当該冷媒が前記接続流路を通って前記第1蒸発部から前記第2蒸発部へと流入し、前記第2蒸発部における前記上部タンクに形成された出口部(221)から排出されるように構成されており、
前記第1蒸発部における前記熱交換コア部は、
複数の前記チューブのうち一部のチューブ群で構成された第1コア部(111)と、
複数の前記チューブのうち、前記第1コア部に含まれないチューブ群の少なくとも一部で構成された第2コア部(112)と、を有しており、前記第1コア部が、前記第2コア部よりも前記入口部寄りとなる位置に配置されたものであって、
前記第2蒸発部における前記熱交換コア部は、
複数の前記チューブのうち一部のチューブ群で構成された第3コア部(213)と、
複数の前記チューブのうち、前記第3コア部に含まれないチューブ群の少なくとも一部で構成された第4コア部(214)と、を有しており、
前記第3コア部は、空気の流れ方向に沿って前記第2コア部と重なる位置に配置され、
前記第4コア部は、空気の流れ方向に沿って前記第1コア部と重なる位置に配置され、
前記接続流路は、前記第1コア部を流れた冷媒が前記第3コア部を流れ、前記第2コア部を流れた冷媒が前記第4コア部を流れるように、前記第1蒸発部における前記下部タンクと、前記第2蒸発部における前記下部タンクとを接続するものであって、
前記温度測定部は、前記第3コア部を流れている冷媒の温度を直接又は間接的に測定し得る位置、に設けられており、
前記第1蒸発部における前記下部タンクの内部空間は、
前記第1コア部を構成する前記チューブが接続されている第1空間(131)と、
前記第2コア部を構成する前記チューブが接続されている第2空間(132)と、に分かれるよう区画されており、
前記第2蒸発部における前記下部タンクの内部空間は、
前記第3コア部を構成する前記チューブが接続されている第3空間(233)と、
前記第4コア部を構成する前記チューブが接続されている第4空間(234)と、に分かれるよう区画されており、
前記第3空間は更に、貫通穴(237)が形成された絞りプレート(236)によって、上流側空間(233a)と下流側空間(233b)とに分かれるよう区画されており、
前記上流側空間には前記接続流路を通った冷媒が直接流入し、
前記下流側空間には前記接続流路を通った冷媒が直接流入せず、前記上流側空間から前記貫通穴を通った冷媒のみが流入するように構成されており、
前記温度測定部が、前記下流側空間に接続された前記チューブの一部に設けられている蒸発器。 An evaporator (10) for evaporating a refrigerant inside by heat exchange with air flowing outside,
A first evaporator (100) and a second evaporator (200) arranged so as to be aligned along the air flow direction;
A temperature measuring unit (40) for measuring the temperature of the refrigerant,
The first evaporator and the second evaporator are respectively
A heat exchange core (110, 210) configured by laminating a plurality of tubes (115, 215) through which the refrigerant flows;
An upper tank (120, 220) to which one end of each tube is connected;
A lower tank (130, 230) to which the other end of each tube is connected,
A connection flow path (30) for allowing a refrigerant to flow from the first evaporator to the second evaporator between the lower tank in the first evaporator and the lower tank in the second evaporator. Formed,
Refrigerant is supplied from an inlet part (121) formed in the upper tank in the first evaporator, and the refrigerant flows from the first evaporator to the second evaporator through the connection flow path, It is configured to be discharged from an outlet portion (221) formed in the upper tank in the second evaporation portion,
The heat exchange core part in the first evaporation part is
A first core portion (111) composed of a part of the plurality of tubes,
A second core part (112) configured of at least a part of a tube group not included in the first core part among the plurality of tubes, wherein the first core part is the first core part. It is arranged at a position closer to the entrance part than the two core parts,
The heat exchange core part in the second evaporation part is
A third core portion (213) composed of a part of the plurality of tubes,
A fourth core part (214) composed of at least a part of a tube group not included in the third core part among the plurality of tubes,
The third core part is disposed at a position overlapping the second core part along the air flow direction,
The fourth core part is disposed at a position overlapping the first core part along the air flow direction,
The connection flow path is configured so that the refrigerant flowing through the first core portion flows through the third core portion and the refrigerant flowing through the second core portion flows through the fourth core portion. Connecting the lower tank and the lower tank in the second evaporator,
The temperature measuring unit is provided at a position where the temperature of the refrigerant flowing through the third core unit can be directly or indirectly measured ,
The internal space of the lower tank in the first evaporator is
A first space (131) to which the tube constituting the first core portion is connected;
A second space (132) to which the tube constituting the second core portion is connected, and is divided so as to be divided;
The internal space of the lower tank in the second evaporator is
A third space (233) to which the tube constituting the third core portion is connected;
A fourth space (234) to which the tube constituting the fourth core portion is connected, and is divided to be divided;
The third space is further divided into an upstream space (233a) and a downstream space (233b) by a throttle plate (236) in which a through hole (237) is formed,
The refrigerant that has passed through the connection channel directly flows into the upstream space,
The downstream space is configured so that the refrigerant that has passed through the connection channel does not flow directly, and only the refrigerant that has passed through the through hole flows from the upstream space,
The evaporator in which the temperature measuring unit is provided in a part of the tube connected to the downstream space .
接触した物体の表面温度を検知する検知部(41)と、
前記検知部で検知された表面温度に基づく電気信号を出力するための信号線(43)と、を有しており、
前記検知部は、前記第3コア部における前記チューブの表面に当接しており、
前記信号線は、前記第2コア部における前記チューブ間の隙間を通って前記検知部に繋がっている、請求項1に記載の蒸発器。 The temperature measuring unit is
A detection unit (41) for detecting the surface temperature of the contacted object;
A signal line (43) for outputting an electrical signal based on the surface temperature detected by the detection unit,
The detection part is in contact with the surface of the tube in the third core part,
The evaporator according to claim 1, wherein the signal line is connected to the detection unit through a gap between the tubes in the second core unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016031597A JP6569559B2 (en) | 2016-02-23 | 2016-02-23 | Evaporator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016031597A JP6569559B2 (en) | 2016-02-23 | 2016-02-23 | Evaporator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017150695A JP2017150695A (en) | 2017-08-31 |
JP6569559B2 true JP6569559B2 (en) | 2019-09-04 |
Family
ID=59741725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016031597A Active JP6569559B2 (en) | 2016-02-23 | 2016-02-23 | Evaporator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6569559B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7222892B2 (en) | 2017-08-03 | 2023-02-15 | 株式会社小糸製作所 | Vehicle lighting system, vehicle system and vehicle |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303469A (en) * | 2001-04-03 | 2002-10-18 | Mitsubishi Materials Corp | Temperature sensor mounting apparatus |
JP3676327B2 (en) * | 2002-07-23 | 2005-07-27 | 三菱重工業株式会社 | Air conditioner and indoor heat exchanger frost prevention method for air conditioner |
JP4258217B2 (en) * | 2003-01-31 | 2009-04-30 | 株式会社デンソー | Refrigeration cycle equipment |
US20070251251A1 (en) * | 2006-04-26 | 2007-11-01 | Valeo Climate Control Corp. | HVAC heat exchanger freeze control means |
JP5394008B2 (en) * | 2008-06-03 | 2014-01-22 | 株式会社ケーヒン | Temperature detector |
JP2012127606A (en) * | 2010-12-17 | 2012-07-05 | Mitsubishi Electric Corp | Refrigeration air conditioner |
JP5352658B2 (en) * | 2011-10-25 | 2013-11-27 | シャープ株式会社 | Apparatus including heat exchanger, air conditioner, and method of attaching temperature sensitive element to heat exchanger |
JP6131705B2 (en) * | 2013-05-10 | 2017-05-24 | 株式会社デンソー | Refrigerant evaporator |
JP2014228233A (en) * | 2013-05-24 | 2014-12-08 | 株式会社デンソー | Refrigerant evaporator |
-
2016
- 2016-02-23 JP JP2016031597A patent/JP6569559B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017150695A (en) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110240276A1 (en) | Heat exchanger having an inlet distributor and outlet collector | |
WO2012114719A1 (en) | Heat exchanger for air conditioner | |
WO2014115240A1 (en) | Refrigerant distributor and heat pump device using refrigerant distributor | |
WO2011048891A1 (en) | Heat exchanger and air conditioner equipped therewith | |
US10113813B2 (en) | Tube for heat exchanger | |
KR101748242B1 (en) | Refrigerant evaporator | |
JP6569559B2 (en) | Evaporator | |
JP5636215B2 (en) | Evaporator | |
JP2010216718A (en) | Heat exchanger with fin | |
JP6661880B2 (en) | Air conditioner | |
JP2011257111A5 (en) | ||
JP6972336B2 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle device | |
CN103574774B (en) | Air conditioner | |
JP2014137177A (en) | Heat exchanger and refrigerator | |
US20040035563A1 (en) | Heat exchanger | |
JP2001221535A (en) | Refrigerant evaporator | |
JP2009145010A (en) | Finless heat exchanger for air conditioner | |
CN205373151U (en) | Heat exchanger and air conditioner of air conditioner | |
JP5404571B2 (en) | Heat exchanger and equipment | |
JP6508088B2 (en) | Evaporator | |
AU2017444848B2 (en) | Heat exchanger and refrigeration cycle device | |
WO2013183508A1 (en) | Parallel-flow heat exchanger and air conditioner comprising same | |
WO2020203555A1 (en) | Heat exchanger | |
WO2021006336A1 (en) | Heat exchanger and heat exchange unit | |
JP6885857B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190722 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6569559 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |