JP6541405B2 - Zoom lens and imaging device having the same - Google Patents
Zoom lens and imaging device having the same Download PDFInfo
- Publication number
- JP6541405B2 JP6541405B2 JP2015086634A JP2015086634A JP6541405B2 JP 6541405 B2 JP6541405 B2 JP 6541405B2 JP 2015086634 A JP2015086634 A JP 2015086634A JP 2015086634 A JP2015086634 A JP 2015086634A JP 6541405 B2 JP6541405 B2 JP 6541405B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- vibration
- group
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/009—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/144—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
- G02B15/1441—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
- G02B15/144105—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1451—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
- G02B15/145121—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/20—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B5/02—Lateral adjustment of lens
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B5/04—Vertical adjustment of lens; Rising fronts
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2205/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B2205/0007—Movement of one or more optical elements for control of motion blur
- G03B2205/0015—Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2205/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B2205/0046—Movement of one or more optical elements for zooming
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
- Adjustment Of Camera Lenses (AREA)
Description
本発明はズームレンズおよびそれを有する撮像装置に関し、例えばビデオカメラ、電子スチルカメラ、放送用カメラ、監視カメラ等のように撮像素子を用いた撮像装置、或いは銀塩フィルムを用いたカメラ等の撮像装置に好適なものである。 The present invention relates to a zoom lens and an image pickup apparatus having the same, such as an image pickup apparatus using an image pickup element such as a video camera, an electronic still camera, a broadcast camera, a surveillance camera, etc. It is suitable for the device.
撮像装置に用いられる撮像光学系には高ズーム比で高い光学性能を有するズームレンズが求められている。高ズーム比のズームレンズは一般的に全系が大型となり、しかも高重量となる傾向がある。ズームレンズが大型で高重量になると、撮影に際して手ブレ等によりズームレンズが振動する場合が多くなる。ズームレンズが振動によって傾くと、撮影画像(結像位置)はその傾き角とそのときのズーム位置での焦点距離に応じた量だけ変移(画像ブレ)する。即ち像ぶれが生ずる。 A zoom lens having a high zoom ratio and high optical performance is required for an imaging optical system used in an imaging apparatus. Generally, a zoom lens with a high zoom ratio tends to be large in size as well as heavy. When the zoom lens is large and heavy, the zoom lens often vibrates due to camera shake or the like at the time of photographing. When the zoom lens tilts due to vibration, the photographed image (imaging position) shifts (image blur) by an amount corresponding to the tilt angle and the focal length at the zoom position at that time. That is, image blurring occurs.
このときの像ぶれを補正する手段(防振機能を有する手段)としてレンズ系の一部を光軸に対して垂直な方向にシフトさせたズームレンズが知られている(特許文献1、2)。特許文献1では物体側から順に、正、負、正、正の屈折力の第1レンズ群乃至第4レンズ群で構成される4群ズームレンズにおいて、第3レンズ群をシフトさせて像ぶれ補正を行っている。特許文献2では物体側から像側へ順に、正、負、正、負、正の屈折力の第1レンズ群乃至第5レンズ群より成る5群ズームにおいて、第4レンズ群をシフトさせて像ぶれ補正を行っている。 A zoom lens in which a part of the lens system is shifted in a direction perpendicular to the optical axis is known as a means (a means having an anti-vibration function) for correcting the image blurring at this time (Patent Documents 1 and 2) . In Patent Document 1, image blur correction is performed by shifting the third lens group in the four-unit zoom lens configured of the first to fourth lens groups having positive, negative, positive, and positive refractive power in order from the object side It is carried out. In Patent Document 2, the fourth lens group is shifted in order from the object side to the image side in the five-group zoom consisting of the first to fifth lens groups of positive, negative, positive, negative and positive refractive power, Shake correction is performed.
また像ぶれを補正するとき(防振時)に発生する偏芯収差を低減するためにレンズ系の一部のレンズ群を光軸に対して垂直な方向にシフトさせるとともに光軸上の一点を回動中心として微小な角度にて回動させたズームレンズが知られている(特許文献3)。特許文献3では物体側から像側へ順に、正、負、正、正の屈折力の第1レンズ群乃至第4レンズ群で構成される4群ズームレンズにおいて、第2レンズ群をシフトおよびチルトさせて像ぶれ補正を行っている。 In addition, in order to reduce decentering aberrations that occur when correcting image blurring (during image stabilization), some lens units of the lens system are shifted in the direction perpendicular to the optical axis and one point on the optical axis is There is known a zoom lens rotated at a minute angle as a rotation center (Patent Document 3). In the patent document 3, the second lens group is shifted and tilted in a four-unit zoom lens composed of first to fourth lens groups of positive, negative, positive and positive refractive power in order from the object side to the image side Image stabilization is performed.
また、像ぶれを補正するとき(防振時)の偏芯収差の発生を低減するためにレンズ系の複数のレンズ群を光軸に対して垂直な方向にシフトさせたズームレンズが知られている(特許文献4)。特許文献4では物体側から像側へ順に、正、負、正、負、正の屈折力第1レンズ群乃至第5のレンズ群よりなる5群ズームレンズにおいて第2レンズ群と第4レンズ群、あるいは第3レンズ群と第5レンズ群の複数のレンズ群で防振機能を分担している。 In addition, a zoom lens is known in which a plurality of lens groups of a lens system are shifted in a direction perpendicular to the optical axis to reduce the occurrence of decentering aberration when correcting image blurring (during image stabilization). (Patent Document 4). In Patent Document 4, the second lens group and the fourth lens group are arranged in order from the object side to the image side in a five-group zoom lens consisting of a first lens group having a positive, negative, positive, negative, positive refractive power first to fifth lens groups. Alternatively, the anti-vibration function is shared by the plurality of lens units of the third lens unit and the fifth lens unit.
また、像ぶれを補正するとき(防振時)の偏芯収差の発生を低減するためにレンズ系の一部のレンズ群を光軸に対して垂直な方向にシフトさせるとともに、別のレンズ群を光軸上の点を中心として回動させたズームレンズが知られている(特許文献5)。特許文献5では物体側から像側へ順に、正、負、正、負、正の屈折力の第1レンズ群乃至第5レンズ群よりなる5群ズームレンズにおいて第4レンズ群のシフトにより防振機能を得るとともに、第2レンズ群の回動により偏芯収差の補正を行っている。また特許文献5では物体側から像側へ順に、正、負、正、負、正の屈折力のレンズ群よりなる5群ズームレンズにおいて第2レンズ群のシフトにより防振機能を得るとともに、第3レンズ群の一部のレンズの回動により偏芯収差の補正を行っている。 In addition, in order to reduce the occurrence of decentering aberrations when correcting image blurring (during image stabilization), some lens groups of the lens system are shifted in a direction perpendicular to the optical axis, and another lens group is There is known a zoom lens which is rotated about a point on the optical axis (Patent Document 5). In Patent Document 5, in the five-unit zoom lens consisting of the first to fifth lens units having positive, negative, positive, negative, and positive refractive powers in order from the object side to the image side, image stabilization is achieved by the shift of the fourth lens unit. While obtaining the function, the eccentric aberration is corrected by the rotation of the second lens unit. In Patent Document 5, in the five-unit zoom lens consisting of lens units of positive, negative, positive, negative, and positive refractive power in order from the object side to the image side, the second lens unit is shifted to obtain an anti-vibration function. Eccentric aberration is corrected by rotation of a part of lenses in the third lens group.
一般に防振機能を有したズームレンズにおいて、像ぶれ補正を精度よく行い、かつ像ぶれ補正の際に生ずる収差変動を少なくするには、ズームレンズのレンズ構成および像ぶれ補正のための防振レンズ群のレンズ構成等を適切に設定することが重要になってくる。像ぶれ補正のために移動させる防振レンズ群および収差補正のために移動させる防振レンズ群のレンズ構成が適切でないと、防振時に高い光学性能を維持するのが困難になってくる。 In general, in a zoom lens having a vibration reduction function, in order to perform image blur correction with high precision and to reduce aberration fluctuation generated at the time of image blur correction, the lens configuration of the zoom lens and the vibration reduction lens for image blur correction It is important to set the lens configuration etc. of the group appropriately. It is difficult to maintain high optical performance at the time of image stabilization if the lens configuration of the image stabilizing lens group moved for image blurring correction and the image stabilizing lens group moved for aberration correction is not appropriate.
たとえば特許文献4では防振機能を複数のレンズ群で分担することで、各レンズ群のシフト量を小さくしている。これにより偏芯収差の発生を低減させている。しかしながら像ぶれ補正角が大きくなると各レンズ群より偏芯収差が多く発生してくる。この結果、防振時の光学性能が低下してくる。 For example, in Patent Document 4, the shift amount of each lens group is reduced by sharing the anti-vibration function among a plurality of lens groups. This reduces the occurrence of decentration aberrations. However, as the image blur correction angle increases, more decentration aberrations occur from each lens unit. As a result, the optical performance at the time of image stabilization is degraded.
本発明は、像ぶれ補正が容易でしかも像ぶれ補正に際しても良好な光学性能を維持することができるズームレンズおよびそれを有する撮像装置の提供を目的とする。 An object of the present invention is to provide a zoom lens which is easy to perform image blur correction and can maintain good optical performance even at the time of image blur correction, and an imaging apparatus having the same.
本発明のズームレンズは、物体側より像側へ順に配置された、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、1つ以上のレンズ群を含む後群を有し、広角端から望遠端へのズーミングに際して前記第1レンズ群と前記第2レンズ群との間隔は広がり、前記第2レンズ群と前記第3レンズ群との間隔は狭まり、前記第3レンズ群と前記後群との間隔は広がるように隣り合うレンズ群の間隔が変化するズームレンズにおいて、
像ぶれ補正に際して光軸に対して垂直な方向の成分を含むように移動する防振レンズ群Aと、 前記防振レンズ群Aの移動と共に光軸上または光軸近傍の一点を中心に回動する防振レンズ群Bを有し、
前記防振レンズ群Bの焦点距離をfB、望遠端における前記ズームレンズの焦点距離をft、望遠端における像ぶれ補正角の最大値をθt、望遠端において像ぶれ補正角θtの像ぶれ補正を行う際の前記防振レンズ群Bの回動角をTBtとするとき、
0.01<|fB|/ft<0.35
0.85<|TBt|/θt<10.00
なる条件式を満足することを特徴としている。
The zoom lens according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are disposed in order from the object side to the image side It has a rear group including the above lens group, and the distance between the first lens group and the second lens group becomes wide during zooming from the wide-angle end to the telephoto end, and the second lens group and the third lens group In the zoom lens in which the distance between the adjacent lens groups changes so that the distance between the third lens group and the rear group becomes narrow,
A vibration reduction lens group A that moves so as to include a component in a direction perpendicular to the optical axis at the time of image blurring correction, and the rotation of the vibration reduction lens group A around one point on or near the optical axis Anti-vibration lens group B
The focal length of the anti-vibration lens group B is fB, the focal length of the zoom lens at the telephoto end is ft, the maximum value of the image blur correction angle at the telephoto end is θt, and the image blur correction of the image blur correction angle θt at the telephoto end Assuming that the rotation angle of the vibration reduction lens unit B at the time of image formation is TBt,
0.01 <| fB | / ft <0.35
0.85 <| TBt | / θt <10.00
It is characterized by satisfying the following conditional expression.
本発明によれば、像ぶれ補正が容易でしかも像ぶれ補正に際しても良好な光学性能を維持することができるズームレンズが得られる。 According to the present invention, it is possible to obtain a zoom lens in which image blurring correction is easy and, at the time of image blurring correction, good optical performance can be maintained.
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明のズームレンズは、物体側より像側へ順に配置された、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、1つ以上のレンズ群を含む後群を有している。広角端から望遠端へのズーミングに際して第1レンズ群と第2レンズ群との間隔は広がり、第2レンズ群と第3レンズ群との間隔は狭まり、第3レンズ群と後群との間隔は広がるように隣り合うレンズ群の間隔が変化する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. The zoom lens according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are disposed in order from the object side to the image side It has a rear group including the above lens group. During zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group widens, the distance between the second lens group and the third lens group narrows, and the distance between the third lens group and the rear group The distance between adjacent lens groups changes so as to spread.
像ぶれ補正に際して光軸に対して垂直な方向の成分を含むように移動する防振レンズ群Aと、防振レンズ群Aの移動と共に光軸上または光軸近傍の一点を中心に回動する防振レンズ群Bを有する。 The vibration reduction lens group A moves so as to include a component in a direction perpendicular to the optical axis during image blur correction, and rotates around a point on the optical axis or in the vicinity of the optical axis as the vibration reduction lens group A moves. A vibration reduction lens unit B is provided.
図1(A)、(B)、(C)は本発明の実施例1の広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図2(A)、(B)、(C)は本発明の実施例1の広角端、中間のズーム位置、望遠端における縦収差図である。図3(A)、(B)、(C)は本発明の実施例1の広角端、中間のズーム位置、望遠端における横収差図である。図4(A)、(B)、(C)は本発明の実施例1の広角端、中間のズーム位置、望遠端における像ぶれ補正のときの横収差図である。実施例1はズーム比47.49、開口比(Fナンバー)3.50〜6.72程度のズームレンズである。 FIGS. 1A, 1B, and 1C are lens cross-sectional views at the wide-angle end, at an intermediate zoom position, and at the telephoto end according to the first embodiment of the present invention. FIGS. 2A, 2B, and 2C are longitudinal aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the first embodiment of the present invention. FIGS. 3A, 3B, and 3C are lateral aberration diagrams at the wide-angle end, at the middle zoom position, and at the telephoto end according to the first embodiment of the present invention. FIGS. 4A, 4B, and 4C are lateral aberration diagrams at the time of image blurring correction at the wide-angle end, at the middle zoom position, and at the telephoto end according to the first embodiment of the present invention. The first embodiment is a zoom lens having a zoom ratio of 47.49 and an aperture ratio (F number) of about 3.50 to 6.72.
図5(A)、(B)、(C)は本発明の実施例2の広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図6(A)、(B)、(C)は本発明の実施例2の広角端、中間のズーム位置、望遠端における縦収差図である。図7(A)、(B)、(C)は本発明の実施例2の広角端、中間のズーム位置、望遠端における横収差図である。図8(A)、(B)、(C)は本発明の実施例2の広角端、中間のズーム位置、望遠端における像ぶれ補正のときの横収差図である。実施例2はズーム比28.93、開口比(Fナンバー)3.32〜6.86程度のズームレンズである。 FIGS. 5A, 5B, and 5C are lens cross-sectional views at the wide-angle end, at the middle zoom position, and at the telephoto end according to the second embodiment of the present invention. FIGS. 6A, 6B, and 6C are longitudinal aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the second embodiment of the present invention. FIGS. 7A, 7B, and 7C are lateral aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the second embodiment of the present invention. FIGS. 8A, 8B, and 8C are lateral aberration diagrams at the time of image blur correction at the wide-angle end, at the middle zoom position, and at the telephoto end according to the second embodiment of the present invention. The second embodiment is a zoom lens having a zoom ratio of 28.93 and an aperture ratio (F number) of about 3.32 to 6.86.
図9(A)、(B)、(C)は本発明の実施例3の広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図10(A)、(B)、(C)は本発明の実施例3の広角端、中間のズーム位置、望遠端における縦収差図である。図11(A)、(B)、(C)は本発明の実施例3の広角端、中間のズーム位置、望遠端における横収差図である。図12(A)、(B)、(C)は本発明の実施例3の広角端、中間のズーム位置、望遠端における像ぶれ補正のときの横収差図である。実施例3はズーム比61.52、開口比(Fナンバー)3.51〜6.82程度のズームレンズである。 FIGS. 9A, 9B, and 9C are lens cross-sectional views of the zoom lens according to the third embodiment of the present invention at the wide-angle end, at the middle zoom position, and at the telephoto end. FIGS. 10A, 10B, and 10C are longitudinal aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the third embodiment of the present invention. FIGS. 11A, 11B, and 11C are lateral aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the third embodiment of the present invention. FIGS. 12A, 12B, and 12C are lateral aberration diagrams at the time of image blurring correction at the wide-angle end, at the middle zoom position, and at the telephoto end according to the third embodiment of the present invention. The third embodiment is a zoom lens having a zoom ratio of 61.52 and an aperture ratio (F number) of 3.51 to 6.82.
図13(A)、(B)、(C)は本発明の実施例4の広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図14(A)、(B)、(C)は本発明の実施例4の広角端、中間のズーム位置、望遠端における縦収差図である。図15(A)、(B)、(C)は本発明の実施例4の広角端、中間のズーム位置、望遠端における横収差図である。図16(A)、(B)、(C)は本発明の実施例4の広角端、中間のズーム位置、望遠端における像ぶれ補正のときの横収差図である。実施例4はズーム比21.59、開口比(Fナンバー)3.61〜7.31程度のズームレンズである。 FIGS. 13A, 13B, and 13C are lens cross-sectional views at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the fourth embodiment of the present invention. FIGS. 14A, 14B, and 14C are longitudinal aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the fourth embodiment of the present invention. FIGS. 15A, 15B, and 15C are lateral aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the fourth embodiment of the present invention. FIGS. 16A, 16B, and 16C are lateral aberration diagrams at the time of image blur correction at the wide-angle end, at the middle zoom position, and at the telephoto end according to the fourth embodiment of the present invention. The fourth embodiment is a zoom lens having a zoom ratio of 21.59 and an aperture ratio (F number) of 3.61 to 7.31.
図17(A)、(B)、(C)は本発明の実施例5の広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図18(A)、(B)、(C)は本発明の実施例5の広角端、中間のズーム位置、望遠端における縦収差図である。図19(A)、(B)、(C)は本発明の実施例5の広角端、中間のズーム位置、望遠端における横収差図である。図20(A)、(B)、(C)は本発明の実施例5の広角端、中間のズーム位置、望遠端における像ぶれ補正のときの横収差図である。実施例5はズーム比17.04、開口比(Fナンバー)3.92〜7.31程度のズームレンズである。 FIGS. 17A, 17B, and 17C are lens cross-sectional views of the zoom lens according to the fifth embodiment of the present invention at the wide-angle end, at the middle zoom position, and at the telephoto end. 18A, 18B, and 18C are longitudinal aberration diagrams at the wide-angle end, at an intermediate zoom position, and at the telephoto end according to the fifth embodiment of the present invention. FIGS. 19A, 19B, and 19C are lateral aberration diagrams at the wide-angle end, at the intermediate zoom position, and at the telephoto end according to the fifth embodiment of the present invention. FIGS. 20A, 20B, and 20C are lateral aberration diagrams at the time of image blur correction at the wide-angle end, at the middle zoom position, and at the telephoto end according to the fifth embodiment of the present invention. The fifth embodiment is a zoom lens system having a zoom ratio of 17.04 and an aperture ratio (F number) of 3.92 to 7.31.
図21は本発明に係る回動機構の説明図である。図22は本発明の撮像装置の要部概略図である。 FIG. 21 is an explanatory view of a pivoting mechanism according to the present invention. FIG. 22 is a schematic view of the essential parts of the imaging device of the present invention.
本発明のズームレンズは、デジタルカメラ、ビデオカメラ、銀塩フィルムカメラ等の撮像装置に用いられるものである。レンズ断面図において左方が前方(物体側、拡大側)で右方が後方(像側、縮小側)である。レンズ断面図において、LOはズームレンズ、LRは1つ以上のレンズ群を含む後群である。iは物体側から像側への各レンズ群の順序を示し、Liは第iレンズ群である。SPは開放Fナンバー(Fno)光束を決定(制限)する開口絞りの作用をするFナンバー決定部材(以下「開口絞り」ともいう。)である。 The zoom lens of the present invention is used in an imaging device such as a digital camera, a video camera, a silver halide film camera, and the like. In the lens sectional view, the left is the front (object side, enlargement side) and the right is the rear (image side, reduction side). In the lens sectional view, LO is a zoom lens, and LR is a rear group including one or more lens groups. i indicates the order of the lens units from the object side to the image side, and Li is the ith lens unit. SP is an F-number determining member (hereinafter also referred to as "aperture stop") that acts as an aperture stop that determines (limits) an open F-number (Fno) luminous flux.
Gは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の撮像素子(光電変換素子)の撮像面が置かれる。又、銀塩フィルム用カメラの撮影光学系として使用する際にはフィルム面に相当する感光面が置かれている。 G is an optical block corresponding to an optical filter, a face plate, a quartz low pass filter, an infrared cut filter, and the like. IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, an imaging surface of an imaging element (photoelectric conversion element) such as a CCD sensor or a CMOS sensor is placed. Further, when used as a photographing optical system of a silver halide film camera, a photosensitive surface corresponding to the film surface is placed.
収差図のうち球面収差図において実線はd線、2点鎖線はg線である。非点収差図において点線はメリディオナル像面、実線はサジタル像面である。倍率色収差はg線によって表している。横収差図において、上から順に10割、7割、中心、反対側の7割、反対側の10割の像高におけるd線の収差図を示す。破線はサジタル像面、実線はメリディオナル像面を表している。FnoはFナンバー、ωは半画角(度)である。半画角ωは光線追跡値による値を示す。レンズ断面図において矢印は広角端から望遠端へのズーミングに際しての各レンズ群の移動軌跡を示している。 Among the aberration diagrams, in the spherical aberration diagram, the solid line is d-line, and the two-dot chain line is g-line. In the astigmatism diagram, a dotted line is a meridional image plane, and a solid line is a sagittal image plane. Lateral chromatic aberration is represented by g-line. In the lateral aberration diagrams, aberration diagrams of the d line at an image height of 100%, 70%, the center, 70% on the opposite side, and 100% on the opposite side are shown in order from the top. The broken line represents a sagittal image plane, and the solid line represents a meridional image plane. Fno is an F number, and ω is a half angle of view (degree). The half angle of view ω indicates a value by ray tracing value. In the lens sectional view, the arrow indicates the movement locus of each lens group during zooming from the wide angle end to the telephoto end.
以下の各実施例において広角端と望遠端は変倍レンズ群が機構上光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。各実施例では像ぶれ補正に際して光軸に対して垂直方向の成分を持つ方向に移動する2つの防振レンズ群A、防振レンズ群Bを有している。 In each of the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the variable magnification lens unit is located at both ends of the range in which the optical axis of the zoom lens can move. In each of the embodiments, two image stabilizing lens units A and B are provided to move in a direction having a component in the direction perpendicular to the optical axis for image blur correction.
実施例1乃至4のズームレンズのレンズ構成について説明する。図1、図5、図9、図13のレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群、L5は正の屈折力の第5レンズ群である。後群LRは第4レンズ群L4と第5レンズ群L5を有する。矢印は広角端から望遠端へのズーミングに際しての各レンズ群及び開口絞りSPの移動軌跡を示している。 The lens configuration of the zoom lens of Embodiments 1 to 4 will be described. In the lens sectional views of FIG. 1, FIG. 5, FIG. 9, and FIG. 13, L1 is a first lens group of positive refractive power, L2 is a second lens group of negative refractive power, and L3 is a third lens of positive refractive power. A lens group, L4 is a fourth lens group of negative refractive power, and L5 is a fifth lens group of positive refractive power. The rear unit LR has a fourth lens unit L4 and a fifth lens unit L5. Arrows indicate movement loci of the respective lens units and the aperture stop SP during zooming from the wide-angle end to the telephoto end.
ズーミングに際して広角端に対して望遠端にて第1レンズ群L1と第2レンズ群L2との間隔が広がるよう、第2レンズ群L2と第3レンズ群L3との間隔が狭まるよう、第3レンズ群L3と後群LRとの間隔が広がるように隣り合うレンズ群の間隔が変化する。後群LRでは第3レンズ群L3と第4レンズ群L4との間隔が広がるよう、第4レンズ群L4と第5レンズ群L5との間隔が広がるように各レンズ群が移動している。 During zooming, the distance between the second lens unit L2 and the third lens unit L3 is reduced so that the distance between the first lens unit L1 and the second lens unit L2 is increased at the telephoto end with respect to the wide angle end. The spacing between adjacent lens groups changes so that the spacing between the group L3 and the rear group LR is increased. In the rear unit LR, each lens unit is moved such that the distance between the fourth lens unit L4 and the fifth lens unit L5 is increased so that the distance between the third lens unit L3 and the fourth lens unit L4 is increased.
広角端に対して望遠端にて、第1レンズ群L1、第3レンズ群L3、第4レンズ群L4は物体側に位置している。広角端から望遠端へのズーミングに際して第2レンズ群L2は像側に凸状の軌跡で移動し、第5レンズ群L5は物体側に凸状の軌跡にて移動している。ズーミングに際して各レンズ群を適切に移動させることで全系の小型化を図りつつ、高ズーム比化を図っている。また図1、図9において開口絞りSPは第2レンズ群L2と第3レンズ群L3との間に配置され、ズーミングに際しこれらのレンズ群と独立な軌跡にて移動している。 The first lens unit L1, the third lens unit L3, and the fourth lens unit L4 are located on the object side at the telephoto end with respect to the wide angle end. During zooming from the wide-angle end to the telephoto end, the second lens unit L2 moves along a convex trajectory toward the image side, and the fifth lens unit L5 moves along a convex trajectory toward the object side. During zooming, the zoom ratio is increased while appropriately reducing the size of the entire system by moving each lens unit appropriately. In FIGS. 1 and 9, the aperture stop SP is disposed between the second lens unit L2 and the third lens unit L3, and moves along a locus independent of these lens units during zooming.
具体的には、広角端に対して望遠端にて第2レンズ群L2と開口絞りSPとの間隔が狭まるよう、また開口絞りSPと第3レンズ群L3との間隔が狭まるように移動している。このようにすることで広角端において開口絞りSPから第1レンズ群L1までの距離を短縮することができ、広角側で決まる前玉有効径を小型化している。また、望遠側において第2レンズ群L2と第3レンズ群L3との間隔を短縮することができ、これにより、ズーミングに際して必要となる第2レンズ群L2および第3レンズ群L3の移動量を確保している。これによりレンズ全長の短縮化を図りつつ、高ズーム比化を図っている。 Specifically, the distance between the second lens unit L2 and the aperture stop SP is reduced at the telephoto end with respect to the wide-angle end, and the distance between the aperture stop SP and the third lens unit L3 is reduced. There is. By doing this, the distance from the aperture stop SP to the first lens unit L1 can be shortened at the wide angle end, and the front lens effective diameter determined on the wide angle side is reduced. Further, the distance between the second lens unit L2 and the third lens unit L3 can be shortened on the telephoto side, thereby securing the moving amounts of the second lens unit L2 and the third lens unit L3 which are necessary for zooming. doing. Thus, the zoom ratio is increased while shortening the overall lens length.
図5、図13において開口絞りSPは第3レンズ群L3内(第3レンズ群L3のレンズとレンズの間)に配置している。開口絞りSPを第3レンズ群L3の中に配置することにより望遠端において第2レンズ群L2と第3レンズ群L3の間隔が短くなるため、ズーミングに必要な第2レンズ群L2と第3レンズ群L3との移動量を十分長く確保することができる。これによりレンズ全長の小型化を図りつつ、高ズーム比化が容易になる。 In FIGS. 5 and 13, the aperture stop SP is disposed in the third lens unit L3 (between the lenses of the third lens unit L3). By arranging the aperture stop SP in the third lens unit L3, the distance between the second lens unit L2 and the third lens unit L3 becomes short at the telephoto end, so the second lens unit L2 and the third lens necessary for zooming The moving amount with the group L3 can be secured long enough. As a result, it is easy to increase the zoom ratio while reducing the overall length of the lens.
なお開口絞りSPは第3レンズ群L3の像側に配置してもよい。この場合は前玉有効径の小型化が難しくなるが、第2レンズ群L2と第3レンズ群L3との移動量を長く確保しつつ第3レンズ群L3および第4レンズ群L4の径の小型化が容易となる。 The aperture stop SP may be disposed on the image side of the third lens unit L3. In this case, it is difficult to miniaturize the front lens effective diameter, but the small diameter of the third lens unit L3 and the fourth lens unit L4 while securing a long moving amount between the second lens unit L2 and the third lens unit L3. Is easy to
実施例5のズームレンズのレンズ構成について説明する。図17のレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。後群LRは第4レンズ群L4よりなっている。ズーミングに際して広角端に対して望遠端にて第1レンズ群L1と第2レンズ群L2との間隔が広がるよう、第2レンズ群L2と第3レンズ群L3との間隔が狭まるよう、第3レンズ群L3と第4レンズ群L4との間隔が広がるように各レンズ群が移動している。 The lens configuration of the zoom lens of Example 5 will be described. In the lens sectional view of FIG. 17, L1 is a first lens group of positive refractive power, L2 is a second lens group of negative refractive power, L3 is a third lens group of positive refractive power, and L4 is positive refractive power Fourth lens group. The rear unit LR is composed of a fourth lens unit L4. During zooming, the distance between the second lens unit L2 and the third lens unit L3 is reduced so that the distance between the first lens unit L1 and the second lens unit L2 is increased at the telephoto end with respect to the wide angle end. Each lens group is moved such that the distance between the group L3 and the fourth lens group L4 is increased.
更に、広角端に対して望遠端にて、第1レンズ群L1、第3レンズ群L3は物体側に位置している。また第2レンズ群L2は像側に凸状の軌跡で、第4レンズ群L4は物体側に凸状の軌跡にて移動している。 Further, the first lens unit L1 and the third lens unit L3 are located on the object side at the telephoto end with respect to the wide angle end. The second lens unit L2 is a locus convex on the image side, and the fourth lens unit L4 is a locus convex on the object side.
以上のように各レンズ群を適切に移動させることで小型化と高変倍化とを両立させている。開口絞りSPは第3レンズ群L3の物体側に配置され、ズーミングに際して第3レンズ群L3と一体で移動する。一体とすることでズーミングの移動機構を簡素化している。各実施例においてフォーカシングは最終レンズ群で行っている。無限遠から近距離へのフォーカシングに際して実施例1乃至4では第5レンズ群L5を物体側へ移動する。無限遠から近距離へのフォーカシングに際して実施例5では第4レンズ群L4を物体側へ移動する。 As described above, by appropriately moving each lens group, both downsizing and high magnification are achieved. The aperture stop SP is disposed on the object side of the third lens unit L3, and moves integrally with the third lens unit L3 during zooming. The integration mechanism simplifies the zooming movement mechanism. In each embodiment, focusing is performed by the final lens unit. The fifth lens unit L5 is moved to the object side in the first to fourth embodiments during focusing from infinity to near distance. During focusing from infinity to near distance, in the fifth embodiment, the fourth lens unit L4 is moved to the object side.
各実施例のズームレンズは手ぶれ等による撮像面上のぶれ補正(像ぶれ補正)を行うために光軸に対して垂直方向の成分を持つように移動する防振レンズ群を2つ有している。1つは光軸に対して垂直方向の成分を持つように移動する防振レンズ群Aである。 The zoom lens of each embodiment has two anti-vibration lens groups that move so as to have a component in the direction perpendicular to the optical axis to perform blur correction (image blur correction) on the imaging surface due to camera shake or the like. There is. One is an anti-vibration lens group A which moves so as to have a component in the direction perpendicular to the optical axis.
図1、図5、図9、図17において防振レンズ群Aは第2レンズ群L2である。図13において防振レンズ群Aは第1レンズ群L1である。像ぶれ補正は防振レンズ群Aを光軸に対して垂直な方向への成分を持つような移動によって行われる。 In FIGS. 1, 5, 9, and 17, the vibration reduction lens group A is the second lens group L2. In FIG. 13, the vibration reduction lens group A is the first lens group L1. Image blurring correction is performed by moving the vibration reduction lens unit A in a direction perpendicular to the optical axis.
例えば図1、図5では第2レンズ群L2を光軸と垂直な方向に移動させて像ぶれ補正を行う。また図9、図17では第2レンズ群L2および図13では第1レンズ群L1を各レンズ群から像側方向にある程度離れた光軸上または光軸近傍の点を中心に回動させて像ぶれ補正を行う。図9、図13、図17では防振レンズ群Aが光軸に対して垂直な方向への移動成分(シフト成分)を有する点では図1、図5と同様であり、この移動成分により像ぶれ補正の機能が得られる。回動により防振レンズ群Aが倒れ成分(チルト成分)を持つ点が図1、図5とは異なる。 For example, in FIGS. 1 and 5, the second lens unit L2 is moved in a direction perpendicular to the optical axis to perform image blurring correction. Further, in FIGS. 9 and 17, the second lens unit L2 and the first lens unit L1 in FIG. 13 are rotated about a point on the optical axis or in the vicinity of the optical axis separated to some extent in the image side direction from each lens Shake correction is performed. In FIGS. 9, 13 and 17, it is similar to FIGS. 1 and 5 in that the anti-vibration lens group A has a movement component (shift component) in the direction perpendicular to the optical axis. A blur correction function is obtained. This point is different from FIGS. 1 and 5 in that the anti-vibration lens group A has a falling component (tilt component) due to the rotation.
次にこのときの構成を図21を用いて説明する。図21は、防振レンズ群Isが光軸La上のある1点Lapを中心に回動する機構を示す。同図の機構では防振レンズ群Isを保持するレンズホルダーLHが隣接する固定部材LBとの間に数点の球体SBを挟んだ構成により実現している。固定部材LBに対して球体SBの転がりによりレンズホルダーLHが可動な構成となっている。 Next, the configuration at this time will be described with reference to FIG. FIG. 21 shows a mechanism in which the anti-vibration lens group Is pivots about one point Lap on the optical axis La. In the mechanism shown in the figure, the lens holder LH holding the anti-vibration lens group Is is realized by a configuration in which several spheres SB are sandwiched between the lens holder LH and the adjacent fixing member LB. The lens holder LH is configured to be movable by rolling of the spherical body SB with respect to the fixing member LB.
このような構成にて球体SBが固定部材LBおよびレンズホルダーLHと接触する受け面の形状を球面とすればレンズホルダーLHは回動が可能となる。なお、固定部材LBとレンズホルダーLHの受け面である球面は同一の曲率中心とすればよい。 If the shape of the receiving surface of the spherical body SB in contact with the fixing member LB and the lens holder LH is made spherical in such a configuration, the lens holder LH can be rotated. The spherical surfaces which are the receiving surfaces of the fixing member LB and the lens holder LH may be the same center of curvature.
像ぶれ補正時の光学性能を良好に維持するには防振レンズ群が光軸に対して垂直方向の成分を持つ方向に移動する際に生じる偏芯収差を補正することが必要である。図9、図13、図17において防振レンズ群Aはシフト成分で生じた偏芯収差を補正するようにチルト成分を設定することで像ぶれ補正時の光学性能を改善している。大きな像ぶれを補正するためにぶれ補正角を大きくすると、防振レンズ群のシフト量も大きくなり偏芯収差が増大してくる。図9、図13、図17における回動においてもシフト量が大きいと偏芯収差が増大してくる。 In order to maintain good optical performance at the time of image blur correction, it is necessary to correct decentration aberrations produced when the anti-vibration lens group moves in a direction having a component in the direction perpendicular to the optical axis. In FIG. 9, FIG. 13 and FIG. 17, the anti-vibration lens group A sets the tilt component so as to correct the decentering aberration caused by the shift component, thereby improving the optical performance at the time of image blur correction. When the shake correction angle is increased to correct a large image blur, the shift amount of the vibration reduction lens unit also increases, and eccentric aberration increases. Also in the rotation in FIGS. 9, 13 and 17, the eccentric aberration increases as the shift amount is large.
そこで各実施例のズームレンズでは防振レンズ群Aとは別のレンズ群を光軸に対して垂直方向の成分を持つように移動させて偏芯収差を低減している。以下、防振レンズ群Aで発生する偏芯収差を低減するために移動するレンズ群を防振レンズ群(補正レンズ群)Bとする。 Therefore, in the zoom lens of each embodiment, a lens unit other than the vibration reduction lens unit A is moved so as to have a component in a direction perpendicular to the optical axis to reduce decentration aberration. Hereinafter, a lens unit that moves in order to reduce eccentric aberration generated in the vibration reduction lens group A will be referred to as a vibration reduction lens group (correction lens group) B.
このとき図1、図9、図13、図17において防振レンズ群Bは第3レンズ群L3である。図5において防振レンズ群Bは第4レンズ群L4である。これらの防振レンズ群Bを光軸上または光軸近傍の点を中心に回動させることで偏芯収差を意図的に発生させ防振レンズ群Aで生じる偏芯収差を補正するようにしている。さらに回動中心を防振レンズ群Bの近傍に配置することで光軸に対して垂直な方向への移動成分、すなわちシフト成分が大きく発生しないようにしている。 At this time, in FIGS. 1, 9, 13 and 17, the vibration reduction lens group B is the third lens group L3. In FIG. 5, the vibration reduction lens group B is the fourth lens group L4. Eccentric aberration is intentionally generated by rotating the vibration reduction lens group B about a point on the optical axis or in the vicinity of the optical axis, and decentration aberration generated in the vibration reduction lens group A is corrected. There is. Further, by arranging the rotation center in the vicinity of the vibration reduction lens group B, a large movement component in the direction perpendicular to the optical axis, that is, a shift component does not occur.
シフト成分が多く生じると光軸と垂直方向への移動ができるように鏡筒内に空間を予め多く確保しなければならない。シフト成分が小さければ防振レンズ群Bを移動するためのアクチュエータの配置が行いやすくなり鏡筒の小型化が容易になる。 If a large amount of shift components are generated, a large amount of space must be secured in advance in the lens barrel so that movement in the direction perpendicular to the optical axis can be performed. If the shift component is small, it is easy to arrange an actuator for moving the vibration reduction lens group B, and it becomes easy to miniaturize the lens barrel.
各実施例では、防振レンズ群Bの移動による作用は偏芯収差の補正に重きを置き、防振作用はあまり生じないようにしている。各実施例では防振レンズ群Aの移動と共に防振レンズ群Bも移動させることで偏芯収差を低減し、像ぶれ補正時に良好な画像を得ている。特に像ぶれ補正角が大きい場合にも防振レンズ群Aのみの構成と比べて防振レンズ群Bの作用により良好な光学性能が得られるようにしている。なお偏芯収差として低減される収差としては、偏芯コマ収差、像面の傾き、偏芯歪曲収差、偏芯非点収差、偏芯色収差などがある。 In each embodiment, the action caused by the movement of the vibration reduction lens group B places emphasis on the correction of decentration aberration so that the vibration reduction action does not occur so much. In each embodiment, decentration aberration is reduced by moving the vibration reduction lens group B together with the movement of the vibration reduction lens group A, and a good image is obtained at the time of image blur correction. In particular, even when the image blur correction angle is large, better optical performance can be obtained by the action of the anti-vibration lens group B as compared with the configuration of only the anti-vibration lens group A. Aberrations to be reduced as eccentric aberration include eccentric coma, inclination of the image plane, eccentric distortion, eccentric astigmatism, eccentric chromatic aberration, and the like.
なお防振レンズ群Bの回動機構は図21に示す構成にて固定部材LBとレンズホルダーLHの球体SBに対する受け面形状を曲率半径の小さい球面とすればよい。 The rotational mechanism of the anti-vibration lens group B may be a spherical surface having a small radius of curvature, with the configuration shown in FIG. 21, for the fixed member LB and the lens holder LH with respect to the spherical body SB.
各実施例において防振レンズ群Aはある程度の屈折力を有することが好ましい。屈折力を強めることで防振敏感度が増し所定の像ぶれ補正角に対するシフト成分量を小さくすることができる。これにより防振レンズ群Aで生じる偏芯収差の発生が低減される。なお防振敏感度とは防振レンズ群が光軸に対して垂直方向に移動(シフト)した際に、像面上において画面中心の像点(結像位置)が移動する量をシフト量で除した値である。 In each embodiment, it is preferable that the vibration reduction lens group A have a certain degree of refractive power. By strengthening the refracting power, it is possible to increase the vibration reduction sensitivity and reduce the amount of shift component for a predetermined image blur correction angle. As a result, the occurrence of decentering aberration occurring in the vibration reduction lens group A is reduced. The image stabilization sensitivity is defined as the shift amount of the image point (imaging position) at the center of the screen on the image plane when the image stabilization lens group moves (shifts) in the direction perpendicular to the optical axis. It is the divided value.
また防振レンズ群Aは広角端よりも望遠端において防振敏感度が大きいほうが好ましい。ズームレンズにおいて所定のズーム位置におけるズームレンズ(全系)の焦点距離をf、防振レンズ群Aのシフト量をSA、防振レンズ群Aの防振敏感度をTA、シフト量SAにより生じる像ぶれ補正角をθAとすると以下の式が成り立つ。 Further, it is preferable that the anti-vibration lens unit A have a high anti-vibration sensitivity at the telephoto end than at the wide-angle end. In the zoom lens, the focal length of the zoom lens (entire system) at a predetermined zoom position is f, the shift amount of the anti-vibration lens group A is SA, the anti-vibration sensitivity of the anti-vibration lens group A is TA, Assuming that the shake correction angle is θA, the following equation is established.
SA=f×tanθA/TA ・・・(A)
シフト量SAは焦点距離fに比例するため焦点距離が長い程シフト量SAは大きくなりやすい。これに対してシフト量SAは防振敏感度TAに反比例する関係にある。よって望遠端では防振敏感度TAが大きい構成としてシフト量SAを小さくするとよい。このようにすると望遠端において防振レンズ群Aのシフト量SAによる偏芯収差の発生を低減することができる。特に高ズーム比のズームレンズにおいて望遠側における像ぶれ補正角を大きくしたい場合には有効である。次に(A)式から以下が導かれる。
SA = f × tan θA / TA (A)
Since the shift amount SA is proportional to the focal length f, the shift amount SA tends to be larger as the focal length is longer. On the other hand, the shift amount SA is in inverse proportion to the vibration isolation sensitivity TA. Therefore, it is preferable to reduce the shift amount SA as a configuration in which the image stabilization sensitivity TA is large at the telephoto end. In this way, it is possible to reduce the occurrence of decentration aberration due to the shift amount SA of the vibration reduction lens group A at the telephoto end. This is effective particularly when it is desired to increase the image blur correction angle on the telephoto side in a zoom lens with a high zoom ratio. Next, the following is derived from equation (A).
θA=tan−1(SA×TA/f) ・・・(B)
防振レンズ群Aの移動と同時に防振レンズ群Bを移動させたときの像ぶれ補正角をθとすると以下が導かれる。
θA/θ={tan−1(SA×TA/f)}/θ ・・・(C)
(C)式は防振レンズ群Aと防振レンズ群Bを同時に移動させた際の像ぶれ補正角θに対する防振レンズ群Aのシフト量SAによる像ぶれ補正角θAの比を表す。防振レンズ群Bによる像ぶれ補正効果が生じない場合はθA=θとなる。
θA = tan −1 (SA × TA / f) (B)
Assuming that the image blur correction angle when moving the vibration reduction lens group B simultaneously with the movement of the vibration reduction lens group A is θ, the following is derived.
θA / θ = {tan −1 (SA × TA / f)} / θ (C)
Equation (C) represents the ratio of the image blur correction angle θA based on the shift amount SA of the vibration reduction lens group A to the image blur correction angle θ when the vibration reduction lens group A and the vibration reduction lens group B are simultaneously moved. When the image blur correction effect by the vibration reduction lens unit B does not occur, θA = θ.
各実施例では防振レンズ群Bによる防振作用をあまり生じさせないようにしているため、(C)式の値が1から大きく外れないようにしている。なお、(C)式が1より大きい場合は防振レンズ群Aと防振レンズ群Bの移動による各々の像ぶれ補正が逆符号となる。よって所望の像ぶれ補正角を得るために防振レンズ群Aをより大きく移動させなければならない。(C)式が1より小さい場合は防振レンズ群Aと防振レンズ群Bの移動による各々の像ぶれ補正が同符号となる。 In each of the embodiments, since the anti-vibration effect of the anti-vibration lens unit B is not generated so much, the value of the expression (C) is made not to be largely deviated from 1. When the equation (C) is larger than 1, each image blur correction due to the movement of the anti-vibration lens group A and the anti-vibration lens group B has an opposite sign. Therefore, in order to obtain a desired image blur correction angle, it is necessary to move the anti-vibration lens group A larger. When the equation (C) is smaller than 1, each image blur correction by the movement of the anti-vibration lens group A and the anti-vibration lens group B has the same sign.
次に各実施例において防振レンズ群Aは開口絞りSPよりも物体側のレンズ群とすると前玉有効径が小型化されるため好ましい。像ぶれ補正時は防振レンズ群Aおよびこれよりも物体側のレンズ群にて光束が通過する高さが変化する。これらのレンズ群の有効径は像ぶれ補正時の周辺光量が確保されるようにしなければならない。像ぶれ補正角が大きくなる程これらの有効径は増大する。防振レンズ群Aを開口絞りSPより物体側としつつ、極力、物体側のレンズ群とすると像ぶれ補正時に光束が通過する高さの変化が低減される。このようにすると像ぶれ補正角を大きくしつつ前玉有効径の増大が軽減される。 Next, in each embodiment, it is preferable to use the anti-vibration lens unit A as a lens unit closer to the object than the aperture stop SP because the effective diameter of the front lens is reduced. At the time of image blur correction, the height at which the light beam passes in the anti-vibration lens unit A and the lens unit closer to the object side than that changes. The effective diameters of these lens units must be such that the peripheral light amount at the time of image blur correction is secured. These effective diameters increase as the image blur correction angle increases. If the antivibration lens group A is on the object side with respect to the aperture stop SP, and the lens group on the object side is as much as possible, the change in height at which the light beam passes during image blurring correction is reduced. In this way, the increase in the front lens effective diameter is reduced while increasing the image blur correction angle.
次に防振レンズ群Bはある程度の屈折力を有することが好ましい。屈折力を強めることで回動角をあまり大きくしないで偏芯収差の補正が容易となる。回動角が大きすぎると高次の偏芯収差が多く発生してくる。 Next, it is preferable that the vibration reduction lens unit B have a certain degree of refractive power. By strengthening the refractive power, it is easy to correct decentration aberration without increasing the rotation angle too much. If the rotation angle is too large, many decentration aberrations of high order occur.
また防振レンズ群Bは防振レンズ群Aよりも像側のレンズ群とすると防振レンズ群Aの小型化が容易になる。防振レンズ群Bは防振機能を持つ必要が少ないため防振レンズ群Aのように物体側に配置する必要はない。防振レンズ群Bを開口絞りSPの近傍に配置するとレンズ径が小型化されるため防振レンズ群Bの駆動機構が小型化されるという効果がある。更に本発明のズームレンズは以下の条件を満足することが好ましい。 When the vibration reduction lens group B is a lens group closer to the image than the vibration reduction lens group A, downsizing of the vibration reduction lens group A is facilitated. Since the anti-vibration lens group B need not have the anti-vibration function, it need not be disposed on the object side like the anti-vibration lens group A. When the vibration reduction lens group B is disposed in the vicinity of the aperture stop SP, the lens diameter is reduced, so that the drive mechanism of the vibration reduction lens group B is reduced in size. Furthermore, it is preferable that the zoom lens of the present invention satisfies the following conditions.
防振レンズ群Bの焦点距離をfB、望遠端における全系(ズームレンズ)の焦点距離をft、望遠端における像ぶれ補正角の最大値をθt、望遠端において像ぶれ補正角θtの像ぶれ補正を行う際の防振レンズ群Bの回動角をTBtとする。このとき、
0.01<|fB|/ft<0.35 ・・・(1)
0.85<|TBt|/θt<10.00 ・・・(2)
なる条件式を満足するのが良い。
Image blur of the anti-vibration lens group B fB, focal length of the entire system (zoom lens) at the telephoto end, ft, maximum value of the image blur correction angle at the telephoto end θt, image blur at the telephoto end The rotation angle of the vibration reduction lens unit B at the time of correction is taken as TBt. At this time,
0.01 <| fB | / ft <0.35 (1)
0.85 <| TBt | / θt <10.00 (2)
It is good to satisfy the conditional expression
次に前述の各条件式の技術的意味について説明する。条件式(1)は防振レンズ群Bの焦点距離すなわち屈折力を規定する式である。上限を超えて防振レンズ群Bの焦点距離が長くなり屈折力が弱すぎると(屈折力の絶対値が小さくなりすぎると)回動時に生じる偏芯収差の発生が弱まる。この結果、防振レンズ群Aより生じる偏芯収差を補正するために回動角を大きくすると、高次の偏芯収差が多く発生してくる。例えば高次の非点収差、高次の偏芯歪曲収差が多く発生してくる。 Next, technical meanings of the above-mentioned conditional expressions will be described. Conditional expression (1) defines the focal length of the vibration reduction lens unit B, that is, the refractive power. If the focal length of the anti-vibration lens unit B becomes long beyond the upper limit and the refracting power is too weak (if the absolute value of the refracting power becomes too small), the occurrence of decentration aberration generated at the time of rotation weakens. As a result, when the rotation angle is increased in order to correct the decentering aberration generated from the vibration reduction lens unit A, many decentering aberrations of high order occur. For example, high-order astigmatism and high-order eccentric distortion aberration are often generated.
またプリズム作用による偏芯方向の色ずれが多く発生してくる。回動角を大きくしない場合には防振レンズ群Aより生じる偏芯収差が補正不足となってくる。条件式(1)の下限を超えて防振レンズ群Bの焦点距離が短くなり屈折力が強すぎると(屈折力の絶対値が大きくなりすぎると)防振レンズ群Bを構成するレンズ枚数が増大してくる。防振レンズ群Bが回動した際に生じる偏芯収差はある程度低次の収差として防振レンズ群で生じる収差とキャンセルさせることが好ましい。 In addition, a large amount of color shift in the eccentric direction occurs due to the prism action. If the rotation angle is not increased, decentration aberrations produced by the vibration reduction lens unit A will be undercorrected. If the focal length of the anti-vibration lens group B becomes short and the refracting power becomes too strong (if the absolute value of the refractive power becomes too large) beyond the lower limit of conditional expression (1) (if the absolute value of the refractive power becomes too large) It will increase. It is preferable that the decentration aberration produced when the vibration reduction lens group B is rotated be canceled as an aberration generated in the vibration reduction lens group as a low order aberration to some extent.
少ない構成レンズ枚数にて防振レンズ群Bの屈折力を強めるとレンズ群としての収差補正が不十分となり偏芯時に高次収差が生じやすくなる。防振レンズ群Bの収差を十分に補正しようとすると構成レンズ枚数を増やす必要があるため防振レンズ群Bが大型化するので良くない。 If the refractive power of the vibration reduction lens group B is increased with a small number of lenses, aberration correction as the lens group becomes insufficient, and high-order aberrations are likely to occur at decentering. If it is necessary to increase the number of constituent lenses to correct the aberration of the vibration reduction lens group B sufficiently, the size of the vibration reduction lens group B increases, which is not good.
条件式(2)は防振レンズ群Bの回動角を規定する。条件式(2)の上限を超えて回動角が像ぶれ補正角に対して大きすぎると、高次の偏芯収差が多く発生してくる。例えば高次の非点収差、高次の偏芯歪曲収差が多く発生してくる。またプリズム作用による偏芯方向の色ずれが多く発生してくる。防振レンズ群Aより発生する比較的、低次の偏芯収差を低減させる目的においては上限値を超えないことが望ましい。 Conditional expression (2) defines the rotation angle of the vibration reduction lens unit B. If the rotation angle exceeds the upper limit of the conditional expression (2) and the rotation angle is too large with respect to the image blur correction angle, many decentration aberrations of high order occur. For example, high-order astigmatism and high-order eccentric distortion aberration are often generated. In addition, a large amount of color shift in the eccentric direction occurs due to the prism action. In order to reduce relatively low-order decentering aberrations generated by the vibration reduction lens unit A, it is desirable that the upper limit be not exceeded.
条件式(2)の下限を超えて回動角が像ぶれ補正角に対して小さすぎると駆動時の位置精度が高くなるので良くない。防振レンズ群Bは偏芯収差の補正残りが許容範囲内となるように防振レンズ群Aとうまく同期して駆動させる必要がある。下限を超えると偏芯収差の補正残りが許容範囲を超えるため良好な光学性能を得るのが困難になる。更に好ましくは条件式(1)、(2)の数値範囲を次の如く設定することが好ましい。 If the rotation angle exceeds the lower limit of the conditional expression (2) and the rotation angle is too small with respect to the image blur correction angle, the positional accuracy at the time of driving becomes high, which is not good. The anti-vibration lens group B needs to be driven in good synchronization with the anti-vibration lens group A such that the remainder of the decentration aberration correction is within the allowable range. If the lower limit is exceeded, it is difficult to obtain good optical performance because the uncorrected residual of the decentration aberration exceeds the allowable range. More preferably, the numerical ranges of the conditional expressions (1) and (2) are set as follows.
0.03<|fB|/ft<0.30 ・・・(1a)
0.95<|TBt|/θt<9.00 ・・・(2a)
以上のように本発明によれば、防振レンズ群が小型で、像ぶれ補正角が大きい場合にも高い光学性能を有するズームレンズが得られる。
0.03 <| fB | / ft <0.30 (1a)
0.95 <| TBt | / θt <9.00 (2a)
As described above, according to the present invention, it is possible to obtain a zoom lens having high optical performance even when the image stabilizing lens unit is small and the image blur correction angle is large.
各実施例において、更に好ましくは次の条件式のうち1つ以上を満足するのが良い。防振レンズ群Aの焦点距離をfAとする。防振レンズ群Bの最も物体側のレンズ面から防振レンズ群Bの回動中心までの望遠端における距離(光軸上)をRBt、防振レンズ群Bの最も物体側レンズ面から最も像側のレンズ面までの距離(光軸上)をLBとする。望遠端において像ぶれ補正角θtの像ぶれ補正を行う際の防振レンズ群Aの光軸に対して垂直な方向の移動成分をSAt、望遠端における防振レンズ群Aの防振敏感度をTAtとする。 In each embodiment, it is more preferable to satisfy one or more of the following conditional expressions. The focal length of the anti-vibration lens unit A is fA. RBt distance (on the optical axis) at the telephoto end to the most object-side lens surface or et rotational center of the vibration reduction lens group B of the vibration reduction lens group B, the most object-side lens surface or these vibration reduction lens group B whose distance on the image side of the lens Menma a (on the optical axis) and LB. The movement component of the vibration reduction lens group A in the direction perpendicular to the optical axis of the vibration reduction lens group A at the time of image blur correction at the image blur correction angle θt at the telephoto end is SAt. It is called TAt.
広角端における像ぶれ補正角の最大値をθw、像ぶれ補正角θwの像ぶれ補正を行う際の防振レンズ群Aの光軸に対して垂直な方向の移動成分をSAw、広角端における防振レンズ群Aの防振敏感度をTAw、広角端における全系の焦点距離をfwとする。第1レンズ群L1の焦点距離をf1とする。第1レンズ群L1は正レンズと負レンズを有し、第1レンズ群L1に含まれる正レンズの中で材料のアッベ数が最も大きい正レンズG1pの材料のアッベ数をν1p、部分分散比をPgF1pとする。また第1レンズ群L1に含まれる負レンズの中で材料のアッベ数が最も小さい負レンズG1nの材料のアッベ数をν1n、部分分散比をPgF1nとする。 The maximum value of the image blur correction angle at the wide angle end is θw, and the movement component in the direction perpendicular to the optical axis of the vibration reduction lens unit A at the time of image blur correction at the image blur correction angle θw is SAw. The vibration reduction sensitivity of the vibration lens group A is TAw, and the focal length of the entire system at the wide angle end is fw. The focal length of the first lens unit L1 is f1. The first lens group L1 has a positive lens and a negative lens, and the Abbe number of the material of the positive lens G1p having the largest Abbe number among the positive lenses included in the first lens group L1 is ν1p, and the partial dispersion ratio is It is called PgF1p. The Abbe number of the material of the negative lens G1n having the smallest Abbe number among the negative lenses included in the first lens unit L1 is ν1n, and the partial dispersion ratio is PgF1n.
ズームレンズLOは開口絞りSPを有し、広角端における開口絞りSPから防振レンズ群Aの最も像側レンズ面までの光軸上の距離をDSAwとする。広角端における防振レンズ群Aの像側のレンズ面の頂点から防振レンズ群Bの最も物体側のレンズ面の頂点までの距離をDABwとする。このうち次の条件式のうち1つ以上を満足するのが良い。 The zoom lens LO has an aperture stop SP, the distance on the optical axis in the most image side lens Menma the vibration reduction lens group A from the aperture stop SP at the wide angle end to DSAW. The distance from the vertex of the image-side lens surface of the anti-vibration lens group A at the wide-angle end to the vertex of the lens surface of the anti-vibration lens group B closest to the object is DABw. Among these, it is preferable to satisfy one or more of the following conditional expressions.
0.01<|fA|/ft<0.45 ・・・(3)
-1.00<RBt/LB<1.00 ・・・(4)
0.7<{tan−1(SAt×TAt/ft)}/θt<1.4 ・・・(5)
0.7<{tan−1(SAw×TAw/fw)}/θw<1.4 ・・・(6)
3.00<TAt/TAw ・・・(7)
0.20<f1/ft<0.50 ・・・(8)
-0.002<(PgF1p−PgF1n)/(ν1p−ν1n) ・・・(9)
-20.00<DSAw/fw<-2.00 ・・・(10)
2.00<DABw/fw<20.00 ・・・(11)
0.01 <| fA | / ft <0.45 (3)
-1.00 <RBt / LB <1.00 (4)
0.7 <{tan −1 (SAt × TAt / ft)} / θt <1.4 (5)
0.7 <{tan −1 (SAw × TAw / fw)} / θw <1.4 (6)
3.00 <TAt / TAw (7)
0.20 <f1 / ft <0.50 (8)
−0.002 <(PgF1p−PgF1n) / (ν1p−ν1n) (9)
-20.00 <DSAw / fw <-2.00 (10)
2.00 <DABw / fw <20.00 (11)
なお、距離RBtの符号は回動中心が防振レンズ群Bの最も物体側のレンズ面の頂点よりも像側にある場合を正とする。距離DSAwの符号は防振レンズ群Aの最も像側のレンズ面の頂点が開口絞りSPより像側にある場合を正とする。距離DABwの符号は防振レンズ群Bの最も物体側のレンズ面の頂点が防振レンズ群Aの最も像側のレンズ面の頂点より像側にある場合を正とする。 The sign of the distance RBt is positive when the center of rotation is on the image side of the vertex of the lens surface of the image stabilizing lens unit B closest to the object. The sign of the distance DSAw is positive when the vertex of the lens surface closest to the image on the anti-vibration lens group A is on the image side of the aperture stop SP. The sign of the distance DABw is positive when the vertex of the lens surface closest to the object side of the anti-vibration lens group B is on the image side of the vertex of the lens surface nearest to the image side of the anti-vibration lens group A.
次に前述の各条件式の技術的意味について説明する。条件式(3)は防振レンズ群Aの焦点距離すなわち屈折力を規定する式である。上限値を超えて焦点距離が長くなりすぎると、すなわち屈折力の絶対値が小さくなりすぎると、シフト成分による像ぶれ補正の効果が少なくなってくる。この結果、所望の像ぶれ補正角となるようにシフト成分を増やすと駆動機構が大型化してくる。 Next, technical meanings of the above-mentioned conditional expressions will be described. Conditional expression (3) defines the focal length, that is, the refractive power of the vibration reduction lens unit A. If the focal length becomes too long beyond the upper limit value, that is, if the absolute value of the refractive power becomes too small, the effect of image blurring correction due to the shift component decreases. As a result, when the shift component is increased to achieve a desired image blur correction angle, the drive mechanism becomes larger.
下限値を超えて焦点距離が短くなりすぎると、すなわち屈折力の絶対値が大きくなりすぎると駆動時の位置精度が高くなる。防振レンズ群Aは像ぶれ補正残りが許容範囲内となるように制御する必要がある。このため下限を超えるとぶれ補正残りが許容範囲を超えるため安定した像ぶれ補正が難しくなる。 If the focal length becomes too short beyond the lower limit value, that is, if the absolute value of the refractive power becomes too large, the positional accuracy at the time of driving becomes high. It is necessary to control the anti-vibration lens group A so that the image blur correction remainder falls within the allowable range. For this reason, if the lower limit is exceeded, the remaining image blur correction exceeds the allowable range, making stable image blur correction difficult.
条件式(4)は防振レンズ群Bの回動中心の位置を規定する。回動中心が防振レンズ群Bから離れた位置にある場合は回動半径が大きくなるため、回動に伴いシフト成分が生じる。上限または下限を超えると回動半径が大きくなりすぎ回動に伴いシフト成分が大きく生じ防振レンズ群Bの駆動機構が大型化してくる。 Conditional expression (4) defines the position of the rotation center of the anti-vibration lens unit B. When the center of rotation is at a position away from the anti-vibration lens unit B, the radius of rotation becomes large, so that a shift component is generated along with the rotation. If the upper limit or the lower limit is exceeded, the rotation radius becomes too large, and the shift component becomes large as the rotation is performed, and the drive mechanism of the vibration reduction lens group B becomes large.
条件式(5)は望遠端において全系の像ぶれ補正角に対する防振レンズ群Aのシフト成分のみによる像ぶれ補正角の比を規定している。上限値を超えて防振レンズ群Aによる像ぶれ補正角の比が大きすぎる場合は、所望の像ぶれ補正角を得るために必要な防振レンズ群Aのシフト成分が大きくなる。この場合は防振レンズ群Aの駆動機構が大型化している。防振レンズ群Aの移動量が大きすぎると望遠端において周辺光量を確保するために防振レンズ群Aもしくはこれより物体側のレンズ群のレンズ径が増大し、全系が大型化してくる。 Conditional expression (5) defines the ratio of the image blur correction angle based on only the shift component of the vibration reduction lens unit A to the image blur correction angle of the entire system at the telephoto end. If the ratio of the image blur correction angle by the vibration reduction lens group A is too large beyond the upper limit value, the shift component of the vibration reduction lens group A necessary to obtain a desired image blur correction angle becomes large. In this case, the drive mechanism of the vibration reduction lens group A is enlarged. If the moving amount of the anti-vibration lens group A is too large, the lens diameter of the anti-vibration lens group A or the lens group on the object side therefrom increases to secure the peripheral light amount at the telephoto end, and the entire system becomes large.
また下限を超えると防振レンズ群Aによる像ぶれ補正角が低下する分、防振レンズ群Bによる像ぶれ補正角を強める必要がある。この場合は防振レンズ群Bのシフト成分が大きくなりすぎ防振レンズ群Bの駆動機構が大型化してくる。 If the lower limit is exceeded, the image blur correction angle by the vibration reduction lens group B needs to be increased by the amount that the image blur correction angle by the vibration reduction lens group A decreases. In this case, the shift component of the vibration reduction lens group B becomes too large, and the drive mechanism of the vibration reduction lens group B becomes large.
条件式(6)は広角端において全系の像ぶれ補正角に対する防振レンズ群Aのシフト成分のみによる像ぶれ補正角の比を規定している。上限値を超えて防振レンズ群Aによる像ぶれ補正角の比が大きすぎる場合は、所望の像ぶれ補正角を得るために必要な防振レンズ群Aのシフト成分が大きくなる。この場合は防振レンズ群Aの駆動機構が大型化してくる。また防振レンズ群Aの移動量が大きすぎると広角端において周辺光量を確保するために防振レンズ群Aもしくはこれより物体側のレンズ群のレンズ径が増大し、全系が大型化してくる。 Conditional expression (6) defines the ratio of the image blur correction angle based on only the shift component of the vibration reduction lens unit A to the image blur correction angle of the entire system at the wide angle end. If the ratio of the image blur correction angle by the vibration reduction lens group A is too large beyond the upper limit value, the shift component of the vibration reduction lens group A necessary to obtain a desired image blur correction angle becomes large. In this case, the drive mechanism of the anti-vibration lens group A becomes large. If the moving amount of the anti-vibration lens group A is too large, the lens diameter of the anti-vibration lens group A or the lens group on the object side from this increases to secure the peripheral light amount at the wide angle end, and the entire system becomes large. .
また下限を超えると防振レンズ群Aによる像ぶれ補正角が低下する分、防振レンズ群Bによる像ぶれ補正角を強める必要がある。この場合は防振レンズ群Bのシフト成分が大きくなりすぎ防振レンズ群Bの駆動機構が大型化してくる。 If the lower limit is exceeded, the image blur correction angle by the vibration reduction lens group B needs to be increased by the amount that the image blur correction angle by the vibration reduction lens group A decreases. In this case, the shift component of the vibration reduction lens group B becomes too large, and the drive mechanism of the vibration reduction lens group B becomes large.
条件式(7)は防振レンズ群Aの広角端における防振敏感度に対する望遠端における防振敏感度の比を規定している。上限を超えて防振敏感度の比が大きすぎると望遠端での防振敏感度が高すぎ、駆動時の位置精度が高くなる。防振レンズ群Aは像ぶれ補正残りが許容範囲内となるように制御する必要があるが、防振敏感度が高すぎると安定した像ぶれ補正が難しくなる。 Condition (7) defines the ratio of the image stabilization sensitivity at the telephoto end to the image stabilization sensitivity at the wide angle end of the image stabilizing lens unit A. If the upper limit is exceeded and the ratio of the image stabilization sensitivity is too large, the image stabilization sensitivity at the telephoto end is too high, and the position accuracy at the time of driving becomes high. Although it is necessary to control the anti-vibration lens group A so that the image blur correction remainder falls within the allowable range, if the anti-vibration sensitivity is too high, stable image blur correction becomes difficult.
下限を超えて防振敏感度の比が小さすぎると望遠端での防振敏感度が低すぎ、防振レンズ群Aのシフト成分が増大する。よって防振レンズ群Aの駆動機構が大型化してくる。また、シフト成分の増大により偏芯収差が大きく発生し防振レンズ群Bの回動をもってしても偏芯収差の補正が難しくなる。よって防振時に良好な光学性能を得るのが困難になる。 If the lower limit is exceeded and the ratio of the image stabilization sensitivity is too small, the image stabilization sensitivity at the telephoto end is too low, and the shift component of the image stabilizing lens unit A increases. Therefore, the drive mechanism of the vibration reduction lens group A is increased in size. In addition, an increase in shift component causes a large decentration aberration, and even if the vibration reduction lens group B is rotated, it is difficult to correct the decentration aberration. Therefore, it becomes difficult to obtain good optical performance at the time of image stabilization.
条件式(8)は第1レンズ群の焦点距離すなわち正の屈折力を規定している。上限を超えて焦点距離が長すぎる、すなわち正の屈折力が弱すぎる場合は、望遠端におけるレンズ全長が増大し、全系の小型化が困難になる。下限を超えて焦点距離が短すぎる、すなわち正の屈折力が強すぎる場合は望遠端において球面収差が多く発生してくる。このときの球面収差を低減するために第1レンズ群L1のレンズ枚数を増やすと第1レンズ群L1が大型化し、前玉有効径が増大し、レンズ重量が増大してくる。 Conditional expression (8) defines the focal length of the first lens group, that is, the positive refractive power. If the focal length exceeds the upper limit and the focal length is too long, that is, the positive refractive power is too weak, the total lens length at the telephoto end increases, which makes it difficult to miniaturize the entire system. If the focal length is too short beyond the lower limit, that is, if the positive refractive power is too strong, a large amount of spherical aberration will occur at the telephoto end. If the number of lenses of the first lens unit L1 is increased to reduce the spherical aberration at this time, the first lens unit L1 is increased in size, the front lens effective diameter is increased, and the lens weight is increased.
条件式(9)は第1レンズ群L1を構成する正レンズの材料と負レンズの材料の部分分散比の関係を規定する。望遠端において二次スペクトルを低減するには正レンズの材料の部分分散比は比較的大きく、負レンズの材料の部分分散比は比較的小さくすることが好ましい。さらに負レンズの屈折力を強めずに一次の色消しと二次スペクトルの低減を図るには(9)式はゼロに近いことが好ましい。下限値を超えてゼロから遠ざかると二次スペクトルが大きくなり、色にじみによる解像感が低下してくる。 Conditional expression (9) defines the relationship between the partial dispersion ratio of the material of the positive lens forming the first lens unit L1 and the material of the negative lens. In order to reduce the secondary spectrum at the telephoto end, the partial dispersion ratio of the material of the positive lens is preferably relatively large, and the partial dispersion ratio of the material of the negative lens is preferably relatively small. Further, in order to reduce the first order achromatism and the second order spectrum without strengthening the refractive power of the negative lens, it is preferable that the equation (9) be close to zero. If the lower limit value is exceeded and the distance from zero is increased, the secondary spectrum becomes large, and the resolution due to color bleeding is reduced.
条件式(10)は開口絞りSPに対する防振レンズ群Aの位置を規定する。前玉有効径の小型化の点で防振レンズ群Aは開口絞りSPより物体側に配置するのが好ましい。上限を超えて防振レンズ群Aが開口絞りSPに近すぎると防振時の周辺光量を確保するために前玉有効径が増大し全系の小型化が困難になる。 Condition (10) defines the position of the anti-vibration lens group A with respect to the aperture stop SP. In order to reduce the front lens effective diameter, it is preferable that the anti-vibration lens unit A be disposed closer to the object than the aperture stop SP. If the anti-vibration lens unit A is too close to the aperture stop SP beyond the upper limit, the effective diameter of the front lens increases to secure the peripheral light amount at the time of anti-vibration, making it difficult to miniaturize the entire system.
下限を超えて防振レンズ群Aが開口絞りSPから遠ざかりすぎると軸外光束が防振レンズ群Aにて屈曲する位置が高くなる。これにより防振時の軸外光束における収差変動、例えば偏芯非点収差、像の倒れが多く発生してくる。特に広角端は軸外光束が防振レンズ群Aに入射する角度がきつくなりやすいためこれらの偏芯収差変動が大きく生じてくる。 If the vibration reduction lens group A is too far from the aperture stop SP beyond the lower limit, the position at which the off-axis light flux is bent in the vibration reduction lens group A becomes high. As a result, aberration fluctuation in off-axis light beam at the time of image stabilization, for example, decentering astigmatism and image tilt occur frequently. In particular, the angle at which the off-axis light beam enters the anti-vibration lens group A is likely to be tight at the wide angle end, and these decentering aberrations fluctuate greatly.
条件式(11)は防振レンズ群Aに対する防振レンズ群Bの位置を規定する。駆動機構の小型化を図るには防振レンズ群Bは開口絞りSP近傍に配置するのが好ましい。結果として防振レンズ群Bは防振レンズ群Aよりある程度像側に配置される。しかしながら上限を超えて防振レンズ群Bが防振レンズ群Aから遠ざかりすぎるとすなわち像面に近づくと防振レンズ群Bにて特に偏芯非点収差が発生しやすくなり、像の倒れおよび偏芯色収差の補正が難しくなる。 Conditional expression (11) defines the position of the vibration reduction lens group B with respect to the vibration reduction lens group A. In order to miniaturize the drive mechanism, the vibration reduction lens unit B is preferably disposed in the vicinity of the aperture stop SP. As a result, the anti-vibration lens group B is disposed on the image side to a certain extent relative to the anti-vibration lens group A. However, if the vibration reduction lens group B is too far from the vibration reduction lens group A beyond the upper limit, that is, as the image plane is approached, decentering astigmatism particularly easily occurs in the vibration reduction lens group B, and the image tilts and Correction of axial chromatic aberration becomes difficult.
下限を超えて防振レンズ群Bが防振レンズ群Aに近すぎると、防振レンズ群Bのレンズ径が増大するため全系の小型化が困難になる。特に広角端では前玉に近い位置ではレンズ有効径が増大しやすくなるので良くない。更に好ましくは条件式(3)乃至(11)の数値範囲を次の如く設定するのが良い。 If the vibration reduction lens group B is too close to the vibration reduction lens group A beyond the lower limit, the lens diameter of the vibration reduction lens group B increases, making it difficult to miniaturize the entire system. In particular, at the wide angle end, the lens effective diameter tends to increase at a position close to the front lens, which is not good. More preferably, the numerical ranges of conditional expressions (3) to (11) are set as follows.
0.02<|fA|/ft<0.40 ・・・(3a)
-0.80<RBt/LB<0.80 ・・・(4a)
0.8<{tan−1(SAt×TAt/ft)}/θt<1.3 ・・・(5a)
0.75<{tan−1(SAw×TAw/fw)}/θw<1.35 ・・・(6a)
4.00<TAt/TAw ・・・(7a)
0.25<f1/ft<0.46 ・・・(8a)
-0.0018<(PgF1p−PgF1n)/(ν1p−ν1n) ・・・(9a)
-15.00<DSAw/fw<-2.50 ・・・(10a)
2.50<DABw/fw<16.00 ・・・(11a)
0.02 <| fA | / ft <0.40 (3a)
-0.80 <RBt / LB <0.80 (4a)
0.8 <{tan −1 (SAt × TAt / ft)} / θt <1.3 (5a)
0.75 <{tan −1 (SAw × TAw / fw)} / θw <1.35 (6a)
4.00 <TAt / TAw (7a)
0.25 <f1 / ft <0.46 (8a)
-0.0018 <(PgF1p-PgF1n) / (. Nu.1p-.nu.1n) (9a)
-15.00 <DSAw / fw <-2.50 (10a)
2.50 <DABw / fw <16.00 ・ ・ ・ (11a)
尚、実施例1、3において、後群LRは物体側から像側へ順に配置された、負の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5より構成され、ズーミングに際して第4レンズ群L4と第5レンズ群L5はいずれも他のレンズ群と異なる軌跡で移動する。防振レンズ群Aは第2レンズ群L2であり、防振レンズ群Bは第3レンズ群L3である。 In Examples 1 and 3, the rear unit LR includes the fourth lens unit L4 of negative refractive power and the fifth lens unit L5 of positive refractive power, which are disposed in order from the object side to the image side, and zooming At the same time, the fourth lens unit L4 and the fifth lens unit L5 both move along a locus different from that of the other lens units. The vibration reduction lens group A is a second lens group L2, and the vibration reduction lens group B is a third lens group L3.
実施例2において、後群LRは物体側から像側へ順に配置された、負の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5より構成され、ズーミングに際して第4レンズ群L4と第5レンズ群L5はいずれも他のレンズ群と異なる軌跡で移動する。防振レンズ群Aは第2レンズ群L2であり、防振レンズ群Bは第4レンズ群L4である。 In Example 2, the rear unit LR is composed of a fourth lens unit L4 of negative refractive power and a fifth lens unit L5 of positive refractive power, which are disposed in order from the object side to the image side, and the fourth lens during zooming The group L4 and the fifth lens group L5 both move along different loci from other lens groups. The vibration reduction lens group A is a second lens group L2, and the vibration reduction lens group B is a fourth lens group L4.
実施例4において、後群LRは物体側から像側へ順に配置された、負の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5より構成され、ズーミングに際して第4レンズ群L4と第5レンズ群L5はいずれも他のレンズ群と異なる軌跡で移動する。防振レンズ群Aは第1レンズ群L1であり、防振レンズ群Bは第3レンズ群L3である。 In Example 4, the rear unit LR is composed of a fourth lens unit L4 of negative refractive power and a fifth lens unit L5 of positive refractive power, which are disposed in order from the object side to the image side, and the fourth lens The group L4 and the fifth lens group L5 both move along different loci from other lens groups. The vibration reduction lens group A is a first lens group L1, and the vibration reduction lens group B is a third lens group L3.
実施例5において、後群LRは正の屈折力の第4レンズ群L4より構成され、広角端から望遠端へのズーミングに際して第4レンズ群L4は物体側に凸状の軌跡を描いて移動する。防振レンズ群Aは第2レンズ群L2であり、防振レンズ群Bは第3レンズ群L3である。 In the fifth embodiment, the rear unit LR includes the fourth lens unit L4 having positive refractive power, and the fourth lens unit L4 moves in a convex locus toward the object during zooming from the wide-angle end to the telephoto end. . The vibration reduction lens group A is a second lens group L2, and the vibration reduction lens group B is a third lens group L3.
次に本発明のズームレンズを撮影光学系として用いたカムコーダー(ビデオカメラ)の実施例を図22を用いて説明する。図22において、10はカメラ本体、11は実施例1乃至5に説明したいずれか1つのズームレンズによって構成された撮影光学系である。12はカメラ本体に内蔵され、撮影光学系11によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。13は液晶ディスプレイパネル等によって構成され、固体撮像素子12上に形成された被写体像を観察するためのファインダである。 Next, an embodiment of a camcorder (video camera) using the zoom lens according to the present invention as a photographing optical system will be described with reference to FIG. In FIG. 22, reference numeral 10 denotes a camera body, and 11 denotes a photographing optical system constituted by any one zoom lens described in the first to fifth embodiments. Reference numeral 12 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor which is built in the camera body and receives an object image formed by the photographing optical system 11. Reference numeral 13 denotes a finder for observing a subject image formed on a solid-state image sensor 12 which is constituted by a liquid crystal display panel or the like.
本発明の撮像装置は、上記のいずれかのズームレンズと、歪曲収差および/または倍率色収差を電気的に補正する回路とを備えるのが好ましい。このようにズームレンズを構成する際に歪曲収差を許容することのできるレンズ構成にすれば、ズームレンズのレンズ枚数の削減や小型化が容易になる。また、倍率色収差を電気的に補正することにより、撮影画像の色にじみを軽減し、また、解像力の向上を図ることが容易になる。 The imaging device of the present invention preferably includes any of the above-described zoom lenses and a circuit that electrically corrects distortion and / or lateral chromatic aberration. As described above, when the zoom lens is configured to allow distortion, it is easy to reduce the number of lenses of the zoom lens and to miniaturize the zoom lens. Further, by electrically correcting the magnification chromatic aberration, it becomes easy to reduce blurring of the color of the photographed image and to improve the resolution.
次に本発明の各実施例の数値データを示す。各数値データにおいて、iは物体側からの面の順序を示す。数値データにおいてriは物体側より順に第i番目のレンズ面の曲率半径である。diは物体側より順に第i番目のレンズ厚及び空気間隔である。ndiとνdiは各々物体側より順に第i番目の材料のガラスのd線に対する屈折率、アッベ数である。 Next, numerical data of each embodiment of the present invention will be shown. In each numerical data, i indicates the order of surfaces from the object side. In the numerical data, ri is the radius of curvature of the ith lens surface in order from the object side. di is the i-th lens thickness and air gap in order from the object side. ndi and νdi are the refractive index and Abbe number for the d-line of the glass of the i-th material in order from the object side.
実施例5において間隔d12の値がマイナスとなっているが、これは物体側から像側へ順に開口絞りSP、第3レンズ群L3と数えたためである。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、Kを円錐定数、A4,A6,A8,A10を各々非球面係数としたとき In the fifth embodiment, the value of the distance d12 is minus, because the aperture stop SP and the third lens unit L3 are sequentially counted from the object side to the image side. The aspheric surface shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the forward direction of light is positive, R is the paraxial radius of curvature, K is the conical constant, and A4, A6, A8 and A10 are the aspheric surfaces. When it is considered as a factor
なる式で表している。また、[e+X]は[×10+x]を意味し、[e-X]は[×10-x]を意味している。BFはバックフォーカスであり、レンズ最終面から近軸像面までの距離を空気換算したものである。 It is expressed by the following formula. Also, [e + X] means [× 10 + x], and [e−X] means [× 10−x]. BF is a back focus, which is the air conversion of the distance from the lens last surface to the paraxial image plane.
レンズ全長はレンズ最前面からレンズ最終面までの距離にバックフォーカスBFを加えたものである。非球面は面番号の後に*を付加して示す。像ぶれ補正時のレンズ群位置データにて、像ぶれ補正角θは防振レンズ群Aと防振レンズ群Bを同時に移動させた際の最大ぶれ補正角を表す。具体的には像面にて光軸と交わる点に結像する光束の主光線が第1レンズ群L1よりも物体側にて光軸となす角度をいう。プラス符号は各実施例のレンズ断面図において主光線が第1レンズ群L1よりも物体側にて光軸よりも上側にある場合を意味する。前述の各条件式と数値データにおける諸数値の関係を表−1に示す The total lens length is the distance from the foremost surface of the lens to the final surface of the lens plus the back focus BF. The aspheric surface is indicated by adding * after the surface number. In the lens group position data at the time of image shake correction, the image shake correction angle θ represents the maximum shake correction angle when the vibration reduction lens group A and the vibration reduction lens group B are simultaneously moved. Specifically, it means the angle that the chief ray of a light beam formed at a point intersecting the optical axis on the image plane makes with the optical axis on the object side with respect to the first lens unit L1. The plus sign means that the principal ray is on the object side of the first lens unit L1 above the optical axis in the lens sectional view of each embodiment. Table 1 shows the relationship between the above-mentioned conditional expressions and numerical values in numerical data.
防振レンズ群Aのシフト量SAは防振レンズ群Aがシフトのみの移動をする場合の移動量を表す。プラス符号は各実施例のレンズ断面図において上方への移動を意味する。防振レンズ群Aが回動する場合にはその位置を回動中心位置と回動角で示す。回動中心位置は防振レンズ群Aの最も物体側レンズ面の頂点からの距離を表す。プラス符号は回動中心が防振レンズ群Aの最も物体側レンズ面の頂点よりも像側に位置することを意味する。防振レンズAの回動角のプラス符号は各実施例のレンズ断面図において反時計回り方向を意味する。 The shift amount SA of the anti-vibration lens group A represents the amount of movement when the anti-vibration lens group A moves only by shift. The plus sign means upward movement in the lens sectional view of each embodiment. When the anti-vibration lens group A rotates, its position is indicated by the rotation center position and the rotation angle. The rotation center position represents the distance from the vertex of the most object-side lens surface of the anti-vibration lens unit A. The plus sign means that the rotation center is located on the image side of the vertex of the most object side lens surface of the anti-vibration lens group A. The plus sign of the rotation angle of the vibration proof lens A means the counterclockwise direction in the lens sectional view of each embodiment.
防振レンズ群Aのシフト成分SAはこれら回動中心と回動角で決まる状態にて防振レンズ群Aの最も物体側レンズ面の頂点から光軸までの距離を表す。プラス符号は各実施例のレンズ断面図において上方へ移動していることを意味する。 The shift component SA of the vibration reduction lens group A represents the distance from the vertex of the most object side lens surface of the vibration reduction lens group A to the optical axis in a state determined by the rotation center and the rotation angle. The plus sign means moving upward in the lens sectional view of each embodiment.
防振レンズ群Bの回動中心位置RBは防振レンズ群Bの最も物体側レンズ面の頂点を基準とした回動中心位置を表す。プラス符号は回動中心が防振レンズ群Bの最も物体側レンズ面の頂点よりも像側に位置することを意味する。防振レンズ群Bの回動角TBはプラス符号は各実施例のレンズ断面図において反時計回り方向を意味する。なお以上の防振レンズ群Aおよび防振レンズ群Bの位置データは像ぶれ補正角θに対応するものである。 The rotation center position RB of the anti-vibration lens group B represents the rotation center position based on the vertex of the most object-side lens surface of the anti-vibration lens group B. The plus sign means that the rotation center is located on the image side of the vertex of the most object side lens surface of the vibration reduction lens group B. The rotation angle TB of the anti-vibration lens group B means a counterclockwise direction in the lens cross-sectional view of each embodiment. The above position data of the anti-vibration lens group A and the anti-vibration lens group B correspond to the image blur correction angle θ.
[実施例1]
単位 mm
面データ
面番号 r d nd νd
1 90.506 1.45 1.91082 35.3
2 49.691 5.25 1.49700 81.5
3 -190.810 0.05
4 41.122 3.30 1.49700 81.5
5 123.186 (可変)
6 176.629 0.75 1.83481 42.7
7 8.495 5.17
8 -31.845 0.60 1.77250 49.6
9 31.806 0.16
10 17.211 1.95 1.95906 17.5
11 58.494 (可変)
12(絞り) ∞ (可変)
13* 10.127 2.70 1.55332 71.7
14* -164.352 2.05
15 28.069 0.60 1.80400 46.6
16 10.483 0.35
17 15.141 0.60 2.00100 29.1
18 10.941 2.40 1.49700 81.5
19 -25.985 (可変)
20 117.589 0.70 1.48749 70.2
21 25.315 (可変)
22 25.258 2.20 1.88300 40.8
23 -24.535 0.50 2.00069 25.5
24 -3781.915 (可変)
25 ∞ 0.80 1.51633 64.1
26 ∞ 0.97
像面 ∞
Example 1
Unit mm
Surface data surface number rd nd d d
1 90.506 1.45 1.91082 35.3
2 49.691 5.25 1.49700 81.5
3-190.810 0.05
4 41.122 3.30 1.49700 81.5
5 123.186 (variable)
6 176.629 0.75 1.83481 42.7
7 8.495 5.17
8-31.845 0.60 1.77250 49.6
9 31.806 0.16
10 17.211 1.95 1.95906 17.5
11 58.494 (variable)
12 (F-stop) ∞ (Variable)
13 * 10.127 2.70 1.55332 71.7
14 * -164.352 2.05
15 28.069 0.60 1.80400 46.6
16 10.483 0.35
17 15.141 0.60 2.00100 29.1
18 10.941 2.40 1.49700 81.5
19-25.985 (variable)
20 117.589 0.70 1.48749 70.2
21 25.315 (variable)
22 25.258 2.20 1.88300 40.8
23-24.535 0.50 2.00069 25.5
24-3781.915 (variable)
25 0.8 0.80 1.51633 64.1
26 0.9 0.97
Image plane ∞
非球面データ
第13面
K =-2.78122e-001 A 4=-5.12569e-005 A 6=-2.68879e-007
A 8=-4.43947e-010
第14面
K =-5.90735e-002 A 4= 2.88676e-005 A 6=-2.74728e-007
A 8=-5.60426e-011
Aspheric surface data surface 13
K = -2.78122e-001 A 4 = -5.12569e-005 A 6 =-2.68879e-007
A 8 = -4.43947e-010
14th
K = -5.90735e-002 A 4 = 2.88676e-005 A 6 = -2.47428e-007
A 8 = -5.60026e-011
各種データ
ズーム比 47.49
広角 中間 望遠
焦点距離 4.42 25.16 209.90
Fナンバー 3.50 5.23 6.72
半画角(度) 41.96 8.72 1.05
像高 3.33 3.88 3.88
レンズ全長 96.70 108.91 138.21
BF 11.40 24.43 9.97
d 5 0.75 30.51 61.69
d11 36.18 10.05 1.05
d12 9.92 1.87 0.35
d19 2.85 6.81 8.69
d21 4.83 4.47 25.68
d24 9.90 22.93 8.48
Various data Zoom ratio 47.49
Wide-angle Intermediate telephoto focal length 4.42 25.16 209.90
F number 3.50 5.23 6.72
Half angle of view (degrees) 41.96 8.72 1.05
Image height 3.33 3.88 3.88
Lens total length 96.70 108.91 138.21
BF 11.40 24.43 9.97
d 5 0.75 30.51 61.69
d11 36.18 10.05 1.05
d12 9.92 1.87 0.35
d19 2.85 6.81 8.69
d21 4.83 4.47 25.68
d24 9.90 22.93 8.48
ズームレンズ群データ
群 始面 焦点距離
1 1 80.32
2 6 -9.38
3 12 ∞
4 13 19.68
5 20 -66.34
6 22 32.67
7 25 ∞
PgF1p 0.5374
PgF1n 0.5824
防振レンズ群A 第2レンズ群L2
防振レンズ群B 第3レンズ群L3
像ぶれ補正時のデータ
広角 中間 望遠
像ぶれ補正角θ 3.999度 1.498度 0.390度
防振レンズ群Aのシフト量SA -0.582mm -0.439mm -0.479mm
防振レンズ群Aの防振敏感度TA -0.4380 -1.4994 -3.8224
防振レンズ群Bの回動中心位置RB -5.000mm -5.000mm -5.000mm
防振レンズ群Bの回動角TB 0.500度 0.000度 -1.667度
Zoom lens group data group Start focal length
1 1 80.32
2 6-9.38
3 12 ∞
4 13 19.68
5 20 -66.34
6 22 32.67
7 25 ∞
PgF1p 0.5374
PgF1n 0.5824
Anti-vibration lens group A Second lens group L2
Anti-vibration lens group B Third lens group L3
Image stabilization data
Wide-angle Intermediate Telephoto blurring correction angle θ 3.999 ° 1.498 ° 0.390 ° Shift amount of anti-vibration lens group A SA -0.582mm -0.439mm -0.479mm
Anti-vibration sensitivity TA of the anti-vibration lens group A -0.4380 -1.4994 -3.8224
Rotational center position RB of anti-vibration lens group B-5.000 mm-5.000 mm-5.000 mm
Rotation angle TB of anti-vibration lens group B 0.500 ° 0.000 ° -1.667 °
[実施例2]
単位 mm
面データ
面番号 r d nd νd
1 41.449 0.90 1.85478 24.8
2 27.348 3.48 1.49700 81.5
3 -1153.447 0.05
4 27.520 2.10 1.60311 60.6
5 92.432 (可変)
6 282.227 0.45 1.83481 42.7
7 6.352 3.65
8 -21.432 0.35 1.83481 42.7
9 21.296 0.05
10 13.265 1.70 1.95906 17.5
11 111.345 (可変)
12* 7.038 2.10 1.49710 81.6
13* 298.824 1.34
14(絞り) ∞ 0.76
15 7.765 0.40 1.85478 24.8
16 5.114 0.42
17* 7.160 2.20 1.49710 81.6
18* -79.748 (可変)
19 -26.607 0.40 1.77250 49.6
20 6.539 1.35 1.69895 30.1
21 28.760 (可変)
22 20.818 2.90 1.83481 42.7
23 -14.775 0.40 1.92286 18.9
24 -38.951 (可変)
25 ∞ 0.80 1.51633 64.1
26 ∞ 1.30
像面 ∞
Example 2
Unit mm
Surface data surface number rd nd d d
1 41.449 0.90 1.85478 24.8
2 27.348 3.48 1.49700 81.5
3-1153.447 0.05
4 27.520 2.10 1.60311 60.6
5 92.432 (variable)
6 282.227 0.45 1.83481 42.7
7 6.352 3.65
8-21.432 0.35 1.83481 42.7
9 21.296 0.05
10 13.265 1.70 1.95906 17.5
11 111.345 (variable)
12 * 7.038 2.10 1.49710 81.6
13 * 298.824 1.34
14 (F-stop) ∞ 0.76
15 7.765 0.40 1.85478 24.8
16 5.114 0.42
17 * 7.160 2.20 1.49710 81.6
18 * -79.748 (variable)
19 -26.607 0.40 1.77250 49.6
20 6.539 1.35 1.69895 30.1
21 28.760 (variable)
22 20.818 2.90 1.83481 42.7
23 -14.775 0.40 1.92286 18.9
24-38.951 (variable)
25 0.8 0.80 1.51633 64.1
26 ∞ 1.30
Image plane ∞
非球面データ
第12面
K = 7.35330e-001 A 4=-4.31802e-004 A 6=-1.58020e-005
A 8=-7.68839e-007 A10=-1.07274e-008
第13面
K = 3.82706e-005 A 4= 1.63912e-004 A 6=-2.48920e-005
A 8=-3.66782e-008
第17面
K =-1.19620e+000 A 4= 1.01141e-003 A 6=-2.75883e-005
A 8=-8.58844e-008
第18面
K = 1.61705e-004 A 4= 5.28935e-004 A 6=-2.64531e-005
A 8=-8.07045e-007
Aspheric surface data plane 12
K = 7.35330e-001 A 4 = -4.31802e-004 A 6 =-1.58020e-005
A8 = -7.68839e-007 A10 = -1.07274e-008
13th surface
K = 3.82706e-005 A 4 = 1.63912e-004 A 6 =-2.48920e-005
A 8 = -3.66782e-008
17th
K = -1.19620e + 000 A 4 = 1.01141e-003 A 6 = -2.75883e-005
A 8 = -8.58844e-008
18th
K = 1.61705e-004 A 4 = 5.28935e-004 A 6 =-2.64531e-005
A 8 = -8.07045e-007
各種データ
ズーム比 28.93
広角 中間 望遠
焦点距離 4.58 23.87 132.52
Fナンバー 3.32 5.18 6.86
半画角(度) 40.86 9.23 1.66
像高 3.33 3.88 3.88
レンズ全長 64.66 73.44 85.95
BF 9.08 20.63 5.97
d 5 0.54 15.72 29.29
d11 25.87 6.64 0.40
d18 1.75 2.83 6.48
d21 2.41 2.62 18.81
d24 7.25 18.81 4.14
Various data Zoom ratio 28.93
Wide-angle Intermediate telephoto focal length 4.58 23.87 132.52
F number 3.32 5.18 6.86
Half angle of view (degrees) 40.86 9.23 1.66
Image height 3.33 3.88 3.88
Lens total length 64.66 73.44 85.95
BF 9.08 20.63 5.97
d 5 0.54 15.72 29.29
d11 25.87 6.64 0.40
d18 1.75 2.83 6.48
d21 2.41 2.62 18.81
d24 7.25 18.81 4.14
ズームレンズ群データ
群 始面 焦点距離
1 1 42.92
2 6 -6.71
3 12 11.84
4 19 -15.24
5 22 17.69
6 25 ∞
PgF1p 0.5374
PgF1n 0.6121
防振レンズ群A 第2レンズ群L2
防振レンズ群B 第4レンズ群L4
像ぶれ補正時のデータ
広角 中間 望遠
像ぶれ補正角θ 3.977度 1.505度 0.992度
防振レンズ群Aのシフト量SA -0.518mm -0.318mm -0.494mm
防振レンズ群Aの防振敏感度TA -0.6188 -1.9671 -4.6801
防振レンズ群Bの回動中心位置RB 0.420mm 0.420mm 0.420mm
防振レンズ群Bの回動角TB -0.500度 -0.500度 -2.000度
Zoom lens group data group Start focal length
1 1 42.92
2 6-6.71
3 12 11.84
4 19-15.24
5 22 17.69
6 25 ∞
PgF1p 0.5374
PgF1n 0.6121
Anti-vibration lens group A Second lens group L2
Anti-vibration lens group B Fourth lens group L4
Image stabilization data
Wide-angle Intermediate Telephoto blurring correction angle θ 3.977 ° 1.505 ° 0.992 ° Shift amount of anti-vibration lens group A SA-0.518 mm-0.318 mm-0.494 mm
Anti-vibration sensitivity TA of the anti-vibration lens group A-0.6188-1.9671-4.6801
Rotational center position RB of anti-vibration lens group B 0.420 mm 0.420 mm 0.420 mm
Rotation angle TB of anti-vibration lens group B-0.500 degrees-0.500 degrees-2.000 degrees
[実施例3]
単位 mm
面データ
面番号 r d nd νd
1 92.972 1.48 1.91082 35.3
2 51.921 5.43 1.49700 81.5
3 -345.037 0.05
4 47.064 4.00 1.49700 81.5
5 216.541 (可変)
6 194.017 0.69 1.83481 42.7
7 8.114 3.89
8 -76.733 0.55 1.80400 46.6
9 75.097 1.44
10 -23.437 0.55 1.83481 42.7
11 153.110 0.05
12 25.611 1.71 1.95906 17.5
13 -129.369 (可変)
14(絞り) ∞ (可変)
15* 10.177 2.68 1.55332 71.7
16* -88.566 2.09
17 21.846 0.50 1.77250 49.6
18 9.532 0.45
19 12.727 0.50 1.80518 25.4
20 8.473 3.68 1.49700 81.5
21 -23.919 (可変)
22 -112.478 0.35 1.77250 49.6
23 8.698 1.34 1.68893 31.1
24 28.333 (可変)
25 20.423 2.76 1.65844 50.9
26 -20.242 0.46 1.95906 17.5
27 -37.496 (可変)
28 ∞ 0.80 1.51633 64.1
29 ∞ 2.35
像面 ∞
[Example 3]
Unit mm
Surface data surface number rd nd d d
1 92.972 1.48 1.91082 35.3
2 51.921 5.43 1.49700 81.5
3-345.037 0.05
4 47.064 4.00 1.49700 81.5
5 216.541 (variable)
6 194.017 0.69 1.83481 42.7
7 8.114 3.89
8 -76.733 0.55 1.80400 46.6
9 75.097 1.44
10-23.437 0.55 1.83481 42.7
11 153.110 0.05
12 25.611 1.71 1.95906 17.5
13 -129.369 (variable)
14 (F-stop) ∞ (Variable)
15 * 10.177 2.68 1.55332 71.7
16 * -88.566 2.09
17 21.846 0.50 1.77250 49.6
18 9.532 0.45
19 12.727 0.50 1.80518 25.4
20 8.473 3.68 1.49700 81.5
21-23.919 (variable)
22-112.478 0.35 1.77250 49.6
23 8.698 1.34 1.68893 31.1
24 28.333 (variable)
25 20.423 2.76 1.65844 50.9
26 -20.242 0.46 1.95906 17.5
27 -37.496 (variable)
28 0.8 0.80 1.51633 64.1
29 ∞ 2.35
Image plane ∞
非球面データ
第15面
K = 1.07318e-001 A 4=-1.03711e-004 A 6=-2.05066e-006
A 8=-2.64723e-008
第16面
K =-4.32545e+001 A 4= 2.17212e-005 A 6=-2.22581e-006
A 8=-1.36334e-008
Aspheric surface data plane 15
K = 1.07318e-001 A 4 = -1.03711e-004 A 6 =-2.05066e-006
A 8 = -2.64723e-008
16th
K = -4.32545e + 001 A 4 = 2.17212e-005 A 6 =-2.22581e-006
A 8 = -1.36334e-008
各種データ
ズーム比 61.52
広角 中間 望遠
焦点距離 3.90 25.15 239.92
Fナンバー 3.51 5.36 6.82
半画角(度) 45.01 8.79 0.92
像高 3.18 3.88 3.88
レンズ全長 97.36 125.35 148.46
BF 10.95 16.35 8.89
d 5 0.75 37.78 67.25
d13 34.02 6.13 0.62
d14 11.59 7.77 0.46
d21 2.19 8.50 16.03
d24 3.21 14.16 20.55
d27 8.08 13.48 6.02
Various data zoom ratio 61.52
Wide-angle Intermediate telephoto focal length 3.90 25.15 239.92
F number 3.51 5.36 6.82
Half angle of view (degrees) 45.01 8.79 0.92
Image height 3.18 3.88 3.88
Lens total length 97.36 125.35 148.46
BF 10.95 16.35 8.89
d 5 0.75 37.78 67.25
d13 34.02 6.13 0.62
d14 11.59 7.77 0.46
d21 2.19 8.50 16.03
d24 3.21 14.16 20.55
d27 8.08 13.48 6.02
ズームレンズ群データ
群 始面 焦点距離
1 1 86.69
2 6 -8.44
3 14 ∞
4 15 16.73
5 22 -24.30
6 25 23.65
7 28 ∞
PgF1p 0.5374
PgF1n 0.5824
防振レンズ群A 第2レンズ群L2
防振レンズ群B 第3レンズ群L3
像ぶれ補正時のデータ
広角 中間 望遠
像ぶれ補正角θ 3.734度 0.859度 0.483度
防振レンズ群Aの回動中心位置 150.000mm 150.000mm 150.000mm
防振レンズ群Aの回動角 0.242度 0.111度 0.171度
防振レンズ群Aのシフト成分SA -0.633mm -0.292mm -0.447mm
防振レンズ群Aの防振敏感度TA -0.4307 -1.5046 -4.6844
防振レンズ群Bの回動中心位置RB 4.000mm 4.000mm 4.000mm
防振レンズ群Bの回動角TB 0.500度 0.833度 0.500度
Zoom lens group data group Start focal length
1 1 86.69
2 6-8.44
3 14 ∞
4 15 16.73
5 22 -24.30
6 25 23.65
7 28 ∞
PgF1p 0.5374
PgF1n 0.5824
Anti-vibration lens group A Second lens group L2
Anti-vibration lens group B Third lens group L3
Image stabilization data
Wide-angle intermediate telephoto image blurring correction angle θ 3.734 ° 0.859 ° 0.483 ° Rotation center position of anti-vibration lens group A 150.000 mm 150.000 mm 150.000 mm
Rotation angle of anti-vibration lens group A 0.242 degrees 0.111 degrees 0.171 degrees Shift component of anti-vibration lens group A SA -0.633 mm -0.292 mm -0.447 mm
Anti-vibration sensitivity TA of the anti-vibration lens group A-0.4307-1.5046-4.6844
Rotation center position of anti-vibration lens group B RB 4.000 mm 4.000 mm 4.000 mm
Rotation angle TB of anti-vibration lens group B 0.500 ° 0.833 ° 0.500 °
[実施例4]
単位 mm
面データ
面番号 r d nd νd
1 41.041 0.78 1.84666 23.9
2 24.790 2.96 1.49700 81.5
3 850.388 0.13
4 26.594 2.02 1.71300 53.9
5 118.611 (可変)
6 -461.569 0.42 1.88300 40.8
7 5.651 2.88
8 -18.826 0.40 1.80400 46.6
9 26.839 0.10
10 11.684 1.29 1.95906 17.5
11 56.561 (可変)
12* 8.631 1.30 1.62263 58.2
13* -35.578 1.10
14(絞り) ∞ 1.30
15 14.338 0.50 1.84666 23.9
16 6.806 0.47
17* 51.167 1.40 1.55332 71.7
18* -9.982 (可変)
19 -167.052 0.40 1.88300 40.8
20 26.898 (可変)
21 15.969 2.54 1.77250 49.6
22 -27.183 0.50 1.92286 18.9
23 -69.836 (可変)
24 ∞ 0.80 1.51633 64.1
25 ∞ 1.30
像面 ∞
Example 4
Unit mm
Surface data surface number rd nd d d
1 41.041 0.78 1.84666 23.9
2 24.790 2.96 1.49700 81.5
3 850.388 0.13
4 26.594 2.02 1.71300 53.9
5 118.611 (variable)
6-461.569 0.42 1.88300 40.8
7 5.651 2.88
8-18.028 0.40 1.80400 46.6
9 26.838 0.10
10 11.684 1.29 1.95906 17.5
11 56.561 (variable)
12 * 8.631 1.30 1.62263 58.2
13 *-35. 578 1.10
14 (F-stop) ∞ 1.30
15 14.338 0.50 1.84666 23.9
16 6.806 0.47
17 * 51.167 1.40 1.55332 71.7
18 * -9.982 (variable)
19 -167.052 0.40 1.88300 40.8
20 26.898 (variable)
21 15. 969 2.54 1.77250 49.6
22-27.183 0.50 1.92286 18.9
23 -69.836 (variable)
24 0.8 0.80 1.51633 64.1
25 ∞ 1.30
Image plane ∞
非球面データ
第12面
K =-2.92896e-001 A 4=-3.47222e-005 A 6= 7.02577e-005
A 8=-1.01803e-005 A10= 6.45194e-007
第13面
K =-6.07185e-002 A 4= 5.37200e-004 A 6= 8.49972e-005
A 8=-1.43643e-005 A10= 9.41810e-007
第17面
K =-3.18267e-001 A 4= 7.84938e-004 A 6= 6.99475e-005
A 8=-2.15031e-005 A10= 1.50759e-006
第18面
K =-6.23998e+000 A 4=-5.50992e-004 A 6= 6.72146e-005
A 8=-1.51202e-005 A10= 9.30629e-007
Aspheric surface data plane 12
K = -2.92896e-001 A 4 = -3.47222e-005 A 6 = 7.02577e-005
A 8 = -1.01803e-005 A10 = 6.45194e-007
13th surface
K = -6.07185e-002 A 4 = 5.37200e-004 A 6 = 8.49972e-005
A 8 = -1.43643e-005 A10 = 9.41810e-007
17th
K = -3.18267e-001 A 4 = 7.84938e-004 A 6 = 6.99475e-005
A 8 = -2.150311e-005 A10 = 1.50759e-006
18th
K = -6.23998e + 000 A4 = -5.50992e-004 A6 = 6.72146e-005
A 8 = -1.51202e-005 A10 = 9.30629e-007
各種データ
ズーム比 21.59
広角 中間 望遠
焦点距離 4.57 18.24 98.62
Fナンバー 3.61 4.80 7.31
半画角(度) 41.74 12.05 2.20
像高 3.33 3.88 3.88
レンズ全長 50.55 61.00 77.79
BF 8.53 14.77 4.44
d 5 0.70 12.31 24.44
d11 16.72 4.65 0.45
d18 1.71 5.52 10.85
d20 2.41 3.26 17.13
d23 6.71 12.95 2.61
Various data zoom ratio 21.59
Wide-angle Intermediate telephoto focal length 4.57 18.24 98.62
F number 3.61 4.80 7.31
Half angle of view (degrees) 41.74 12.05 2.20
Image height 3.33 3.88 3.88
Lens total length 50.55 61.00 77.79
BF 8.53 14.77 4.44
d 5 0.70 12.31 24.44
d11 16.72 4.65 0.45
d18 1.71 5.52 10.85
d20 2.41 3.26 17.13
d23 6.71 12.95 2.61
ズームレンズ群データ
群 始面 焦点距離
1 1 37.55
2 6 -5.98
3 12 11.45
4 19 -26.21
5 21 18.06
6 24 ∞
PgF1p 0.5374
PgF1n 0.6205
防振レンズ群A 第1レンズ群L1
防振レンズ群B 第3レンズ群L3
像ぶれ補正時のデータ
広角 中間 望遠
像ぶれ補正角θ 2.114度 1.224度 0.886度
防振レンズ群Aの回動中心位置 60.000mm 60.000mm 60.000mm
防振レンズ群Aの回動角 -1.252度 -0.939度 -0.626度
防振レンズ群Aのシフト成分SA 1.311mm 0.983mm 0.655mm
防振レンズ群Aの防振敏感度TA 0.1217 0.4859 2.6266
防振レンズ群Bの回動中心位置RB 3.000mm 3.000mm 3.000mm
防振レンズ群Bの回動角TB -0.500度 1.000度 1.000度
Zoom lens group data group Start focal length
1 1 37.55
2 6-5.98
3 12 11.45
4 19-26.21
5 21 18.06
6 24 ∞
PgF1p 0.5374
PgF1n 0.6205
Anti-vibration lens group A First lens group L1
Anti-vibration lens group B Third lens group L3
Image stabilization data
Wide-angle intermediate telephoto image blurring correction angle θ 2.114 ° 1.224 ° 0.886 ° Rotation center position of anti-vibration lens group A 60.000 mm 60.000 mm 60.000 mm
Rotation angle of anti-vibration lens group A −1.252 degrees −0.939 degrees −0.626 degrees Shift component of anti-vibration lens group A SA 1.311 mm 0.983 mm 0.655 mm
Anti-vibration sensitivity TA of the anti-vibration lens group A 0.1217 0.4859 2.6266
Rotation center position of anti-vibration lens group B RB 3.000 mm 3.000 mm 3.000 mm
Rotation angle TB of anti-vibration lens group B-0.500 degrees 1.000 degrees 1.000 degrees
[実施例5]
単位 mm
面データ
面番号 r d nd νd
1 39.125 0.82 2.00100 29.1
2 21.596 3.50 1.49700 81.5
3 432.621 0.05
4 22.769 2.90 1.71300 53.9
5 196.845 (可変)
6* 266.572 0.40 1.85135 40.1
7* 6.020 2.74
8 -16.158 0.30 1.83481 42.7
9 16.632 0.17
10 11.237 1.40 1.95906 17.5
11 107.170 (可変)
12(絞り) ∞ -0.20
13* 6.554 1.60 1.69350 53.2
14* -14.393 0.05
15 4.380 1.40 1.51823 58.9
16 21.510 0.30 2.00100 29.1
17 3.570 (可変)
18 11.612 2.35 1.63854 55.4
19 -30.417 0.40 1.92286 18.9
20 -113.804 (可変)
21 ∞ 0.80 1.51633 64.1
22 ∞ 1.02
像面 ∞
[Example 5]
Unit mm
Surface data surface number rd nd d d
1 39.125 0.82 2.00100 29.1
2 21.596 3.50 1.49700 81.5
3 432.621 0.05
4 22.769 2.90 1.71300 53.9
5 196.845 (variable)
6 * 266.572 0.40 1.85135 40.1
7 * 6.020 2.74
8 -16.158 0.30 1.83481 42.7
9 16.632 0.17
10 11.237 1.40 1.95906 17.5
11 107.170 (variable)
12 (F-stop) 0.20 -0.20
13 * 6.554 1.60 1.69350 53.2
14 * -14.393 0.05
15 4.380 1.40 1.51823 58.9
16 21.510 0.30 2.00100 29.1
17 3.570 (variable)
18 11.612 2.35 1.6385 4 55.4
19-30.417 0.40 1.92286 18.9
20 -113.804 (variable)
21 0.8 0.80 1.51633 64.1
22 ∞ 1.02
Image plane ∞
非球面データ
第6面
K =-1.29020e+004 A 4=-6.61155e-005 A 6= 8.90248e-006
A 8=-1.99920e-007 A10= 1.30290e-009
第7面
K = 4.10002e-001 A 4=-2.96454e-004 A 6= 2.15115e-005
A 8=-5.78404e-007 A10= 2.06787e-008
第13面
K = 9.71537e-001 A 4=-1.55678e-003 A 6=-5.70950e-005
A 8=-5.32284e-006 A10=-1.21314e-006
第14面
K = 1.90506e+001 A 4= 2.30086e-004 A 6= 1.73488e-005
A 8=-9.87459e-006
Aspheric surface data surface 6
K = -1.29020e + 004 A 4 = -6.61155e-005 A 6 = 8.90248e-006
A 8 = -1.99920e-007 A10 = 1.30290e-009
Seventh side
K = 4.10002e-001 A 4 =-2.96454 e-004 A 6 = 2. 15115 e-005
A8 = -5.78404e-007 A10 = 2.06787e-008
13th surface
K = 9.71537e-001 A 4 = -1.55678e-003 A 6 = -5.79050e-005
A 8 = -5.32284e-006 A10 = -1.221314e-006
14th
K = 1.90506e + 001 A 4 = 2.30086 e-004 A 6 = 1.73488e-005
A 8 = -9.87459e-006
各種データ
ズーム比 17.04
広角 中間 望遠
焦点距離 4.64 14.99 78.98
Fナンバー 3.92 5.34 7.31
半画角(度) 40.66 14.69 2.73
像高 3.29 3.88 3.88
レンズ全長 45.79 50.79 65.27
BF 3.71 10.45 4.18
d 5 0.48 9.67 21.96
d11 16.18 5.60 0.48
d17 7.24 6.89 20.48
d20 2.16 8.90 2.63
Various data Zoom ratio 17.04
Wide-angle Intermediate telephoto focal length 4.64 14.99 78.98
F number 3.92 5.34 7.31
Half angle of view (degrees) 40.66 14.69 2.73
Image height 3.29 3.88 3.88
Lens total length 45.79 50.79 65.27
BF 3.71 10.45 4.18
d 5 0.48 9.67 21.96
d11 16.18 5.60 0.48
d17 7.24 6.89 20.48
d20 2.16 8.90 2.63
ズームレンズ群データ
群 始面 焦点距離
1 1 34.73
2 6 -5.89
3 12 10.37
4 18 18.60
5 21 ∞
PgF1p 0.5374
PgF1n 0.5994
防振レンズ群A 第2レンズ群L2
防振レンズ群B 第3レンズ群L3
像ぶれ補正時のデータ
広角 中間 望遠
像ぶれ補正角θ 2.429度 1.416度 0.880度
防振レンズ群Aの回動中心位置 80.000mm 80.000mm 80.000mm
防振レンズ群Aの回動角 0.246度 0.151度 0.262度
防振レンズ群Aのシフト成分SA -0.343mm -0.211mm -0.366mm
防振レンズ群Aの防振敏感度TA -0.7074 -1.6150 -3.7690
防振レンズ群Bの回動中心位置RB 0.000mm 0.000mm 0.000mm
防振レンズ群Bの回動角TB 0.833度 -1.333度 1.000度
Zoom lens group data group Start focal length
1 1 34.73
2 6-5.89
3 12 10.37
4 18 18.60
5 21 ∞
PgF1p 0.5374
PgF1n 0.5994
Anti-vibration lens group A Second lens group L2
Anti-vibration lens group B Third lens group L3
Image stabilization data
Wide-angle intermediate telephoto image blurring correction angle θ 2.429 ° 1.416 ° 0.880 ° Rotation center position of anti-vibration lens group A 80.000 mm 80.000 mm 80.000 mm
Rotation angle of the anti-vibration lens group A 0.246 degrees 0.151 degrees 0.262 degrees Shift component of the anti-vibration lens group A SA-0.343 mm-0.211 mm-0.366 mm
Anti-vibration sensitivity TA of the anti-vibration lens group A-0.7074-1.6150-3.7690
Rotational center position RB of anti-vibration lens group B 0.000 mm 0.000 mm 0.000 mm
Rotation angle TB of anti-vibration lens group B 0.833 degrees -1.333 degrees 1.000 degrees
LO ズームレンズ LR 後群 L1 第1レンズ群
L2 第2レンズ群 L3 第3レンズ群 L4 第4レンズ群
L5…第5レンズ群
LO zoom lens LR rear group L1 first lens group L2 second lens group L3 third lens group L4 fourth lens group L5 fifth lens group
Claims (15)
像ぶれ補正に際して光軸に対して垂直な方向の成分を含むように移動する防振レンズ群Aと、
前記防振レンズ群Aの移動と共に光軸上または光軸近傍の一点を中心に回動する防振レンズ群Bを有し、
前記防振レンズ群Bの焦点距離をfB、望遠端における前記ズームレンズの焦点距離をft、望遠端における像ぶれ補正角の最大値をθt、望遠端において像ぶれ補正角θtの像ぶれ補正を行う際の前記防振レンズ群Bの回動角をTBtとするとき、
0.01<|fB|/ft<0.35
0.85<|TBt|/θt<10.00
なる条件式を満足することを特徴とするズームレンズ。 A first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power, and one or more lens groups disposed in order from the object side to the image side The zoom lens has a group, and the distance between the first lens group and the second lens group increases during zooming from the wide-angle end to the telephoto end, and the distance between the second lens group and the third lens group narrows. In a zoom lens in which the distance between adjacent lens groups changes so that the distance between the third lens group and the rear group increases.
An anti-vibration lens unit A that moves so as to include a component in a direction perpendicular to the optical axis upon image blur correction;
It has an anti-vibration lens group B which rotates around a point on or near the optical axis along with the movement of the anti-vibration lens group A,
The focal length of the anti-vibration lens group B is fB, the focal length of the zoom lens at the telephoto end is ft, the maximum value of the image blur correction angle at the telephoto end is θt, and the image blur correction of the image blur correction angle θt at the telephoto end Assuming that the rotation angle of the vibration reduction lens unit B at the time of image formation is TBt,
0.01 <| fB | / ft <0.35
0.85 <| TBt | / θt <10.00
A zoom lens characterized by satisfying the following conditional expression.
0.01<|fA|/ft<0.45
なる条件式を満足することを特徴とする請求項1に記載のズームレンズ。 When the focal length of the anti-vibration lens unit A is fA,
0.01 <| fA | / ft <0.45
The zoom lens according to claim 1, which satisfies the following conditional expression.
−1.00<RBt/LB<1.00
なる条件式を満足することを特徴とする請求項1又は2に記載のズームレンズ。 The distance from the vertex of the lens surface on the most object side of the vibration reduction lens group B to the rotation center of the vibration reduction lens group B is RBt, and the vertex on the most object side lens surface of the vibration reduction lens group B When the distance to the vertex of the lens surface closest to the image is LB
−1.00 <RBt / LB <1.00
The zoom lens according to claim 1 or 2, wherein the following conditional expression is satisfied.
0.7<{tan−1(SAt×TAt/ft)}/θt<1.4
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。 The movement component of the vibration reduction lens group A in the direction perpendicular to the optical axis of the vibration reduction lens group A at the time of image blur correction at the image blur correction angle θt at the telephoto end is SAt. When the degree is TAt,
0.7 <{tan −1 (SAt × TAt / ft)} / θt <1.4
The zoom lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.7<{tan−1(SAw×TAw/fw)}/θw<1.4
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載のズームレンズ。 The maximum value of the image blur correction angle at the wide angle end is θw, and the movement component in the direction perpendicular to the optical axis of the anti-vibration lens unit A at the time of image blur correction at the image blur correction angle θw is SAw at the wide angle end Assuming that the vibration reduction sensitivity of the vibration reduction lens group A is TAw, and the focal length of the zoom lens at the wide angle end is fw,
0.7 <{tan −1 (SAw × TAw / fw)} / θw <1.4
The zoom lens according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
3.00<TAt/TAw
なる条件式を満足することを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。 When the anti-vibration sensitivity of the anti-vibration lens group A at the telephoto end is TAt, and the anti-vibration sensitivity of the anti-vibration lens group A at the wide angle end is TAw,
3.00 <TAt / TAw
The zoom lens according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
0.20<f1/ft<0.50
なる条件式を満足することを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 When the focal length of the first lens group is f1
0.20 <f1 / ft <0.50
The zoom lens according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
前記第1レンズ群に含まれる正レンズの中で材料のアッベ数が最も大きい正レンズG1pの材料のアッベ数をν1p、部分分散比をPgF1p、前記第1レンズ群に含まれる負レンズの中で材料のアッベ数が最も小さい負レンズG1nの材料のアッベ数をν1n、部分分散比をPgF1nとするとき、
−0.002<(PgF1p−PgF1n)/(ν1p−ν1n)
なる条件式を満足することを特徴とする請求項1乃至7のいずれか1項に記載のズームレンズ。 The first lens group has a positive lens and a negative lens,
Among the positive lenses included in the first lens group, the Abbe number of the material of the positive lens G1p having the largest Abbe number is 11p, the partial dispersion ratio is PgF1p, and among the negative lenses included in the first lens group Assuming that the Abbe number of the material of the negative lens G1n having the smallest Abbe number of the material is 11n and the partial dispersion ratio is PgF1n
−0.002 <(PgF1p−PgF1n) / (ν1p−ν1n)
The zoom lens according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
−20.00<DSAw/fw<−2.00
なる条件式を満足することを特徴とする請求項1乃至8のいずれか1項に記載のズームレンズ。 The zoom lens has an aperture stop, DSAW a distance on the optical axis in the most image side lens Menma of the vibration reduction lens group A from the aperture stop at the wide-angle end, the focal length of the zoom lens at the wide angle end When fw,
−20.00 <DSAw / fw <−2.00
The zoom lens according to any one of claims 1 to 8, satisfying the following conditional expression.
2.00<DABw/fw<20.00
なる条件式を満足することを特徴とする請求項1乃至9のいずれか1項に記載のズームレンズ。 The distance from the vertex of the image-side lens surface of the anti-vibration lens group A at the wide-angle end to the vertex of the lens surface of the anti-vibration lens group B closest to the object is DABw. The focal length of the zoom lens at the wide-angle end is fw And when
2.00 <DABw / fw <20.00
The zoom lens according to any one of claims 1 to 9, satisfying the following conditional expression.
広角端から望遠端へのズーミングに際して前記第4レンズ群は物体側に凸状の軌跡を描いて移動し、
前記防振レンズ群Aは前記第2レンズ群であり、前記防振レンズ群Bは前記第3レンズ群であることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。 The rear group is composed of a fourth lens group of positive refractive power,
During zooming from the wide-angle end to the telephoto end, the fourth lens unit moves in a convex trajectory toward the object side,
The zoom lens according to any one of claims 1 to 10, wherein the vibration reduction lens group A is the second lens group, and the vibration reduction lens group B is the third lens group.
前記防振レンズ群Aは前記第2レンズ群であり、前記防振レンズ群Bは前記第3レンズ群であることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。 The rear group is composed of a fourth lens group of negative refractive power and a fifth lens group of positive refractive power, which are disposed in order from the object side to the image side, and the fourth lens group and the fifth lens in zooming Each group moves on a different trajectory from other lens groups,
The zoom lens according to any one of claims 1 to 10, wherein the vibration reduction lens group A is the second lens group, and the vibration reduction lens group B is the third lens group.
前記防振レンズ群Aは前記第2レンズ群であり、前記防振レンズ群Bは前記第4レンズ群であることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。 The rear group is composed of a fourth lens group of negative refractive power and a fifth lens group of positive refractive power, which are disposed in order from the object side to the image side, and the fourth lens group and the fifth lens in zooming Each group moves on a different trajectory from other lens groups,
The zoom lens according to any one of claims 1 to 10, wherein the vibration reduction lens group A is the second lens group, and the vibration reduction lens group B is the fourth lens group.
前記防振レンズ群Aは前記第1レンズ群であり、前記防振レンズ群Bは前記第3レンズ群であることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。 The rear group is composed of a fourth lens group of negative refractive power and a fifth lens group of positive refractive power, which are disposed in order from the object side to the image side, and the fourth lens group and the fifth lens in zooming Each group moves on a different trajectory from other lens groups,
The zoom lens according to any one of claims 1 to 10, wherein the vibration reduction lens group A is the first lens group, and the vibration reduction lens group B is the third lens group.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015086634A JP6541405B2 (en) | 2015-04-21 | 2015-04-21 | Zoom lens and imaging device having the same |
PCT/JP2016/061184 WO2016170975A1 (en) | 2015-04-21 | 2016-03-30 | Zoom lens and image pickup apparatus including the same |
CN201680022204.2A CN107533213A (en) | 2015-04-21 | 2016-03-30 | Zoom lens and the image pick-up device including zoom lens |
US15/547,690 US20180011336A1 (en) | 2015-04-21 | 2016-03-30 | Zoom lens and image pickup apparatus including the same |
EP16782996.9A EP3286592A4 (en) | 2015-04-21 | 2016-03-30 | Zoom lens and image pickup apparatus including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015086634A JP6541405B2 (en) | 2015-04-21 | 2015-04-21 | Zoom lens and imaging device having the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016206375A JP2016206375A (en) | 2016-12-08 |
JP2016206375A5 JP2016206375A5 (en) | 2018-05-31 |
JP6541405B2 true JP6541405B2 (en) | 2019-07-10 |
Family
ID=57144115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015086634A Expired - Fee Related JP6541405B2 (en) | 2015-04-21 | 2015-04-21 | Zoom lens and imaging device having the same |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180011336A1 (en) |
EP (1) | EP3286592A4 (en) |
JP (1) | JP6541405B2 (en) |
CN (1) | CN107533213A (en) |
WO (1) | WO2016170975A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115704944A (en) * | 2021-08-12 | 2023-02-17 | 奈科特伦斯瑞士股份公司 | objective lens |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6266189B1 (en) * | 1996-02-23 | 2001-07-24 | Minolta Co., Ltd. | Zoom lens system having an image blur compensating function |
JP2003202499A (en) * | 2002-01-04 | 2003-07-18 | Canon Inc | Photographic lens with vibration proofing function |
JP4794912B2 (en) * | 2005-06-02 | 2011-10-19 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
EP2244117B1 (en) * | 2009-04-24 | 2017-05-31 | Ricoh Company, Ltd. | Zoom lens unit |
JP5549259B2 (en) * | 2010-02-15 | 2014-07-16 | 株式会社ニコン | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method |
JP5773793B2 (en) * | 2011-08-04 | 2015-09-02 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6139880B2 (en) * | 2012-12-27 | 2017-05-31 | キヤノン株式会社 | Optical system and photographing apparatus having the same |
-
2015
- 2015-04-21 JP JP2015086634A patent/JP6541405B2/en not_active Expired - Fee Related
-
2016
- 2016-03-30 US US15/547,690 patent/US20180011336A1/en not_active Abandoned
- 2016-03-30 WO PCT/JP2016/061184 patent/WO2016170975A1/en active Application Filing
- 2016-03-30 EP EP16782996.9A patent/EP3286592A4/en not_active Withdrawn
- 2016-03-30 CN CN201680022204.2A patent/CN107533213A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2016170975A1 (en) | 2016-10-27 |
CN107533213A (en) | 2018-01-02 |
US20180011336A1 (en) | 2018-01-11 |
EP3286592A4 (en) | 2018-12-05 |
JP2016206375A (en) | 2016-12-08 |
EP3286592A1 (en) | 2018-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5111059B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5634220B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6463250B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5241281B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5053750B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5550465B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5414205B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5836654B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6153310B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6238732B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2010032702A (en) | Zoom lens, optical device comprising the same, and power variation method | |
JP6272017B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2009223008A5 (en) | ||
JP6579789B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2013003240A5 (en) | ||
JP5599022B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2008015433A (en) | Zoom lens and optical apparatus having the same | |
JP6164894B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5361496B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2017037163A (en) | Zoom lens and imaging device having the same | |
JP2014202806A5 (en) | ||
JP2011017848A (en) | Zoom lens and image pickup apparatus using the same | |
JP2017146393A (en) | Zoom lens and imaging device having the same | |
JP5730134B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2019191430A (en) | Optical system and image capturing device having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180410 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190611 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6541405 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
LAPS | Cancellation because of no payment of annual fees |