JP6553765B1 - 結晶基板の製造方法および結晶基板 - Google Patents
結晶基板の製造方法および結晶基板 Download PDFInfo
- Publication number
- JP6553765B1 JP6553765B1 JP2018053120A JP2018053120A JP6553765B1 JP 6553765 B1 JP6553765 B1 JP 6553765B1 JP 2018053120 A JP2018053120 A JP 2018053120A JP 2018053120 A JP2018053120 A JP 2018053120A JP 6553765 B1 JP6553765 B1 JP 6553765B1
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- substrate
- plane
- curvature
- radius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 426
- 239000000758 substrate Substances 0.000 title claims abstract description 407
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 90
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 31
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 30
- 150000004767 nitrides Chemical class 0.000 claims abstract description 26
- 239000012808 vapor phase Substances 0.000 claims abstract description 11
- 239000002585 base Substances 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 50
- 238000007716 flux method Methods 0.000 description 34
- 238000009826 distribution Methods 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 19
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 18
- 229910002601 GaN Inorganic materials 0.000 description 17
- 238000012545 processing Methods 0.000 description 17
- 239000011800 void material Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- 238000003754 machining Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 230000004907 flux Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 239000007791 liquid phase Substances 0.000 description 11
- 238000005498 polishing Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 208000012868 Overgrowth Diseases 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000005136 cathodoluminescence Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/02—Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/12—Liquid-phase epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/08—Reaction chambers; Selection of materials therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/10—Metal solvents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
気相法により作製されたIII族窒化物の単結晶からなり第1主面を有する基板であって、前記単結晶のc面が所定の曲率で凹の球面状に湾曲している第1結晶体を用意する工程と、
前記第1主面上に、III族窒化物の単結晶からなる第2結晶体を、アルカリ金属とIII族元素とを含む混合融液中で成長させる工程と、
を有する結晶基板の製造方法
が提供される。
気相法により作製されたIII族窒化物の単結晶からなり第1主面を有する基板であって、前記単結晶のc面が所定の曲率で凹の球面状に湾曲している第1結晶体と、
アルカリ金属とIII族元素とを含む混合融液を用いて前記第1主面上に成長させられたIII族窒化物の単結晶からなる第2結晶体と、
を備える結晶基板
が提供される。
III族窒化物の単結晶からなる基板であって、
前記単結晶のc面が、前記基板の両主面のうちいずれか一方の主面に対して、10m以上の大きさの曲率半径で凹の球面状に湾曲している結晶基板
が提供される。
(1)結晶基板の製造方法
第1実施形態による基板31の製造方法について説明する。図1は、第1実施形態による基板31の製造方法の全体を示すフローチャートである。本製造方法は、ボイド形成剥離(VAS)法で成長された種基板21を用意するステップS100と、液相法、具体的にはフラックス法により基板31を作製するステップS200と、を有する。
ステップS100では、VAS法で成長された種基板21を用意する。図2は、ステップS100の詳細を示すフローチャートである。図3(a)〜3(g)は、ステップS100における種基板21の作製工程を示す概略断面図である。
ステップS100は、ステップS110〜S140を有する。ステップS110では、ボイド形成基板15を用意する。ステップS110は、より詳細には、ステップS111〜S114を有する。ステップS111では、図3(a)に示すように、下地基板10を用意する。下地基板10として、サファイア基板が例示される。
ステップS120では、図3(e)に示すように、ボイド形成基板15のナノマスク14上に、結晶体20を成長させる。結晶体20は、気相法、具体的にはハイドライド気相成長(HVPE)法により成長させる。ここで、HVPE装置200について説明する。図9は、HVPE装置200を例示する概略構成図である。
成長温度Tg:980〜1,100℃、好ましくは1,050〜1,100℃
成膜室201内の圧力:90〜105kPa、好ましくは90〜95kPa
GaClガスの分圧:0.2〜15kPa
NH3ガスの分圧/GaClガスの分圧:4〜20
N2ガスの流量/H2ガスの流量:1〜20
ステップS130では、図3(f)に示すように、結晶体20をボイド形成基板15から剥離させる。この剥離は、結晶体20の成長中において、あるいは結晶体20の成長後に成膜室201内を冷却する過程において、結晶体20がナノマスク14との間に形成された空隙16を境にボイド形成基板15から自然に剥離することで行われる。空隙16が均一に分布することで、特定領域への応力集中が生じにくい状態で、剥離が行われる。
ステップS140では、図3(g)に示すように、ステップS130で剥離した結晶体20に、必要に応じ、機械加工および研磨、またはこれらの一方を施すことで、種基板21(自立した基板としての結晶体20)を得る。機械加工は、例えば、ワイヤーソーによる切断である。例えば、結晶体20の全体から1枚の種基板21を得てもよい。また例えば、結晶体20を複数枚にスライスすることで、結晶体20の全体から複数枚の種基板21を得てもよい。得られた種基板21に対し、必要に応じて、研磨を行ってもよいし、研磨を行わなくてもよい。両主面のうち一方の主面を研磨してもよい。なお、ステップS130で剥離した結晶体20を、そのまま種基板21として用いてもよい。
ステップS100で種基板21が用意された後、ステップS200では、液相法、具体的にはフラックス法により基板31を作製する。図4(a)〜4(c)は、第1実施形態のステップS200における基板31の作製工程を示す概略断面図である。図4(a)は、ステップS100で用意された種基板21を示す。第1実施形態では、平板形状に構成された種基板21、つまり、結晶成長の下地面である主面21sが全域にわたって平坦である種基板21を例示する。また、IDを含まない種基板21を例示する。
ステップS200は、ステップS210およびS220を有する。ステップS210では、図4(b)に示すように、種基板21上に、フラックス法により結晶体30を成長させる。フラックス法では、フラックス(溶媒)として用いられるアルカリ金属と、III族元素(本例ではGa)とを含む混合融液中で、III族窒化物(本例ではGaN)を成長させる。フラックスとなるアルカリ金属としては、ナトリウム(Na)が好ましく用いられるが、リチウム(Li)やカリウム(K)などの他のアルカリ金属元素が用いられてもよい。また、これらの元素を混合して用いてもよい。フラックスとして用いる金属は、アルカリ金属にアルカリ土類金属を加えたものであってもよい。当該アルカリ土類金属としては、マグネシウム(Mg)、カルシウム(Ca)等を、単独で用いてもよく、混合して用いてもよい。ここで、フラックス液相成長装置300について説明する。図10は、フラックス液相成長装置300を例示する概略構成図である。
成長温度(混合融液の温度):700〜1,000℃、好ましくは800〜900℃、さらに好ましくは870〜890℃
成長圧力(加圧室内の圧力):0.1〜10MPa、好ましくは1〜6MPa、さらに好ましくは2.5〜4.0MPa
混合融液中のNa濃度〔Na/(Na+Ga)〕:10〜90%、好ましくは40〜85%、さらに好ましくは70〜85%:本Na濃度はモル濃度である。
混合融液への添加剤として、例えば、カーボン(C)およびゲルマニウム(Ge)の少なくとも一方を加えても良い。この場合の添加量は、例えば、C濃度〔C/(C+Ga+Na)〕:0.1〜1.0%であり、また例えば、Ge濃度〔Ge/(Ge+Ga)〕:0.5〜4.0%である。
混合融液と窒素ガスの気液界面と、種基板21の主面との距離:3〜70mm、好ましくは5〜40mm、さらに好ましくは20〜35mm
回転速度:1〜30rpm、好ましくは5〜20rpm、さらに好ましくは7〜15rpm
ステップS220では、図4(c)に示すように、ステップS210で成長させた結晶体30を、機械加工、例えばワイヤーソーにより切断して、種基板21から分離する。種基板21と結晶体30との界面から適切に離れた位置で切断することにより、分離された結晶体30に、中間層24を含む結晶体30の根元部分が含まれないようにできる。結晶体30を分離することで残る、種基板21と、中間層24を含む結晶体30の根元部分との積層結晶基板110は、フラックス法等で結晶成長を行うための種結晶として再利用してもよい。
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(1)結晶基板の製造方法
第2実施形態による基板31の製造方法について説明する。以下主に、第1実施形態との違いについて説明する。第2実施形態においても、図1に示したステップS100およびS200に沿い、VAS法で成長された種基板21を種結晶として、フラックス法により基板31を作製することは同様である。ただし、種基板21の態様が、第1実施形態と異なる。
第2実施形態においても、第1実施形態と同様な効果が得られる。種基板21と結晶体30との界面にインクルージョン22が取り込まれることで中間層24が形成され、種基板21のc面121の曲率半径よりも、結晶体30のc面130の曲率半径を大きくすることができる。さらに、第2実施形態では、種基板21がインクルージョン形成領域としてポケット21pを有することで、第1実施形態と比べてより確実に、中間層24を形成することができる。また、ポケット21pの個数密度、位置、大きさ等を調整することで、インクルージョン22または閉空間23の個数密度、位置、大きさ等を調整することも可能である。
(1)結晶基板の製造方法
第3実施形態による基板31の製造方法について説明する。以下主に、第1および第2実施形態との違いについて説明する。第3実施形態においても、図1に示したステップS100およびS200に沿い、VAS法で成長された種基板21を種結晶として、フラックス法により基板31を作製することは同様である。ただし、種基板21の態様が、第1および第2実施形態と異なる。
第3実施形態においても、第1実施形態と同様な効果が得られる。種基板21と結晶体30との界面にインクルージョン22が取り込まれることで中間層24が形成され、種基板21のc面121の曲率半径よりも、結晶体30のc面130の曲率半径を大きくすることができる。さらに、第3実施形態では、種基板21がインクルージョン形成領域としてID21iを有することで、第1実施形態と比べてより確実に、中間層24を形成することができる。また、ID21iの個数密度、位置、大きさ等を調整することで、インクルージョン22または閉空間23の個数密度、位置、大きさ等を調整することも可能である。
上述の第1〜第3実施形態の変形例について説明する。第1〜第3実施形態では、種基板21を種結晶として基板31を作製する製造方法について説明した。本変形例では、さらに、基板31を種結晶として基板41を作製する製造方法について説明する。
ステップS200で基板31が用意された後、ステップS300では、気相法、例えばHVPE法により基板41を作製する。図8(a)〜8(c)は、ステップS300における基板41の作製工程を示す概略断面図である。図8(a)は、ステップS200で用意された基板31を示す。
ステップS300は、ステップS310およびS320を有する。ステップS310では、図8(b)に示すように、基板31上に、HVPE法によりGaN単結晶をエピタキシャル成長させることで、結晶体40を形成する。ステップS310は、HVPE装置200により、処理対象の基板250として基板31を用い、種基板21の作製に係るステップS120と同様な処理手順で実施することができる。ステップS310の結晶成長処理の処理条件としては、ステップS120と同様な条件が例示される。なお、結晶体40の種結晶に用いる基板31として、種基板21上に積層された状態の結晶体30(図4(b)等に示す積層結晶基板100)を用いてもよい。
ステップS320では、図8(c)に示すように、ステップS310で成長させた結晶体40を、機械加工、例えばワイヤーソーにより切断して、基板31から分離する。結晶体40を分離することで残る、基板31と結晶体40の根元部分との積層結晶基板130は、HVPE法等で結晶成長を行うための種結晶として再利用してもよい。
次に、実験例について説明する。実験例では、上述の変形例と同様に、VAS法で成長された種基板21を用意し、種基板21を種結晶としてフラックス法により基板31を作製し、さらに、基板31を種結晶としてHVPE法により基板41を作製した。VAS法による種基板21として、第3実施形態と同様に、IDを含む種基板21を用いた。なお、中心オフ角がm軸方向に傾斜している種基板21を用いた。種基板21、基板31、および基板41の直径は、それぞれ4インチである。
以下、本発明の好ましい態様について付記する。
気相法により作製されたIII族窒化物の単結晶からなり第1主面を有する基板であって、前記単結晶のc面が所定の曲率で凹の球面状に湾曲している第1結晶体を用意する工程と、
前記第1主面上に、III族窒化物の単結晶からなる第2結晶体を、アルカリ金属とIII族元素とを含む混合融液中で成長させる工程と、
を有する結晶基板の製造方法。
前記第1結晶体の前記第1主面における最大の転位密度は、1×107/cm2未満、好ましくは5×106/cm2以下である、付記1に記載の結晶基板の製造方法。
前記第2結晶体を成長させる工程では、前記第1結晶体と前記第2結晶体との界面に、前記混合融液に含まれる前記アルカリ金属を取り込ませ、前記アルカリ金属を内包する閉空間を複数有する中間層を形成する、付記1または2に記載の結晶基板の製造方法。
前記第2結晶体を成長させる工程では、結晶の成長に伴って前記第2結晶体中に発生する圧縮応力を、前記中間層によって緩和させることで、前記第2結晶体におけるc面の曲率半径を、前記第1結晶体におけるc面の曲率半径よりも大きくする、付記3に記載の結晶基板の製造方法。
前記第1結晶体の前記第1主面には、前記混合融液が留まりやすいように構成された領域が設けられている、付記3または4に記載の結晶基板の成長方法。
前記第1結晶体を用意する工程では、前記第1結晶体として、主領域と、前記主領域に対して凹んだ領域であるポケットと、を有する結晶体を用意し、
前記第2結晶体を成長させる工程では、前記混合融液に含まれる前記アルカリ金属により前記ポケットの表面を塞ぐキャップ層を形成して前記ポケットを下地とした結晶成長を抑制しつつ、前記主領域を下地として成長した結晶によって前記キャップ層を埋め込み、前記第1結晶体と前記第2結晶体との界面のうち前記ポケットに対応する位置に、前記アルカリ金属を内包する前記閉空間を形成する、付記3〜5のいずれか1つに記載の結晶基板の製造方法。
前記第1結晶体を用意する工程では、前記第1結晶体として、主領域と、前記主領域に対してc軸方向の極性が反転している極性反転領域と、を有する結晶体を用意し、
前記第2結晶体を成長させる工程では、前記混合融液に含まれる前記アルカリ金属により前記極性反転領域の表面を塞ぐキャップ層を形成して前記極性反転領域を下地とした結晶成長を抑制しつつ、前記主領域を下地として成長した結晶によって前記キャップ層を埋め込み、前記第1結晶体と前記第2結晶体との界面のうち前記極性反転領域に対応する位置に、前記アルカリ金属を内包する前記閉空間を形成する、付記3〜5のいずれか1つに記載の結晶基板の製造方法。
前記第2結晶体を含む結晶体から結晶基板を得る工程をさらに有する、付記1〜7のいずれか1つに記載の結晶基板の製造方法。
前記第2結晶体上に、III族窒化物の単結晶からなる第3結晶体を気相法により成長させる工程をさらに有する、付記1〜8のいずれか1つに記載の結晶基板の製造方法。
前記第3結晶体におけるc面の曲率半径が、前記第1結晶体におけるc面の曲率半径よりも大きい、付記9に記載の結晶基板。
前記第3結晶体を含む結晶体から結晶基板を得る工程をさらに有する、付記9または10に記載の結晶基板の製造方法。
気相法により作製されたIII族窒化物の単結晶からなり第1主面を有する基板であって、前記単結晶のc面が所定の曲率で凹の球面状に湾曲している第1結晶体と、
アルカリ金属とIII族元素とを含む混合融液を用いて前記第1主面上に成長させられたIII族窒化物の単結晶からなる第2結晶体と、
を備える結晶基板。
前記第1結晶体と前記第2結晶体との界面に、前記アルカリ金属を内包する閉空間を複数有する中間層を備える、付記12に記載の結晶基板。
前記第2結晶体におけるc面の曲率半径が、前記第1結晶体におけるc面の曲率半径よりも大きい、付記12または13に記載の結晶基板。
前記第1結晶体が、主領域と、前記主領域に対して凹んだ領域であるポケットと、を有し、
前記閉空間が、前記ポケットに対応する位置に形成されている、付記12〜14のいずれか1つに記載の結晶基板。
前記第1結晶体が、主領域と、前記主領域に対してc軸方向の極性が反転している極性反転領域と、を有し、
前記閉空間が、前記極性反転領域に対応する位置に形成されている、付記12〜14のいずれか1つに記載の結晶基板。
III族窒化物の単結晶からなる基板であって、
前記単結晶のc面が、前記基板の両主面のうちいずれか一方の主面に対して、好ましくは10m以上、より好ましくは15m以上、さらに好ましくは20m以上の大きさの曲率半径で凹の球面状に湾曲している結晶基板。
前記単結晶のc面のa軸方向の曲率半径、および、前記単結晶のc面のm軸方向の曲率半径のいずれも、好ましくは10m以上、より好ましくは15m以上、さらに好ましくは20m以上である、付記17に記載の結晶基板。
前記単結晶のc面は、平面視された前記一方の主面の80%以上の面積の領域において、一定の曲率半径を有する、付記17または18に記載の結晶基板。
前記単結晶の前記一方の主面における最大の転位密度は、3×106/cm2以下である、付記17〜19のいずれか1つに記載の結晶基板の製造方法。
4インチ以上の直径を有する、付記12〜20のいずれか1つに記載の結晶基板。
11 下地層
12 金属層
13 ボイド含有層
14 ナノマスク
15 ボイド形成基板
16 空隙
20、30、40 結晶体
21、31、41 基板
20s、21s、30s、31s、40s、41s 主面
120、121、130、131、140、141 c面
100、110、120、130 積層結晶基板
21m 主領域
21p ポケット
21i インバージョンドメイン
22 インクルージョン
23 閉空間
24 中間層
Claims (18)
- III族窒化物の単結晶からなり第1主面を有する自立基板であって、前記単結晶のc面が前記第1主面を+c側から見たときに前記自立基板の内側に向かって所定の曲率で凹の球面状に湾曲している第1結晶体を用意する工程と、
前記第1主面上に、前記III族窒化物の単結晶からなる第2結晶体を、c面の凹の向きを維持しつつ、アルカリ金属とIII族元素とを含む混合融液中で成長させる工程と、を有し、
前記第2結晶体を成長させる工程では、前記第1結晶体と前記第2結晶体との界面に、前記混合融液に含まれる前記アルカリ金属を取り込ませ、前記アルカリ金属を内包する閉空間を複数有する中間層を形成する結晶基板の製造方法。 - 前記第2結晶体を成長させる工程では、結晶の成長に伴って前記第2結晶体中に発生する圧縮応力を、前記中間層によって緩和させることで、前記第2結晶体におけるc面の曲率半径を、前記第1結晶体におけるc面の曲率半径よりも大きくする、請求項1に記載の結晶基板の製造方法。
- 前記第1結晶体の前記第1主面には、前記混合融液が留まりやすいように構成された領域が設けられている、請求項1または2に記載の結晶基板の成長方法。
- 前記第1結晶体を用意する工程では、前記第1結晶体として、主領域と、前記主領域に対して凹んだ領域であるポケットと、を有する結晶体を用意し、
前記第2結晶体を成長させる工程では、前記混合融液に含まれる前記アルカリ金属により前記ポケットの表面を塞ぐキャップ層を形成して前記ポケットを下地とした結晶成長を抑制しつつ、前記主領域を下地として成長した結晶によって前記キャップ層を埋め込み、前記第1結晶体と前記第2結晶体との界面のうち前記ポケットに対応する位置に、前記アルカリ金属を内包する前記閉空間を形成する、請求項1〜3のいずれか1項に記載の結晶基板の製造方法。 - 前記第1結晶体を用意する工程では、前記第1結晶体として、主領域と、前記主領域に対してc軸方向の極性が反転している極性反転領域と、を有する結晶体を用意し、
前記第2結晶体を成長させる工程では、前記混合融液に含まれる前記アルカリ金属により前記極性反転領域の表面を塞ぐキャップ層を形成して前記極性反転領域を下地とした結晶成長を抑制しつつ、前記主領域を下地として成長した結晶によって前記キャップ層を埋め込み、前記第1結晶体と前記第2結晶体との界面のうち前記極性反転領域に対応する位置に、前記アルカリ金属を内包する前記閉空間を形成する、請求項1〜4のいずれか1項に記載の結晶基板の製造方法。 - 前記第2結晶体を成長させる工程では、前記第1結晶体を収容する反応容器を回転させながら、前記中間層を形成する、請求項1〜5のいずれか1項に記載の結晶基板の製造方法。
- 前記第2結晶体を含む結晶体から結晶基板を得る工程をさらに有する、請求項1〜6のいずれか1項に記載の結晶基板の製造方法。
- 前記第2結晶体上に、III族窒化物の単結晶からなる第3結晶体を気相法により成長させる工程をさらに有する、請求項1〜7のいずれか1項に記載の結晶基板の製造方法。
- 前記第3結晶体を含む結晶体から結晶基板を得る工程をさらに有する、請求項8に記載の結晶基板の製造方法。
- III族窒化物の単結晶からなり第1主面を有する自立基板であって、前記単結晶のc面が前記第1主面を+c側から見たときに前記自立基板の内側に向かって所定の曲率で凹の球面状に湾曲している第1結晶体と、
前記第1主面上にc面の凹の向きを維持しつつ成長させられた前記III族窒化物の単結晶からなる第2結晶体と、を備え、
前記第1結晶体と前記第2結晶体との界面に、アルカリ金属を内包する閉空間を複数有する中間層を備える結晶基板。 - 前記第2結晶体におけるc面の曲率半径が、前記第1結晶体におけるc面の曲率半径よりも大きい、請求項10に記載の結晶基板。
- 前記第1結晶体が、主領域と、前記主領域に対して凹んだ領域であるポケットと、を有し、
前記閉空間が、前記ポケットに対応する位置に形成されている、請求項10または11に記載の結晶基板。 - 前記第1結晶体が、主領域と、前記主領域に対してc軸方向の極性が反転している極性反転領域と、を有し、
前記閉空間が、前記極性反転領域に対応する位置に形成されている、請求項10または12に記載の結晶基板。 - III族窒化物の単結晶からなる基板であって、
4インチ以上の直径を有し、
前記単結晶のc面が、前記基板の主面を+c側から見たときに前記基板の内側に向かって、15m以上の大きさの曲率半径で凹の球面状に湾曲しており、平面視された前記主面の80%以上の面積の領域において、一定の曲率半径を有する結晶基板。 - 前記単結晶のc面のa軸方向の曲率半径、および、前記単結晶のc面のm軸方向の曲率半径のいずれもが15m以上である請求項14に記載の結晶基板。
- 前記単結晶の前記一方の主面における最大の転位密度が3×106/cm2以下である請求項14または請求項15に記載の結晶基板。
- 前記単結晶の前記一方の主面における平均の転位密度が1×106/cm2以下である請求項14から請求項16のいずれかに記載の結晶基板。
- 前記単結晶の前記一方の主面における最小の転位密度に対する最大の転位密度の比が100倍以下である請求項14から請求項17のいずれかに記載の結晶基板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053120A JP6553765B1 (ja) | 2018-03-20 | 2018-03-20 | 結晶基板の製造方法および結晶基板 |
US16/353,115 US11718927B2 (en) | 2018-03-20 | 2019-03-14 | Group III nitride crystal substrate having a diameter of 4 inches or more and a curved c-plane with a radius of curvature of 15 m or more |
CN201910204487.8A CN110306241B (zh) | 2018-03-20 | 2019-03-18 | 晶体基板的制造方法以及晶体基板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053120A JP6553765B1 (ja) | 2018-03-20 | 2018-03-20 | 結晶基板の製造方法および結晶基板 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019125177A Division JP7141984B2 (ja) | 2019-07-04 | 2019-07-04 | 結晶基板 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6553765B1 true JP6553765B1 (ja) | 2019-07-31 |
JP2019163195A JP2019163195A (ja) | 2019-09-26 |
Family
ID=67473281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018053120A Active JP6553765B1 (ja) | 2018-03-20 | 2018-03-20 | 結晶基板の製造方法および結晶基板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11718927B2 (ja) |
JP (1) | JP6553765B1 (ja) |
CN (1) | CN110306241B (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021130584A (ja) * | 2020-02-20 | 2021-09-09 | 株式会社サイオクス | 結晶基板および結晶基板の製造方法 |
JPWO2023002865A1 (ja) * | 2021-07-21 | 2023-01-26 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4192966B2 (ja) * | 2006-06-08 | 2008-12-10 | 住友電気工業株式会社 | 窒化ガリウムの結晶成長方法 |
US7524691B2 (en) * | 2003-01-20 | 2009-04-28 | Panasonic Corporation | Method of manufacturing group III nitride substrate |
FR2860248B1 (fr) * | 2003-09-26 | 2006-02-17 | Centre Nat Rech Scient | Procede de realisation de substrats autosupportes de nitrures d'elements iii par hetero-epitaxie sur une couche sacrificielle |
JP4691911B2 (ja) * | 2004-06-11 | 2011-06-01 | 日立電線株式会社 | Iii−v族窒化物系半導体自立基板の製造方法 |
JP4424497B2 (ja) | 2005-02-15 | 2010-03-03 | 日立電線株式会社 | 窒化物半導体結晶の製造方法 |
JP4720441B2 (ja) * | 2005-11-02 | 2011-07-13 | 日立電線株式会社 | 青色発光ダイオード用GaN基板 |
JP2008127252A (ja) * | 2006-11-22 | 2008-06-05 | Hitachi Cable Ltd | 窒化物半導体インゴット及びこれから得られる窒化物半導体基板並びに窒化物半導体インゴットの製造方法 |
JP2009126727A (ja) | 2007-11-20 | 2009-06-11 | Sumitomo Electric Ind Ltd | GaN基板の製造方法、GaN基板及び半導体デバイス |
US20120000415A1 (en) * | 2010-06-18 | 2012-01-05 | Soraa, Inc. | Large Area Nitride Crystal and Method for Making It |
US9175418B2 (en) * | 2009-10-09 | 2015-11-03 | Soraa, Inc. | Method for synthesis of high quality large area bulk gallium based crystals |
JP2012006794A (ja) * | 2010-06-25 | 2012-01-12 | Sumitomo Electric Ind Ltd | GaN結晶の成長方法 |
JP6031733B2 (ja) | 2010-09-27 | 2016-11-24 | 住友電気工業株式会社 | GaN結晶の製造方法 |
CN108425147A (zh) * | 2011-08-10 | 2018-08-21 | 日本碍子株式会社 | 13族元素氮化物膜及其叠层体 |
JP6026188B2 (ja) * | 2011-09-12 | 2016-11-16 | 住友化学株式会社 | 窒化物半導体結晶の製造方法 |
JP2013209273A (ja) * | 2012-03-30 | 2013-10-10 | Mitsubishi Chemicals Corp | 周期表第13族金属窒化物半導体結晶 |
EP3059336A4 (en) * | 2013-09-11 | 2017-07-12 | National University Corporation Tokyo University Of Agriculture and Technology | Nitride semiconductor crystal, manufacturing method, and manufacturing apparatus |
US10202710B2 (en) * | 2014-03-03 | 2019-02-12 | Osaka University | Process for producing group III nitride crystal and apparatus for producing group III nitride crystal |
JP6714320B2 (ja) | 2014-03-18 | 2020-06-24 | 株式会社サイオクス | 13族窒化物結晶の製造方法及び13族窒化物結晶を有する積層体 |
JP6578570B2 (ja) * | 2015-03-03 | 2019-09-25 | 国立大学法人大阪大学 | Iii族窒化物半導体結晶基板の製造方法 |
US10364510B2 (en) | 2015-11-25 | 2019-07-30 | Sciocs Company Limited | Substrate for crystal growth having a plurality of group III nitride seed crystals arranged in a disc shape |
JP6761743B2 (ja) | 2015-11-25 | 2020-09-30 | 株式会社サイオクス | 結晶成長用基板、窒化物結晶基板および窒化物結晶基板の製造方法 |
JP6169292B1 (ja) * | 2015-12-11 | 2017-07-26 | 日本碍子株式会社 | 13族元素窒化物結晶基板および機能素子 |
JP6759831B2 (ja) | 2016-08-08 | 2020-09-23 | 三菱ケミカル株式会社 | C面GaN基板 |
-
2018
- 2018-03-20 JP JP2018053120A patent/JP6553765B1/ja active Active
-
2019
- 2019-03-14 US US16/353,115 patent/US11718927B2/en active Active
- 2019-03-18 CN CN201910204487.8A patent/CN110306241B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US20190292682A1 (en) | 2019-09-26 |
JP2019163195A (ja) | 2019-09-26 |
CN110306241B (zh) | 2022-04-12 |
US11718927B2 (en) | 2023-08-08 |
CN110306241A (zh) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6578570B2 (ja) | Iii族窒化物半導体結晶基板の製造方法 | |
JP4682328B2 (ja) | 窒化ガリウム単結晶厚膜およびその製造方法 | |
US9290861B2 (en) | Group 13 nitride crystal with stepped surface | |
JP2009522822A (ja) | 高品質化合物半導体材料を製造するためのナノ構造適応層及びhvpeを使用する成長法、単結晶化合物半導体材料、並びに、基板材料 | |
JP6731590B2 (ja) | 窒化物結晶基板の製造方法 | |
JP2008069067A (ja) | 窒化ガリウム単結晶厚膜の製造方法 | |
JP2018093112A (ja) | 窒化物半導体テンプレートの製造方法、窒化物半導体テンプレートおよび窒化物半導体デバイス | |
CN113366159B (zh) | 氮化物半导体基板、层叠结构体和氮化物半导体基板的制造方法 | |
US20240368804A1 (en) | Method for manufacturing nitride semiconductor substrate, nitride semiconductor substrate, and laminate structure | |
JP7627799B2 (ja) | 窒化物結晶基板および半導体積層物 | |
JP6553765B1 (ja) | 結晶基板の製造方法および結晶基板 | |
JP6657459B1 (ja) | 窒化物半導体基板の製造方法、および窒化物半導体基板 | |
CN112930423B (zh) | 氮化物半导体基板的制造方法、氮化物半导体基板和层叠结构体 | |
JP6906205B2 (ja) | 半導体積層物の製造方法および窒化物結晶基板の製造方法 | |
WO2022151728A1 (zh) | 一种氮化镓衬底及半导体复合衬底 | |
US20230399770A1 (en) | Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal | |
JP7141984B2 (ja) | 結晶基板 | |
CN114423891B (zh) | 氮化物半导体衬底、层叠结构体和氮化物半导体衬底的制造方法 | |
JP2021130584A (ja) | 結晶基板および結晶基板の製造方法 | |
CN112639178B (zh) | 氮化物半导体基板、氮化物半导体基板的制造方法和层叠结构体 | |
TW201016905A (en) | Method for manufacturing nitride substrate, and nitride substrate | |
JP2019147726A (ja) | 窒化物結晶基板の製造方法、窒化物結晶基板および結晶成長用基板 | |
JP6620916B1 (ja) | 窒化ガリウム結晶基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180405 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180711 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181108 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20181107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190107 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6553765 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |