JP6545581B2 - Pneumatic tire - Google Patents
Pneumatic tire Download PDFInfo
- Publication number
- JP6545581B2 JP6545581B2 JP2015176754A JP2015176754A JP6545581B2 JP 6545581 B2 JP6545581 B2 JP 6545581B2 JP 2015176754 A JP2015176754 A JP 2015176754A JP 2015176754 A JP2015176754 A JP 2015176754A JP 6545581 B2 JP6545581 B2 JP 6545581B2
- Authority
- JP
- Japan
- Prior art keywords
- sipe
- center portion
- center
- shape
- dimensional shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Tires In General (AREA)
Description
本発明は、トレッド面の陸部にサイプが形成された空気入りタイヤに関し、特にスタッドレスタイヤとして有用である。 The present invention relates to a pneumatic tire having sipes formed on land portions of a tread surface, and is particularly useful as a studless tire.
従来、スタッドレスタイヤでは、ブロックやリブなどの陸部にサイプと呼ばれる切り込みが形成されている。サイプのエッジ効果や除水効果によって、摩擦係数が低いアイス路面での走行が安定し、いわゆるアイス性能を高めることができる。このようなサイプとして、深さ方向で形状が変化しない2次元形状に形成された2次元サイプが知られており、平面サイプや波形サイプが実用化されている。 Conventionally, in a studless tire, notches called sipes are formed on land portions such as blocks and ribs. Due to the edge effect of the sipe and the water removal effect, traveling on an ice road surface with a low coefficient of friction can be stabilized, and so-called ice performance can be enhanced. As such a sipe, a two-dimensional sipe formed in a two-dimensional shape whose shape does not change in the depth direction is known, and a planar sipe or a wavy sipe is put to practical use.
また、特許文献1〜6に記載のように、深さ方向で形状が変化する3次元形状に形成された3次元サイプも知られている。3次元サイプでは、制動時や旋回時などにサイプの壁面同士が係合するために陸部の過度の変形が抑制され、それによりエッジ効果や除水効果を確実に発揮できる。しかし、3次元形状が画一的に形成されていると、或る特定の方向(例えば、前後方向)の変形しか抑制されない場合があり、他方向(例えば、横方向)の変形が十分に抑制されないために耐摩耗性能や耐偏摩耗性能が低下する恐れがあった。
Also, as described in
その一方で、単に、複数方向(例えば、前後方向と横方向)における変形を抑制できる3次元形状を採用しただけでは、アイス性能などに改善の余地が見られることが判明した。本発明者の研究によれば、その理由は、陸部の変形のしやすさが、サイプの部位によって異なり、更には陸部の摩耗段階によっても異なるためであり、これらに配慮した具体的なサイプ構造は知られていない。 On the other hand, it has been found that there is room for improvement in ice performance and the like simply by adopting a three-dimensional shape that can suppress deformation in a plurality of directions (for example, the front and back direction and the lateral direction). According to the study of the present inventor, the reason is that the ease of deformation of the land varies depending on the site of the sipes and also depending on the wear stage of the land, and a concrete that takes these into consideration Sipe structure is not known.
本発明は上記実情に鑑みてなされたものであり、その目的は、アイス性能を確保しながら、優れた耐摩耗性能と耐偏摩耗性能を発揮できる空気入りタイヤを提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a pneumatic tire which can exhibit excellent wear resistance performance and uneven wear resistance performance while securing ice performance.
上記目的は、下記の如き本発明により達成することができる。即ち、本発明に係る空気入りタイヤは、トレッド面の陸部に形成されたサイプが、長さ方向における中央のサイプ底側に位置し、深さ方向に沿って形状が変化しない2次元形状に形成された2Dセンター部と、長さ方向における中央の踏面側に位置し、深さ方向に沿って形状が変化する3次元形状に形成された3Dセンター部と、長さ方向における両端に位置し、深さ方向に沿って形状が変化する3次元形状に形成された3Dサイド部とを有し、前記3Dセンター部と前記3Dサイド部が、それぞれ踏面で開口し、前記3Dセンター部の開口は波形状に形成され、前記3Dセンター部の3次元形状が、長さ方向に凸形状となるセンター凸部をもって屈曲しながら深さ方向に延び、前記3Dサイド部の3次元形状が、幅方向に凸形状となるサイド凸部をもって屈曲しながら深さ方向に延び、前記サイド凸部の稜線が前記センター凸部を起点にして長さ方向に延びるものである。 The above object can be achieved by the present invention as described below. That is, in the pneumatic tire according to the present invention, the sipe formed on the land portion of the tread surface is located on the center sipe bottom side in the length direction, and has a two-dimensional shape whose shape does not change along the depth direction. The formed 2D center portion, the tread surface side of the center in the length direction, the 3D center portion formed in a three-dimensional shape whose shape changes along the depth direction, and the both ends in the length direction And 3D side portions formed in a three-dimensional shape whose shape changes along the depth direction, wherein the 3D center portion and the 3D side portion are respectively opened by the tread surface, and the opening of the 3D center portion is The three-dimensional shape of the 3D center portion is formed in a wave shape and extends in the depth direction while being bent with the center convex portion which is a convex shape in the length direction, and the three-dimensional shape of the 3D side portion is in the width direction Rhino that becomes convex shape Extending in the depth direction while bending with a convex portion, in which longitudinally extending ridge of the side projections as a starting point the center convex portion.
このようなサイプが形成された陸部では、長さ方向における変形が主に3Dセンター部によって抑制され、幅方向における変形が主に3Dサイド部によって抑制される。3Dセンター部が位置するサイプの踏面側と、3Dサイド部が位置するサイプの両端は、いずれも陸部の変形が比較的大きい部位であり、かかる部位が3次元形状に形成されていることで、陸部の過度の変形を効果的に抑制できる。長さ方向における中央のサイプ底側には2Dセンター部が位置し、これは陸部の変形が比較的小さい部位である。 In the land portion where such sipes are formed, deformation in the length direction is mainly suppressed by the 3D center portion, and deformation in the width direction is mainly suppressed by the 3D side portion. Both the tread side of the sipe where the 3D center portion is located and both ends of the sipe where the 3D side portion is located are portions where the deformation of the land portion is relatively large, and such portions are formed in a three-dimensional shape And excessive deformation of land can be effectively suppressed. A 2D center portion is located on the bottom side of the central sipe in the length direction, which is a portion where deformation of the land portion is relatively small.
摩耗の初期から中期に至る段階では、陸部の剛性が比較的低いために変形が大きくなるが、このタイヤによれば、上述のように3Dセンター部と3Dサイド部によって陸部の過度の変形を抑制できる。また、摩耗の中期以降の段階では、陸部の剛性が比較的高いために変形が小さくなるが、このタイヤであれば、3Dセンター部が減少または消滅しているので、陸部の剛性が高くなり過ぎず、サイプのエッジ効果が良好に発揮される。しかも、摩耗の中期以降であっても、サイプの両端に3Dサイド部が位置することにより、陸部の剛性が低下し過ぎない。 In the early and middle stages of wear, deformation is increased due to the relatively low rigidity of the land area, but according to this tire, excessive deformation of the land area is caused by the 3D center area and the 3D side area as described above Can be suppressed. In addition, at the stage after the middle stage of wear, deformation is small because the rigidity of the land is relatively high, but with this tire, the rigidity of the land is high because the 3D center portion is decreasing or disappearing. And the edge effect of sipes is well exhibited. In addition, even after the middle stage of wear, the rigidity of the land portion is not excessively reduced because the 3D side portions are positioned at both ends of the sipe.
加えて、3Dサイド部の3次元形状に含まれるサイド凸部の稜線が、3Dセンター部の3次元形状に含まれるセンター凸部を起点にして長さ方向に延びることにより、3Dセンター部と3Dサイド部とがスムーズに接続され、その部分がいびつな形状になることを回避できる。その結果、サイプの壁面同士が係合した際に、3Dセンター部と3Dサイド部との接続箇所に応力が局所的に集中することを防いで、サイプ内のクラックや欠損などの発生を予防できる。 In addition, the ridgeline of the side convex portion included in the three-dimensional shape of the 3D side portion extends in the length direction starting from the central convex portion included in the three-dimensional shape of the 3D center portion. It is possible to prevent the side portion from being connected smoothly and the portion becoming irregularly shaped. As a result, when the wall surfaces of the sipe are engaged, local concentration of stress on the connection between the 3D center portion and the 3D side portion can be prevented, and the occurrence of cracks or defects in the sipe can be prevented. .
深さ方向に隣接する2つの前記サイド凸部の稜線が同一の前記センター凸部を起点にして長さ方向に延びることが好ましい。これによってサイド凸部が密に配置され、サイプの中央よりも陸部の変形が大きくなりがちなサイプの両端において、陸部の変形を効果的に抑制することができる。陸部の側面にサイプが開口している場合は、その効果がより顕著である。 It is preferable that ridge lines of two of the side convex portions adjacent in the depth direction extend in the length direction starting from the same center convex portion. As a result, it is possible to effectively suppress the deformation of the land portion at both ends of the sipe where the side convex portions are densely arranged and the deformation of the land portion tends to be larger than the center of the sipe. When the sipes open on the side of the land, the effect is more remarkable.
前記3Dセンター部の3次元形状が、深さ方向の1箇所で屈曲した横向きV字状をなすものでもよい。かかる3次元形状に形成された3Dセンター部によれば、長さ方向における陸部の過度の変形を良好に抑制できる。また、深さ方向の複数箇所で屈曲する形状に比べて、タイヤの加硫工程における脱型時の抵抗を小さくできる。 The three-dimensional shape of the 3D center portion may be a laterally V-shaped bent at one point in the depth direction. According to the 3D center portion formed in such a three-dimensional shape, excessive deformation of the land portion in the length direction can be favorably suppressed. Moreover, compared with the shape bent in multiple places of the depth direction, the resistance at the time of the demolding in the vulcanization process of a tire can be made small.
踏面から前記2Dセンター部と前記3Dセンター部との境界までの距離が、サイプ深さの20〜70%であることが好ましい。また、サイプ端から前記2Dセンター部と前記3Dサイド部との境界までの距離が、サイプ長さの10〜40%であることが好ましい。 It is preferable that the distance from the tread surface to the boundary between the 2D center portion and the 3D center portion is 20 to 70% of the sipe depth. Moreover, it is preferable that the distance from the sipe end to the boundary between the 2D center portion and the 3D side portion is 10 to 40% of the sipe length.
以下、本発明の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1に示したトレッド面Trには、陸部としてのブロック1が設けられている。ブロック1の各々は、主溝2と横溝3によって区分されている。主溝2はタイヤ周方向に連続して延びており、横溝3は主溝2と交差する方向に延びている。ブロック1は、平面視にて矩形状に形成されているが、これに限られない。このようなブロックに代えてまたは加えて、タイヤ周方向に連続して延びるリブが陸部として設けられてもよい。
The tread surface Tr shown in FIG. 1 is provided with a
図2に拡大して示すように、ブロック1にはサイプ4が形成されている。サイプ4は、図1で左右方向となるタイヤ幅方向に延びている。アイス性能、特にアイス路面での発進性能や制動性能を向上するうえでは、このようにタイヤ周方向と交差する方向にサイプ4が延びていることが好ましい。ブロック1には、少なくとも1本のサイプが形成されていればよい。したがって、例えば、タイヤ周方向に間隔を設けて配置された複数本のサイプ4が1つのブロック1に設けられていても構わない。
As shown enlarged in FIG. 2, a
長さ方向LDは、サイプ4の長さ方向であり、本実施形態ではタイヤ幅方向と同じ方向である。サイプ長さL4は、サイプ4の両端間の直線距離として測定される。深さ方向DDは、サイプ4の深さ方向である。サイプ深さD4は、踏面からサイプ底までの直線距離として測定される。サイプ深さD4は、例えば主溝2の深さの40〜80%に設定される。幅方向WDは、サイプ4の幅方向であり、本実施形態ではタイヤ周方向と同じ方向である。サイプ幅W4は、十分なエッジ効果を発現するうえで、例えば0.3〜2.0mmに設定される。
The longitudinal direction LD is the longitudinal direction of the
図3は、サイプ4の(a)平面図、(b)側面図及び(c)正面図を含む三面図である。図4は、そのサイプ4の壁面を示す斜視図である。図3,4に示すように、トレッド面Trのブロック1に形成されたサイプ4は、長さ方向LDにおける中央のサイプ底側に位置する2Dセンター部5と、長さ方向LDにおける中央の踏面側に位置する3Dセンター部6と、長さ方向LDにおける両端に位置する3Dサイド部7とを有する。図5は、それらの領域を模式的に示している。
FIG. 3 is a trihedral view including (a) plan view, (b) side view and (c) front view of the
2Dセンター部5は、深さ方向DDに沿って形状が変化しない2次元形状に形成されている。3Dセンター部6及び3Dサイド部7は、それぞれ深さ方向DDに沿って形状が変化する3次元形状に形成されている。但し、それらは互いに異なる3次元形状に形成されている。また、3Dセンター部6と3Dサイド部7は、それぞれ踏面で開口している。3Dセンター部6の開口は、幅方向WDに屈曲しながら長さ方向LDに沿って延び、短辺と長辺とを交互に繰り返した波形状に形成されている。
The
サイプ4は、その両端をブロック1の側面で開口させた両側オープンサイプとして形成されている。しかし、片端のみを開口させた片側オープンサイプとして、または両端をブロック内で閉塞させた両側クローズドサイプとして、サイプ4が形成されていても構わない。サイプ4の両端、特に開口したサイプ端の周辺では、ブロックの変形が大きくなる傾向にあるが、このサイプ4の両端には3Dサイド部7が位置するため、後述のようにしてブロック1の過度の変形を抑制することができる。サイプ長さL4は、長さ方向LDにおけるブロック幅の30%以上が好ましく、50%以上がより好ましい。
The
2Dセンター部5の2次元形状は波形に形成され、その壁面には深さ方向DDに延びた凹凸列が設けられている。X−X矢視における横断面は、図3(a)と略同じ形状となり、2Dセンター部5では、このような波形状が深さ方向DDに連続する。この2Dセンター部5は、いわゆる波形サイプに形成されているが、壁面が平坦に形成された平面サイプでも構わない。平面サイプでは、横断面が直線形状をなし、その直線形状が深さ方向に連続する。サイプ4が2Dセンター部5を有することで、そうでない場合に比べて、タイヤの加硫工程における脱型時の抵抗が小さくなる。
The two-dimensional shape of the
3Dセンター部6の3次元形状は、長さ方向LDに凸形状となるセンター凸部61をもって屈曲しながら深さ方向DDに延びる。この3次元形状は、壁面同士が長さ方向LDに係合可能な構造を有する。壁面には、長さ方向LDに振幅を有して深さ方向DDに延びた凹凸列が設けられている。その凹凸列は、長さ方向LDの一方に傾斜した部分と、その逆向きに傾斜した部分とを備え、それらがセンター凸部61を介して深さ方向DDに連なっている。3Dセンター部6の凹凸列は、2Dセンター部5の凹凸列とスムーズに接続されている。
The three-dimensional shape of the
3Dサイド部7の3次元形状は、幅方向WDに凸形状となるサイド凸部71をもって屈曲しながら深さ方向DDに延びる。この3次元形状は、壁面同士が深さ方向DDに係合可能な構造を有する。3Dサイド部7が位置するサイプ4の両端は、図3(b)のように幅方向WDに振幅を有して深さ方向DDに延びた波形状となる。本実施形態では、その波形状がブロック1の側面に出現する。壁面では、サイド凸部71の稜線71a〜71jが長さ方向LDに沿って延びており、このうち稜線71a,71bと、稜線71f,71gが、それぞれセンター凸部61を起点にして長さ方向LDに延びている。
The three-dimensional shape of the
このブロック1では、長さ方向LDにおける変形が主に3Dセンター部6によって抑制され、幅方向WDにおける変形が主に3Dサイド部7によって抑制される。3Dセンター部6が位置するサイプ4の踏面側と、3Dサイド部7が位置するサイプ4の両端は、いずれもブロック1の変形が比較的大きい部位であり、かかる部位が3次元形状に形成されていることで、制動時や旋回時などにおけるブロック1の過度の変形を効果的に抑制できる。長さ方向LDにおける中央のサイプ底側には2Dセンター部5が位置し、これはブロック1の変形が比較的小さい部位である。
In the
摩耗の初期から中期に至る段階では、ブロック1の剛性が比較的低いために変形が大きくなるが、このタイヤによれば、上述のように3Dセンター部6と3Dサイド部7によってブロック1の過度の変形を抑制できる。また、摩耗の中期以降の段階では、ブロック1の剛性が比較的高いために変形が小さくなるが、このタイヤであれば、3Dセンター部6が減少または消滅しているので、ブロック1の剛性が高くなり過ぎず、サイプ4のエッジ効果が良好に発揮される。しかも、摩耗の中期以降であっても、サイプ4の両端に3Dサイド部7が位置することにより、ブロック1の剛性が低下し過ぎない。
Although the rigidity of the
加えて、3Dサイド部7の3次元形状に含まれるサイド凸部71の稜線71a,71bと稜線71f,71gが、3Dセンター部6の3次元形状に含まれるセンター凸部61を起点にして長さ方向LDに延びることにより、3Dセンター部6と3Dサイド部7とがスムーズに接続され、その部分がいびつな形状になることを回避できる。その結果、サイプ4の壁面同士が係合した際に、3Dセンター部6と3Dサイド部7との接続箇所に応力が局所的に集中することを防いで、サイプ4内のクラックや欠損などの発生を予防できる。
In addition, the ridge lines 71 a and 71 b and
本実施形態では、発進時や制動時にブロック1が前後方向に変形しようとすると、3次元形状に形成された壁面同士が係合し、その変形が主に3Dサイド部7によって抑制される。また、旋回時にブロック1が横方向に変形しようとすると、3次元形状に形成された壁面同士が係合し、その変形が主に3Dセンター部6によって抑制される。それでいて、摩耗に伴うブロック1の剛性変化に対応し、アイス性能を確保しながら、優れた耐摩耗性能と耐偏摩耗性能を発揮できる。更に、相異する3次元形状を巧みに組み合わせることにより、サイプ4内にクラックや欠損が生じないようにしている。
In the present embodiment, when the
3Dサイド部7における幅方向WDの振幅は、長さ方向LDの中央に向かって減少し、2Dセンター部5と3Dサイド部7との境界、及び、3Dセンター部6と3Dサイド部7との境界では、長さ方向LDから見て実質的に直線状に収束する。よって、サイド凸部71の稜線は、それぞれサイプ端から離れるにつれてサイプ4の幅方向WDの中央に近付くように傾斜する。これにより、上記境界での接続がスムーズになり、いびつな形状になることを回避できる。その結果、サイプ4の壁面同士が係合した際に、上記境界に応力が局所的に集中することを防ぎ、サイプ4内のクラックや欠損などの発生を予防できる。
The amplitude in the width direction WD in the
本実施形態では、深さ方向DDに隣接する2つのサイド凸部71の稜線71a,71bが同一のセンター凸部61を起点にして長さ方向に延びる。図3(c)のように、稜線71a,71bは、深さ方向DDに傾斜しながら長さ方向LDに沿って延びている。稜線71f,71gも同様に構成されている。これによりサイド凸部71が密に配置され、中央よりもブロック1の変形が大きくなりがちなサイプ4の両端において、ブロック1の変形を効果的に抑制できる。このサイプ4はブロック1の両方の側面に開口しているため、その効果がより顕著に得られる。
In the present embodiment,
本実施形態では、図3(c)に示すように、3Dセンター部6の3次元形状が、深さ方向DDの1箇所で屈曲した横向きV字状をなしている。かかる3次元形状に形成された3Dセンター部6によれば、長さ方向LDにおけるブロック1の過度の変形を良好に抑制できる。深さ方向DDの複数箇所で屈曲する形状でも構わないが、そのような形状に比べて、本実施形態によればタイヤの加硫工程における脱型時の抵抗を小さくできる。
In the present embodiment, as shown in FIG. 3C, the three-dimensional shape of the
踏面から2Dセンター部5と3Dセンター部6との境界までの距離K1(図5参照)は、サイプ深さD4の20〜70%であることが好ましい。これにより、2Dセンター部5及び3Dセンター部6の深さ方向DDでの大きさが適度に確保される。距離K1は、サイプ深さD4の30%以上であることがより好ましく、40%以上であることが更に好ましい。また、距離K1は、サイプ深さD4の60%以下であることがより好ましい。
The distance K1 (see FIG. 5) from the tread surface to the boundary between the
サイプ端から2Dセンター部5と3Dサイド部7との境界までの距離K2(図5参照)は、サイプ長さL4の10〜40%であることが好ましい。これにより、2Dセンター部5及び3Dサイド部7の長さ方向LDでの大きさ、延いては3Dセンター部6の長さ方向LDでの大きさも含めて、それらが適度に確保される。距離K2は、サイプ長さL4の15%以上であることがより好ましい。また、距離K2は、サイプ長さL4の30%以下であることがより好ましく、20%以上であることが更に好ましい。
The distance K2 (see FIG. 5) from the sipe end to the boundary between the
本発明の空気入りタイヤは、ブロックやリブなどの陸部に上記の如きサイプが形成されること以外は、通常の空気入りタイヤと同等に構成できる。したがって、従来公知の材料や製法などは何れも採用できる。 The pneumatic tire according to the present invention can be configured in the same manner as a normal pneumatic tire except that the above-described sipes are formed on land portions such as blocks and ribs. Therefore, any of the conventionally known materials and manufacturing methods can be employed.
本発明の空気入りタイヤは、前述の如き作用効果を奏してアイス性能に優れるため、特にスタッドレスタイヤとして有用である。 The pneumatic tire according to the present invention is particularly useful as a studless tire because it exhibits the above-described effects and excellent ice performance.
本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention.
以下、本発明の構成と効果を具体的に示す実施例について説明する。タイヤの性能評価は、それぞれ以下のようにして実施した。 Hereinafter, the example which shows concretely the composition and effect of the present invention is described. The performance evaluations of the tires were carried out as follows.
(1)耐摩耗性能
22.5×7.50のリムに装着したサイズ11R22.5のタイヤを定積載量10tの車輌に装着して内圧700kPaを充填し、20000kmを走行した後のタイヤの摩耗量を測定し、その逆数を指数化した。指数が大きいほど、摩耗量が少なく耐摩耗性能に優れることを示す。
(1) Wear resistance A tire of size 11R22.5 mounted on a rim of 22.5 × 7.50 is mounted on a vehicle with a fixed loading capacity of 10 t, filled with internal pressure 700 kPa, and worn after traveling 20000 km The quantity was measured and the reciprocal was indexed. The larger the index, the smaller the amount of wear and the better the wear resistance.
(2)耐偏摩耗性能
20000kmを走行した後の上記タイヤの偏摩耗量(ヒールアンドトウ摩耗量、センター摩耗量、及び、ショルダー摩耗量)を測定し、その逆数を指数化した。指数が大きいほど、偏摩耗量が少なく耐偏摩耗性能に優れることを示す。
(2) Uneven Wear Resistance The uneven wear amount (heel and toe wear amount, center wear amount, and shoulder wear amount) of the above tire after traveling 20000 km was measured, and the inverse number was indexed. The larger the index, the smaller the amount of uneven wear, and the better the resistance to uneven wear.
(3)アイス性能
22.5×7.50のリムに装着したサイズ11R22.5のタイヤを定積載量10tの車輌に装着して内圧700kPaを充填し、アイス路面での発進性能と制動性能の評価結果を統合して指数化した。発進性能は、車輌が停止状態から30mの距離を進むのに要した時間を計測して採点した。制動性能は、時速30kmの走行状態から車輌が停止するまでの制動距離を計測して採点した。指数が大きいほど、点数が高くアイス性能に優れることを示す。
(3) Ice performance A tire of size 11R22.5 mounted on a rim of 22.5 × 7.50 is mounted on a vehicle with a fixed loading capacity of 10 t and filled with an internal pressure of 700 kPa, and the starting performance and braking performance on an ice road surface The evaluation results were integrated and indexed. The starting performance was scored by measuring the time required for the vehicle to travel a distance of 30 m from the stop condition. The braking performance was scored by measuring the braking distance from a traveling state of 30 km / hr to stopping of the vehicle. The larger the index, the higher the score and the better the ice performance.
上記性能評価に供した実施例と比較例のタイヤは、サイプの形状を除いて共通の構造を有する。実施例及び比較例では、それぞれ図3、図6に示したサイプがトレッド面の全てのブロックに形成されている。図6のサイプ40は、図3で示した3Dセンター部に相当する3次元形状のみを有し、その壁面には、サイプの深さ方向の2箇所で屈曲した凹凸列が設けられている。評価結果を表1に示す。
The tires of the example and the comparative example subjected to the performance evaluation have the same structure except for the shape of the sipes. In the embodiment and the comparative example, the sipes shown in FIGS. 3 and 6 are formed in all the blocks of the tread surface. The
表1のように、実施例では、アイス性能を確保しながら、優れた耐摩耗性能と耐偏摩耗性能を発揮できており、その改善効果を確認することができる。 As shown in Table 1, in the example, excellent wear resistance performance and uneven wear resistance performance can be exhibited while securing the ice performance, and the improvement effect can be confirmed.
1 ブロック(陸部の一例)
4 サイプ
5 2Dセンター部
6 3Dセンター部
7 3Dサイド部
61 センター凸部
71 サイド凸部
Tr トレッド面
1 block (example of land section)
4
Claims (5)
長さ方向における中央のサイプ底側に位置し、深さ方向に沿って形状が変化しない2次元形状に形成された2Dセンター部と、
長さ方向における中央の踏面側に位置し、深さ方向に沿って形状が変化する3次元形状に形成された3Dセンター部と、
長さ方向における両端に位置し、深さ方向に沿って形状が変化する3次元形状に形成された3Dサイド部とを有し、
前記3Dセンター部と前記3Dサイド部が、それぞれ踏面で開口し、前記3Dセンター部の開口は波形状に形成され、
前記3Dセンター部の3次元形状が、長さ方向に凸形状となるセンター凸部をもって屈曲しながら深さ方向に延び、
前記3Dサイド部の3次元形状が、幅方向に凸形状となるサイド凸部をもって屈曲しながら深さ方向に延び、前記サイド凸部の稜線が前記センター凸部を起点にして長さ方向に延びる空気入りタイヤ。
The sipe formed on the land of the tread surface is
A 2D center portion located at the bottom of the central sipe in the longitudinal direction and having a two-dimensional shape whose shape does not change along the depth direction;
A 3D center portion which is located on the central tread surface side in the length direction and formed in a three-dimensional shape whose shape changes along the depth direction;
3D side portions formed in a three-dimensional shape which are located at both ends in the length direction and whose shape changes along the depth direction,
The 3D center portion and the 3D side portion are respectively opened on the tread surface, and the opening of the 3D center portion is formed in a wave shape,
The three-dimensional shape of the 3D center portion extends in the depth direction while bending with a center convex portion which is a convex shape in the length direction,
The three-dimensional shape of the 3D side portion extends in the depth direction while bending with the side convex portions that are convex in the width direction, and the ridges of the side convex portions extend in the length direction starting from the center convex portion Pneumatic tire.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015176754A JP6545581B2 (en) | 2015-09-08 | 2015-09-08 | Pneumatic tire |
CN201610309812.3A CN106494158B (en) | 2015-09-08 | 2016-05-11 | Pneumatic tire |
US15/248,561 US10308078B2 (en) | 2015-09-08 | 2016-08-26 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015176754A JP6545581B2 (en) | 2015-09-08 | 2015-09-08 | Pneumatic tire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017052347A JP2017052347A (en) | 2017-03-16 |
JP6545581B2 true JP6545581B2 (en) | 2019-07-17 |
Family
ID=58316909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015176754A Active JP6545581B2 (en) | 2015-09-08 | 2015-09-08 | Pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6545581B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6787431B2 (en) * | 2019-04-01 | 2020-11-18 | 横浜ゴム株式会社 | Pneumatic tires |
WO2020171233A1 (en) | 2019-02-22 | 2020-08-27 | 横浜ゴム株式会社 | Pneumatic tire |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000255219A (en) * | 1999-03-05 | 2000-09-19 | Bridgestone Corp | Pneumatic tire |
JP3516647B2 (en) * | 2000-09-27 | 2004-04-05 | 東洋ゴム工業株式会社 | Pneumatic tire |
JP3504632B2 (en) * | 2001-04-27 | 2004-03-08 | 東洋ゴム工業株式会社 | Pneumatic tire |
JP2004314758A (en) * | 2003-04-15 | 2004-11-11 | Bridgestone Corp | Pneumatic tire |
JP4281917B2 (en) * | 2004-07-21 | 2009-06-17 | 東洋ゴム工業株式会社 | Pneumatic tire |
JP4776265B2 (en) * | 2005-04-25 | 2011-09-21 | 株式会社ブリヂストン | Pneumatic tire |
JP2007022361A (en) * | 2005-07-19 | 2007-02-01 | Bridgestone Corp | Pneumatic tire |
JP4316603B2 (en) * | 2006-11-27 | 2009-08-19 | 東洋ゴム工業株式会社 | Pneumatic tire |
JP4410235B2 (en) * | 2006-11-27 | 2010-02-03 | 東洋ゴム工業株式会社 | Pneumatic tire |
DE102007059291A1 (en) * | 2007-12-08 | 2009-06-10 | Continental Aktiengesellschaft | Vehicle tires |
KR101040630B1 (en) * | 2008-11-17 | 2011-06-13 | 한국타이어 주식회사 | Blade for cuff forming of automotive vulcanization mold |
JP5519366B2 (en) * | 2010-03-26 | 2014-06-11 | 株式会社ブリヂストン | How to create a tire model |
DE102010061373A1 (en) * | 2010-12-20 | 2012-06-21 | Continental Reifen Deutschland Gmbh | Vehicle tires |
JP4894968B1 (en) * | 2011-01-19 | 2012-03-14 | 横浜ゴム株式会社 | Pneumatic tire |
-
2015
- 2015-09-08 JP JP2015176754A patent/JP6545581B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017052347A (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4211944B2 (en) | Pneumatic tire | |
JP4138688B2 (en) | Pneumatic tire | |
JP6092059B2 (en) | Pneumatic tire | |
JP4740301B2 (en) | Pneumatic tire | |
CN106494158B (en) | Pneumatic tire | |
JP2005193867A (en) | Pneumatic tire | |
JP6356608B2 (en) | Pneumatic tire | |
JP2018001936A (en) | Pneumatic tire | |
US10464376B2 (en) | Pneumatic tire | |
JP6545581B2 (en) | Pneumatic tire | |
JP6305313B2 (en) | Pneumatic tire | |
JP6552927B2 (en) | Pneumatic tire | |
JP2006188185A (en) | Pneumatic tire | |
JP6047375B2 (en) | Pneumatic tire | |
JP6367139B2 (en) | Pneumatic tire | |
JP2015202818A (en) | pneumatic tire | |
JP4589733B2 (en) | Pneumatic tire | |
JP6563280B2 (en) | Pneumatic tire | |
JP6147651B2 (en) | Pneumatic tire | |
JP2006082632A (en) | Pneumatic tire | |
JP4390216B2 (en) | Pneumatic tire | |
JP6166987B2 (en) | Pneumatic tire | |
JP6099540B2 (en) | Pneumatic tire | |
JP2012224117A (en) | Pneumatic tire | |
JP2016107739A (en) | Pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6545581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |