[go: up one dir, main page]

JP6554141B2 - Determination method, exposure method, information processing apparatus, program, and article manufacturing method - Google Patents

Determination method, exposure method, information processing apparatus, program, and article manufacturing method Download PDF

Info

Publication number
JP6554141B2
JP6554141B2 JP2017104943A JP2017104943A JP6554141B2 JP 6554141 B2 JP6554141 B2 JP 6554141B2 JP 2017104943 A JP2017104943 A JP 2017104943A JP 2017104943 A JP2017104943 A JP 2017104943A JP 6554141 B2 JP6554141 B2 JP 6554141B2
Authority
JP
Japan
Prior art keywords
exposure
coefficient
optical system
evaluation value
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017104943A
Other languages
Japanese (ja)
Other versions
JP2018200390A (en
Inventor
忠央 中村
忠央 中村
僚 小泉
僚 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017104943A priority Critical patent/JP6554141B2/en
Priority to KR1020180044750A priority patent/KR102300753B1/en
Priority to CN201810491571.8A priority patent/CN108931890B/en
Publication of JP2018200390A publication Critical patent/JP2018200390A/en
Application granted granted Critical
Publication of JP6554141B2 publication Critical patent/JP6554141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706839Modelling, e.g. modelling scattering or solving inverse problems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、決定方法、露光方法、情報処理装置、プログラム及び物品の製造方法に関する。   The present invention relates to a determination method, an exposure method, an information processing apparatus, a program, and an article manufacturing method.

LSIや超LSIなどの微細な半導体デバイスを製造する際に、マスク(レチクル)のパターンを、レジスト(感光剤)が塗布された基板に投影(縮小投影)して転写する露光装置が使用されている。半導体デバイスの実装密度の向上に伴い、パターンの更なる微細化が要求され、レジストプロセスの発展とともに、露光装置の解像力の向上への対応が進められている。露光装置の解像力を向上させる技術として、露光光の短波長化と投影光学系の開口数(NA)の増大とがある。但し、このように解像力を向上させると、投影光学系の焦点深度が浅くなるため、投影光学系の結像面(焦点面)に基板の表面を合致させるフォーカス精度の向上が重要となる。   When manufacturing fine semiconductor devices such as LSIs and VLSIs, an exposure apparatus is used that transfers (projects for reduction) the pattern of a mask (reticle) onto a substrate coated with a resist (photosensitive agent) for transfer. Yes. With the improvement of the mounting density of semiconductor devices, further miniaturization of patterns is required, and along with the development of the resist process, measures to improve the resolution of the exposure apparatus are being advanced. Techniques for improving the resolving power of the exposure apparatus include shortening the wavelength of exposure light and increasing the numerical aperture (NA) of the projection optical system. However, since the depth of focus of the projection optical system becomes shallow if the resolution is improved in this way, it is important to improve the focus accuracy to make the surface of the substrate coincide with the imaging plane (focal plane) of the projection optical system.

また、露光装置の重要な性能の1つとして、複数の工程を経て基板に転写される各パターンの重ね合わせ精度がある。投影光学系の結像特性(フォーカス、倍率、歪曲収差、非点収差、波面収差など)は、重ね合わせ精度に影響を与える重要な要素である。近年では、超LSIに用いられるパターンは微細化の傾向を強め、それに伴って重ね合わせ精度の向上に対する要求が高まっている。   Further, one of the important performances of the exposure apparatus is the overlay accuracy of each pattern transferred to the substrate through a plurality of steps. The imaging characteristics (focus, magnification, distortion, astigmatism, wavefront aberration, etc.) of the projection optical system are important factors that affect the overlay accuracy. In recent years, patterns used in VLSI are becoming increasingly finer, and accordingly, there is an increasing demand for improving overlay accuracy.

露光装置においては、露光を繰り返すと、投影光学系が露光光のエネルギーの一部を吸収して加熱され、その後、放熱することによって、投影光学系の結像特性の変動(熱収差、露光収差)が発生する。このような投影光学系の結像特性の変動は、重ね合わせ精度を低下させる要因となる。そこで、投影光学系への露光光の照射による投影光学系の結像特性の変動を補償するための技術が提案されている(特許文献1及び2参照)。   In the exposure apparatus, when exposure is repeated, the projection optical system absorbs a part of the energy of the exposure light and is heated, and then dissipates heat, thereby changing the imaging characteristics of the projection optical system (thermal aberration, exposure aberration ) Occurs. Such fluctuations in the imaging characteristics of the projection optical system are factors that reduce the overlay accuracy. In view of this, a technique has been proposed for compensating for variations in the imaging characteristics of the projection optical system due to exposure light exposure to the projection optical system (see Patent Documents 1 and 2).

例えば、特許文献1には、投影光学系の結像特性の変動量を、露光量、露光時間、非露光時間などを変数とするモデル式で演算し、その演算結果に基づいて投影光学系の結像特性を補正(調整)する技術が開示されている。
かかるモデル式は、結像特性ごとに投影光学系に固有の補正係数を有し、その補正係数は、投影光学系の瞳面に形成される光源分布に依存して変化する。そのため、特許文献2には、投影光学系の瞳面に形成される光源分布が変化しても結像特性の変動を良好に補正することが可能な技術が提案されている。特許文献2では、投影光学系の瞳面に形成される各光源分布に対応した補正係数を記憶し、光源分布が変更される場合には、かかる光源分布に対応する補正係数を読み出して、投影光学系の結像特性の変動量を演算している。
For example, in Patent Document 1, the fluctuation amount of the imaging characteristic of the projection optical system is calculated by a model formula having an exposure amount, an exposure time, a non-exposure time, etc. as variables, and the projection optical system A technique for correcting (adjusting) imaging characteristics is disclosed.
The model formula has a correction coefficient specific to the projection optical system for each imaging characteristic, and the correction coefficient changes depending on the light source distribution formed on the pupil plane of the projection optical system. Therefore, Patent Document 2 proposes a technique capable of satisfactorily correcting the fluctuation of the imaging characteristic even if the light source distribution formed on the pupil plane of the projection optical system changes. In Patent Document 2, a correction coefficient corresponding to each light source distribution formed on the pupil plane of the projection optical system is stored, and when the light source distribution is changed, the correction coefficient corresponding to the light source distribution is read and projected. The fluctuation amount of the imaging characteristics of the optical system is calculated.

特公昭63−16725号公報Japanese Patent Publication No. 63-16725 特許第2828226号公報Japanese Patent No. 28828226

従来技術では、露光中における投影光学系の結像特性の変動を予測するために、投影光学系の結像特性を露光中に複数回計測し、その計測結果から補正係数を求めている。補正係数を求めた後、同一の露光条件(照明モード、マスクなど)で露光が行われる場合には、投影光学系の結像特性を露光中に計測せず、補正係数を用いて投影光学系の変動を予測する。   In the prior art, in order to predict fluctuations in the imaging characteristics of the projection optical system during exposure, the imaging characteristics of the projection optical system are measured a plurality of times during exposure, and a correction coefficient is obtained from the measurement results. When exposure is performed under the same exposure conditions (illumination mode, mask, etc.) after obtaining the correction coefficient, the projection optical system is not measured using the correction coefficient without measuring the imaging characteristics of the projection optical system during exposure. Predict fluctuations.

しかしながら、投影光学系の結像特性を露光中に複数回計測する際に、その直前の露光による露光収差の影響が投影光学系に残存していると、誤差を含む補正係数が求められてしまう。従って、補正係数を求める前、即ち、投影光学系の結像特性を露光中に複数回計測する前には、露光収差の影響を排除するための十分なクーリング(待機)時間を確保しなければならず、生産性が低下してしまう。   However, when the imaging characteristics of the projection optical system are measured a plurality of times during exposure, if the influence of the exposure aberration due to the previous exposure remains on the projection optical system, a correction coefficient including an error is obtained. . Therefore, before obtaining the correction coefficient, that is, before measuring the imaging characteristics of the projection optical system a plurality of times during exposure, it is necessary to ensure a sufficient cooling (standby) time for eliminating the influence of the exposure aberration. In other words, productivity is reduced.

本発明は、このような従来技術の課題に鑑みてなされ、投影光学系の結像特性の変動を表すモデル式に用いられる結像特性の飽和値を示す係数を決定するのに有利な決定方法を提供することを例示的目的とする。   The present invention has been made in view of such problems of the prior art, and is an advantageous determination method for determining a coefficient indicating a saturation value of an imaging characteristic used in a model formula representing a fluctuation of an imaging characteristic of a projection optical system. For illustrative purposes.

上記目的を達成するために、本発明の一側面としての決定方法は、マスクのパターンを投影光学系を介して基板に転写する露光装置において前記投影光学系の結像特性の変動を表すモデル式に用いられる前記結像特性の飽和値を示す係数を決定する決定方法であって、前記結像特性を複数回計測して得られる複数の計測値と、前記モデル式から得られた前記基板の露光の開始時における前記結像特性の予測値とに基づいて、前記結像特性の飽和値を示す第1係数を求める第1工程と、前記第1係数と、前記露光装置に記憶されている前記モデル式に用いられる前記結像特性の飽和値を示す第2係数との差が許容範囲に収まっているかどうかを判定する第2工程と、前記差が前記許容範囲に収まっている場合に、前記第1係数が前記モデル式に用いられるように前記係数を更新する第3工程と、前記差が前記許容範囲に収まっていない場合に、前記予測値から得られる前記第1係数の第1評価値と、前記第2係数を求める際に前記モデル式から得られた前記結像特性の予測値から得られる前記第2係数の第2評価値とを比較し、前記第1評価値が前記第2評価値未満であれば、前記第1係数を仮の係数として前記係数を更新し、前記第1評価値が前記第2評価値以上であれば、前記係数を更新しない第4工程と、を有することを特徴とする。   In order to achieve the above object, a determination method according to one aspect of the present invention is a model equation that represents a variation in imaging characteristics of a projection optical system in an exposure apparatus that transfers a mask pattern onto a substrate via the projection optical system. A determination method for determining a coefficient indicating a saturation value of the imaging characteristic used in a plurality of measurement values obtained by measuring the imaging characteristic a plurality of times, and the substrate obtained from the model formula A first step of obtaining a first coefficient indicating a saturation value of the imaging characteristic based on the predicted value of the imaging characteristic at the start of exposure, the first coefficient, and the exposure apparatus are stored in the exposure apparatus A second step of determining whether a difference between the second equation and the second coefficient indicating a saturation value of the imaging characteristic used in the model equation is within an allowable range, and the difference is within the allowable range; The first coefficient is A third step of updating the coefficient so as to determine the first evaluation value of the first coefficient obtained from the predicted value and the second coefficient when the difference is not within the allowable range In comparison with the second evaluation value of the second coefficient obtained from the predicted value of the imaging characteristics obtained from the model formula, if the first evaluation value is less than the second evaluation value, A fourth step of updating the coefficient using a first coefficient as a temporary coefficient and not updating the coefficient if the first evaluation value is equal to or greater than the second evaluation value.

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。   Further objects or other aspects of the present invention will be made clear by the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、投影光学系の結像特性の変動を表すモデル式に用いられる結像特性の飽和値を示す係数を決定するのに有利な決定方法を提供することができる。   According to the present invention, for example, it is possible to provide an advantageous determination method for determining a coefficient indicating a saturation value of an image formation characteristic used in a model expression representing a change in image formation characteristic of a projection optical system.

露光装置の構成を示す概略図である。It is the schematic which shows the structure of exposure apparatus. 投影光学系の収差の変動の一例を示す図である。It is a figure which shows an example of the fluctuation | variation of the aberration of a projection optical system. 投影光学系の収差の変動の一例を示す図である。It is a figure which shows an example of the fluctuation | variation of the aberration of a projection optical system. 投影光学系の収差の変動の一例を示す図である。It is a figure which shows an example of the fluctuation | variation of the aberration of a projection optical system. 補正係数を正しく求めることができない理由を説明するための図である。It is a figure for demonstrating the reason a correction coefficient cannot be calculated | required correctly. 本発明の一側面としての決定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the determination method as 1 side surface of this invention. 投影光学系の結像特性(フォーカス)の予測値の一例を示す図である。It is a figure which shows an example of the predicted value of the imaging characteristic (focus) of a projection optical system. 重み係数を説明するための図である。It is a figure for demonstrating a weighting coefficient.

以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same reference number is attached | subjected about the same member and the overlapping description is abbreviate | omitted.

図1は、露光装置1の構成を示す概略図である。露光装置1は、基板を露光する、具体的には、ステップ・アンド・スキャン方式でマスク(レチクル)のパターンを投影光学系を介して基板に転写するリソグラフィー装置である。但し、露光装置1は、ステップ・アンド・リピート方式やその他の露光方式を適用することも可能である。   FIG. 1 is a schematic diagram showing the configuration of the exposure apparatus 1. The exposure apparatus 1 is a lithography apparatus that exposes a substrate, specifically, transfers a mask (reticle) pattern to the substrate via a projection optical system by a step-and-scan method. However, the exposure apparatus 1 can also apply a step-and-repeat method or another exposure method.

露光装置1は、光源部101からの光を用いてマスク109を照明する照明光学系104と、投影光学系110と、基板115を保持して移動する基板ステージ116とを有する。また、露光装置1は、開口駆動部112と、レンズ駆動部113と、レーザ干渉計118と、投光光学系121と、検出光学系122と、計測部123とを有する。更に、露光装置1は、光源制御部102と、照明制御部108と、投影制御部114と、ステージ制御部120と、主制御部125とを有する。   The exposure apparatus 1 includes an illumination optical system 104 that illuminates the mask 109 using light from the light source unit 101, a projection optical system 110, and a substrate stage 116 that holds and moves the substrate 115. The exposure apparatus 1 also includes an aperture driving unit 112, a lens driving unit 113, a laser interferometer 118, a light projecting optical system 121, a detection optical system 122, and a measuring unit 123. Further, the exposure apparatus 1 includes a light source control unit 102, an illumination control unit 108, a projection control unit 114, a stage control unit 120, and a main control unit 125.

光源部101は、例えば、KrFやArF等のガスが封入されたパルス光源を含み、波長約248nmの遠紫外領域の光を射出する。また、光源部101は、狭帯化モジュール、モニタモジュール、シャッタなども含む。狭帯化モジュールは、共振器を構成するフロントミラー、波長(露光波長)を狭帯化するための回折格子及びプリズムなどからなり、モニタモジュールは、波長の安定性やスペクトル幅をモニタするための分光器及びディテクタなどからなる。   The light source unit 101 includes, for example, a pulse light source in which a gas such as KrF or ArF is sealed, and emits light in the far ultraviolet region having a wavelength of about 248 nm. The light source unit 101 also includes a narrowing module, a monitor module, a shutter, and the like. The narrowing module comprises a front mirror constituting a resonator, a diffraction grating for narrowing the wavelength (exposure wavelength) and a prism, and the monitor module monitors the wavelength stability and the spectral width. It consists of a spectroscope and a detector.

光源制御部102は、光源部101におけるガスの交換動作、光源部101から射出される光の波長安定化動作、光源部101における放電印加電圧などを制御する。本実施形態では、光源制御部102は、光源部101を単独で制御するのではなく、主制御部125の制御下において、光源部101を制御する。   The light source control unit 102 controls a gas exchange operation in the light source unit 101, a wavelength stabilization operation of light emitted from the light source unit 101, a discharge applied voltage in the light source unit 101, and the like. In the present embodiment, the light source control unit 102 does not control the light source unit 101 alone, but controls the light source unit 101 under the control of the main control unit 125.

光源部101から射出された光は、照明光学系104に入射する。照明光学系104に入射した光は、ビーム整形光学系(不図示)を介して所定のビーム形状に整形され、オプティカルインテグレータ(不図示)に入射する。かかるオプティカルインテグレータは、マスク109を均一な照度分布で照明するために、多数の2次光源を形成する。   The light emitted from the light source unit 101 enters the illumination optical system 104. The light incident on the illumination optical system 104 is shaped into a predetermined beam shape through a beam shaping optical system (not shown), and is incident on an optical integrator (not shown). Such an optical integrator forms a large number of secondary light sources in order to illuminate the mask 109 with a uniform illuminance distribution.

照明光学系104に含まれる開口絞り105は、略円形形状の開口部を有する。照明制御部108は、主制御部125の制御下において、開口絞り105の開口部の直径や照明光学系104の開口数(NA)が所定の値となるように、照明光学系104の各部を制御する。投影光学系110の開口数(NA)に対する照明光学系104の開口数の比の値がコヒーレンスファクター(σ値)であるため、照明制御部108は、開口絞り105の開口部の直径を制御することで、σ値を調整(設定)することができる。   The aperture stop 105 included in the illumination optical system 104 has a substantially circular opening. The illumination control unit 108 controls each part of the illumination optical system 104 so that the diameter of the opening of the aperture stop 105 and the numerical aperture (NA) of the illumination optical system 104 have predetermined values under the control of the main control unit 125. Control. Since the ratio of the numerical aperture of the illumination optical system 104 to the numerical aperture (NA) of the projection optical system 110 is the coherence factor (σ value), the illumination control unit 108 controls the diameter of the aperture of the aperture stop 105. Thus, the σ value can be adjusted (set).

照明光学系104の光路上には、マスク109を照明する光の一部を反射する(取り出す)ためのハーフミラー106が配置されている。ハーフミラー106で反射される光の光路上には、紫外光用のフォトセンサ107が配置されている。フォトセンサ107は、マスク109を照明する光の強度(即ち、露光エネルギー)に対応した出力を生成する。フォトセンサ107の出力は、光源部101のパルス発光ごとに積分を行う積分回路(不図示)によって1パルス当たりの露光エネルギーに変換され、照明制御部108を介して主制御部125に入力される。   On the optical path of the illumination optical system 104, a half mirror 106 for reflecting (extracting) part of the light that illuminates the mask 109 is disposed. A photo sensor 107 for ultraviolet light is disposed on the optical path of the light reflected by the half mirror 106. The photosensor 107 generates an output corresponding to the intensity of light illuminating the mask 109 (ie, the exposure energy). The output of the photo sensor 107 is converted into exposure energy per pulse by an integration circuit (not shown) that performs integration for each pulse emission of the light source unit 101, and is input to the main control unit 125 via the illumination control unit 108. .

マスク109は、基板115に転写すべきパターン(回路パターン)を有する原版であり、マスクステージ(不図示)に保持される。マスクステージは、マスク109を保持し、例えば、リニアモータなどを利用して3次元方向(投影光学系110の光軸方向及び光軸に直交する面内)に移動する。露光装置1は、ステップ・アンド・スキャン方式を採用しているため、マスク109と基板115とを走査(スキャン)することによって、マスク109のパターンを基板115に転写する。   The mask 109 is an original plate having a pattern (circuit pattern) to be transferred to the substrate 115, and is held by a mask stage (not shown). The mask stage holds the mask 109 and moves in a three-dimensional direction (in the plane perpendicular to the optical axis direction and the optical axis of the projection optical system 110) using, for example, a linear motor. Since the exposure apparatus 1 employs a step-and-scan method, the pattern of the mask 109 is transferred to the substrate 115 by scanning the mask 109 and the substrate 115.

投影光学系110は、複数の光学素子(レンズなど)を含み、マスク109のパターンを所定の縮小倍率β(例えば、β=1/4)で縮小して基板115(のショット領域)に投影する。   The projection optical system 110 includes a plurality of optical elements (such as lenses), and reduces the pattern of the mask 109 by a predetermined reduction ratio β (for example, β = 1/4) and projects it on (the shot area of) the substrate 115 .

投影光学系110の瞳面(マスク109に対するフーリエ変換面)には、略円形形状の開口部を有する開口絞り111が配置されている。開口駆動部112は、モータなどを含み、開口絞り111の開口部の直径が所定の値となるように、開口絞り111を駆動する。また、レンズ駆動部113は、空気圧や圧電素子などを利用して、投影光学系110を構成する光学素子、本実施形態では、レンズの一部(例えば、フィールドレンズ)を投影光学系110の光軸方向に駆動する。投影制御部114は、主制御部125の制御下において、開口駆動部112及びレンズ駆動部113を制御する。本実施形態では、投影光学系110を構成するレンズの駆動によって、投影光学系110の種々の収差の変動を低減し、倍率(投影倍率)を良好に維持して歪曲誤差を低減させている。   On the pupil plane of the projection optical system 110 (Fourier transform plane with respect to the mask 109), an aperture stop 111 having a substantially circular aperture is disposed. The aperture driving unit 112 includes a motor and the like, and drives the aperture stop 111 such that the diameter of the aperture of the aperture stop 111 has a predetermined value. In addition, the lens driving unit 113 is an optical element constituting the projection optical system 110 using air pressure or a piezoelectric element, and in the present embodiment, a part of the lens (for example, a field lens) Drive in the axial direction. The projection control unit 114 controls the aperture driving unit 112 and the lens driving unit 113 under the control of the main control unit 125. In the present embodiment, by driving the lens constituting the projection optical system 110, the fluctuation of various aberrations of the projection optical system 110 is reduced, and the magnification (projection magnification) is maintained well to reduce distortion errors.

基板115は、マスク109のパターンが投影(転写)される基板である。基板115には、フォトレジスト(感光剤)が塗布されている。基板115は、ウエハ、ガラスプレート、その他の基板を含む。   The substrate 115 is a substrate onto which the pattern of the mask 109 is projected (transferred). A photoresist (photosensitive agent) is applied to the substrate 115. The substrate 115 includes a wafer, a glass plate, and other substrates.

基板ステージ116は、基板115を保持し、例えば、リニアモータなどを利用して3次元方向(投影光学系110の光軸方向及び光軸に直交する面内)に移動する。基板ステージ116に固定された移動ミラー117までの距離をレーザ干渉計118で計測することによって、投影光学系110の光軸に直交する面内における基板ステージ116の位置が検出される。ステージ制御部120は、主制御部125の制御下において、レーザ干渉計118の計測結果に基づいて、基板ステージ116の位置を制御する(例えば、基板ステージ116を所定の位置に移動させる)。   The substrate stage 116 holds the substrate 115, and moves in a three-dimensional direction (in the plane orthogonal to the optical axis direction of the projection optical system 110 and the optical axis) using, for example, a linear motor or the like. By measuring the distance to the moving mirror 117 fixed to the substrate stage 116 with the laser interferometer 118, the position of the substrate stage 116 in the plane orthogonal to the optical axis of the projection optical system 110 is detected. The stage control unit 120 controls the position of the substrate stage 116 based on the measurement result of the laser interferometer 118 under the control of the main control unit 125 (for example, the substrate stage 116 is moved to a predetermined position).

投光光学系121と検出光学系122とは、基板115の投影光学系110の光軸方向の位置(即ち、基板115の表面の高さ)を検出するフォーカス検出系を構成する。投光光学系121は、基板115に塗布されるフォトレジストを感光させない光(非露光光)を投光して基板115の上の各位置に集光する。基板115の各位置で反射された光は、検出光学系122に入射する。検出光学系122には、基板115の各位置で反射される光に対応して複数の位置検出用の受光素子が配置されている。具体的には、複数の受光素子は、各受光素子の受光面と基板115の上の反射点とが結像光学系を介して略共役となるように、配置されている。従って、投影光学系110の光軸方向における基板115の位置ずれは、検出光学系122に配置された各受光素子に入射する光の位置ずれとして検出される。   The light projection optical system 121 and the detection optical system 122 constitute a focus detection system for detecting the position of the substrate 115 in the optical axis direction of the projection optical system 110 (that is, the height of the surface of the substrate 115). The light projecting optical system 121 projects light (non-exposure light) that does not sensitize the photoresist applied to the substrate 115 and focuses it on each position on the substrate 115. The light reflected at each position of the substrate 115 enters the detection optical system 122. In the detection optical system 122, a plurality of light receiving elements for position detection are arranged corresponding to the light reflected at each position of the substrate 115. Specifically, the plurality of light receiving elements are arranged such that the light receiving surface of each light receiving element and the reflection point on the substrate 115 are substantially conjugate via the imaging optical system. Therefore, the positional deviation of the substrate 115 in the optical axis direction of the projection optical system 110 is detected as the positional deviation of the light incident on each light receiving element arranged in the detection optical system 122.

計測部123は、投影光学系110の像面側、本実施形態では、基板ステージ116に配置されている。計測部123は、投影光学系110を通過した光を検出し、投影光学系110の結像特性を計測する。計測部123は、例えば、投影光学系110からの光を通過させるピンホールを有する遮光板と、かかるピンホールを通過した光を検出する光電変換素子とを含む。   The measurement unit 123 is disposed on the image plane side of the projection optical system 110, in the present embodiment, the substrate stage 116. The measuring unit 123 detects the light having passed through the projection optical system 110 and measures the imaging characteristics of the projection optical system 110. The measurement unit 123 includes, for example, a light shielding plate having a pinhole that allows the light from the projection optical system 110 to pass, and a photoelectric conversion element that detects the light that has passed through the pinhole.

主制御部125は、CPUやメモリなどを含むコンピュータ(情報処理装置)で構成され、光源制御部102、照明制御部108、投影制御部114、ステージ制御部120などを介して、露光装置1の全体(露光装置1の各部)を制御する。また、本実施形態では、主制御部125は、後述するように、投影光学系110の結像特性の変動を表すモデル式に用いられる補正係数を決定する機能を有することも可能である。   The main control unit 125 is configured by a computer (information processing device) including a CPU, a memory, and the like. The main control unit 125 includes a light source control unit 102, an illumination control unit 108, a projection control unit 114, a stage control unit 120, and the like. The whole (each part of the exposure apparatus 1) is controlled. In the present embodiment, the main control unit 125 can also have a function of determining a correction coefficient used in a model formula representing a change in imaging characteristics of the projection optical system 110, as will be described later.

ここで、露光光の照射による投影光学系110の結像性能の変動を表すモデル式、及び、かかるモデル式を定量化するために用いる露光条件ごとの結像特性の変動を補償するための補正係数について説明する。本実施形態において、投影光学系110の結像特性とは、フォーカス、倍率、歪曲収差、非点収差、球面収差、コマ収差及び波面収差のうち少なくとも1つを含むものとする。また、波面収差は、当業界でよく知られているように、波面形状をZernike多項式で展開した各項として表現することができる。また、これらを総じて「収差」と称することもある。   Here, a model expression that represents the variation of the imaging performance of the projection optical system 110 due to the irradiation of the exposure light, and a correction for compensating the variation of the imaging characteristic for each exposure condition used to quantify the model equation. The coefficient will be described. In the present embodiment, the imaging characteristics of the projection optical system 110 include at least one of focus, magnification, distortion, astigmatism, spherical aberration, coma and wavefront aberration. The wavefront aberration can be expressed as each term obtained by developing the wavefront shape with a Zernike polynomial, as is well known in the art. In addition, these may be collectively referred to as “aberration”.

図2は、投影光学系110の収差の変動(経時変化)の一例を示す図である。図2では、横軸は、時刻tを示し、縦軸は、投影光学系110のある像高における収差量Fを示している。ΔFは、投影光学系110の収差変動量を示し、収差変動量ΔFは、像高ごとに異なる値となる。また、投影光学系110の初期(即ち、露光前)の収差量をF0とする。   FIG. 2 is a view showing an example of the fluctuation (change over time) of the aberration of the projection optical system 110. In FIG. 2, the horizontal axis indicates time t, and the vertical axis indicates the aberration amount F at a certain image height of the projection optical system 110. ΔF indicates the aberration fluctuation amount of the projection optical system 110, and the aberration fluctuation amount ΔF takes a value that differs for each image height. Further, the initial aberration amount of the projection optical system 110 (that is, before exposure) is F0.

図2を参照するに、露光が時刻t0から開始されると、時間の経過とともに収差が変動し、時刻t1で一定の収差量(最大変動量)F1に安定する。時刻t1以降は、投影光学系110に光(露光光)が入射しても、投影光学系110に吸収される熱エネルギーと投影光学系110から放出される熱エネルギーとが平衡状態に達しているため、収差量はF1から変化しない。そして、露光が時刻t2で終了すると、時間の経過とともに収差は初期の状態に戻り、時刻t3で初期の収差量F0になる。   Referring to FIG. 2, when the exposure is started from time t0, the aberration fluctuates with time and stabilizes at a constant aberration amount (maximum fluctuation amount) F1 at time t1. After time t1, even if light (exposure light) is incident on the projection optical system 110, the thermal energy absorbed by the projection optical system 110 and the thermal energy emitted from the projection optical system 110 reach an equilibrium state Therefore, the amount of aberration does not change from F1. When the exposure ends at time t2, the aberration returns to the initial state with the passage of time, and reaches the initial aberration amount F0 at time t3.

図2に示す時定数TS1は、投影光学系110の熱伝達特性の時定数である。これらの時定数は、投影光学系110に固有の値であり、収差ごとに異なる値である。従って、時定数は、例えば、露光装置1のメンテナンス時に、投影光学系110ごとに、且つ、投影光学系110の収差ごとに取得する。   2 is a time constant of the heat transfer characteristic of the projection optical system 110. These time constants are values unique to the projection optical system 110, and are different values for each aberration. Therefore, the time constant is acquired for each projection optical system 110 and for each aberration of the projection optical system 110, for example, during maintenance of the exposure apparatus 1.

図2に示す収差の最大変動量F1は、単位光量(単位露光エネルギー)当たりの収差変動量Kと、露光時間、露光量、走査速度、露光領域情報などのパラメータから決定される実露光エネルギーQを用いて、以下の式(1)で表される。   The maximum fluctuation amount F1 of the aberration shown in FIG. 2 is the actual exposure energy Q determined from the aberration fluctuation amount K per unit light quantity (unit exposure energy) and parameters such as exposure time, exposure amount, scanning speed, exposure area information and the like. Is represented by the following formula (1).

F1=K×Q ・・・(1)
ある時刻における収差量をΔFとする。この場合、露光を行っている状態では、ある時刻から時間Δtだけ経過した後の収差量ΔFk+1は、最大変動量F1と、時定数TS1とを用いて、以下の式(2)で近似される。同様に、露光を行っていない状態では、ある時刻から時間Δtだけ経過した後の収差量ΔFk+1は、以下の式(3)で近似される。
F1 = K × Q (1)
The amount of aberration at a certain time is represented by ΔF k . In this case, in the exposure state, the aberration amount ΔF k + 1 after a lapse of time Δt from a certain time is approximated by the following equation (2) using the maximum fluctuation amount F1 and the time constant TS1. Ru. Similarly, in a state where exposure has not been performed, the aberration amount ΔF k + 1 after a lapse of time Δt from a certain time is approximated by the following equation (3).

ΔFk+1=ΔF+F1×(1−exp(−Δt/TS1)) ・・・(2)
ΔFk+1=ΔF×exp(−Δt/TS1) ・・・(3)
図2に示す投影光学系110の収差の変動(図2に示す曲線)は、式(1)、式(2)及び式(3)を用いてモデル化される。但し、式(1)、式(2)及び式(3)は、本実施形態における一例であり、他の式を用いてモデル化してもよい。
ΔF k + 1 = ΔF k + F1 × (1-exp (−Δt / TS1)) (2)
ΔF k + 1 = ΔF k × exp (−Δt / TS1) (3)
The variation of the aberration of the projection optical system 110 shown in FIG. 2 (curve shown in FIG. 2) is modeled using Equation (1), Equation (2) and Equation (3). However, Formula (1), Formula (2), and Formula (3) are an example in this embodiment, and you may model using another Formula.

投影光学系110の収差の変動を表すモデル式は、式(2)で表される露光モデル式と、式(3)で表される非露光モデル式とを含む。露光モデル式は、投影光学系110への露光光の照射中における投影光学系110の収差の変動、即ち、露光を行っている間の投影光学系110の収差の変動を表す。非露光モデル式は、投影光学系110への露光光の照射を停止した状態における投影光学系110の収差の変動、即ち、露光を終了した後の投影光学系110の収差の変動を表す。   The model formula representing the variation in aberration of the projection optical system 110 includes an exposure model formula expressed by formula (2) and a non-exposure model formula expressed by formula (3). The exposure model equation represents the fluctuation of the aberration of the projection optical system 110 during the irradiation of the exposure light to the projection optical system 110, that is, the fluctuation of the aberration of the projection optical system 110 during the exposure. The non-exposure model equation represents the fluctuation of the aberration of the projection optical system 110 in a state in which the irradiation of the exposure light to the projection optical system 110 is stopped, that is, the fluctuation of the aberration of the projection optical system 110 after the completion of the exposure.

式(2)に用いられている最大変動量F1は、投影光学系110の収差の飽和値を示し、後述する補正係数である。補正係数は、投影光学系110の収差ごとに取得され、時定数の異なる複数のモデル式で予測してもよい。   The maximum fluctuation amount F1 used in the equation (2) represents a saturation value of the aberration of the projection optical system 110, and is a correction coefficient to be described later. The correction coefficient is acquired for each aberration of the projection optical system 110, and may be predicted by a plurality of model equations having different time constants.

ここでは、補正係数は、互いに異なる複数の時定数TS1、TS2及びTS3のモデル式を用いて予測している。複数の時定数TS1、TS2及びTS3のそれぞれのモデル式について、ある時刻における投影光学系110の収差の予測値をF_TS1、F_TS2及びF_TS3とする。この場合、投影光学系110の収差の予測値は、モデル式ごとの予測値の総和(F_TS1+F_TS2+F_TS3)となる。なお、ここでは、投影光学系110の収差を3つのモデル式で予測しているが、これに限定されるものではない。   Here, the correction coefficient is predicted using a plurality of time constants TS1, TS2, and TS3 different from one another. For each model equation of the plurality of time constants TS1, TS2, and TS3, let F_TS1, F_TS2, and F_TS3 be the predicted values of aberration of the projection optical system 110 at a certain time. In this case, the predicted value of the aberration of the projection optical system 110 is the sum of predicted values for each model formula (F_TS1 + F_TS2 + F_TS3). Here, although the aberration of the projection optical system 110 is predicted by three model equations, the present invention is not limited to this.

露光条件を変更すると、投影光学系110に入射する光(露光光)のエネルギー密度分布が変化するため、投影光学系110の収差変動量及びその像高依存性が変化する。従って、補正係数は、露光条件ごとに求めなければならない。ここで、露光条件とは、例えば、有効光源の形状、マスク109のパターン、マスク109を照明する照明領域などを含む。   When the exposure condition is changed, the energy density distribution of light (exposure light) incident on the projection optical system 110 is changed, so that the aberration fluctuation amount of the projection optical system 110 and the image height dependency thereof are changed. Therefore, the correction coefficient must be obtained for each exposure condition. Here, the exposure conditions include, for example, the shape of the effective light source, the pattern of the mask 109, the illumination area for illuminating the mask 109, and the like.

異なる露光条件、例えば、第1露光条件及び第2露光条件のそれぞれについて、補正係数を求める場合について考える。この場合、補正係数を高精度に求めるためには、例えば、図3に示すように、異なる露光条件での残存収差の影響がなくなるまで、十分なクーリング(待機)時間を確保すればよい。但し、クーリング時間を設けることで、生産性が低下してしまう。図3は、投影光学系110の収差の変動の一例を示す図である。図3では、横軸は、時刻を示し、縦軸は、投影光学系110の収差(収差量)を示している。図3には、第1露光条件で基板115を露光した場合の投影光学系110の収差の変動、及び、第2露光条件で基板115を露光した場合の投影光学系110の収差の変動が示されている。   Consider the case where correction coefficients are determined for different exposure conditions, for example, each of the first exposure condition and the second exposure condition. In this case, in order to obtain the correction coefficient with high accuracy, for example, as shown in FIG. 3, a sufficient cooling (waiting) time may be secured until the influence of the residual aberration under different exposure conditions disappears. However, productivity is lowered by providing a cooling time. FIG. 3 is a diagram illustrating an example of aberration variation of the projection optical system 110. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the aberration (aberration amount) of the projection optical system 110. FIG. 3 shows the variation of the aberration of the projection optical system 110 when the substrate 115 is exposed under the first exposure condition, and the variation of the aberration of the projection optical system 110 when the substrate 115 is exposed under the second exposure condition. Has been.

また、式(1)乃至式(3)は、異なる露光条件間でも成り立つ。従って、例えば、図4に示すように、第1露光条件の直前ジョブにおける補正係数が正しく求められていれば、クーリング時間を省略しても、それぞれの露光条件における補正係数も正しく求めることができる。但し、第1露光条件の直前ジョブにおける補正係数に誤差がある場合に、図4に示すように、クーリング時間を省略してしまうと、それぞれの露光条件における補正係数を正しく求めることができない。図4は、投影光学系110の収差の変動の一例を示す図である。図4では、横軸は、時刻を示し、縦軸は、投影光学系110の収差(収差量)を示している。図4には、第1露光条件、第2露光条件及び第3露光条件のそれぞれで基板115を露光した場合の投影光学系110の収差の変動が示されている。   In addition, Expressions (1) to (3) are also established between different exposure conditions. Therefore, for example, as shown in FIG. 4, if the correction coefficient in the job immediately before the first exposure condition is correctly determined, the correction coefficient in each exposure condition can also be correctly determined even if the cooling time is omitted. . However, when there is an error in the correction coefficient in the job immediately before the first exposure condition, as shown in FIG. 4, if the cooling time is omitted, the correction coefficient under each exposure condition can not be obtained correctly. FIG. 4 is a diagram illustrating an example of the variation in aberration of the projection optical system 110. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates the aberration (aberration amount) of the projection optical system 110. FIG. 4 shows variations in the aberration of the projection optical system 110 when the substrate 115 is exposed under each of the first exposure condition, the second exposure condition, and the third exposure condition.

ここで、ある露光条件の直前ジョブにおける補正係数に誤差がある場合に、ある露光条件における補正係数を正しく求めることができない理由について説明する。理解を容易にするために、まず、直前ジョブにおける補正係数に誤差がない場合について説明する。   Here, when there is an error in the correction coefficient in a job immediately before a certain exposure condition, the reason why the correction coefficient under a certain exposure condition can not be obtained correctly will be described. In order to facilitate understanding, a case where there is no error in the correction coefficient in the immediately preceding job will be described first.

ここで、例えば、1ロットの露光中に投影光学系110の結像特性、具体的には、フォーカスを複数回計測するものとし、1ロットの露光時間は、400秒とする。また、時定数TS1は、1種類とし、200秒とする。露光開始時(t=0)における直前ジョブによる投影光学系110のフォーカスの予測値を15nmとする。かかる予測値は、式(1)乃至式(3)を用いて予測するため、補正係数に誤差がなければ、露光開始時における予測値にも誤差がないことになる。投影光学系110のフォーカスを、実際に、露光開始時に計測したときの計測値を図5(a)に示す。   Here, for example, the imaging characteristics of the projection optical system 110 during the exposure of one lot, specifically, the focus is measured a plurality of times, and the exposure time of one lot is 400 seconds. Also, the time constant TS1 is of one type and is 200 seconds. The predicted value of the focus of the projection optical system 110 by the immediately preceding job at the start of exposure (t = 0) is 15 nm. Since the predicted value is predicted using the equations (1) to (3), if there is no error in the correction coefficient, the predicted value at the start of exposure will also have no error. The measured value when the focus of the projection optical system 110 is actually measured at the start of exposure is shown in FIG.

露光後のある時刻における予測値をΔF2、露光後の次の時刻における予測値をΔF3とすると、式(2)及び式(3)を用いて(即ち、露光モデル式と非露光モデル式とを使い分けることで)、以下の式が得られる。   Assuming that the predicted value at a certain time after exposure is ΔF 2 and the predicted value at the next time after exposure is ΔF 3, equations (2) and (3) are used (ie, exposure model equation and non-exposure model equation By using properly), the following formula is obtained.

ΔF2=ΔF1+F1×(1−exp(−Δt/TS1))
ΔF3=ΔF2×(1−exp(−Δt/TS1))
かかる式にΔF1=15nmを代入し、投影光学系110のフォーカスを複数回計測して得られた複数の計測値に対してフィッティングを行うことで補正係数(最大変動量F1)を求める。この場合、補正係数は、100nmとなる。
ΔF2 = ΔF1 + F1 × (1−exp (−Δt / TS1))
ΔF3 = ΔF2 × (1-exp (−Δt / TS1))
Substituting ΔF1 = 15 nm into such an equation, and fitting a plurality of measurement values obtained by measuring the focus of the projection optical system 110 a plurality of times, thereby obtaining a correction coefficient (maximum variation F1). In this case, the correction coefficient is 100 nm.

次に、直前ジョブにおける補正係数に誤差がある場合、即ち、露光開始時における予測値に誤差(予測誤差)がある場合を考える。ここで、予測誤差を15nmとすると、図5(a)に示すように、露光開始時(t=0)での予測値は、30nmとなる。予測値に誤差があっても、各計測値間の変動量は変わらないため、図5(a)に実線のカーブで予測値に対して補正係数を求めることになる。この場合、上述の式に対してΔF1=30nmを代入するため、補正係数は、115nmとなる。   Next, it is assumed that there is an error in the correction coefficient in the immediately preceding job, that is, there is an error (prediction error) in the predicted value at the start of exposure. Here, if the prediction error is 15 nm, as shown in FIG. 5A, the predicted value at the start of exposure (t = 0) is 30 nm. Even if there is an error in the predicted value, the amount of variation between the measured values does not change. Therefore, a correction coefficient is obtained for the predicted value with the solid curve in FIG. In this case, in order to substitute ΔF1 = 30 nm into the above equation, the correction coefficient is 115 nm.

このような異なる補正係数に対して、ΔF1=0としたときの式(2)を図5(b)に示す。図5(b)から明らかなように、予測誤差がある場合には、誤差を含む補正係数を求めてしまうため、真の補正係数に対して変化の大きいカーブとなる。このように、予測誤差がある場合には、結果的に、誤った補正係数が求められる。   Equation (2) when ΔF 1 = 0 is shown in FIG. 5B for such different correction coefficients. As is clear from FIG. 5B, when there is a prediction error, a correction coefficient including the error is obtained, so that the curve has a large change with respect to the true correction coefficient. Thus, when there is a prediction error, an incorrect correction coefficient is obtained as a result.

そこで、本実施形態では、投影光学系110の結像特性の変動を表すモデル式に用いられる補正係数を決定する決定方法において、クーリング時間を短縮しながらも補正係数の精度を段階的に向上させる方法を提案する。   Therefore, in the present embodiment, in the determination method for determining the correction coefficient used in the model formula representing the fluctuation of the imaging characteristic of the projection optical system 110, the accuracy of the correction coefficient is gradually improved while shortening the cooling time. Suggest a method.

図6は、本実施形態における投影光学系110の結像特性の変動を表すモデル式に用いられる補正係数を決定する決定方法を説明するためのフローチャートである。かかる決定方法は、主制御部125で実行することも可能であるし、露光装置1の外部の情報処理装置で実行することも可能である。   FIG. 6 is a flowchart for explaining a determination method for determining a correction coefficient used in a model formula representing a change in imaging characteristics of the projection optical system 110 in the present embodiment. The determination method may be executed by the main control unit 125 or may be executed by an information processing apparatus outside the exposure apparatus 1.

S1において、露光装置1で行われる露光の露光条件に対応する補正係数(第2係数)を取得する。かかる補正係数は、露光装置1(主制御部125のメモリや露光装置1の記憶装置)に予め記憶されている。   In S1, a correction coefficient (second coefficient) corresponding to the exposure condition of the exposure performed by the exposure apparatus 1 is acquired. The correction coefficient is stored in advance in the exposure apparatus 1 (a memory of the main control unit 125 or a storage device of the exposure apparatus 1).

S2において、露光の開始時における投影光学系110の結像特性の予測値を取得する。かかる予測値は、本露光(これから行う露光)の前の露光における投影光学系110の結像特性の変動の残差に相当する。前の露光の終了からクーリング時間を十分に設ければ、S2で取得される露光の開始時における投影光学系110の結像特性の予測値は、ゼロに近づく。但し、本実施形態では、クーリング時間を短縮するため、S2で取得される露光の開始時における投影光学系110の結像特性の予測値は、ゼロではない。   In S2, a predicted value of the imaging characteristics of the projection optical system 110 at the start of exposure is acquired. The predicted value corresponds to the residual of the fluctuation of the imaging characteristic of the projection optical system 110 in the exposure before the main exposure (the exposure to be performed). If the cooling time is sufficiently provided from the end of the previous exposure, the predicted value of the imaging characteristic of the projection optical system 110 at the start of the exposure acquired in S2 approaches zero. However, in the present embodiment, in order to reduce the cooling time, the predicted value of the imaging characteristic of the projection optical system 110 at the start of the exposure acquired in S2 is not zero.

S3において、露光を開始する。S4において、露光装置1が基板115の露光を行なっている間に、投影光学系110の結像特性を複数回計測して複数の計測値を取得する。例えば、上述したように、1ロットの露光と露光との間(例えば、基板115の交換時)に、計測部123によって、投影光学系110の結像特性を複数回計測する。   In S3, exposure is started. In S4, while the exposure apparatus 1 performs exposure of the substrate 115, the imaging characteristics of the projection optical system 110 are measured a plurality of times to obtain a plurality of measurement values. For example, as described above, the measurement unit 123 measures the imaging characteristics of the projection optical system 110 a plurality of times between exposure of one lot and exposure (for example, at the time of replacement of the substrate 115).

S5において、S2で取得された露光の開始時における投影光学系110の結像特性の予測値と、S4で取得した複数の計測値とに基づいて、式(1)乃至式(3)を用いて補正係数(第1係数)を求める(第1工程)。   In S5, Formulas (1) to (3) are used based on the predicted values of the imaging characteristics of the projection optical system 110 at the start of exposure obtained in S2 and the plurality of measurement values obtained in S4. Thus, a correction coefficient (first coefficient) is obtained (first step).

S6において、S5で求めた補正係数を、モデル式に用いられる最終的な補正係数として更新するかどうかを判定する。具体的には、S1で取得された補正係数(露光装置1に予め記憶されている第2係数)と、S5で求めた補正係数(第1係数)との差の絶対値が許容範囲に収まっているかどうか判定する(第2工程)。許容範囲は、露光装置1に予め記憶されている。S1で取得した補正係数と、S5で求めた補正係数との差の絶対値が許容範囲に収まっている場合には、S7に移行する。また、S1で取得された補正係数と、S5で求めた補正係数との差の絶対値が許容範囲に収まっていない場合には、S8に移行する。   In S6, it is determined whether the correction coefficient obtained in S5 is to be updated as the final correction coefficient used in the model expression. Specifically, the absolute value of the difference between the correction coefficient obtained in S1 (the second coefficient stored in advance in the exposure apparatus 1) and the correction coefficient obtained in S5 (the first coefficient) falls within the allowable range. It is determined whether it is (second step). The allowable range is stored in advance in the exposure apparatus 1. If the absolute value of the difference between the correction coefficient acquired in S1 and the correction coefficient obtained in S5 is within the allowable range, the process proceeds to S7. If the absolute value of the difference between the correction coefficient acquired in S1 and the correction coefficient obtained in S5 is not within the allowable range, the process proceeds to S8.

S7において、S5で求めた補正係数(第1係数)を露光装置1に設定する、即ち、S5で求めた補正係数がモデル式に用いられるように、露光装置1に記憶されている補正係数(第2係数)を更新する(第3工程)。これにより、同一の露光条件で露光が行われる場合には、投影光学系110の結像特性を複数回計測する(S4)ことなく、S5で求めた補正係数を用いて投影光学系110の結像特性を予測しながら露光を行うことが可能となる。従って、1ロットの露光において、投影光学系110の結像特性を複数回計測することが不要となるため、スループットの低下を抑えることができる。   In S7, the correction coefficient (first coefficient) determined in S5 is set in the exposure apparatus 1, that is, the correction coefficient stored in the exposure apparatus 1 such that the correction coefficient determined in S5 is used in the model equation. (2nd coefficient) is updated (3rd process). As a result, when exposure is performed under the same exposure conditions, the imaging characteristics of the projection optical system 110 are not measured multiple times (S4), and the projection optical system 110 is connected using the correction coefficient obtained in S5. It is possible to perform exposure while predicting image characteristics. Accordingly, since it is not necessary to measure the imaging characteristics of the projection optical system 110 a plurality of times in one lot of exposure, a reduction in throughput can be suppressed.

S8において、S2で取得した予測値から得られる補正係数(第1係数)の第1評価値と、S1で取得した補正係数を求める際にモデル式から得られた予測値から得られる補正係数(第2係数)の第2評価値とを比較する。本実施形態では、第1評価値が第2評価値未満であるか、第1評価値が第2評価値以上であるか、を判定する。なお、第2評価値は、S1で取得される補正係数(第2係数)に関連づけて露光装置1に予め記憶されている。   In S8, the first evaluation value of the correction coefficient (first coefficient) obtained from the predicted value obtained in S2, and the correction coefficient obtained from the predicted value obtained from the model formula when obtaining the correction coefficient obtained in S1 The second evaluation value of the second coefficient) is compared. In the present embodiment, it is determined whether the first evaluation value is less than the second evaluation value or whether the first evaluation value is equal to or more than the second evaluation value. The second evaluation value is stored in advance in the exposure apparatus 1 in association with the correction coefficient (second coefficient) acquired in S1.

第1評価値及び第2評価値、詳細には、補正係数の信頼性を示す評価値は、S1で取得した補正係数を求める際に取得した、露光の開始時における予測値ΔF1、及び、S2で取得した予測値ΔF1によって求められる。具体的には、評価値Vは、以下の式(4)に示すように、複数の時定数のそれぞれに設定された重み係数と、予測値ΔF1との線形和の絶対値で表される。   The first evaluation value and the second evaluation value, specifically, the evaluation value indicating the reliability of the correction coefficient, are predicted values ΔF1 at the start of exposure and S2 obtained at the time of obtaining the correction coefficient obtained in S1. It is calculated | required by prediction value (DELTA) F1 acquired by (1). Specifically, the evaluation value V is represented by the absolute value of the linear sum of the weighting factor set to each of the plurality of time constants and the predicted value ΔF1, as shown in the following equation (4).

V=|ΔF1_TS1×重み_TS1+ΔF1_TS2×重み_TS2ΔF1_TS3×重み_TS3| ・・・(4)
予測値ΔF1は、式(3)を用いて前の露光条件における投影光学系110の結像特性の変動から予測するため、時定数ごとに予測値が求められる。かかる予測値は、ΔF1_TS1、ΔF1_TS2及びΔF1_TS3である。ここでは、時定数を3種類と仮定している。また、重み_TS1、重み_TS2及び重み_TS3は、時定数ごとに露光装置1に予め設定されている重み係数である。
V = | ΔF1_TS1 × weighting_TS1 + ΔF1_TS2 × weighting_TS2ΔF1_TS3 × weighting_TS3 | (4)
In order to predict the predicted value ΔF1 from the fluctuation of the imaging characteristic of the projection optical system 110 under the previous exposure condition using the equation (3), the predicted value is obtained for each time constant. Such predicted values are ΔF1_TS1, ΔF1_TS2, and ΔF1_TS3. Here, three types of time constants are assumed. Further, weight_TS1, weight_TS2 and weight_TS3 are weight coefficients that are preset in the exposure apparatus 1 for each time constant.

ここで、予測値ΔF1に誤差(予測誤差)がある場合を考える。予測値ΔF1は、直前ジョブにおける式(3)を用いて予測する。予測値ΔF1に予測誤差がある場合と予測値ΔF1に予測誤差がない場合とを図7に示す。図7では、縦軸は、投影光学系110のフォーカスを示し、横軸は、時刻を示している。式(3)の特性から、予測誤差量Aは、予測誤差がある場合の予測値Bに依存し、予測値Bが小さくなるにつれて、予測誤差量Aも小さくなる。十分なクーリング時間を設けることで、予測値Bを限りなくゼロに近づけることができる。これにより、予測誤差量Aもゼロに近づき、この状態から補正係数を求めれば、かかる補正係数には誤差が含まれないことになる。   Here, consider a case where there is an error (prediction error) in the predicted value ΔF1. The predicted value ΔF1 is predicted using Expression (3) in the immediately preceding job. The case where there is a prediction error in the predicted value ΔF1 and the case where there is no prediction error in the predicted value ΔF1 are shown in FIG. In FIG. 7, the vertical axis indicates the focus of the projection optical system 110, and the horizontal axis indicates the time. From the characteristic of Equation (3), the prediction error amount A depends on the prediction value B when there is a prediction error, and the prediction error amount A decreases as the prediction value B decreases. By providing a sufficient cooling time, the predicted value B can be made as close to zero as possible. As a result, the prediction error amount A approaches zero, and if a correction coefficient is obtained from this state, the correction coefficient does not include an error.

式(4)における重み係数について説明する。時定数が長い成分に誤差がある場合と、時定数が短い成分に誤差がある場合とでは、モデル式に用いている時定数の大きさによって、1ロット内の投影光学系110の結像特性の変動に与える影響が異なる。   The weighting coefficient in equation (4) will be described. Depending on the size of the time constant used in the model equation, the imaging characteristics of the projection optical system 110 in one lot may differ depending on whether there is an error in the long time constant component or the short time constant component. The effect on the fluctuation of

露光の開始時における予測値に誤差があると、かかる予測値から得られる補正係数にも誤差が含まれてしまう。図8(a)及び図8(b)のそれぞれに示すように、長い時定数を200秒とし、短い時定数を5000秒とする。図8(a)及び図8(b)では、縦軸は、投影光学系110のフォーカスを示し、横軸は、時刻を示している。真の補正係数を長い時定数及び短い時定数でともに100nmとし、補正係数の誤差を長い時定数及び短い時定数でともに50nmとする。図8(a)及び図8(b)から明らかなように、1ロット内での予測誤差量は、短い時定数の方が影響が大きいことがわかる。   If there is an error in the predicted value at the start of exposure, the correction coefficient obtained from the predicted value will also contain an error. As shown in each of FIGS. 8A and 8B, the long time constant is 200 seconds, and the short time constant is 5000 seconds. In FIGS. 8A and 8B, the vertical axis indicates the focus of the projection optical system 110, and the horizontal axis indicates the time. The true correction coefficient is 100 nm for both the long time constant and the short time constant, and the error of the correction coefficient is 50 nm for both the long time constant and the short time constant. As is clear from FIGS. 8A and 8B, it can be seen that a short time constant has a larger influence on the prediction error amount in one lot.

従って、上述したように、時定数の大きさに応じて、重み係数を設定する必要がある。評価量Vは、時定数の影響も考慮して、S5で求まる補正係数(誤差を含む補正係数)によって、所定の露光期間における予測誤差の影響度に相当する。そのため、値が大きい方が誤差を与えやすくなるため、補正係数の信頼性は低いと判断できる。   Therefore, as described above, it is necessary to set the weighting factor according to the size of the time constant. The evaluation amount V corresponds to the influence degree of the prediction error in a predetermined exposure period by the correction coefficient (correction coefficient including an error) obtained in S5 in consideration of the influence of the time constant. Therefore, since the larger the value is, the easier it is to give an error, it can be judged that the reliability of the correction coefficient is low.

図6に戻って、S8において、第1評価値が第2評価値未満である場合には、S9に移行する。この場合、S5で求めた補正係数(第1係数)の方が、露光装置1に記憶されている補正係数(第2係数)よりも信頼性が高い。従って、S9において、S5で求めた補正係数を仮の係数として、モデル式に用いられる補正係数、即ち、露光装置1に記憶されている補正係数を更新する(第4工程)。但し、S5で求めた補正係数は、S6での条件を満たしていないため、仮の補正係数となる。そのため、次に同一の露光条件で露光を行う場合には、S9で更新した補正係数、又は、S1で取得した補正係数を用いて、露光が行われる。また、S9では、補正係数の更新とともに、評価値もS5で求めた補正係数(第1係数)の評価値(第1評価値)に更新する。   Returning to FIG. 6, in S8, when the first evaluation value is less than the second evaluation value, the process proceeds to S9. In this case, the correction coefficient (first coefficient) obtained in S5 is more reliable than the correction coefficient (second coefficient) stored in the exposure apparatus 1. Therefore, in S9, using the correction coefficient obtained in S5 as a temporary coefficient, the correction coefficient used in the model equation, that is, the correction coefficient stored in the exposure apparatus 1 is updated (fourth step). However, since the correction coefficient obtained in S5 does not satisfy the condition in S6, it is a temporary correction coefficient. Therefore, when performing exposure under the same exposure conditions next time, exposure is performed using the correction coefficient updated in S9 or the correction coefficient acquired in S1. In S9, along with the update of the correction coefficient, the evaluation value is also updated to the evaluation value (first evaluation value) of the correction coefficient (first coefficient) obtained in S5.

また、S8において、第1評価値が第2評価値以上である場合には、モデル式に用いられる補正係数を更新せずに、S1に移行する(第4工程)。   In S8, when the first evaluation value is equal to or greater than the second evaluation value, the process proceeds to S1 without updating the correction coefficient used in the model equation (fourth step).

このように、本実施形態では、クーリング時間を短縮しながらも、信頼性の高い補正係数を採用することで、補正係数の精度を効率的に向上させることができる。また、露光においては、このようにして補正係数が決定されたモデル式から(決定工程)、投影光学系110の結像特性の変動を予測する。そして、投影光学系110の結像特性の変動に基づいて、開口駆動部112やレンズ駆動部113による投影光学系110の結像特性の調整及び基板115の位置の変更を行い、基板115を露光する(露光工程)。このような露光方法も本発明の一側面を構成する。   Thus, in the present embodiment, it is possible to efficiently improve the accuracy of the correction coefficient by adopting a highly reliable correction coefficient while shortening the cooling time. Further, in the exposure, the fluctuation of the imaging characteristic of the projection optical system 110 is predicted from the model equation in which the correction coefficient is determined in this manner (determination step). Then, based on fluctuations in the imaging characteristics of the projection optical system 110, the imaging characteristics of the projection optical system 110 are adjusted by the aperture driving unit 112 and the lens driving unit 113 and the position of the substrate 115 is changed to expose the substrate 115. Do (exposure step). Such an exposure method also constitutes one aspect of the present invention.

本発明の実施形態における物品の製造方法は、例えば、デバイス(半導体素子、磁気記憶媒体、液晶表示素子など)などの物品を製造するのに好適である。かかる製造方法は、露光装置1(上述した露光方法)を用いて、感光剤が塗布された基板を露光する工程と、露光された基板を現像する工程を含む。また、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージングなど)を含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも1つにおいて有利である。   The method of manufacturing an article according to the embodiment of the present invention is suitable for manufacturing an article such as a device (semiconductor element, magnetic storage medium, liquid crystal display element, etc.), for example. Such a manufacturing method includes a step of exposing a substrate coated with a photosensitive agent and a step of developing the exposed substrate using the exposure apparatus 1 (the exposure method described above). In addition, such a manufacturing method may include other known steps (oxidation, film formation, deposition, doping, planarization, etching, resist peeling, dicing, bonding, packaging, etc.). The method for manufacturing an article in the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

本発明は、上述の実施形態の1つ以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1つ以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。   The present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read the program. It can also be realized by processing to be executed. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   Although the preferred embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the present invention.

1:露光装置 109:マスク 110:投影光学系 115:基板 125:主制御部 1: Exposure apparatus 109: Mask 110: Projection optical system 115: Substrate 125: Main controller

Claims (10)

マスクのパターンを投影光学系を介して基板に転写する露光装置において前記投影光学系の結像特性の変動を表すモデル式に用いられる前記結像特性の飽和値を示す係数を決定する決定方法であって、
前記結像特性を複数回計測して得られる複数の計測値と、前記モデル式から得られた前記基板の露光の開始時における前記結像特性の予測値とに基づいて、前記結像特性の飽和値を示す第1係数を求める第1工程と、
前記第1係数と、前記露光装置に記憶されている前記モデル式に用いられる前記結像特性の飽和値を示す第2係数との差が許容範囲に収まっているかどうかを判定する第2工程と、
前記差が前記許容範囲に収まっている場合に、前記第1係数が前記モデル式に用いられるように前記係数を更新する第3工程と、
前記差が前記許容範囲に収まっていない場合に、前記予測値から得られる前記第1係数の第1評価値と、前記第2係数を求める際に前記モデル式から得られた前記結像特性の予測値から得られる前記第2係数の第2評価値とを比較し、前記第1評価値が前記第2評価値未満であれば、前記第1係数を仮の係数として前記係数を更新し、前記第1評価値が前記第2評価値以上であれば、前記係数を更新しない第4工程と、
を有することを特徴とする決定方法。
In an exposure apparatus for transferring a mask pattern onto a substrate via a projection optical system, a determination method for determining a coefficient indicating a saturation value of the imaging characteristic used in a model expression representing a fluctuation of an imaging characteristic of the projection optical system There,
Based on a plurality of measurement values obtained by measuring the imaging characteristics a plurality of times and a predicted value of the imaging characteristics at the start of exposure of the substrate obtained from the model equation, A first step for obtaining a first coefficient indicating a saturation value;
A second step of determining whether a difference between the first coefficient and a second coefficient indicating a saturation value of the imaging characteristic used in the model formula stored in the exposure apparatus is within an allowable range; ,
A third step of updating the coefficients such that the first coefficient is used in the model equation if the difference is within the tolerance range;
The first evaluation value of the first coefficient obtained from the predicted value when the difference is not within the allowable range, and the imaging characteristics obtained from the model equation when the second coefficient is obtained Comparing the second evaluation value of the second coefficient obtained from the predicted value, and updating the coefficient using the first coefficient as a temporary coefficient if the first evaluation value is less than the second evaluation value; If the first evaluation value is greater than or equal to the second evaluation value, a fourth step not updating the coefficient;
A determination method characterized by having:
前記モデル式は、複数の時定数を含み、
前記第1評価値及び前記第2評価値のそれぞれは、前記複数の時定数のそれぞれに設定された重み係数と、前記予測値との線形和の絶対値を含むことを特徴とする請求項1に記載の決定方法。
The model formula includes a plurality of time constants,
Each of the first evaluation value and the second evaluation value includes an absolute value of a linear sum of a weighting coefficient set to each of the plurality of time constants and the predicted value. Determination method described in.
前記第2評価値は、前記露光装置に記憶されていることを特徴とする請求項1又は2に記載の決定方法。   The method according to claim 1, wherein the second evaluation value is stored in the exposure apparatus. 前記第4工程では、前記第1評価値が前記第2評価値未満であれば、前記第1評価値を仮の評価値として前記第2評価値を更新することを特徴とする請求項3に記載の決定方法。   In the fourth step, if the first evaluation value is less than the second evaluation value, the second evaluation value is updated using the first evaluation value as a temporary evaluation value. Described method of description. 前記モデル式は、前記露光装置が前記基板の露光を行っている間の前記結像特性の変動を表す露光モデル式と、前記露光装置が前記基板の露光を終了した後の前記結像特性の変動を表す非露光モデル式と、を含み、
前記第1工程では、前記非露光モデル式を用いて前記予測値を求めることを特徴とする請求項1乃至4のうちいずれか1項に記載の決定方法。
The model equation is an exposure model equation representing the fluctuation of the imaging characteristics while the exposure device is exposing the substrate, and the imaging characteristics after the exposure device completes the exposure of the substrate. Including a non-exposure model formula representing variation,
The determination method according to any one of claims 1 to 4, wherein the predicted value is determined using the non-exposure model equation in the first step.
前記結像特性は、フォーカス、倍率、歪曲収差、非点収差及び波面収差のうち少なくとも1つを含むことを特徴とする請求項1乃至5のうちいずれか1項に記載の決定方法。   The determination method according to any one of claims 1 to 5, wherein the imaging characteristic includes at least one of focus, magnification, distortion, astigmatism, and wavefront aberration. マスクのパターンを投影光学系を介して基板に転写する露光装置を用いて前記基板を露光する露光方法であって、
前記投影光学系の結像特性の変動を表すモデル式に用いられる前記結像特性の飽和値を示す係数を決定する決定工程と、
前記係数が決定された前記モデル式から得られる前記投影光学系の結像特性の変動に基づいて前記投影光学系の結像特性の調整又は前記基板の位置の変更を行い、前記基板を露光する露光工程と、を有し、
前記決定工程は、
前記結像特性を複数回計測して得られる複数の計測値と、前記モデル式から得られた前記基板の露光の開始時における前記結像特性の予測値とに基づいて、前記結像特性の飽和値を示す第1係数を求める第1工程と、
前記第1係数と、前記露光装置に記憶されている前記モデル式に用いられる前記結像特性の飽和値を示す第2係数との差が許容範囲に収まっているかどうかを判定する第2工程と、
前記差が前記許容範囲に収まっている場合に、前記第1係数が前記モデル式に用いられるように前記係数を更新する第3工程と、
前記差が前記許容範囲に収まっていない場合に、前記予測値から得られる前記第1係数の第1評価値と、前記第2係数を求める際に前記モデル式から得られた前記結像特性の予測値から得られる前記第2係数の第2評価値とを比較し、前記第1評価値が前記第2評価値未満であれば、前記第1係数を仮の係数として前記係数を更新し、前記第1評価値が前記第2評価値以上であれば、前記係数を更新しない第4工程と、
を含むことを特徴とする露光方法。
An exposure method for exposing the substrate using an exposure apparatus that transfers a mask pattern to the substrate via a projection optical system,
A determination step of determining a coefficient indicating a saturation value of the imaging characteristic used in a model expression representing a variation of the imaging characteristic of the projection optical system;
The adjustment of the imaging characteristic of the projection optical system or the change of the position of the substrate is performed based on the fluctuation of the imaging characteristic of the projection optical system obtained from the model equation whose coefficient is determined, and the substrate is exposed. And an exposure process,
The determination step
Based on a plurality of measurement values obtained by measuring the imaging characteristics a plurality of times and a predicted value of the imaging characteristics at the start of exposure of the substrate obtained from the model equation, A first step for obtaining a first coefficient indicating a saturation value;
A second step of determining whether a difference between the first coefficient and a second coefficient indicating a saturation value of the imaging characteristic used in the model formula stored in the exposure apparatus is within an allowable range; ,
A third step of updating the coefficients such that the first coefficient is used in the model equation if the difference is within the tolerance range;
The first evaluation value of the first coefficient obtained from the predicted value when the difference is not within the allowable range, and the imaging characteristics obtained from the model equation when the second coefficient is obtained Comparing the second evaluation value of the second coefficient obtained from the predicted value, and updating the coefficient using the first coefficient as a temporary coefficient if the first evaluation value is less than the second evaluation value; If the first evaluation value is greater than or equal to the second evaluation value, a fourth step not updating the coefficient;
An exposure method comprising:
請求項1乃至6のうちいずれか1項に記載の決定方法を実行することを特徴とする情報処理装置。   An information processing apparatus that executes the determination method according to any one of claims 1 to 6. 請求項1乃至6のうちいずれか1項に記載の決定方法を情報処理装置に実行させるためのプログラム。   A program for causing an information processing apparatus to execute the determination method according to any one of claims 1 to 6. 請求項7に記載の露光方法を用いて基板を露光する工程と、
露光した前記基板を現像する工程と、
現像された前記基板から物品を製造する工程と、
を有することを特徴とする物品の製造方法。
Exposing the substrate using the exposure method according to claim 7;
Developing the exposed substrate;
Producing an article from the developed substrate;
A method for producing an article comprising:
JP2017104943A 2017-05-26 2017-05-26 Determination method, exposure method, information processing apparatus, program, and article manufacturing method Active JP6554141B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017104943A JP6554141B2 (en) 2017-05-26 2017-05-26 Determination method, exposure method, information processing apparatus, program, and article manufacturing method
KR1020180044750A KR102300753B1 (en) 2017-05-26 2018-04-18 Determination method, exposure method, information processing apparatus, program, and article manufacturing method
CN201810491571.8A CN108931890B (en) 2017-05-26 2018-05-22 Determining method, exposure method, information processing apparatus, medium, and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017104943A JP6554141B2 (en) 2017-05-26 2017-05-26 Determination method, exposure method, information processing apparatus, program, and article manufacturing method

Publications (2)

Publication Number Publication Date
JP2018200390A JP2018200390A (en) 2018-12-20
JP6554141B2 true JP6554141B2 (en) 2019-07-31

Family

ID=64449165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104943A Active JP6554141B2 (en) 2017-05-26 2017-05-26 Determination method, exposure method, information processing apparatus, program, and article manufacturing method

Country Status (3)

Country Link
JP (1) JP6554141B2 (en)
KR (1) KR102300753B1 (en)
CN (1) CN108931890B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213757B2 (en) * 2019-05-31 2023-01-27 キヤノン株式会社 Exposure apparatus and article manufacturing method
JP6924235B2 (en) * 2019-09-19 2021-08-25 キヤノン株式会社 Exposure method, exposure equipment, article manufacturing method, and semiconductor device manufacturing method
CN114937089A (en) * 2022-04-25 2022-08-23 广州极飞科技股份有限公司 Sensor parameter online calibration method, device, equipment and storage medium
CN115227269B (en) * 2022-06-09 2025-07-15 奕瑞电子科技集团股份有限公司 Control method and device for exposure gate of high voltage generator
JP7297136B1 (en) 2022-10-13 2023-06-23 キヤノン株式会社 Exposure Apparatus, Exposure Apparatus Control Method, Information Processing Apparatus, Information Processing Method, and Article Manufacturing Method
JP2024171856A (en) 2023-05-30 2024-12-12 キヤノン株式会社 Exposure apparatus, exposure method, and article manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395280B2 (en) * 1993-09-21 2003-04-07 株式会社ニコン Projection exposure apparatus and method
JP2828226B2 (en) 1995-10-30 1998-11-25 株式会社ニコン Projection exposure apparatus and method
JP2003059807A (en) * 2001-08-20 2003-02-28 Nikon Corp Method of exposure and aligner, and method for manufacturing device
JP2004079831A (en) * 2002-08-20 2004-03-11 Nikon Corp Exposure method and aligner, and method for manufacturing device
KR20050121728A (en) * 2003-04-16 2005-12-27 가부시키가이샤 니콘 Pattern decision method and system, mask manufacturing method, focusing performance adjusting method, exposure method and device, program, and information recording medium
JP5264116B2 (en) * 2007-07-26 2013-08-14 キヤノン株式会社 Imaging characteristic variation prediction method, exposure apparatus, and device manufacturing method
JP5835968B2 (en) * 2011-07-05 2015-12-24 キヤノン株式会社 Determination method, program, and exposure method
JP2013115348A (en) * 2011-11-30 2013-06-10 Canon Inc Calculation method of variation in imaging characteristics of projection optical system, exposure device and manufacturing method of device
JP6039932B2 (en) * 2012-06-22 2016-12-07 キヤノン株式会社 Exposure apparatus, exposure method, and article manufacturing method
JP2014143306A (en) * 2013-01-24 2014-08-07 Canon Inc Exposure method, exposure device, method of manufacturing device using the same
JP6381188B2 (en) * 2013-08-13 2018-08-29 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP6588766B2 (en) * 2015-08-10 2019-10-09 キヤノン株式会社 Evaluation method, exposure method, exposure apparatus, program, and article manufacturing method
JP6613074B2 (en) * 2015-08-20 2019-11-27 キヤノン株式会社 Determination method, exposure apparatus, program, and article manufacturing method

Also Published As

Publication number Publication date
KR20180129625A (en) 2018-12-05
KR102300753B1 (en) 2021-09-10
CN108931890B (en) 2021-05-04
CN108931890A (en) 2018-12-04
JP2018200390A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6554141B2 (en) Determination method, exposure method, information processing apparatus, program, and article manufacturing method
JP5264116B2 (en) Imaging characteristic variation prediction method, exposure apparatus, and device manufacturing method
US7262831B2 (en) Lithographic projection apparatus and device manufacturing method using such lithographic projection apparatus
JP5406437B2 (en) Exposure apparatus and device manufacturing method
US7771905B2 (en) Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method
JP6039932B2 (en) Exposure apparatus, exposure method, and article manufacturing method
JP6422307B2 (en) Exposure method, exposure apparatus, and article manufacturing method
JP6381188B2 (en) Exposure apparatus and device manufacturing method
US9513564B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP7022531B2 (en) Exposure method, exposure equipment, and manufacturing method of goods
JP5094517B2 (en) Exposure apparatus, measurement method, stabilization method, and device manufacturing method
JP2018132569A (en) Evaluation method of change in image-forming property of projection optical system by exposure heat, exposure apparatus, and device manufacturing method
JP2001244182A (en) Method of measuring variations in image formation characteristics of projection optical system due to exposure heat and aligner
KR101039288B1 (en) Exposure apparatus, measuring method, stabilization method, and device manufacturing method
JP2024057976A (en) Exposure apparatus, method of controlling exposure apparatus, information processing apparatus, information processing method, and method of producing article
JP2006162453A (en) Measuring method and instrument, exposure device, and device manufacturing method
JP2006019561A (en) Exposure method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190705

R151 Written notification of patent or utility model registration

Ref document number: 6554141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151