JP6549254B2 - Hot rolled steel sheet excellent in sulfuric acid and hydrochloric acid composite corrosion resistance and method for manufacturing the same - Google Patents
Hot rolled steel sheet excellent in sulfuric acid and hydrochloric acid composite corrosion resistance and method for manufacturing the same Download PDFInfo
- Publication number
- JP6549254B2 JP6549254B2 JP2017561739A JP2017561739A JP6549254B2 JP 6549254 B2 JP6549254 B2 JP 6549254B2 JP 2017561739 A JP2017561739 A JP 2017561739A JP 2017561739 A JP2017561739 A JP 2017561739A JP 6549254 B2 JP6549254 B2 JP 6549254B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- sulfuric acid
- hydrochloric acid
- rolled steel
- hot rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 74
- 239000010959 steel Substances 0.000 title claims description 74
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 title claims description 68
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 title claims description 59
- 230000007797 corrosion Effects 0.000 title claims description 56
- 238000005260 corrosion Methods 0.000 title claims description 56
- 239000002131 composite material Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 title description 7
- 229910052802 copper Inorganic materials 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 19
- 229910052787 antimony Inorganic materials 0.000 claims description 14
- 238000005098 hot rolling Methods 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910017932 Cu—Sb Inorganic materials 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 238000003303 reheating Methods 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 description 31
- 239000000203 mixture Substances 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000011572 manganese Substances 0.000 description 8
- FZUJWWOKDIGOKH-UHFFFAOYSA-N sulfuric acid hydrochloride Chemical compound Cl.OS(O)(=O)=O FZUJWWOKDIGOKH-UHFFFAOYSA-N 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- -1 hydrochloric acid compound Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/84—Controlled slow cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、火力発電所の脱硫・脱硝設備、予熱器、及びこれらの部品等の素材として好ましく適用することができる硫酸及び塩酸に対する複合耐食性に優れた熱延鋼板及びその製造方法に関する。 The present invention relates to a hot rolled steel sheet excellent in combined corrosion resistance to sulfuric acid and hydrochloric acid which can be preferably applied as a material for desulfurization and denitrification equipment of a thermal power plant, a preheater, and parts thereof, and a method of manufacturing the same.
硫酸又は硫酸‐塩酸複合耐食鋼は、石炭又は石油等の化石燃料の燃焼過程で生成する亜硫酸ガス及び塩素ガスが含まれた排気ガスが水分と反応して硫酸及び塩酸を生成するため、硫酸又は硫酸‐塩酸の複合腐食が激しい火力発電所の脱硫・脱硝設備、又は複合発電所の配管、及びGGH(Gas Gas Heater)のような比較的厚い鋼板を使用する熱素子(heat element)素材等に用いられる。 Sulfuric acid or sulfuric acid-hydrochloric acid composite corrosion resistant steel is a sulfuric acid or sulfuric acid or sulfuric acid or hydrochloric acid, because the exhaust gas containing sulfur dioxide gas and chlorine gas generated in the combustion process of fossil fuel such as coal or petroleum reacts with moisture to form sulfuric acid and hydrochloric acid. For desulfurization and denitrification equipment of thermal power plant where complex corrosion of sulfuric acid and hydrochloric acid is severe, or piping of complex power plant and heat element material using relatively thick steel plate such as GGH (Gas Gas Heater) Used.
一般的に、硫酸‐塩酸複合耐食鋼は、硫酸及び塩酸の複合雰囲気で、一般鋼よりも腐食速度を遅延させるために、鋼中に銅(Cu)を多量添加するものとして知られてきた。 In general, a sulfuric acid-hydrochloric acid composite corrosion resistant steel has been known to add a large amount of copper (Cu) to the steel in order to delay the corrosion rate more than general steel in a mixed atmosphere of sulfuric acid and hydrochloric acid.
銅(Cu)は、他の添加元素に比べて硫酸腐食速度を大きく遅延させるという効果に優れているが、多量添加すると、熱間圧延の際に鋼板のクラック発生などを誘発するため、適量の銅(Cu)を添加しながら他の元素を複合添加する鋼(特許文献1、特許文献2、特許文献3等)が開発された。 Copper (Cu) is excellent in the effect of greatly retarding the sulfuric acid corrosion rate compared to other additive elements, but if added in large amounts, it causes cracking of the steel sheet during hot rolling, etc. A steel has been developed in which other elements are added in combination while adding copper (Cu) (Patent Document 1, Patent Document 2, Patent Document 3 etc.).
このように、硫酸‐塩酸複合耐食鋼において銅(Cu)の含量が高いほど、耐食性の向上が可能となる一方、銅(Cu)は、高価な元素であり、含量が増加するにつれて製造コストが高くなるだけでなく、融点が低い銅(Cu)が偏析したり、濃度が高い部位ではわずかな歪みによってもクラックが発生しやすくなり、連続鋳造過程で加工を多く受けるスラブのコーナー等にクラックが発生し、熱間圧延後には、表面欠陥として残存して、他の部位よりも先に腐食してしまうという問題がある。 Thus, the higher the content of copper (Cu) in the sulfuric acid-hydrochloric acid composite corrosion resistant steel, the better the corrosion resistance can be, while copper (Cu) is an expensive element, and the manufacturing cost increases as the content increases. Not only the high temperature, but also copper (Cu) having a low melting point is segregated, cracks are likely to occur even in a portion where the concentration is high even by a slight strain, and cracks occur in the corners of slabs etc. After hot rolling, there is a problem that it remains as a surface defect and corrodes earlier than other parts.
そこで、硫酸‐塩酸複合耐食鋼において、銅(Cu)の含量は最小限に抑えながら、高い複合耐食性を確保するための方案が要求されている実情である。 Therefore, in sulfuric acid-hydrochloric acid composite corrosion resistant steels, there is a demand for a method for securing high composite corrosion resistance while minimizing the content of copper (Cu).
本発明は、硫酸及び塩酸が複合的に存在する腐食環境において優れた耐食性を有する熱延鋼板、及びその製造方法を提供する。 The present invention provides a hot-rolled steel sheet having excellent corrosion resistance in a corrosive environment in which sulfuric acid and hydrochloric acid exist in combination, and a method of manufacturing the same.
本発明の一態様は、重量%で、C:0.05〜0.1%、Mn:0.5〜1.5%、P:0.02%以下、S:0.02%以下、Al:0.01%〜0.1%、Cu:0.2〜0.6%、Sb:0.05〜0.1%、残部Fe及び不可避不純物を含み、表面から厚さ方向に500nm以内でCu及びSbが濃縮されており、硫酸16.9体積%+塩酸0.35体積%溶液に対する腐食減量が2.0mg/cm2/hr以下である、硫酸及び塩酸複合耐食性に優れた熱延鋼板を提供する。 One aspect of the present invention is C: 0.05% to 0.1%, Mn: 0.5% to 1.5%, P: 0.02% or less, S: 0.02% or less, Al by weight. : 0.01% to 0.1%, Cu: 0.2 to 0.6%, Sb: 0.05 to 0.1%, balance Fe and unavoidable impurities, and within 500 nm in the thickness direction from the surface Hot rolled steel sheet excellent in sulfuric acid and hydrochloric acid combined corrosion resistance, wherein Cu and Sb are concentrated and the corrosion loss is 2.0 mg / cm 2 / hr or less for 16.9 vol% sulfuric acid + 0.35 vol% hydrochloric acid solution I will provide a.
本発明の他の一態様は、重量%で、C:0.05〜0.1%、Mn:0.5〜1.5%、P:0.02%以下、S:0.02%以下、Al:0.01%〜0.1%、Cu:0.2〜0.6%、Sb:0.05〜0.1%、残部Fe及びその他不可避不純物を含む鋼スラブを1100〜1300℃で再加熱する段階と、上記再加熱された鋼スラブを熱間圧延し、850〜950℃で仕上げ熱間圧延して熱延鋼板を得る段階と、上記熱延鋼板を120〜150℃/sの速度で急冷する段階と、上記冷却された熱延鋼板を650〜750℃で巻取する段階と、上記巻取された熱延鋼板を30〜40℃/hの速度で350〜400℃の冷却停止温度まで徐冷する段階と、を含む、硫酸及び塩酸複合耐食性に優れた熱延鋼板の製造方法を提供する。 Another aspect of the present invention is C: 0.05% to 0.1%, Mn: 0.5% to 1.5%, P: 0.02% or less, S: 0.02% or less by weight , Al: 0.01% to 0.1%, Cu: 0.2 to 0.6%, Sb: 0.05 to 0.1%, balance Fe and other unavoidable impurities at 1100 to 1300 ° C. Reheating the steel slab by hot rolling, finishing hot rolling at 850 to 950 ° C. to obtain a hot rolled steel sheet, and 120 to 150 ° C./s the hot rolled steel plate Quenching at a speed of 350 ° C, winding the cooled hot rolled steel sheet at 650 to 750 ° C., and 350 to 400 ° C. at a speed of 30 to 40 ° C./h And a step of gradually cooling to a cooling stop temperature, to provide a method of producing a hot rolled steel sheet excellent in sulfuric acid and hydrochloric acid combined corrosion resistance.
なお、上述の課題の解決手段は、本発明の特徴をすべて列挙したものではない。本発明の様々な特徴及びこれによる長所及び効果は、以下の具体的な実施形態を参照してより詳細に理解することができる。 The means for solving the above-mentioned problems do not enumerate all the features of the present invention. The various features of the present invention and the advantages and benefits thereof may be more fully understood with reference to the following specific embodiments.
本発明によると、従来の硫酸‐塩酸複合耐食鋼に比べて低合金系でありながら、優れた複合耐食性を有する熱延鋼板を提供することができる。また、本発明の熱延鋼板は、硫酸及び塩酸に対する複合腐食が発生する発電所の脱硝・脱硫設備、ボイラーの排煙ガス配管及び予熱器のような比較的厚い厚さを要求する素材に好適に適用することができ、さらに、これらの寿命を大幅に延長するという効果がある。 According to the present invention, it is possible to provide a hot-rolled steel sheet which has excellent composite corrosion resistance while being a low alloy system as compared to conventional sulfuric acid-hydrochloric acid composite corrosion resistant steel. In addition, the heat-rolled steel plate of the present invention is suitable for a material requiring relatively thick thickness such as NOx removal / desulfurization equipment of a power plant where complex corrosion to sulfuric acid and hydrochloric acid occurs, boiler exhaust gas piping and preheater. In addition, they have the effect of significantly extending their lifetime.
本発明者らは、硫酸‐塩酸複合耐食鋼において銅(Cu)の含量は最小限に抑えながら、高い複合耐食性を確保することができる方法について、鋼板の組成及び製造方法の両側面から研究を重ねた結果、鋼板の一組成としてSbを添加すると同時に、熱間圧延後の冷却条件、さらに、巻取後の冷却条件を適切に制御することによって、硫酸及び塩酸の腐食環境において、鋼板の表面にCu及びSb濃縮層が適切な厚さに形成され、優れた複合耐食性を確保できることを見出し、本発明を完成させるに至った。 The present inventors conducted studies from both sides of the steel sheet composition and manufacturing method as to a method capable of securing high composite corrosion resistance while minimizing the content of copper (Cu) in sulfuric acid-hydrochloric acid composite corrosion resistant steel. As a result of stacking, the surface of the steel plate is added in a corrosive environment of sulfuric acid and hydrochloric acid by appropriately controlling the cooling condition after hot rolling and further the cooling condition after winding while adding Sb as one composition of the steel plate. It has been found that the Cu and Sb enriched layers are formed to a suitable thickness, and excellent combined corrosion resistance can be secured, and the present invention has been completed.
以下、本発明の一態様である硫酸及び塩酸複合耐食性に優れた熱延鋼板について詳細に説明する。 Hereinafter, the heat-rolled steel plate excellent in sulfuric acid and hydrochloric acid combined corrosion resistance which is one mode of the present invention is explained in detail.
先ず、本発明熱延鋼板の合金組成について詳細に説明する。 First, the alloy composition of the heat-rolled steel sheet of the present invention will be described in detail.
炭素(C):0.05〜0.1重量%
炭素(C)は、鋼板の強度確保に有利な元素であり、その含量が0.05重量%未満であると、目標強度の確保が困難になり、耐摩耗特性が低下するという問題がある。一方、その含量が0.1重量%を超えると、鋼板の溶接時に溶接性が大きく悪化し、欠陥が発生する可能性が高くなり、耐食性も大きく低下するという問題がある。したがって、本発明では、上記炭素の含量を0.05〜0.1重量%に制限することが好ましい。
Carbon (C): 0.05 to 0.1% by weight
Carbon (C) is an element advantageous for securing the strength of the steel plate, and when the content is less than 0.05% by weight, it is difficult to secure the target strength and there is a problem that the wear resistance is deteriorated. On the other hand, if the content exceeds 0.1% by weight, the weldability is greatly deteriorated at the time of welding of the steel plate, the possibility of occurrence of defects becomes high, and there is a problem that the corrosion resistance is also significantly reduced. Therefore, in the present invention, the content of carbon is preferably limited to 0.05 to 0.1% by weight.
マンガン(Mn):0.5〜1.5重量%
マンガン(Mn)は、鋼中に固溶されている硫黄をマンガン硫化物として析出することにより、上記固溶硫黄による赤熱脆性(hot shortness)を防止する役割をし、固溶強化の効果を発現する元素である。上記マンガンの含量が0.5重量%未満であると、マンガン硫化物が十分に析出せず、固溶硫黄による赤熱脆性が発生する恐れがあり、目標強度の確保が困難になる。一方、その含量が1.5重量%を超えると、上述した効果が飽和してしまい、製造コストが急激に上昇するという問題がある。したがって、本発明では、上記マンガンの含量を0.5〜1.5重量%に制限することが好ましい。
Manganese (Mn): 0.5 to 1.5% by weight
Manganese (Mn) plays the role of preventing hot shortness due to the above-mentioned solid solution sulfur by precipitating the solid solution sulfur in the steel as manganese sulfide, and expresses the effect of solid solution strengthening Is an element that If the content of manganese is less than 0.5% by weight, manganese sulfide may not be sufficiently precipitated, and red hot embrittlement may occur due to solid solution sulfur, making it difficult to secure the target strength. On the other hand, when the content exceeds 1.5% by weight, the above-mentioned effects are saturated, and there is a problem that the manufacturing cost rises sharply. Therefore, in the present invention, the content of manganese is preferably limited to 0.5 to 1.5% by weight.
リン(P):0.02重量%以下
リン(P)は、鋼中に不可避に添加される元素であり、その含量が0.02重量%を超えると、目的とする複合耐食性が大きく低下するという問題がある。したがって、Pの含量を0.02重量%以下に管理することが好ましい。
Phosphorus (P): 0.02% by weight or less Phosphorus (P) is an element inevitably added to steel, and when its content exceeds 0.02% by weight, the target composite corrosion resistance is greatly reduced There is a problem of Therefore, it is preferable to control the content of P to 0.02% by weight or less.
硫黄(S):0.02重量%以下
硫黄(S)は、鋼中に固溶されて赤熱脆性を誘発する元素であるため、その含量をできるだけ低く制御することが好ましい。その含量が0.02重量%を超えると、赤熱脆性による欠陥発生の可能性が高くなるという問題があるため、Sの含量を0.02重量%以下に管理することが好ましい。
Sulfur (S): 0.02% by Weight or Less Sulfur (S) is an element which is solid-dissolved in steel to induce red shortness, so it is preferable to control its content as low as possible. If the content exceeds 0.02% by weight, there is a problem that the possibility of defects due to red shortness becomes high, so it is preferable to control the content of S at 0.02% by weight or less.
アルミニウム(Al):0.01〜0.1重量%
アルミニウム(Al)は、アルミニウムキルド(Al−killed)鋼の製造時に不可避に添加される元素であり、脱酸効果のためには、0.01重量%以上添加されることが好ましい。但し、上記のアルミニウムの含量が0.1重量%を超えると、鋼板の表面欠陥を誘発する可能性が高くなり、溶接性が低下するという問題がある。したがって、本発明では、Alの含量を0.01〜0.1重量%に制限することが好ましい。
Aluminum (Al): 0.01 to 0.1% by weight
Aluminum (Al) is an element which is inevitably added at the time of production of aluminum-killed (Al-killed) steel, and it is preferable that 0.01% by weight or more is added for deoxidation effect. However, if the content of the above-mentioned aluminum exceeds 0.1% by weight, the possibility of inducing surface defects of the steel sheet becomes high, and there is a problem that the weldability is lowered. Therefore, in the present invention, it is preferable to limit the content of Al to 0.01 to 0.1% by weight.
銅(Cu):0.2〜0.6重量%
銅(Cu)は、耐硫酸及び耐塩酸の複合腐食特性を考慮して添加する元素であり、その含量が低すぎると、目標とする複合耐食性の確保が困難になるため、0.2%以上で添加することが好ましく、0.3%以上で添加することがより好ましい。複合耐食性は、Cuの含量が増加するほど向上するものの、その含量が高すぎると、耐食性の増加幅が大きく低下し、製造コストが急激に上昇し、放射状割れ(star crack)という表面欠陥を誘発するという問題がある。したがって、本発明において、Cuの含量の上限は0.6重量%であることが好ましく、0.5重量%であることがより好ましい。
Copper (Cu): 0.2 to 0.6% by weight
Copper (Cu) is an element added in consideration of the combined corrosion characteristics of sulfuric acid resistance and hydrochloric acid resistance, and if its content is too low, it becomes difficult to secure the target combined corrosion resistance, so 0.2% or more Is preferably added, and more preferably 0.3% or more. Although the composite corrosion resistance improves as the content of Cu increases, if the content is too high, the increase in corrosion resistance decreases greatly, the manufacturing cost sharply increases, and surface defects such as radial cracks (star cracks) are induced. Have the problem of Therefore, in the present invention, the upper limit of the content of Cu is preferably 0.6% by weight, and more preferably 0.5% by weight.
アンチモン(Sb):0.05〜0.1重量%
アンチモン(Sb)は、上記Cuと同様に、複合耐食性を向上させるために添加される必須の元素であり、特に、腐食環境においてCu−Sb複合酸化物を形成させることで複合耐食性を効果的に向上させることができる元素である。上記アンチモンの含量が0.05重量%未満であると、上述した効果が得られず、0.1重量%を超えると、上述した効果が飽和してしまうだけでなく、製造コストが急激に上昇するという問題もあるため、これを考慮して、0.1重量%以下で添加することが好ましい。
Antimony (Sb): 0.05 to 0.1% by weight
Antimony (Sb) is an essential element added to improve the composite corrosion resistance as in the case of the above Cu, and in particular, the composite corrosion resistance is effectively achieved by forming a Cu-Sb composite oxide in a corrosive environment. It is an element that can be improved. If the content of antimony is less than 0.05% by weight, the above-mentioned effect can not be obtained, and if it exceeds 0.1% by weight, not only the above-mentioned effect is saturated but also the manufacturing cost rises sharply. In view of this, it is preferable to add at 0.1 wt% or less.
上記組成以外の残りはFe及び不可避不純物からなる。一方、上記組成以外に他の組成が含まれても良いが、W、Mo、Co及びNiの含量の合計は、10ppm未満に制御することがより好ましい。これは、これらの元素が熱延鋼板の材質特性、例えば延性等を劣化させる恐れがあるためである。 The balance other than the above composition consists of Fe and unavoidable impurities. On the other hand, other compositions may be included in addition to the above compositions, but the total content of W, Mo, Co and Ni is more preferably controlled to be less than 10 ppm. This is because these elements may deteriorate the material properties of the heat-rolled steel plate, such as ductility.
一方、本発明の熱延鋼板は、その表面から厚さ方向に500nm以内でCu及びSbが濃縮されていることが好ましい。これらの元素は、鋼板の製造時には、表面に濃縮された状態で存在し、硫酸及び塩酸による腐食環境に晒されると、Cu−Sb複合酸化物の形態に変化するようになり、熱延鋼板の耐食性を非常に優れたレベルに向上させる。 On the other hand, it is preferable that Cu and Sb are concentrated within 500 nm in the thickness direction from the surface of the heat-rolled steel plate of the present invention. These elements are present in a concentrated state on the surface at the time of production of the steel sheet, and when exposed to a corrosive environment with sulfuric acid and hydrochloric acid, they change to the form of a Cu-Sb composite oxide. Improve corrosion resistance to a very good level.
このとき、濃縮されたCu及びSbの含量については、特に限定されないが、後述するように、硫酸及び塩酸による腐食環境において、熱延鋼板の表面から400nm厚さ以上の酸化物層を形成できる程度であればよい。上記酸化物層の厚さが400nm未満であると、本発明が目的とする耐食性の確保が困難になる。一方、上記酸化物層の厚さが厚くなるほど、耐食性がより向上するため、本発明では、上記酸化物層の厚さの上限については、特に限定しないものとする。但し、500nmを超えると、多量の合金を添加するよりも耐食性の向上効果が低く、さらに、製造コストも急激に上昇するという問題があるため、上記酸化物層の厚さは400〜500nmであることがより好ましい。 At this time, the content of concentrated Cu and Sb is not particularly limited, but as described later, the extent to which an oxide layer having a thickness of 400 nm or more can be formed from the surface of a hot rolled steel sheet in a corrosive environment with sulfuric acid and hydrochloric acid. If it is If the thickness of the oxide layer is less than 400 nm, it becomes difficult to ensure the corrosion resistance aimed by the present invention. On the other hand, since the corrosion resistance is further improved as the thickness of the oxide layer is increased, the upper limit of the thickness of the oxide layer is not particularly limited in the present invention. However, if it exceeds 500 nm, the effect of improving the corrosion resistance is lower than when a large amount of alloy is added, and furthermore, there is a problem that the manufacturing cost rises sharply, so the thickness of the oxide layer is 400 to 500 nm. Is more preferred.
本発明の熱延鋼板は、硫酸16.9体積%+塩酸0.35体積%溶液に対する腐食減量が2.0mg/cm2/hr以下であり、非常に優れた複合耐食性を有する。 The hot rolled steel sheet of the present invention has a corrosion loss of 2.0 mg / cm 2 / hr or less with respect to a 16.9 vol% sulfuric acid + 0.35 vol% hydrochloric acid solution, and has very excellent composite corrosion resistance.
以下、本発明の他の一態様である硫酸及び塩酸複合耐食性に優れた熱延鋼板の製造方法について詳細に説明する。 Hereinafter, the manufacturing method of the hot rolled sheet steel excellent in sulfuric acid and hydrochloric acid compound corrosion resistance which is other one mode of the present invention is explained in detail.
先ず、上述した組成を満たす鋼スラブを準備した後、1100〜1300℃で再加熱する。再加熱温度が1100℃未満であると、後続する熱間圧延時の温度を確保するのが難しいという問題があり、再加熱温度が1300℃を超えると、融点が低いCuが溶出し、スラブの表面にクラック(crack)が発生する可能性が高くなるという問題がある。 First, after preparing the steel slab which satisfy | fills the composition mentioned above, it reheats at 1100-1300 degreeC. If the reheating temperature is less than 1100 ° C., there is a problem that it is difficult to secure the temperature during the subsequent hot rolling, and if the reheating temperature exceeds 1300 ° C., Cu having a low melting point is eluted and There is a problem that the possibility of the occurrence of cracks on the surface increases.
次に、上記再加熱された鋼スラブを熱間圧延し、850〜950℃で仕上げ熱間圧延して熱延鋼板を得る。仕上げ熱間圧延温度が850℃未満であると、延伸された結晶粒の生成によって延伸率が大きく低下し、方向別の材質の偏差が激しくなる恐れがあり、950℃を超えると、オーステナイト結晶粒が粗大化し、硬化能が大きく増加するという問題がある。 Next, the reheated steel slab is hot-rolled and finished hot-rolled at 850 to 950 ° C. to obtain a hot-rolled steel sheet. If the finish hot rolling temperature is less than 850 ° C., the draw ratio may be greatly reduced due to the formation of stretched crystal grains, and the deviation of the material depending on the direction may become severe, and if it exceeds 950 ° C., austenite grain However, there is a problem that coarsening causes the curing ability to be greatly increased.
引き続き、上記の熱延鋼板を鋼板の表面温度を基準として120〜150℃/sで急冷する。上記のような急冷を行うことで、巻取後、耐食性に有利な合金元素が鋼板の表面に移動するのに必要な推進力を提供することができる。冷却速度が120℃/s未満であると、熱延鋼板の表面温度が高すぎて、鋼の内部に存在する酸化物の形成元素が表面に移動する推進力が低くなり、結局、鋼板が複合的な腐食環境に晒された場合、十分な酸化物が得られないという問題がある。一方、冷却速度が150℃/sを超えると、鋼板内部の温度が非常に低くなり、巻取後、目的とする温度まで復熱が行われず、酸化物層の形成に有利な合金元素の移動が円滑に行われないという問題がある。したがって、上記の冷却速度は120〜150℃/sが好ましい。 Subsequently, the above hot rolled steel sheet is quenched at 120 to 150 ° C./s based on the surface temperature of the steel sheet. The quenching as described above can provide the necessary propulsive force for the alloying elements advantageous for corrosion resistance to move to the surface of the steel sheet after winding. If the cooling rate is less than 120 ° C./s, the surface temperature of the hot-rolled steel plate is too high, and the driving force for the transfer of the oxide-forming elements present inside the steel to the surface is low, and eventually the steel plate is composite. When exposed to various corrosive environments, there is a problem that sufficient oxides can not be obtained. On the other hand, if the cooling rate exceeds 150 ° C./s, the temperature inside the steel sheet becomes very low, and after coiling, recovery to the target temperature is not performed, and the movement of alloying elements advantageous for the formation of the oxide layer There is a problem that is not done smoothly. Therefore, the above-mentioned cooling rate is preferably 120 to 150 ° C./s.
その後、上記冷却された熱延鋼板を650〜750℃で巻取する。巻取温度が650℃未満であると、巻取工程で原子の移動が容易ではないため、濃縮層の形成が困難で、腐食環境での酸化物層が形成されず、十分な耐食性の確保が困難になる。上記巻取温度が750℃を超えると、復熱される温度が高すぎて、巻取された鋼板に歪み等の欠陥が発生する恐れがあるため、上記巻取温度は650〜750℃の範囲を有することが好ましい。 Thereafter, the cooled hot-rolled steel sheet is wound at 650 to 750 ° C. If the take-up temperature is less than 650 ° C., it is difficult to move atoms in the take-up process, so it is difficult to form a concentrated layer, and an oxide layer is not formed in a corrosive environment. It will be difficult. If the coiling temperature exceeds 750 ° C., the temperature to be recovered is too high and defects such as distortion may occur in the coiled steel sheet, so the coiling temperature is in the range of 650 to 750 ° C. It is preferable to have.
尚、上記巻取の際には、上記鋼板の表面が復熱現象によって720〜750℃になるようにすることが好ましい。上記冷却工程を通じて鋼板内部の温度が650〜750℃の範囲を有するようにしても、上記鋼板の表面は、急冷によって上記温度範囲よりも低い温度を有するようになる。したがって、上記復熱の過程を経ることにより酸化物層の形成に有利な合金元素の移動を活発にし、これによって、濃縮層を十分な厚さに形成させることができる。上記効果を十分に得るためには、上記復熱を経た鋼板の表面温度が720℃以上であることが好ましい。但し、十分な復熱の過程を経ても、鋼板の表面温度が750℃を超えることは困難である。 In the case of the above-mentioned winding, it is preferred to make the surface of the above-mentioned steel plate become 720-750 ° C by a recuperation phenomenon. Even if the temperature inside the steel plate has a range of 650 to 750 ° C. through the cooling step, the surface of the steel plate will have a temperature lower than the above temperature range by quenching. Therefore, the migration of alloying elements advantageous for the formation of the oxide layer can be activated through the process of the above-mentioned recuperation, whereby the concentrated layer can be formed to a sufficient thickness. It is preferable that the surface temperature of the steel plate which passed through the said heat recovery is 720 degreeC or more, in order to fully acquire the said effect. However, it is difficult for the surface temperature of the steel plate to exceed 750 ° C., even after a sufficient process of heat recovery.
上記巻取された鋼板を30〜40℃/hrの速度で350〜400℃の冷却停止温度まで徐冷する。上記冷却速度が速すぎると、濃縮層を形成する元素であるCuの移動が十分に行われず、十分な厚さの濃縮層の形成が困難なことがあるため、上記冷却速度は40℃/hr以下の範囲を有することが好ましい。一方、30℃/hr未満であると、結晶粒の大きさが大きすぎて、強度が低くなる恐れがあるため、上記冷却速度は30〜40℃/hrの範囲を有することが好ましい。一方、上記冷却停止温度が350℃未満であると、熱延鋼板の材質特性、例えば延性が劣化し、生産性が低下するという問題があり、400℃を超えると、濃縮層の厚さが十分でなく、耐食性の劣位といった問題があり得る。したがって、上記の冷却停止温度は350〜400℃の範囲であることが好ましい。 The rolled steel sheet is gradually cooled to a cooling stop temperature of 350 to 400 ° C. at a rate of 30 to 40 ° C./hr. If the cooling rate is too fast, Cu, which is an element forming the concentrated layer, may not be sufficiently transferred, and the formation of a concentrated layer having a sufficient thickness may be difficult. Thus, the cooling rate is 40 ° C./hr. It is preferable to have the following range. On the other hand, if the temperature is less than 30 ° C./hr, the size of the crystal grains may be too large and the strength may be lowered. Therefore, the cooling rate is preferably in the range of 30 to 40 ° C./hr. On the other hand, if the cooling stop temperature is less than 350 ° C., there is a problem that the material property of the heat-rolled steel plate, eg, ductility, is deteriorated and the productivity is decreased. However, there may be problems such as inferior corrosion resistance. Therefore, it is preferable that said cooling stop temperature is the range of 350-400 degreeC.
以下、実施例を通じて本発明をより具体的に説明する。但し、下記実施例は、本発明を例示してより詳細に説明するためのものであるだけで、本発明の権利範囲を限定するためのものではないことに留意する必要がある。これは、本発明の権利範囲は特許請求の範囲に記載された事項とそこから合理的に類推される事項によって決定されるためである。 Hereinafter, the present invention will be more specifically described through examples. However, it should be noted that the following examples are only for illustrating and explaining the present invention in more detail, and not for limiting the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably deduced therefrom.
下記表1に示す成分組成に溶解して製造した鋼塊を1200℃の加熱炉で1時間維持した後、熱間圧延した。このとき、仕上げ熱間圧延は、900℃で行い、最終厚さ4.5mmを有する熱延鋼板を製造した。その後、下記表2に示す条件で冷却及び巻取した後、維持した。次いで、35℃/hの速度で380℃の冷却終了温度まで徐冷し、最終熱延鋼板を製造した。 The steel ingots produced by melting into the component compositions shown in Table 1 below were maintained in a heating furnace at 1200 ° C. for 1 hour and then hot-rolled. At this time, finish hot rolling was performed at 900 ° C. to produce a hot-rolled steel plate having a final thickness of 4.5 mm. Thereafter, after cooling and winding under the conditions shown in Table 2 below, they were maintained. Then, it was gradually cooled to a cooling end temperature of 380 ° C. at a rate of 35 ° C./h to produce a final hot rolled steel sheet.
上記に従って製造された熱延鋼板の腐食特性を観察するために、それぞれの試片を60℃の硫酸16.9体積%+塩酸0.35体積%溶液に6時間浸漬した後、各試片の腐食減量を測定し、その結果を表2に示した。 In order to observe the corrosion characteristics of the hot-rolled steel plate manufactured according to the above, after immersing each specimen in a 16.9% by volume solution of sulfuric acid at 60 ° C. and 0.35% by volume of hydrochloric acid for 6 hours, The corrosion loss was measured, and the results are shown in Table 2.
また、硫酸‐塩酸複合腐食の条件での浸漬が完了した後、鋼板の表面に形成された酸化物層(耐食層)の厚さを測定し、表2に示した。 In addition, after the immersion under the condition of sulfuric acid-hydrochloric acid composite corrosion was completed, the thickness of the oxide layer (corrosion resistant layer) formed on the surface of the steel plate was measured and is shown in Table 2.
上記表1及び2から分かるように、本発明が提案する合金組成及び製造条件を満たす発明例1〜3では、400nm以上の酸化物層が形成されることで、硫酸及び塩酸による腐食環境下での腐食減量が2.0mg/cm2/Hr以下であり、非常に優れた耐食性特性を有することが確認できる。 As can be seen from Tables 1 and 2 above, in Inventive Examples 1 to 3 satisfying the alloy composition and manufacturing condition proposed by the present invention, an oxide layer of 400 nm or more is formed, so that under corrosion environment by sulfuric acid and hydrochloric acid It can be confirmed that the weight loss of corrosion is less than 2.0 mg / cm 2 / Hr, and has very excellent corrosion resistance characteristics.
比較例1は、本発明の合金組成を満たしているが、巻取温度が500℃と低いため酸化物層が十分に形成されず、よって、腐食減量が4.5mg/cm2/hrであり、耐食性が非常に低いことが分かる。 Comparative Example 1 satisfies the alloy composition of the present invention, but the coiling temperature is as low as 500 ° C., so the oxide layer is not sufficiently formed, and thus the corrosion loss is 4.5 mg / cm 2 / hr. , It can be seen that the corrosion resistance is very low.
比較例2〜4は、本発明の合金組成を満たしているが、冷却速度が10℃/sと低いレベルであるため、酸化物層が十分に形成されず、よって、腐食減量が3.2mg/cm2/hr以上であり、耐食性が非常に低いことがわかる。 Although Comparative Examples 2 to 4 satisfy the alloy composition of the present invention, since the cooling rate is as low as 10 ° C./s, the oxide layer is not sufficiently formed, and hence the corrosion loss is 3.2 mg. / Cm 2 / hr or more, and it can be seen that the corrosion resistance is very low.
比較例5の場合は、本発明の製造条件を満たしているが、Sbが添加されていないため硫酸及び塩酸による腐食環境での腐食減量が8.8mg/cm2/hrであり、耐食性が非常に低い水準であることが分かる。これは、酸化物層内に耐食性に優れたCu−Sb複合酸化物が存在しないためである。 In the case of Comparative Example 5, although the production conditions of the present invention are satisfied, Sb is not added and the corrosion loss in a corrosive environment by sulfuric acid and hydrochloric acid is 8.8 mg / cm 2 / hr, and the corrosion resistance is very high. To a low level. This is because there is no Cu-Sb composite oxide excellent in corrosion resistance in the oxide layer.
以上、実施例を参照して説明したが、当該技術分野の熟練した当業者であれは、添付の特許請求の範囲に記載された本発明の思想及び領域から逸脱しない範囲内で、本発明を多様に修正及び変更できることを理解することができる。 While the present invention has been described with reference to the preferred embodiments, those skilled in the art will appreciate that the present invention may be practiced without departing from the spirit and scope of the invention as set forth in the appended claims. It can be understood that various modifications and changes can be made.
Claims (6)
前記再加熱された鋼スラブを熱間圧延し、850〜950℃で仕上げ熱間圧延して熱延鋼板を得る段階と、
前記熱延鋼板を120〜150℃/sの速度で急冷する段階と、
前記冷却された熱延鋼板を650〜750℃で巻取する段階と、
前記巻取された熱延鋼板を30〜40℃/hの速度で350〜400℃の冷却停止温度まで徐冷する段階とを含み、
表面から厚さ方向に500nm以内でCu及びSbが濃縮されており、60℃の硫酸16.9体積%+塩酸0.35体積%溶液に6時間浸漬した後に測定した腐食減量が2.0mg/cm 2 /hr以下である熱延鋼板を製造する、硫酸及び塩酸複合耐食性に優れた熱延鋼板の製造方法。 By mass%, C: 0.05~0.1%, Mn : 0.5~1.5%, P: 0.02% or less, S: 0.02% or less, Al: 0.01~0. Reheating the steel slab consisting of 1%, Cu: 0.2 to 0.6%, Sb: 0.05 to 0.1%, the balance Fe and other unavoidable impurities at 1100 to 1300 ° C.
Hot rolling the reheated steel slab and finishing hot rolling at 850 to 950 ° C. to obtain a hot rolled steel sheet;
Quenching the hot rolled steel sheet at a rate of 120 to 150 ° C./s;
Winding the cooled hot rolled steel sheet at 650-750 ° C .;
Look including a step of gradually cooling to the cooling stop temperature of 350 to 400 ° C. at a rate of the winding has been hot-rolled steel sheet 30 to 40 ° C. / h,
Cu and Sb are concentrated within 500 nm in the thickness direction from the surface, and the corrosion loss measured after immersion for 6 hours in 16.9 vol% sulfuric acid + 0.35 vol% hydrochloric acid solution at 60 ° C. is 2.0 mg / The manufacturing method of the hot rolled sheet steel excellent in sulfuric acid and hydrochloric acid composite corrosion resistance which manufactures the hot rolled sheet steel which is cm < 2 > / hr or less .
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2015/005381 WO2016190467A1 (en) | 2015-05-28 | 2015-05-28 | Hot-rolled steel sheet having excellent composite corrosion resistance to sulfuric acid and hydrochloric acid and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018519422A JP2018519422A (en) | 2018-07-19 |
JP6549254B2 true JP6549254B2 (en) | 2019-07-24 |
Family
ID=57393247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017561739A Active JP6549254B2 (en) | 2015-05-28 | 2015-05-28 | Hot rolled steel sheet excellent in sulfuric acid and hydrochloric acid composite corrosion resistance and method for manufacturing the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180148811A1 (en) |
EP (1) | EP3305936B1 (en) |
JP (1) | JP6549254B2 (en) |
KR (1) | KR102098511B1 (en) |
CN (1) | CN107614721B (en) |
WO (1) | WO2016190467A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110629124B (en) * | 2018-06-25 | 2021-09-17 | 宝山钢铁股份有限公司 | Rare-sulfuric-acid-corrosion-resistant microalloyed steel and heat treatment method of steel plate/steel pipe thereof |
KR20200065990A (en) * | 2018-11-30 | 2020-06-09 | 주식회사 포스코 | Corrosion resistant steel having high resistance to corrosion at sulfuric and sulfuric/hydrochloric acid condensing environment and manufacturing method the same |
WO2021095185A1 (en) * | 2019-11-13 | 2021-05-20 | 日本製鉄株式会社 | Hot-rolled steel |
KR102710345B1 (en) * | 2019-11-13 | 2024-09-26 | 닛폰세이테츠 가부시키가이샤 | Steel |
KR102326323B1 (en) * | 2019-12-19 | 2021-11-12 | 주식회사 포스코 | A steel sheet having high abrasion resistance and corrosion resistance at sulfuric/hydrochloric acid condensing environment and manufacturing method the same |
KR102352601B1 (en) | 2020-11-19 | 2022-01-18 | 주식회사 포스코 | Shielded metal arc welding material |
KR102468054B1 (en) | 2020-11-19 | 2022-11-17 | 주식회사 포스코 | Welded joint having excellent wear resistance and corrosion resistance |
CN115161547A (en) * | 2022-04-27 | 2022-10-11 | 日照钢铁控股集团有限公司 | Manufacturing method of atmospheric corrosion resistant checkered plate |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3459538A (en) * | 1965-03-25 | 1969-08-05 | Fuji Iron & Steel Co Ltd | Corrosion resistant low-alloy steel |
US3443934A (en) * | 1965-04-12 | 1969-05-13 | Nippon Kokan Kk | Steel alloys resistant to sulfuric acid and containing small quantity of alloying elements of copper,chromium,and tin or antimony |
JPS5696053A (en) * | 1979-12-29 | 1981-08-03 | Nippon Steel Corp | Steel with hydrogen sulfide crack resistance |
US5045279A (en) * | 1989-06-01 | 1991-09-03 | Queiroz Pinto Jose A De | Corrosion-resistant carbon steel with good drawability characteristics |
JPH0925536A (en) * | 1995-07-06 | 1997-01-28 | Sumitomo Metal Ind Ltd | Acid dew point corrosion steel |
JP3584636B2 (en) * | 1996-10-08 | 2004-11-04 | 住友金属工業株式会社 | Sulfuric acid / hydrochloric acid dew-point corrosion resistant steel with excellent hot workability |
JP3699669B2 (en) | 2001-10-01 | 2005-09-28 | 新日本製鐵株式会社 | Steel with excellent resistance to molten acid ammonium sulfate corrosion |
JP4319817B2 (en) * | 2001-11-19 | 2009-08-26 | 新日本製鐵株式会社 | Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint |
JP4997808B2 (en) * | 2006-03-30 | 2012-08-08 | Jfeスチール株式会社 | Sulfuric acid dew-point corrosion steel with excellent hydrochloric acid resistance |
JP5365187B2 (en) * | 2008-12-26 | 2013-12-11 | Jfeスチール株式会社 | Method for producing marine structural steel with excellent corrosion resistance |
KR20120040733A (en) * | 2009-09-30 | 2012-04-27 | 제이에프이 스틸 가부시키가이샤 | Steel material for structures having excellent weather resistance and steel structure |
JP5862323B2 (en) * | 2011-01-31 | 2016-02-16 | Jfeスチール株式会社 | Corrosion resistant steel for holding coal ships or coal / ore combined ships |
JP5686632B2 (en) | 2011-02-28 | 2015-03-18 | 日新製鋼株式会社 | Sulfuric acid dew point corrosion steel and exhaust gas flow path components |
KR101417294B1 (en) * | 2012-06-21 | 2014-07-08 | 주식회사 포스코 | Hot-rolled steel sheet having excellent multi-corrosion resistant and weldability and method for manufacturing thereof |
KR101500048B1 (en) * | 2012-12-27 | 2015-03-06 | 주식회사 포스코 | Method for manufacturing steel sheet having superior resistance to corrosion by sulfuric acid |
KR101518578B1 (en) * | 2013-09-10 | 2015-05-07 | 주식회사 포스코 | Steel for complex corrosion resistance to hydrochloric acid and sulfuric acid having excellent wear resistance and surface qualities and method for manufacturing the same |
KR101560902B1 (en) * | 2013-12-06 | 2015-10-15 | 주식회사 포스코 | Hot rolled steel sheet having excellent corrosion resistance by sulfuric acid and hydrochloric acid and method for manufacturing the same |
CN104451457A (en) * | 2014-11-20 | 2015-03-25 | 南京钢铁股份有限公司 | Hot rolled steel strip with resistance to corrosion of hydrochloric acid and sulfuric acid and production method thereof |
-
2015
- 2015-05-28 JP JP2017561739A patent/JP6549254B2/en active Active
- 2015-05-28 KR KR1020187003152A patent/KR102098511B1/en active IP Right Grant
- 2015-05-28 US US15/577,228 patent/US20180148811A1/en not_active Abandoned
- 2015-05-28 EP EP15893419.0A patent/EP3305936B1/en active Active
- 2015-05-28 CN CN201580080459.XA patent/CN107614721B/en active Active
- 2015-05-28 WO PCT/KR2015/005381 patent/WO2016190467A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP3305936A4 (en) | 2018-04-11 |
WO2016190467A1 (en) | 2016-12-01 |
EP3305936B1 (en) | 2019-07-10 |
CN107614721B (en) | 2019-08-13 |
JP2018519422A (en) | 2018-07-19 |
KR20180027534A (en) | 2018-03-14 |
KR102098511B1 (en) | 2020-04-07 |
EP3305936A1 (en) | 2018-04-11 |
CN107614721A (en) | 2018-01-19 |
US20180148811A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6549254B2 (en) | Hot rolled steel sheet excellent in sulfuric acid and hydrochloric acid composite corrosion resistance and method for manufacturing the same | |
KR101560902B1 (en) | Hot rolled steel sheet having excellent corrosion resistance by sulfuric acid and hydrochloric acid and method for manufacturing the same | |
KR101417295B1 (en) | Cold-rolled steel sheet having excellent sulfuric acid-corrosion resistant and surface properties and method for manufacturing thereof | |
KR101536438B1 (en) | Steel sheet for complex corrosion resistance to sulfuric acid and hydrochloric acid and method for manufacturing the same | |
CN102325909B (en) | Manufacturing method of steel plate for acid-resistant line pipe | |
KR101372794B1 (en) | Steel sheet having excellent corrosion resistance by sulfuric acid and hydrochloric acid and weldability and method for manufacturing the same | |
KR101417294B1 (en) | Hot-rolled steel sheet having excellent multi-corrosion resistant and weldability and method for manufacturing thereof | |
US10196704B2 (en) | Steel for resistance to complex corrosion from hydrochloric acid and sulfuric acid, having excellent wear resistance and surface qualities | |
JP2020509173A (en) | High carbon hot rolled steel sheet with excellent surface quality and method for producing the same | |
KR101493853B1 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
KR101536429B1 (en) | Steel sheet having excellent corrosion resistance by sulfuric acid and hydrochloric acid and method for manufacturing the same | |
KR101543874B1 (en) | Hot rolled steel for complex corrosion resistance to hydrochloric acid and sulfuric acid, having excellent corrosion resistance, and method of manufacturing the same | |
KR101304708B1 (en) | High ductility hot-rolled steel sheet having excellent corrosion resistance and method for manufacturing the same | |
KR101242807B1 (en) | Low alloy hot-rolled steel sheet having excellent corrosion resistance and method for manufacturing the same | |
KR101243011B1 (en) | High strength low alloy hot-rolled steel sheet having excellent corrosion resistance and method for manufacturing the same | |
KR101304637B1 (en) | High strength and high ductility hot-rolled steel sheet having excellent corrosion resistance and method for manufacturing the same | |
KR102368362B1 (en) | A steel sheet having high abrasion resistance and corrosion resistance at sulfuric/hydrochloric acid condensing environment and manufacturing method the same | |
JP2020509244A (en) | Cold rolled steel sheet excellent in corrosion resistance and workability and method for producing the same | |
KR101344665B1 (en) | Method for manufacturing hot-rolled steel sheet | |
JP2023507661A (en) | Steel plate excellent in wear resistance and combined corrosion resistance and its manufacturing method | |
KR20140042108A (en) | Hot-rolled steel sheet and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6549254 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |