JP6531416B2 - Method of measuring polymer concentration in water and water treatment method - Google Patents
Method of measuring polymer concentration in water and water treatment method Download PDFInfo
- Publication number
- JP6531416B2 JP6531416B2 JP2015024307A JP2015024307A JP6531416B2 JP 6531416 B2 JP6531416 B2 JP 6531416B2 JP 2015024307 A JP2015024307 A JP 2015024307A JP 2015024307 A JP2015024307 A JP 2015024307A JP 6531416 B2 JP6531416 B2 JP 6531416B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- concentration
- polymer
- turbidity
- sample water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 161
- 229920000642 polymer Polymers 0.000 title claims description 85
- 238000000034 method Methods 0.000 title claims description 53
- 238000011282 treatment Methods 0.000 title claims description 39
- 229920000877 Melamine resin Polymers 0.000 claims description 33
- 239000005011 phenolic resin Substances 0.000 claims description 30
- 239000000126 substance Substances 0.000 claims description 25
- 239000004640 Melamine resin Substances 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 24
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 22
- 229920001568 phenolic resin Polymers 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 239000012528 membrane Substances 0.000 claims description 20
- 229920001282 polysaccharide Polymers 0.000 claims description 20
- 239000005017 polysaccharide Substances 0.000 claims description 20
- 150000004804 polysaccharides Chemical class 0.000 claims description 20
- 230000004931 aggregating effect Effects 0.000 claims description 16
- 230000007935 neutral effect Effects 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 239000002207 metabolite Substances 0.000 claims description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- 229920003987 resole Polymers 0.000 claims description 7
- 239000007853 buffer solution Substances 0.000 claims description 6
- 239000000701 coagulant Substances 0.000 claims description 5
- 238000010517 secondary reaction Methods 0.000 claims description 5
- 238000005345 coagulation Methods 0.000 claims description 4
- 230000015271 coagulation Effects 0.000 claims description 4
- 229920003986 novolac Polymers 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 238000010979 pH adjustment Methods 0.000 claims description 3
- 229920001284 acidic polysaccharide Polymers 0.000 claims description 2
- 150000004805 acidic polysaccharides Chemical group 0.000 claims description 2
- 238000001814 protein method Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 41
- 229920002307 Dextran Polymers 0.000 description 15
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 15
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 10
- 230000002776 aggregation Effects 0.000 description 10
- 238000004220 aggregation Methods 0.000 description 10
- 229940098773 bovine serum albumin Drugs 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 9
- 229920002907 Guar gum Polymers 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 239000000665 guar gum Substances 0.000 description 8
- 235000010417 guar gum Nutrition 0.000 description 8
- 229960002154 guar gum Drugs 0.000 description 8
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 8
- 150000001299 aldehydes Chemical class 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- 229920001285 xanthan gum Polymers 0.000 description 6
- 239000000230 xanthan gum Substances 0.000 description 6
- 235000010493 xanthan gum Nutrition 0.000 description 6
- 229940082509 xanthan gum Drugs 0.000 description 6
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000008394 flocculating agent Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920002866 paraformaldehyde Polymers 0.000 description 4
- OQUKIQWCVTZJAF-UHFFFAOYSA-N phenol;sulfuric acid Chemical compound OS(O)(=O)=O.OC1=CC=CC=C1 OQUKIQWCVTZJAF-UHFFFAOYSA-N 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 230000004523 agglutinating effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 150000001896 cresols Chemical class 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 150000003739 xylenols Chemical class 0.000 description 2
- 150000004782 1-naphthols Chemical class 0.000 description 1
- IXQGCWUGDFDQMF-UHFFFAOYSA-N 2-Ethylphenol Chemical class CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 1
- 150000004786 2-naphthols Chemical class 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000011276 addition treatment Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229920000912 exopolymer Polymers 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
本発明は、水中の高分子濃度の測定方法及び水処理方法に係り、特に、海水淡水化、超純水製造、工業用水処理、排水回収処理等の水処理において、選択性透過膜や樹脂などの機能材料を汚染すると考えられている水中の生物代謝物系高分子の濃度を的確に測定する方法と、この測定結果に基づいて凝集剤添加量を制御する水処理方法に関する。 The present invention relates to a method for measuring the concentration of a polymer in water and a method for treating water, and in particular, in permeable water treatment such as seawater desalination, ultrapure water production, industrial water treatment, drainage recovery treatment, etc. The present invention relates to a method of accurately measuring the concentration of a biometabolic polymer in water considered to contaminate functional materials of the above, and a water treatment method of controlling the amount of coagulant added based on the measurement result.
水処理の原水に含まれる有機物質のうち、特に、多糖類やタンパク質などの生物代謝物系の高分子は、精密濾過膜、限外濾過膜、又は逆浸透膜を著しく汚染させることが知られており、凝集処理等で原水中の高分子有機物を除去することが一般的に行われている。 Among organic substances contained in raw water for water treatment, it is known that, particularly, polymers of biological metabolites such as polysaccharides and proteins significantly contaminate microfiltration membranes, ultrafiltration membranes or reverse osmosis membranes. It is common practice to remove high molecular weight organic substances in raw water by coagulation treatment and the like.
凝集処理には、塩化鉄、ポリ塩化アルミニウム(PAC)、ポリ硫酸第二鉄などの無機凝集剤が使用される。また、生物代謝物系の高分子の除去効果を高める凝集薬剤として、特許文献1、2にはフェノール系樹脂を用いたものが提案されている。さらに、特許文献3(特公平2−15243号公報)のように、有機性排水に対する凝集剤としてメラミン系樹脂を用いたものも使用される。
In the aggregation treatment, inorganic coagulants such as iron chloride, polyaluminum chloride (PAC) and polyferric sulfate are used.
原水の生物代謝物系の高分子の濃度が高くなれば、無機凝集剤や上述の凝集薬剤の添加量を増やす必要がある。水処理装置を安定的に運転するためには、原水の生物代謝物系の高分子の濃度を測定し、濃度に応じて無機凝集剤や凝集薬剤の添加量を制御する必要がある。 It is necessary to increase the addition amount of the inorganic flocculant and the above-mentioned flocculating agent when the concentration of the biological metabolite type polymer of raw water becomes high. In order to operate the water treatment apparatus stably, it is necessary to measure the concentration of the biometabolic polymer of the raw water, and to control the addition amount of the inorganic flocculant and the flocculating agent according to the concentration.
水中の糖類の濃度を測定する方法として、フェノール硫酸法が知られているが、良好に測定できる濃度範囲は、10〜100mg/Lであり、1mg/L以下の糖類の濃度の測定には適さない(例えば非特許文献1参照)。本発明者らは、有機炭素検出型サイズ排除クロマトグラフ法(LC−OCD)を用いて、水処理における原水中の分子量1万以上の高分子の濃度を測定し、その濃度が一般的に0〜1mg/Lの範囲であることを確認している。 The phenol sulfuric acid method is known as a method for measuring the concentration of saccharides in water, but the concentration range that can be measured well is 10 to 100 mg / L, and it is suitable for measuring the concentration of saccharides of 1 mg / L or less There is no (for example, refer nonpatent literature 1). The present inventors use organic carbon detection type size exclusion chromatography (LC-OCD) to measure the concentration of a polymer having a molecular weight of 10,000 or more in raw water in water treatment, and the concentration is generally 0. It is confirmed to be in the range of ̃1 mg / L.
生物代謝物系の高分子の中でも、TEP(Transparent Exopolymer Particles)と呼ばれる光透過性細胞外ポリマー粒子は、ろ紙上に残留した残渣をアルシアンブルーという色素で染色し、吸光度を測定することで、濃度を求めることができる(例えば非特許文献2参照)。また、ろ紙を用いずに濁度を測定する方法も提案されている(例えば特許文献4参照)。これらの方法は、カチオン性の色素であるアルシアンブルーがTEPのカルボキシル基と結合する性質を応用しており、キサンタンガムを標準物質として定量している。従って、カルボキシル基を有しない中性糖には適用できないという課題があった。 Among the polymers of biometabolites, light-transmissive extracellular polymer particles called TEP (Transparent Exopolymer Particles) are obtained by staining the residue remaining on the filter with a dye called Alcian blue and measuring the absorbance. The concentration can be determined (see, for example, Non-Patent Document 2). Moreover, a method of measuring turbidity without using filter paper is also proposed (see, for example, Patent Document 4). These methods apply the property of the cationic dye, Alcian blue, to be bonded to the carboxyl group of TEP, and are quantified using xanthan gum as a standard substance. Therefore, there is a problem that it can not be applied to neutral sugars having no carboxyl group.
本発明は上記従来の実状に鑑みてなされたものであり、水処理における選択性透過膜や樹脂などの機能性材料を汚染する水中に微量に存在する高分子の濃度を的確に測定する方法と、この測定結果に基づいて凝集剤添加量を制御する水処理方法を提供することを課題とする。 The present invention has been made in view of the above-mentioned conventional situation, and a method of accurately measuring the concentration of a small amount of polymer present in water contaminating a functional material such as a selective permeable membrane or resin in water treatment An object of the present invention is to provide a water treatment method in which the amount of addition of a coagulant is controlled based on the measurement results.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、生物代謝物系の高分子の除去効果を高める凝集薬剤を高分子と反応させて凝集物を生成させ、濁度の変化を測定することで、高分子の濃度を求めることができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of intensive studies to solve the above problems, the inventors of the present invention react flocculation agents that enhance the removal effect of macromolecules of biological metabolite type with macromolecules to form aggregates and change in turbidity. It was found that the concentration of the polymer can be determined by measuring.
The present invention has been achieved based on such findings, and the gist of the present invention is as follows.
[1] 水中の高分子の濃度を測定する方法であって、測定対象の試料水にメラミン樹脂又はフェノール系樹脂を添加して該試料水中の高分子と反応させた後、該試料水の濁度を測定し、該濁度の測定値に基づいて高分子濃度を求めることを特徴とする水中の高分子濃度の測定方法。 [1] A method for measuring the concentration of a polymer in water, which comprises adding a melamine resin or a phenolic resin to a sample water to be measured and reacting with the polymer in the sample water, and then causing turbidity of the sample water Measuring the concentration and determining the concentration of the polymer based on the measured value of the turbidity.
[2] [1]において、前記試料水に緩衝液を混合してpH調整を行った後に濁度を測定することを特徴とする水中の高分子濃度の測定方法。 [2] In [1], a buffer solution is mixed with the sample water to perform pH adjustment, and the turbidity is then measured.
[3] [1]又は[2]において、前記メラミン樹脂がコロイド粒子を形成していることを特徴とする水中の高分子濃度の測定方法。 [3] The method according to [1] or [2], wherein the melamine resin forms colloidal particles.
[4] [1]又は[2]において、前記フェノール系樹脂が、ノボラック型フェノール樹脂にレゾール型の2次反応を行って得られるレゾール型フェノール樹脂であることを特徴とする水中の高分子濃度の測定方法。 [4] [1] or [2], wherein the phenolic resin is a resol type phenolic resin obtained by performing a resol secondary reaction with a novolak type phenolic resin, and the polymer concentration in water How to measure
[5] [1]乃至[4]のいずれかにおいて、前記メラミン樹脂又はフェノール系樹脂の添加前に、前記試料水からアニオン成分及び/又は濁度成分を除去する処理を行うことを特徴とする水中の高分子濃度の測定方法。 [5] In any one of [1] to [4], a process of removing an anion component and / or a turbidity component from the sample water is performed before the addition of the melamine resin or the phenolic resin. Method for measuring the concentration of macromolecules in water.
[6] [1]乃至[5]のいずれかにおいて、前記試料水を濾過膜処理して、処理前後の濁度の変化を求め、
前記メラミン樹脂又はフェノール系樹脂の添加後の試料水の濁度の測定値と、前記濁度の変化とに基づいて高分子濃度を求めることを特徴とする水中の高分子濃度の測定方法。
[6] In any one of [1] to [5], the sample water is treated with a filtration membrane to determine changes in turbidity before and after the treatment,
A method for measuring the concentration of a polymer in water, comprising determining the concentration of the polymer based on the measured value of the turbidity of the sample water after the addition of the melamine resin or the phenolic resin and the change in the turbidity.
[7] [1]乃至[6]のいずれかにおいて、前記試料水中の腐植物質又はタンパク質の濃度を測定し、該濃度から腐植物質又はタンパク質による濁度を求め、前記メラミン樹脂又はフェノール系樹脂の添加後の試料水の濁度の測定値と、該腐植物質又はタンパク質による濁度とに基づいて高分子濃度を求めることを特徴とする水中の高分子濃度の測定方法。 [7] In any one of [1] to [6], the concentration of humic substance or protein in the sample water is measured, and the turbidity due to the humic substance or protein is determined from the concentration, and the melamine resin or phenolic resin What is claimed is: 1. A method of measuring the concentration of a polymer in water, comprising determining the concentration of the polymer based on the measured value of the turbidity of sample water after the addition and the turbidity due to the humic substance or protein.
[8] [1]乃至[7]のいずれかにおいて、前記高分子が酸性多糖類又は分子量10,000以上の中性多糖類であることを特徴とする水中の高分子濃度の測定方法。 [8] The method according to any one of [1] to [7], wherein the polymer is an acidic polysaccharide or a neutral polysaccharide having a molecular weight of 10,000 or more.
[9] 原水に凝集剤を添加して凝集処理する工程を含む水処理方法において、[1]乃至[8]のいずれかの方法により求めた該原水の高分子濃度に基づいて、該凝集剤の添加量を制御することを特徴とする水処理方法。 [9] A water treatment method including the step of adding a flocculant to raw water and carrying out a coagulation treatment, wherein the flocculant is obtained based on the polymer concentration of the raw water obtained by the method of any of [1] to [8]. Water treatment method characterized by controlling the addition amount of
[10] [9]において、更に、前記凝集処理水を透過膜又は機能性樹脂で処理する工程を含むことを特徴とする水処理方法。 [10] The water treatment method according to [9], further including the step of treating the coagulated water with a permeable membrane or a functional resin.
本発明によれば、水処理の原水中に微量に含まれる生物代謝物系の高分子、特に多糖類の濃度を的確に測定することができ、この結果に基づいて、選択性透過膜や樹脂などの機能性材料に対する汚染性を把握し、原水中の高分子を除去したり分散したりするための凝集処理、吸着処理、薬剤添加処理などの対策を講じたり、これらの処理条件を制御したりすることによって、機能性材料の汚染を低減した上で、安定かつ効率的な水処理を行うことが可能となる。 According to the present invention, it is possible to accurately measure the concentration of a polymer of biological metabolite type, particularly polysaccharide, contained in a trace amount in raw water of water treatment, and based on this result, a selectively permeable membrane or resin Etc., and take measures such as coagulation treatment, adsorption treatment, and drug addition treatment to remove and disperse polymers in the raw water, and control these treatment conditions. As a result, it is possible to perform stable and efficient water treatment while reducing contamination of functional materials.
以下に本発明の水中の高分子濃度の測定方法及び水処理方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of the method for measuring the concentration of a polymer in water and the method for treating water according to the present invention will be described in detail.
なお、本発明において、「原水」とは、必要に応じて前処理、薬剤添加処理されることにより、選択性透過膜や樹脂などの機能性材料で処理される水をさし、この原水を必要に応じて前処理、薬剤添加処理して機能性材料に供給する水を「供給水」と称する。 In the present invention, “raw water” refers to water treated with a functional material such as a selective permeable membrane or a resin by being pretreated or added with a drug as needed. The water supplied to the functional material after pretreatment, drug treatment, if necessary, is referred to as "feed water".
[試料水]
本発明の水中の高分子濃度の測定方法における高分子濃度の測定対象となる試料水としては、上記の原水が挙げられる。
原水とは、海水淡水化、超純水製造、工業用水処理、排水回収処理などにおける原水であり、例えば、海水、湖水、河川水、地下水、排水、生物処理水である。
本発明では、これらの原水を必要に応じて前処理、薬剤添加処理した、機能性材料に供給する供給水を処理対象としてもよい。
[Sample water]
The above-mentioned raw water is mentioned as sample water used as a measuring object of polymer concentration in a measuring method of polymer concentration in water of the present invention.
Raw water is raw water in seawater desalination, production of ultrapure water, industrial water treatment, drainage recovery treatment, etc., and is, for example, seawater, lake water, river water, groundwater, drainage, biologically treated water.
In the present invention, the raw water may be pretreated and treated with a drug as needed, and the supplied water supplied to the functional material may be treated.
本発明は、特に試料水中に1mg/L以下の濃度で微量含まれる、例えば0.1〜1mg/L程度の生物代謝物系の高分子、特に多糖類の濃度測定に有効である。 The present invention is particularly effective for measuring the concentration of, for example, about 0.1 to 1 mg / L of a polymer of biological metabolite type, particularly polysaccharide, which is contained in a trace amount at a concentration of 1 mg / L or less in sample water.
なお、本発明によれば、試料水中の各種の高分子、好ましくは多糖類、特に好ましくは酸性多糖類や中性多糖類の濃度を的確に測定することができる。中性多糖類の場合、測定対象の高分子の分子量が小さ過ぎると凝集物の生成が十分に濁度の測定値に反映されない場合がある。この観点から、測定対象高分子が中性多糖類の場合、分子量10,000以上であることが好ましい。 According to the present invention, the concentration of various polymers, preferably polysaccharides, particularly preferably acid polysaccharides and neutral polysaccharides in the sample water can be accurately measured. In the case of a neutral polysaccharide, if the molecular weight of the polymer to be measured is too low, the formation of aggregates may not be sufficiently reflected in the turbidity measurement value. From this point of view, when the polymer to be measured is a neutral polysaccharide, the molecular weight is preferably 10,000 or more.
[凝集薬剤]
本発明では、試料水中の高分子成分と反応して濁度成分を生成させるために試料水にメラミン樹脂又はフェノール系樹脂(以下、これらを「凝集薬剤」と称す場合がある。)を添加する。
[Aggregation drug]
In the present invention, a melamine resin or a phenolic resin (hereinafter, these may be referred to as "flocculating agent") is added to the sample water in order to react with the polymer component in the sample water to generate a turbidity component. .
フェノール系樹脂として、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、および、ポリビニルフェノールを挙げることができる。フェノール類とアルデヒド類とを酸触媒の存在下に反応させて得られたノボラック型フェノール樹脂をアルカリ溶液とし、これにアルデヒド類を添加してアルカリ触媒の存在下にレゾール型の2次反応を行って得られた反応物を用いても良い。この反応物を用いることで、試料水中の高分子を、低濃度であってもより効果的に凝集させて濁度に反映することができ、好ましい。 As a phenol resin, a novolak-type phenol resin, a resol type phenol resin, and polyvinyl phenol can be mentioned, for example. A novolac type phenol resin obtained by reacting phenols and aldehydes in the presence of an acid catalyst is used as an alkaline solution, and aldehydes are added thereto to perform a secondary reaction of resol type in the presence of the alkali catalyst. The reaction product obtained may be used. By using this reaction product, the polymer in the sample water can be more effectively aggregated and reflected in the turbidity even at a low concentration, which is preferable.
ノボラック型フェノール樹脂は、常法に従って、反応釜において、フェノール類及びアルデヒド類を、酸性触媒の存在下で重縮合反応させた後、常圧及び減圧下で、脱水と未反応フェノールの除去を行って製造される。 Novolak-type phenolic resin is subjected to polycondensation reaction of phenols and aldehydes in the presence of an acidic catalyst in a reaction kettle according to a conventional method, followed by dehydration and removal of unreacted phenol under normal pressure and reduced pressure. Manufactured.
フェノール類としては、例えば、フェノール、o,m,pの各クレゾール、o,m,pの各エチルフェノール、キシレノール各異性体などのアルキルフェノール類、α、βの各ナフトールなどの多芳香環フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ピロガロール、レゾルシン、カテコールなどの多価フェノール類、ハイドロキノンなどが挙げられるが、何らこれらに限定されるものではない。これらのフェノール類は1種を単独で用いても良く、2種以上を混合して用いても良い。これらのうち、実用的な物質は、フェノール、クレゾール類、キシレノール類、カテコールである。 Examples of phenols include phenol, cresols of o, m and p, ethyl phenols of o, m and p, alkylphenols such as xylenol isomers, and polyaromatic ring phenols such as α and β naphthols. And bisphenol A, bisphenol F, bisphenol S, pyrogallol, resorcin, polyhydric phenols such as catechol, hydroquinone and the like, but it is not limited thereto. These phenols may be used alone or in combination of two or more. Among these, practical substances are phenol, cresols, xylenols and catechol.
アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ベンズアルデヒド、サリチルアルデヒド、グリオキザールなどが挙げられるが、何らこれらに限定されるものではない。これらのアルデヒド類は1種を単独で用いても良く、2種以上を混合して用いても良い。これらのうち、実用的な物質は、ホルムアルデヒド、パラホルムアルデヒドである。 Aldehydes include, but are not limited to, formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, benzaldehyde, salicylaldehyde, glyoxal and the like. These aldehydes may be used alone or in combination of two or more. Among these, practical substances are formaldehyde and paraformaldehyde.
ノボラック型フェノール樹脂を溶解し、レゾール型2次反応のアルカリ触媒を兼ねる溶剤としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムなどのアルカリ金属やアルカリ土類金属の水酸化物の1種又は2種以上を含む水溶液が挙げられる。 As a solvent which dissolves novolac type phenol resin and doubles as an alkali catalyst of resol type secondary reaction, hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide and alkaline earth metals The aqueous solution containing 1 type, or 2 or more types of is mentioned.
フェノール系樹脂の重量平均分子量は、取り扱い性と凝集効果の面から、1,000〜1,000,000程度であることが好ましい。ここで、重量平均分子量は、GPC法(ゲルパーミエーションクロマトグラフィー法)で測定し、標準ポリスチレンによる検量線を用いて算出した値である。後述するメラミン樹脂の重量平均分子量についても同様である。 The weight average molecular weight of the phenolic resin is preferably about 1,000 to 1,000,000 from the viewpoint of handleability and aggregation effect. Here, the weight average molecular weight is a value measured by the GPC method (gel permeation chromatography method) and calculated using a calibration curve with standard polystyrene. The same applies to the weight average molecular weight of the melamine resin described later.
メラミン樹脂としては、例えば、メラミンとアルデヒド類の縮合反応物であるアルキロールメラミン、アルキロールメラミンに酸を添加することで得られるメラミン樹脂の酸コロイド、アルキロールメラミンをアルキルエーテル化したものに酸を添加して得られるメラミン樹脂の酸コロイドが挙げられる。これらのうち、メラミン樹脂の酸コロイドを用いることで、試料水中の高分子を、低濃度であってもより効果的に凝集させて濁度に反映することができ、好ましい。 As the melamine resin, for example, alkylol melamine which is a condensation reaction product of melamine and aldehydes, acid colloid of melamine resin obtained by adding an acid to alkylol melamine, acid obtained by alkyl etherifying alkylol melamine. And acid colloids of melamine resins obtained by adding them. Among these, by using an acid colloid of a melamine resin, the polymer in the sample water can be more effectively aggregated and reflected in the turbidity even at a low concentration, which is preferable.
メラミンとの縮合反応に使用されるアルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒドなどが挙げられ、特にホルムアルデヒドやパラホルムアルデヒドが反応効率や取り扱い性の面で好ましい。 Examples of aldehydes used in the condensation reaction with melamine include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde and the like, with formaldehyde and paraformaldehyde being particularly preferable in terms of reaction efficiency and handleability.
メラミン樹脂の重量平均分子量は、取り扱い性と凝集効果の面から1,000〜10,000,000程度であることが好ましい。 The weight average molecular weight of the melamine resin is preferably about 1,000 to 10,000,000 in terms of handleability and aggregation effect.
試料水へのこれらの凝集薬剤の添加量は、試料水中の高分子の全量と反応して凝集物を形成することができるに十分な量であればよく、試料水に含まれる高分子の種類や濃度によっても異なるが、通常、上述の原水や供給水を試料水とする場合、凝集薬剤の添加量は0.1〜10mg/L程度とすることが好ましい。 The addition amount of these aggregating agents to the sample water may be any amount sufficient to react with the total amount of the polymer in the sample water to form an aggregate, and the type of the polymer contained in the sample water Although depending on the concentration and the concentration, generally, when the above-mentioned raw water and feed water are used as the sample water, it is preferable to set the addition amount of the aggregating agent to about 0.1 to 10 mg / L.
[前処理等]
本発明では、凝集薬剤を試料水中の高分子成分と反応させて凝集物を発生させ、その濁度を測定することから、試料水に濁質(濁度成分)が含まれている場合、その濁質が濁度の測定結果に影響を及ぼし、高分子の凝集物による濁度を正確に測定できない場合がある。そのため、濁質が試料水に含まれている場合は、膜分離、濾過や遠心分離等により濁度成分を予め除去することが望ましい。例えば、0.45μmの孔径を有する精密濾過膜で濾過した場合、多糖類をほとんど除去することなく、濁質(SS)を除去することができる。
[Preprocessing etc]
In the present invention, the aggregating agent is reacted with the polymer component in the sample water to generate an aggregate, and the turbidity is measured. Therefore, when the sample water contains a turbid substance (turbidity component), Suspended matter affects the result of measurement of turbidity, and it may not be possible to accurately measure turbidity due to polymer aggregates. Therefore, when the suspended matter is contained in the sample water, it is desirable to remove the turbidity component in advance by membrane separation, filtration, centrifugation or the like. For example, when filtered through a microfiltration membrane having a pore size of 0.45 μm, suspended solids (SS) can be removed with little removal of polysaccharides.
原水に腐植物質などのアニオン性の物質が含まれている場合、これが濁度の測定に影響を及ぼすことがあるため、アニオン交換樹脂等でアニオン成分を除去する前処理を行った後に、凝集薬剤の添加及び濁度の測定を行ってもよい。この場合は、試料水中の酸性多糖類が減少する可能性があるが、吸着されるものの大部分はアニオン成分である腐植物質である。また、アニオン性物質と多糖類とは限外濾過膜を用いて分離することもできる。この場合、多糖類を膜の一次側で濃縮することになる。 If the raw water contains an anionic substance such as humic substance, this may affect the measurement of the turbidity. Therefore, after the pretreatment to remove the anion component with an anion exchange resin etc. Addition and measurement of turbidity. In this case, although the acid polysaccharide in the sample water may be reduced, most of the substances to be adsorbed are humic substances which are anionic components. Anionic substances and polysaccharides can also be separated using an ultrafiltration membrane. In this case, polysaccharides are concentrated on the primary side of the membrane.
また、pH調整のために緩衝液(バッファ液)を混合してから、濁度を測定してもよい。即ち、メラミン樹脂と試料水中の高分子との反応は、pH3〜6の範囲で行うことが、反応性の面で好ましく、また、フェノール系樹脂と試料水中の高分子との反応はpH5〜8の範囲で行うことが好ましいことから、必要に応じて、バッファ液を添加して上記好適pHにpH調整することが好ましい。バッファ液には、リン酸溶液や酢酸溶液を用いることができる。 Alternatively, the turbidity may be measured after mixing a buffer solution (buffer solution) for pH adjustment. That is, the reaction of the melamine resin with the polymer in the sample water is preferably performed in the range of pH 3 to 6 in terms of reactivity, and the reaction of the phenolic resin with the polymer in the sample water is pH 5 to 8 Since it is preferable to carry out in the range of (1), it is preferable to adjust the pH to the above-mentioned suitable pH by adding a buffer solution as necessary. A phosphoric acid solution or an acetic acid solution can be used as the buffer solution.
[濁度の測定]
試料水に凝集薬剤を添加して反応させた後の濁度の測定には、一般的な濁度計を用いることができる。
なお、濁度は、試料水に凝集薬剤を添加して撹拌、混合した直後に測定してもよく、所定時間静置した後に測定してもよいが、試料水中の高分子の種類によっては凝集薬剤の添加直後では生成した凝集物が十分に濁度の測定値に反映されず、正確な測定値が得られない場合がある。この場合には0.5〜5時間程度静置した後測定を行うことが好ましい。
[Measurement of turbidity]
A common turbidimeter can be used for the measurement of the turbidity after making it react by adding an aggregating agent to sample water.
The turbidity may be measured immediately after adding an aggregating agent to sample water and stirring and mixing, or may be measured after standing for a predetermined time, but depending on the type of polymer in the sample water, aggregation may occur. Immediately after the addition of the drug, the formed aggregates may not be sufficiently reflected in the turbidity measurement value, and an accurate measurement value may not be obtained. In this case, it is preferable to perform the measurement after standing for about 0.5 to 5 hours.
試料水に含まれている腐植物質などの影響を除去するために、精密濾過膜や限外濾過膜等を用いて試料水を処理し、処理前後の濁度の変化から腐植物質に起因する濁度を求め、凝集薬剤を添加した試料水の濁度の測定値から、腐植物質に起因する濁度を減じた値に基づいて、試料水中の高分子の濃度を求めてもよい。 In order to remove the influence of humic substances contained in the sample water, the sample water is treated with a microfiltration membrane or ultrafiltration membrane, etc., and the turbidity change caused by the humic substances from the change in the turbidity before and after the treatment The concentration may be determined based on a value obtained by subtracting the turbidity caused by humic substances from the measurement value of the turbidity of the sample water to which the aggregation agent is added, and determining the concentration.
また、試料水に含まれる腐植物質やタンパク質の濃度を別途測定し、測定した濃度からこれらの物質に起因する濁度を検出し、凝集薬剤を添加した試料水の濁度の測定値から、検出した濁度を減じた値に基づいて、試料水中の高分子の濃度を求めてもよい。腐植物質やタンパク質の濃度は、例えば三次元蛍光スペクトルを測定することで求めることができる。 In addition, the concentration of humic substances and proteins contained in the sample water is separately measured, the turbidity caused by these substances is detected from the measured concentration, and detection is performed from the measured value of the turbidity of the sample water to which the aggregation drug is added. Based on the value obtained by subtracting the turbidity, the concentration of the polymer in the sample water may be determined. The concentrations of humic substances and proteins can be determined, for example, by measuring a three-dimensional fluorescence spectrum.
[水処理]
本発明の水中の高分子濃度の測定方法によれば、水処理の原水又は供給水に微量に含まれる生物代謝物系の高分子、特に多糖類の濃度を的確に測定することができる。そして、測定した高分子濃度から、選択性透過膜や樹脂などの機能性材料に対する汚染性を把握し、原水中の高分子を除去したり分散したりするための凝集処理、吸着処理、薬剤添加処理などの対策を講じたり、これらの処理条件を制御することによって、選択性透過膜や樹脂などの機能性材料の汚染を低減し、膜分離プロセスや樹脂処理プロセスを長期に亘り安定かつ効率的に運転することが可能となる。
特に、本発明により求めた原水又は供給水中の高分子濃度の測定結果に基づいて、原水に添加する凝集剤の添加量を制御することにより、凝集剤の過不足を防止して、効果的な凝集処理を行い、良好な水質の凝集処理水を得ることが可能となる。
[Water treatment]
According to the method for measuring the polymer concentration in water of the present invention, it is possible to accurately measure the concentration of a polymer of a biological metabolite type, particularly polysaccharide, contained in a trace amount in raw water or water for water treatment. Then, based on the measured polymer concentration, it is possible to grasp the contamination to the functional material such as the selective permeable membrane and the resin, and carry out aggregation treatment, adsorption treatment, and drug addition to remove or disperse the polymer in the raw water. By taking measures such as treatment and controlling these treatment conditions, contamination of functional materials such as selective permeable membranes and resins can be reduced, and membrane separation process and resin treatment process can be stable and efficient over a long period of time It becomes possible to drive.
In particular, by controlling the addition amount of the flocculant added to the raw water based on the measurement result of the polymer concentration in the raw water or the feed water determined according to the present invention, it is possible to prevent excess or deficiency of the flocculant It is possible to carry out aggregation treatment and obtain aggregation treated water of good water quality.
以下に実施例を挙げて本発明をより具体的に説明する。 The present invention will be more specifically described by way of the following examples.
<実施例1>
まず、以下の第1〜第3溶液を準備した。
第1溶液(凝集薬剤):0.36wt%フェノール系樹脂の水酸化ナトリウム溶液(pH11.8)。フェノール系樹脂として、フェノールとホルムアルデヒドとを酸触媒の存在下に重縮合させて得られたノボラック型フェノール樹脂のアルカリ溶液に、ホルムアルデヒドを添加してアルカリ触媒の存在下にレゾール型の2次反応を行って得られた反応物(重量平均分子量10,000)を用いた。
第2溶液(緩衝液):20mMリン酸バッファ(pH6.7)。
第3溶液(高分子溶液(試料水)):グアガム(三栄薬品貿易製「グアコールF50」、分子量100万以上、LC−OCDでデキストラン換算)を濃度0.1、0.2、0.5、又は1mg/Lとなるように純水に溶解させたグアガム水溶液。
Example 1
First, the following first to third solutions were prepared.
First solution (flocculating agent): 0.36 wt% phenolic resin sodium hydroxide solution (pH 11.8). Formaldehyde is added to an alkaline solution of a novolak-type phenolic resin obtained by polycondensation of phenol and formaldehyde as a phenolic resin in the presence of an acid catalyst, and a secondary reaction of resol type is performed in the presence of the alkaline catalyst. The reaction product (weight average molecular weight 10,000) obtained by carrying out was used.
Second solution (buffer): 20 mM phosphate buffer (pH 6.7).
Third solution (polymer solution (sample water)): Gua gum ("Guacol F50", manufactured by Sanei Pharmaceutical Co., Ltd., molecular weight 1,000,000 or more, LC-OCD converted to dextran) at a concentration of 0.1, 0.2, 0.5, Or guar gum aqueous solution dissolved in pure water so as to be 1 mg / L.
第1溶液を10mL、第2溶液を10mL、第3溶液を10μLの割合で攪拌、混合した混合液の濁度を測定した。濁度の測定には濁度計(2100Q、HACH社製)を使用した。混合液を1時間静置した後、再度、濁度を測定した。 The turbidity of the mixture obtained by stirring and mixing 10 mL of the first solution, 10 mL of the second solution, and 10 μL of the third solution was measured. A turbidity meter (2100Q, manufactured by HACH) was used for the measurement of the turbidity. After the mixture was allowed to stand for 1 hour, the turbidity was measured again.
また、純水を試料として濁度を測定した。高分子溶液の濃度毎に、混合液の濁度から純水の濁度をブランクとして差し引いた値を図1に示す。図1に示す通り、グアガム濃度が0.5mg/L以下の範囲では、凝集薬剤の添加直後と1時間後とで、濃度と濁度との間に直線関係が得られた。グアガムは中性糖のみで構成されている多糖類であるが、本発明では、0.5mg/L以下の低濃度であっても、濁度に基づいて濃度が求まることが確認できた。
In addition, turbidity was measured using pure water as a sample. The value which deducted the turbidity of pure water as a blank from the turbidity of a liquid mixture is shown in
<実施例2−1>
まず、以下の第1〜第3溶液を準備した。
第1溶液(凝集薬剤):0.2wt%メラミン樹脂の塩酸溶液(pH1.2)。メラミン樹脂として、メラミン1モルに対し、ホルムアルデヒド2モルを反応させて得られたメチロール化メラミン0.05モルを1.35wt%塩酸水溶液100mLに加えて熟成調製したメラミン樹脂(重量平均分子量6,600,000)の酸コロイド溶液を用いた。
第2溶液(緩衝液):100mM酢酸バッファ(pH4.85)。
第3溶液(高分子溶液(試料)):グアガム(三栄薬品貿易製「グアコールF50」、分子量100万以上、LC−OCDでデキストラン換算)を濃度0.1、0.2、0.5、又は1mg/Lとなるように純水に溶解させたグアガム水溶液。
Example 2-1
First, the following first to third solutions were prepared.
First solution (flocculating agent): 0.2 wt% melamine resin in hydrochloric acid solution (pH 1.2). As a melamine resin, a melamine resin (weight average molecular weight 6,600) prepared by adding 0.05 mol of methylolated melamine obtained by reacting 2 mol of formaldehyde to 1 mol of melamine to 100 mL of a 1.35 wt% aqueous hydrochloric acid solution , 000) acid colloid solution was used.
Second solution (buffer): 100 mM acetate buffer (pH 4.85).
Third solution (polymer solution (sample)): Gua gum ("Guacoal F50" manufactured by Sanei Pharmaceutical Co., Ltd., molecular weight 1,000,000 or more, LC-OCD converted to dextran) at a concentration of 0.1, 0.2, 0.5, or An aqueous solution of guar gum dissolved in pure water so as to be 1 mg / L.
第1溶液を10mL、第2溶液を10mL、第3溶液を20μLの割合で攪拌、混合した混合液の濁度を測定した。濁度の測定には濁度計(2100Q、HACH社製)を使用した。混合液を1時間静置した後、再度、濁度を測定した。 The turbidity of the mixed solution obtained by stirring and mixing 10 mL of the first solution, 10 mL of the second solution, and 20 μL of the third solution was measured. A turbidity meter (2100Q, manufactured by HACH) was used for the measurement of the turbidity. After the mixture was allowed to stand for 1 hour, the turbidity was measured again.
また、純水を試料として濁度を測定した。高分子溶液の濃度毎に、混合液の濁度から純水の濁度をブランクとして差し引いた値を図2に示す。図2に示す通り、グアガム濃度が0.1mg/Lでは濁度が現れていないが、0.2〜1mg/Lでは、凝集薬剤の添加直後と1時間後とで、濃度と濁度との間に直線関係が得られ、濁度に基づいて濃度が求まることが確認できた。
In addition, turbidity was measured using pure water as a sample. The value which deducted the turbidity of the pure water as a blank from the turbidity of a liquid mixture is shown in
<実施例2−2>
実施例2−1において、第3溶液(高分子溶液(試料))を、キサンタンガム(三栄薬品貿易製「ビスフェクトXA」、分子量100万以上、LC−OCDでデキストラン換算)を濃度0.1、0.2、0.5、又は1mg/Lとなるように純水に溶解させたキサンタンガム水溶液としたこと以外は同様に測定を行った。結果を図3に示す。図3に示す通り、凝集薬剤の添加直後は、キサンタンガム濃度0.1〜1mg/Lで、濃度と濁度との間に直線関係が得られた。1時間後では、濃度1mg/Lで濁度が低下する傾向が見られた。凝集薬剤の添加直後に濁度を測定することで、キサンタンガム濃度0.1〜1mg/Lの範囲で、濁度に基づいて濃度が求まることが確認できた。
Example 2-2
In Example 2-1, a third solution (polymer solution (sample)) was prepared using a solution of xanthan gum ("Bisfect XA" manufactured by Sanei Pharmaceutical Co., Ltd .; molecular weight of 1,000,000 or more, dextran conversion by LC-OCD) at a concentration of 0.1, 0 The measurement was carried out in the same manner except that the aqueous solution of xanthan gum was dissolved in pure water to be 2, 0.5, or 1 mg / L. The results are shown in FIG. As shown in FIG. 3, a linear relationship between concentration and turbidity was obtained immediately after the addition of the agglutinating agent, at a xanthan gum concentration of 0.1 to 1 mg / L. After 1 hour, the turbidity tended to decrease at a concentration of 1 mg / L. By measuring the turbidity immediately after the addition of the aggregating agent, it was confirmed that the concentration can be determined based on the turbidity in the range of a xanthan gum concentration of 0.1 to 1 mg / L.
<実施例2−3>
実施例2−1において、第3溶液(高分子溶液(試料))を、デキストラン(SIGMA−ALDRICH製、分子量66700)を濃度0.1、0.2、0.5、又は1mg/Lとなるように純水に溶解させたデキストラン水溶液としたこと以外は同様に測定を行った。結果を図4に示す。図4に示す通り、デキストラン濃度が0.1〜1mg/Lの範囲において、凝集薬剤の添加直後は、若干感度が低かったが、1時間後に、濃度と濁度との間に顕著な直線関係が得られた。中性多糖類で分子量が数万の高分子でも、濁度に基づいて濃度が求まることが確認できた。
Example 2-3
In Example 2-1, the third solution (polymer solution (sample)) has a concentration of 0.1, 0.2, 0.5, or 1 mg / L for dextran (molecular weight 66700 manufactured by SIGMA-ALDRICH). The measurement was carried out in the same manner except that the aqueous dextran solution was dissolved in pure water as described above. The results are shown in FIG. As shown in FIG. 4, in the dextran concentration range of 0.1 to 1 mg / L, the sensitivity was slightly low immediately after the addition of the agglutination agent, but after 1 hour, a remarkable linear relationship between concentration and turbidity was gotten. It has been confirmed that the concentration can be determined based on the turbidity even with a neutral polysaccharide and a polymer having a molecular weight of several tens of thousands.
<実施例2−4>
実施例2−1において、第3溶液(高分子溶液(試料))を、デキストラン(SIGMA−ALDRICH製、分子量9890)を濃度0.1、0.2、0.5、又は1mg/Lとなるように純水に溶解させたデキストラン水溶液としたこと以外は同様に測定を行った。結果を図5に示す。図5に示す通り、凝集薬剤の添加直後、1時間後、共に感度が低かった。中性多糖類を検出する際は、分子量10,000以上のものを検出対象に想定することが好ましい。
Example 2-4
In Example 2-1, the third solution (polymer solution (sample)) has a concentration of 0.1, 0.2, 0.5, or 1 mg / L for dextran (molecular weight 9890 manufactured by SIGMA-ALDRICH). The measurement was carried out in the same manner except that the aqueous dextran solution was dissolved in pure water as described above. The results are shown in FIG. As shown in FIG. 5, the sensitivity was low immediately after the addition of the aggregating agent and after one hour. When detecting neutral polysaccharides, those having a molecular weight of 10,000 or more are preferably assumed to be detection targets.
<実施例2−5>
実施例2−1において、第3溶液(高分子溶液(試料))を、カナディアンフルボ(ピィアイシィ・バイオ製)を濃度0.1、0.2、0.5、1、又は2mg/Lとなるように純水に溶解させたカナディアンフルボ水溶液としたこと以外は同様に測定を行った。結果を図6に示す。図6に示す通り、凝集薬剤の添加直後は0.5mg/L以上、1時間後は0.1mg/L以上において、カナディアンフルボが濁度に影響を与えることが確認できた。
Example 2-5
In Example 2-1, the third solution (polymer solution (sample)) has a concentration of 0.1, 0.2, 0.5, 1, or 2 mg / L of Canadian fulbo (manufactured by Pyi Bio). The measurement was conducted in the same manner except that the aqueous solution of Canadian fulvo was dissolved in pure water as described above. The results are shown in FIG. As shown in FIG. 6, it can be confirmed that canadian fluvo affects the turbidity immediately after the addition of the aggregating agent at 0.5 mg / L or more and after 1 hour at 0.1 mg / L or more.
<実施例2−6>
実施例2−1において、第3溶液(高分子溶液(試料))を、デキストラン(SIGMA−ALDRICH製、分子量66700)を濃度0.1、0.2、0.5、又は1mg/Lとなるように純水に溶解させ、更にカナディアンフルボを濃度2mg/Lとなるよう添加したものにしたこと以外は同様に測定を行った。結果を図7に示す。図7に示す通り、凝集薬剤の添加直後、1時間後共に、カナディアンフルボの影響で、低濃度域でも濁度が高くなっていた。
Example 2-6
In Example 2-1, the third solution (polymer solution (sample)) has a concentration of 0.1, 0.2, 0.5, or 1 mg / L for dextran (molecular weight 66700 manufactured by SIGMA-ALDRICH). The measurement was carried out in the same manner as described above except that it was dissolved in pure water, and Canadian fulvo was further added to a concentration of 2 mg / L. The results are shown in FIG. As shown in FIG. 7, the turbidity was high even in the low concentration region due to the influence of canadian fulvo both immediately after the addition of the agglutinating agent and after one hour.
図7に示す濁度から、実施例2−5における濃度2mg/Lのカナディアンフルボ水溶液の濁度を減じた結果を図8に示す。図8に示す通り、濁度を形成する成分であるカナディアンフルボが存在していることにより、凝集薬剤の添加直後から、濁度が立ち上がる傾向があった。実施例2−3と比較して、凝集薬剤の添加直後と1時間後との差が小さいが、デキストラン濃度0.1〜1mg/Lの領域において、濃度と濁度との間に直線関係が得られ、濁度に基づいて濃度が求まることが確認できた。 FIG. 8 shows the result of subtracting the turbidity of an aqueous solution of Canadian fulvic at a concentration of 2 mg / L in Example 2-5 from the turbidity shown in FIG. 7. As shown in FIG. 8, due to the presence of canadian fulvo, which is a component that forms turbidity, the turbidity tends to rise immediately after the addition of the aggregating agent. Although the difference between immediately after addition of the aggregating agent and after 1 hour is smaller compared to Example 2-3, in the region of dextran concentration 0.1 to 1 mg / L, the linear relationship between concentration and turbidity is It was confirmed that the concentration was obtained based on the turbidity obtained.
<実施例2−7>
実施例2−5において、高分子溶液のカナディアンフルボ濃度を、三次元蛍光スペクトルを測定することで求めた。励起波長290〜340nm、蛍光波長410〜455nmの範囲で、5nm間隔で測定した蛍光強度の平均値と濃度の関係は、以下の通りであり、試料水のカナディアンフルボの濃度が未知であっても、蛍光強度からカナディアンフルボ濃度が求まり、実施例2−5の結果を合わせて、カナディアンフルボが濁度に及ぼす影響を求めることができ、多糖類の濃度を求めることができる。
カナディアンフルボ濃度=1.44×蛍光強度
また、カナディアンフルボの影響を除外する方法として、限外濾過膜で試料水を処理して、カナディアンフルボのみが濁度に及ぼす影響を調べ、得られた結果をブランクとして用いることもできる。
Example 2-7
In Example 2-5, the Canadian fulvo concentration of the polymer solution was determined by measuring a three-dimensional fluorescence spectrum. The relationship between the average value of the fluorescence intensity measured at intervals of 5 nm and the concentration in the excitation wavelength range of 290 to 340 nm and the fluorescence wavelength of 410 to 455 nm is as follows, even if the concentration of the canadian fulvo of the sample water is unknown The concentration of canadian fluvo can be determined from the fluorescence intensity, and by combining the results of Example 2-5, the influence of canadian fluvo on turbidity can be determined, and the concentration of polysaccharide can be determined.
Also, as a method of excluding the influence of canadian fluvo, the sample water is treated with an ultrafiltration membrane and the effect of only canadian flubo on the turbidity is examined, and the results obtained. Can also be used as a blank.
<実施例2−8>
実施例2−1において、第3溶液(高分子溶液(試料))を、牛血清アルブミン(BSAフラクションV、和光純薬製)を濃度0.1、0.2、0.5、又は1mg/Lとなるように純水に溶解したBSA水溶液としたこと以外は同様に測定を行った。結果を図9に示す。図9に示す通り、凝集薬剤を添加してから1時間後、0.1〜1mg/Lの範囲で、濃度と濁度との間に直線関係が得られた。感度は、同程度の分子量のデキストランの1/2程度であるが、濁度に基づいて濃度が求まることが確認できた。凝集薬剤の添加直後は、濃度の増加に伴い濁度が増加する傾向は見られるが、感度は高くなかった。
Example 2-8
In Example 2-1, the third solution (polymer solution (sample)) was diluted with bovine serum albumin (BSA fraction V, manufactured by Wako Pure Chemical Industries, Ltd.) at a concentration of 0.1, 0.2, 0.5, or 1 mg / mg. The measurement was performed in the same manner as in the above except that the BSA aqueous solution was dissolved in pure water so as to be L. The results are shown in FIG. As shown in FIG. 9, a linear relationship between concentration and turbidity was obtained in the range of 0.1 to 1 mg / L one hour after the addition of the aggregating agent. The sensitivity was about half of that of dextran of the same molecular weight, but it was confirmed that the concentration was determined based on the turbidity. Immediately after the addition of the aggregating agent, the turbidity tends to increase as the concentration increases, but the sensitivity is not high.
<実施例2−9>
実施例2−8において、高分子溶液のBSA濃度を三次元蛍光スペクトルを測定することで求めた。励起波長260〜290nm、蛍光波長325〜380nmの範囲で、5nm間隔で測定した蛍光強度の平均値と濃度の関係は、以下の通りであり、試料水のBSA濃度が未知であり、多糖類と共存している場合でも、蛍光強度からBSA濃度が求まり、実施例2−8の結果を合わせて、BSAが濁度に及ぼす影響を求めることができ、多糖類の濃度を求めることができる。
BSA濃度=3.44×蛍光強度
Example 2-9
In Example 2-8, the BSA concentration of the polymer solution was determined by measuring a three-dimensional fluorescence spectrum. The relationship between the average value of the fluorescence intensity measured at intervals of 5 nm and the concentration in the range of excitation wavelength 260 to 290 nm and fluorescence wavelength 325 to 380 nm is as follows, and the BSA concentration of the sample water is unknown. Even in the case of coexistence, the BSA concentration is determined from the fluorescence intensity, and the results of Example 2-8 can be combined to determine the influence of BSA on the turbidity, and the concentration of polysaccharide can be determined.
BSA concentration = 3.44 x fluorescence intensity
<比較例1>
非特許文献1(高感度フェノール−硫酸法、竹内ら、帯大研報、22、103−107(2001))に記載の方法に準じて、フェノール硫酸法でグアガムの濃度の計測を試みた。結果を表1に示す。濃度1mg/L以下では、波長490nmの吸光度(ABS)に有意差が見られず、濃度を測定できないことが確認された。
Comparative Example 1
According to the method described in Non-Patent Document 1 (High-sensitivity phenol-sulfuric acid method, Takeuchi et al., Bandaiken, 22, 103-107 (2001)), measurement of the concentration of guar gum was attempted by the phenolic sulfuric acid method. The results are shown in Table 1. At a concentration of 1 mg / L or less, no significant difference was observed in the absorbance (ABS) at a wavelength of 490 nm, confirming that the concentration could not be measured.
表2は、フェノール硫酸法の標準物質として用いられることが多いグルコースの濃度と、波長490nmの吸光度(ABS)との関係を示す。濃度10mg/Lと100mg/Lには線形関係が成立しているが、1mg/L以下では吸光度に有意差がなく、濃度を測定できないことが確認された。 Table 2 shows the relationship between the concentration of glucose often used as a standard substance of the phenol sulfuric acid method and the absorbance (ABS) at a wavelength of 490 nm. Although a linear relationship is established between the concentrations of 10 mg / L and 100 mg / L, it was confirmed that there was no significant difference in absorbance at 1 mg / L or less, and the concentration could not be measured.
Claims (10)
前記試料水中の高分子のうち生物代謝物系の高分子が1mg/L以下の濃度で含まれることを特徴とする水中の高分子濃度の測定方法。 A method for measuring the concentration of a polymer in water, which is a melamine resin or a phenolic resin as an aggregating agent (excluding an inorganic coagulant) for generating an aggregate as a turbid component in sample water to be measured Is added to react with the polymer in the sample water to form an aggregate as a turbid component, and the turbidity of the sample water is measured, and the polymer concentration is determined based on the measured value of the turbidity. Ask for
Among the polymers in the sample water, a polymer of a biological metabolite type is contained at a concentration of 1 mg / L or less .
前記メラミン樹脂がコロイド粒子を形成していることを特徴とする水中の高分子濃度の測定方法。 A method for measuring the concentration of a polymer in water, which comprises adding a melamine resin or a phenolic resin to a sample water to be measured and reacting with the polymer in the sample water, and then measuring the turbidity of the sample water And determining the concentration of the polymer based on the measured value of the turbidity.
Method of measuring the polymer concentration in the water before Symbol melamine resin is characterized in that to form colloidal particles.
前記メラミン樹脂又はフェノール系樹脂の添加前に、前記試料水からアニオン成分及び/又は濁度成分を除去する処理を行うことを特徴とする水中の高分子濃度の測定方法。 A method for measuring the concentration of a polymer in water, which comprises adding a melamine resin or a phenolic resin to a sample water to be measured and reacting with the polymer in the sample water, and then measuring the turbidity of the sample water And determining the concentration of the polymer based on the measured value of the turbidity.
Prior to the addition of pre-Symbol melamine resin or phenolic resin, the measuring method of the polymer concentration in water, which comprises carrying out a process of removing an anion component and / or turbidity component from the sample water.
前記試料水を濾過膜処理して、処理前後の濁度の変化を求め、
前記メラミン樹脂又はフェノール系樹脂の添加後の試料水の濁度の測定値と、前記濁度の変化とに基づいて高分子濃度を求めることを特徴とする水中の高分子濃度の測定方法。 A method for measuring the concentration of a polymer in water, which comprises adding a melamine resin or a phenolic resin to a sample water to be measured and reacting with the polymer in the sample water, and then measuring the turbidity of the sample water And determining the concentration of the polymer based on the measured value of the turbidity.
The pre-Symbol sample water by filtration membrane process, determine the change in the before and after treatment turbidity,
A method for measuring the concentration of a polymer in water, comprising determining the concentration of the polymer based on the measured value of the turbidity of the sample water after the addition of the melamine resin or the phenolic resin and the change in the turbidity.
前記試料水中の腐植物質又はタンパク質の濃度を測定し、該濃度から腐植物質又はタンパク質による濁度を求め、
前記メラミン樹脂又はフェノール系樹脂の添加後の試料水の濁度の測定値と、該腐植物質又はタンパク質による濁度とに基づいて高分子濃度を求めることを特徴とする水中の高分子濃度の測定方法。 A method for measuring the concentration of a polymer in water, which comprises adding a melamine resin or a phenolic resin to a sample water to be measured and reacting with the polymer in the sample water, and then measuring the turbidity of the sample water And determining the concentration of the polymer based on the measured value of the turbidity.
The concentration of the humic substances or protein before Symbol sample water is measured, determine the turbidity by humic substances or proteins from the concentration,
Measurement of polymer concentration in water characterized by determining polymer concentration based on the measurement value of the turbidity of sample water after addition of the melamine resin or phenolic resin and the turbidity caused by the humic substance or protein Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015024307A JP6531416B2 (en) | 2015-02-10 | 2015-02-10 | Method of measuring polymer concentration in water and water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015024307A JP6531416B2 (en) | 2015-02-10 | 2015-02-10 | Method of measuring polymer concentration in water and water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016148545A JP2016148545A (en) | 2016-08-18 |
JP6531416B2 true JP6531416B2 (en) | 2019-06-19 |
Family
ID=56691650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015024307A Active JP6531416B2 (en) | 2015-02-10 | 2015-02-10 | Method of measuring polymer concentration in water and water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6531416B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010131469A (en) * | 2008-10-30 | 2010-06-17 | Kurita Water Ind Ltd | Membrane separation method |
JP2013255923A (en) * | 2009-08-11 | 2013-12-26 | Kurita Water Ind Ltd | Water treatment method and water treatment flocculant |
JP2012170848A (en) * | 2011-02-18 | 2012-09-10 | Toshiba Corp | Water treatment system and method for injecting flocculant therefor |
JP6118799B2 (en) * | 2012-06-25 | 2017-04-19 | 株式会社堀場製作所 | Light transmissive particle measuring method and light transmissive particle measuring apparatus |
-
2015
- 2015-02-10 JP JP2015024307A patent/JP6531416B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016148545A (en) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ates et al. | Removal of disinfection by-product precursors by UF and NF membranes in low-SUVA waters | |
Dong et al. | Effect of pH on floc properties and membrane fouling in coagulation–Ultrafiltration process with ferric chloride and polyferric chloride | |
JP4862576B2 (en) | Aggregation apparatus and aggregation method | |
Chen et al. | Application of potassium ferrate combined with poly-aluminum chloride for mitigating ultrafiltration (UF) membrane fouling in secondary effluent: Comparison of oxidant dosing strategies | |
WO2015141567A1 (en) | Dispersant for water treatment and water treatment method | |
JP6287594B2 (en) | Aggregation processing method and aggregation processing apparatus | |
WO2013099857A1 (en) | Seawater treatment method | |
Soffer et al. | Membrane for water reuse: effect of pre-coagulation on fouling and selectivity | |
WO2010050325A1 (en) | Membrane separation process | |
JP6531416B2 (en) | Method of measuring polymer concentration in water and water treatment method | |
JP6118799B2 (en) | Light transmissive particle measuring method and light transmissive particle measuring apparatus | |
JP4277831B2 (en) | Aggregation apparatus and aggregation method | |
JP6015811B1 (en) | Water treatment method and water treatment apparatus | |
JP5935967B2 (en) | Flocculant addition amount determination method, water treatment method, and water treatment apparatus | |
JP2006055804A (en) | Aggregation processing apparatus, aggregation processing method, and chemical injection control apparatus | |
JP6202115B2 (en) | Industrial water clarification method and clarification device | |
JP6644014B2 (en) | Water treatment method | |
JP2017113681A (en) | Method and apparatus for treating sea water | |
JP6648579B2 (en) | How to remove calcium from highly alkaline water | |
Tran et al. | Decentralised, small-scale coagulation-membrane treatment of wastewater from metal recycling villages–a case study from Vietnam | |
TW202028123A (en) | Water treatment chemical for membranes and membrane treatment method | |
JP6287402B2 (en) | Aggregated solid-liquid separation method and agglomerated solid-liquid separation apparatus | |
JP6340813B2 (en) | Water treatment membrane cleaning agent and cleaning method | |
Walsh et al. | Development of a bench-scale immersed ultrafiltration apparatus for coagulation pretreatment experiments | |
Sadreddini | Fouling mitigation in coagulation microfiltration hybrid system for drinking water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190506 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6531416 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |