JP6530196B2 - Method and apparatus for treating ammonia containing wastewater - Google Patents
Method and apparatus for treating ammonia containing wastewater Download PDFInfo
- Publication number
- JP6530196B2 JP6530196B2 JP2015018706A JP2015018706A JP6530196B2 JP 6530196 B2 JP6530196 B2 JP 6530196B2 JP 2015018706 A JP2015018706 A JP 2015018706A JP 2015018706 A JP2015018706 A JP 2015018706A JP 6530196 B2 JP6530196 B2 JP 6530196B2
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- wastewater
- ammonia
- nitrifying bacteria
- nitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims description 84
- 239000002351 wastewater Substances 0.000 title claims description 49
- 229910021529 ammonia Inorganic materials 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 28
- 241000894006 Bacteria Species 0.000 claims description 54
- 230000001546 nitrifying effect Effects 0.000 claims description 47
- 238000004065 wastewater treatment Methods 0.000 claims description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 35
- 238000011282 treatment Methods 0.000 claims description 32
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 21
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 230000001143 conditioned effect Effects 0.000 claims description 13
- 238000003753 real-time PCR Methods 0.000 claims description 13
- 230000003750 conditioning effect Effects 0.000 claims description 9
- 238000003672 processing method Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 9
- 238000005273 aeration Methods 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 239000010802 sludge Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 101100490994 Aeromonas hydrophila amoA gene Proteins 0.000 description 5
- 101100490996 Nitrosomonas europaea (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298) amoA2 gene Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 3
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241001453382 Nitrosomonadales Species 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 240000001973 Ficus microcarpa Species 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、アンモニア含有廃水の処理方法および処理装置に係り、特に、アンモニアを含有する廃水を高速に処理する処理方法および処理装置に関する。 The present invention relates to a method and apparatus for treating ammonia-containing wastewater, and more particularly to a method and apparatus for treating ammonia-containing wastewater at high speed.
食品工場や化学工場などでは、低濃度から高濃度のアンモニアが排出される。これらのアンモニア廃液は、水域の富栄養化や溶存酸素の低下などの原因となり、処理の必要が強く望まれている。 Food factories and chemical factories emit ammonia from low to high concentrations. These ammonia waste solutions cause eutrophication of the water area and a decrease in dissolved oxygen, and the need for treatment is strongly desired.
一般に、中高濃度アンモニア処理では生物処理が多く行われており、微生物を用いた硝化反応と脱窒反応で窒素ガスに変換している。アンモニアは、硝化細菌による硝化反応により、亜硝酸や硝酸に酸化され、亜硝酸と硝酸は脱窒菌により脱窒され除去される。これらの反応においては硝化反応が律速となるため、硝化反応の効率化が検討されている。処理槽内の硝化細菌を高濃度に維持することで硝化反応の効率化が図れ、高濃度に維持するために、担体投入法による硝化細菌の高濃度化、用いる担体の生物膜法や包括固定化法の検討などが行われている。 In general, many biological treatments are performed in medium-high ammonia concentration treatment, and they are converted to nitrogen gas by nitrification reaction and denitrification reaction using microorganisms. Ammonia is oxidized to nitrous acid and nitric acid by nitrification reaction by nitrifying bacteria, and nitrous acid and nitric acid are denitrified and removed by denitrifying bacteria. In these reactions, the nitrification reaction is rate-limiting, so the efficiency of the nitrification reaction has been studied. Maintaining high concentration of nitrifying bacteria in the treatment tank makes it possible to improve efficiency of the nitrification reaction, and in order to maintain high concentration, raising the concentration of nitrifying bacteria by the carrier injection method, biofilm method of the carrier used and comprehensive fixation Examination of the conversion method is being conducted.
硝化反応における高速処理としては、例えば、下記の非特許文献1に硝化速度1.1kg−N/m3/dayで処理できることが記載されている。また、非特許文献2には、1.2kg−N/(m3・日)の亜硝酸化速度が得られることが記載されている。 As high-speed processing in the nitrification reaction, for example, it is described in Non-Patent Document 1 that it can be processed at a nitrification speed of 1.1 kg-N / m 3 / day. Further, Non-Patent Document 2 describes that a nitrification rate of 1.2 kg-N / (m 3 · day) can be obtained.
近年、さらに早い速度で硝化処理を行うことが望まれている。しかしながら、担体の硝化細菌保持量には限界があり、アンモニアの高負荷運転では、処理水が極端に悪化し、良好な処理が全く進行しないのが現状である。非特許文献1、2に記載されている処理方法においても、充分な処理速度は得られていなかった。このため、下水処理の設計では、硝化速度0.2〜0.3kg−N/m3/day程度(担体充填率10%相当、硝化速度417mg−N/h/L−担体)であった。 In recent years, it has been desired to carry out the nitrification treatment at an even faster rate. However, there is a limit to the amount of nitrifying bacteria retained by the carrier, and at the time of high load operation of ammonia, the treated water is extremely deteriorated, and at present, good treatment does not progress at all. Also in the processing methods described in Non-Patent Documents 1 and 2, sufficient processing speed has not been obtained. For this reason, in the design of sewage treatment, the nitrification rate was about 0.2 to 0.3 kg-N / m 3 / day (corresponding to a carrier filling rate of 10%, a nitrification rate of 417 mg-N / h / L-support).
このように、従来の硝化処理では、硝化細菌の高濃度化に限界があり、アンモニアの高負荷運転においては、アンモニアが処理水に残存し、十分な処理性能が得られていなかった。 As described above, in the conventional nitrification treatment, there is a limit to increasing the concentration of nitrifying bacteria, and in the high load operation of ammonia, ammonia remains in the treated water, and sufficient treatment performance has not been obtained.
本発明は、このような事情に鑑みてなされたものであり、硝化細菌を高濃度化することができ、常時安定した良好な処理水を得ることができるアンモニア含有廃水の処理方法および処理装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and can treat ammonia-containing wastewater with a high concentration of nitrifying bacteria and can always obtain stable treated water. Intended to be provided.
本発明は前記目的を達成するために、アンモニア性窒素濃度が200mg/L以上1000mg/L以下の液を用いて、硝化細菌を担体の存在下で馴養することにより、担体に硝化細菌を付着、増殖させ固定化担体を形成し、固定化担体を有する廃水処理槽において、硝化速度1.0kg−N/m3/day以上2.0kg−N/m3/day以下で廃水を処理するアンモニア含有廃水の処理方法を提供する。 In order to achieve the above object, the present invention adheres nitrifying bacteria to a carrier by acclimating nitrifying bacteria in the presence of the carrier using a solution having an ammoniacal nitrogen concentration of 200 mg / L or more and 1000 mg / L or less, Ammonia-containing to treat wastewater at a nitrification rate of 1.0 kg-N / m 3 / day or more and 2.0 kg-N / m 3 / day or less in a wastewater treatment tank that has been grown to form an immobilized carrier and has an immobilized carrier. Provide a method of treating wastewater.
本発明によれば、アンモニア性窒素濃度を高濃度で含有する液を用いて、硝化細菌を担体の存在下で馴養することで、担体に高活性な硝化細菌を高濃度に付着、増殖させることができ、硝化速度1.0〜2.0kg−N/m3/dayの高い硝化速度で、アンモニア含有廃水の処理を行うことができる。 According to the present invention, by allowing the nitrifying bacteria to be acclimated in the presence of the carrier using a solution containing a high concentration of ammoniacal nitrogen concentration, the highly active nitrifying bacteria can be attached to the carrier at high concentration and grown. The ammonia-containing wastewater can be treated at a high nitrification rate of 1.0 to 2.0 kg-N / m 3 / day.
アンモニア性窒素濃度を高濃度で含有する液を用いて馴養を行うことにより、馴養に必要な栄養成分である基質成分の拡散律速が低下し、硝化細菌を高濃度化することができる。 By performing acclimatization using a liquid containing an ammoniacal nitrogen concentration at a high concentration, the diffusion-limited of the substrate component which is a nutrient component necessary for acclimatization is reduced, and the concentration of nitrifying bacteria can be increased.
本発明の別の態様においては、固定化担体に付着、増殖させた硝化細菌の菌体量が、リアルタイムPCR法により測定した値で、2×1010コピー/g−担体以上であることが好ましい。 In another aspect of the present invention, it is preferable that the amount of cells of nitrifying bacteria attached to and grown on the immobilized carrier is 2 × 10 10 copies / g-carrier or more, as measured by the real-time PCR method. .
この態様によれば、固定化担体に付着する菌体量をリアルタイムPCR法により測定した値で、2×1010コピー/g−担体以上としているので、高い硝化速度を得ることができる。 According to this aspect, since the amount of cells attached to the immobilized carrier is 2 × 10 10 copies / g-carrier or more as a value measured by the real-time PCR method, high nitrification speed can be obtained.
本発明の別の態様においては、担体がポリビニルアルコールおよびその誘導体であることが好ましい。 In another aspect of the invention, the carrier is preferably polyvinyl alcohol and its derivatives.
この態様によれば、担体にポリビニルアルコールおよびその誘導体を用いており、ポリビニルアルコールおよびその誘導体は、多孔性であり硝化細菌を多く付着させることができる。また、ポリビニルアルコールおよびその誘導体は、硝化細菌との親和性も良いので、硝化細菌を高濃度化することができ、硝化速度を向上させることができる。 According to this aspect, polyvinyl alcohol and its derivative are used as a carrier, and polyvinyl alcohol and its derivative are porous and can attach a large amount of nitrifying bacteria. In addition, since polyvinyl alcohol and its derivatives have good affinity to nitrifying bacteria, it is possible to increase the concentration of nitrifying bacteria and to improve the nitrification rate.
本発明の別の態様においては、馴養前の担体が充填されている廃水処理槽に、馴養済みの固定化担体を、担体と固定化担体の総量に対して、5%以上30%以下の割合で混合し、廃水の処理の立ち上げを行うことが好ましい。 In another aspect of the present invention, in the waste water treatment tank filled with the carrier before conditioning, the ratio of the immobilized carrier after conditioning is 5% to 30% based on the total of the carrier and the carrier for immobilization. It is preferable to mix and start up the wastewater treatment.
この態様によれば、廃水処理の立ち上げ時において、馴養済みの担体と馴養前の担体を混合して用いることで、立ち上げ時間を短縮することができる。 According to this aspect, it is possible to shorten the start-up time by mixing and using the conditioned carrier and the pre-conditioned carrier at the start-up of the wastewater treatment.
本発明は前記目的を達成するために、アンモニア性窒素濃度が200mg/L以上1000mg/L以下の液を用いて、硝化細菌を担体の存在下で馴養することにより、担体に硝化細菌を付着、増殖させ固定化担体を形成する前処理槽と、前処理槽で形成した固定化担体を担体総量の5%以上30%以下で含み、他の担体が馴養前の無生物担体である担体を投入し、硝化速度1.0kg−N/m3/day以上2.0kg−N/m3/day以下で処理する廃水処理槽と、を備えるアンモニア含有廃水の処理装置を提供する。 In order to achieve the above object, the present invention adheres nitrifying bacteria to a carrier by acclimating nitrifying bacteria in the presence of the carrier using a solution having an ammoniacal nitrogen concentration of 200 mg / L or more and 1000 mg / L or less, A pretreatment tank for growing to form an immobilized carrier, and the immobilized carrier formed in the pretreatment tank, containing 5% or more and 30% or less of the total carrier, and a carrier in which the other carrier is a non-living carrier before conditioning is added An apparatus for treating ammonia containing wastewater, comprising: a wastewater treatment tank treating at a nitrification speed of 1.0 kg-N / m 3 / day or more and 2.0 kg-N / m 3 / day or less.
本発明によれば、前処理槽において、アンモニア性窒素濃度が200mg/L以上1000mg/L以下の高濃度でアンモニア性窒素を含有する液を用いて、硝化細菌を担体の存在下で馴養することで、硝化細菌を担体に高濃度で付着増殖させることができる。そして、この担体を担体総量の5%以上30%以下の量で含む担体を用いて、硝化処理を行うことにより、処理装置の立ち上げ時の時間を短縮することができ、1.0kg−N/m3/day以上2.0kg−N/m3/day以下の硝化速度でアンモニア含有廃水の処理を行うことができる。 According to the present invention, in the pretreatment tank, the nitrifying bacteria is acclimated in the presence of the carrier using a solution containing ammonia nitrogen at a high concentration of ammonia nitrogen concentration of 200 mg / L to 1000 mg / L. Thus, the nitrifying bacteria can be attached and grown on the carrier at a high concentration. And, by performing the nitrification treatment using the carrier containing this carrier in an amount of 5% to 30% of the total amount of the carrier, the time for starting up the processing apparatus can be shortened, 1.0 kg-N Ammonia-containing wastewater can be treated at a nitrification rate of not less than / m 3 / day and not more than 2.0 kg-N / m 3 / day.
本発明の別の態様においては、固定化担体に付着、増殖させた硝化細菌の担体の菌体量が、リアルタイムPCR法により測定した値で、2×1010コピー/g−担体以上であることが好ましい。 In another aspect of the present invention, the amount of cells of the carrier for nitrifying bacteria attached to and grown on the immobilized carrier is 2 × 10 10 copies / g-carrier or more, as measured by real-time PCR. Is preferred.
この態様によれば、担体に付着する菌体量をリアルタイムPCR法により測定した値で、2×1010コピー/g−担体以上としているので、高い硝化速度を得ることができる。 According to this aspect, since the amount of cells adhering to the carrier is 2 × 10 10 copies / g-carrier or more as a value measured by the real-time PCR method, high nitrification speed can be obtained.
本発明の別の態様においては、担体がポリビニルアルコールおよびその誘導体であることが好ましい。 In another aspect of the invention, the carrier is preferably polyvinyl alcohol and its derivatives.
この態様によれば、担体にポリビニルアルコールおよびその誘導体を用いており、ポリビニルアルコールおよびその誘導体は、多孔性であり硝化細菌を多く付着させることができるので、硝化速度を向上させることができる。 According to this aspect, polyvinyl alcohol and its derivative are used as the carrier, and polyvinyl alcohol and its derivative are porous and can attach a large amount of nitrifying bacteria, so that the nitrification rate can be improved.
本発明のアンモニア含有廃水の処理方法および処理装置によれば、アンモニアを高濃度に含有する廃水について、担体に硝化細菌を高濃度に付着増殖させることができ、常時安定した良好な処理水を得ることができる。 According to the method and apparatus for treating ammonia-containing wastewater of the present invention, with respect to wastewater containing ammonia at a high concentration, nitrifying bacteria can be attached to and grown at a high concentration on a carrier, and stable treated water can always be obtained be able to.
以下、添付図面に従って、本発明に係るアンモニア含有廃水の処理方法および処理装置について説明する。なお、本明細書において、「〜」とは、その前後に記載される数値を下限値および上限値として含む意味で使用される。 Hereinafter, a method and an apparatus for treating ammonia-containing wastewater according to the present invention will be described according to the attached drawings. In addition, in this specification, "-" is used in the meaning which includes the numerical value described before and after that as a lower limit and an upper limit.
[固定化担体]
本実施形態において、固定化担体は生物膜法により製造することができる。本明細書において、担体に硝化細菌が付着した馴養済みの担体のことを「固定化担体」または「種担体」ともいい、馴養する前の担体のことを、単に「担体」または「新担体」ともいう。
[Immobilized carrier]
In the present embodiment, the immobilization carrier can be produced by a biofilm method. In the present specification, a conditioned carrier in which nitrifying bacteria are attached to a carrier is also referred to as "immobilized carrier" or "seed carrier", and the carrier before being acclimated is simply "carrier" or "new carrier". It is also called.
生物膜法は、担体表面で増殖する微生物群を利用する処理法であり、水中に担体を浸漬し、適切な曝気撹拌状態を維持するため、散気管により空気を供給することで、担体と液体との界面、すなわち、担体の表面で増殖する微生物群と、これらの微生物が分泌した細胞外ポリマー状物質の集合体とを含むゲル状の膜を形成することができる。 The biofilm method is a treatment method utilizing microorganisms growing on the surface of the carrier, and the carrier and the liquid are supplied by air diffusion by diffusing the carrier by immersing the carrier in water and maintaining an appropriate aeration agitation state. In other words, a gel-like film can be formed that includes the group of microorganisms that grow on the surface of the carrier, that is, a collection of extracellular polymeric substances secreted by these microorganisms.
生物膜法で用いられる担体としては、ポリビニルアルコール(PVA)およびその誘導体、アセタール化ポリビニルアルコール系ゲルを用いることができ、特に、ポリビニルアルコール(PVA)およびその誘導体を用いることが好ましい。 As carriers used in the biofilm method, polyvinyl alcohol (PVA) and its derivative, and acetalized polyvinyl alcohol-based gel can be used, and in particular, polyvinyl alcohol (PVA) and its derivative are preferably used.
また、他の担体としては、ビニルアルコ−ル系樹脂、アクリル系樹脂、アクリルアミド系樹脂、オレフィン系樹脂、スチレン系樹脂、ポリウレタン系樹脂、多糖類、ポリエ−テル、多孔質無機化合物などをあげることがでる。具体的にはPVA系、ポリエチレングリコ−ル系、ポリアクリルアミド系、アルギン酸カルシウム、カラギ−ナン、寒天、光硬化性樹脂などの高分子ゲル、活性炭、ポリウレタンスポンジ、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリスチレン、セルロ−ス誘導体、ポリエステルなどを使用することができる。 As other carriers, vinyl alcohol resins, acrylic resins, acrylamide resins, olefin resins, styrene resins, polyurethane resins, polysaccharides, polyethers, porous inorganic compounds, etc. may be mentioned. Out. Specifically, polymer gels such as PVA type, polyethylene glycol type, polyacrylamide type, calcium alginate, carrageenan, agar, light curing resin, activated carbon, polyurethane sponge, polyacrylonitrile, polyethylene, polypropylene, polystyrene, Cellulose derivatives, polyesters and the like can be used.
担体に固定化される微生物(菌体)としては、硝化細菌を使用できる。硝化細菌は、純粋菌を固定化してもよいが、硝化細菌を含有する活性汚泥を固定化することもできる。 Nitrifying bacteria can be used as microorganisms (bacterial cells) to be immobilized on a carrier. Although nitrifying bacteria may immobilize pure bacteria, activated sludge containing nitrifying bacteria can also be immobilized.
担体の形状は、特に限定されないが、四角状、球状、筒状、紐状、不織布状などの形状が好ましい。特に、担体表面の凹凸を多くすることで、廃水との接触効率がよくなり、反応速度が向上するため好ましい。 The shape of the carrier is not particularly limited, but is preferably square, spherical, cylindrical, cord-like, non-woven, or the like. In particular, by increasing the unevenness of the carrier surface, the contact efficiency with the wastewater can be improved and the reaction rate can be improved, which is preferable.
[廃水処理装置]
<第1実施形態>
第1実施形態のアンモニア含有廃水の処理装置について説明する。図1は、本実施形態のアンモニア含有廃水の処理装置を示す構成図である。図1に示すように、本実施形態のアンモニア含有廃水の処理装置10は、主として、担体12を充填した廃水処理槽14と、廃水処理槽14にアンモニア含有廃水(原水)を流入させる原水配管16と、廃水処理槽14で処理した処理水を排出する処理水配管18と、廃水処理槽14内にエアを曝気する曝気手段20と、廃水処理槽14内のpHを制御するpH調整手段22と、で構成される。また、廃水処理槽14には、硝化細菌の純粋菌または硝化細菌を含有する種汚泥が投入される。
[Waste water treatment equipment]
First Embodiment
The treatment apparatus for ammonia-containing wastewater according to the first embodiment will be described. FIG. 1: is a block diagram which shows the processing apparatus of the ammonia containing waste water of this embodiment. As shown in FIG. 1, the ammonia-containing
曝気手段20は、廃水処理槽14の底部に接続されたエア配管20Aと、エア配管20Aを介してエアを供給するブロア20Bとで構成される。そして、廃水処理槽14内にエアを曝気することにより、廃水処理槽14内を好気性条件に形成するとともに、廃水処理槽14内の担体12を流動させる。担体12を好気性条件下で流動させることにより、担体表面に微生物を付着増殖させ固定化担体を形成する。また、廃水処理槽14内で固定化担体と廃水とを接触させることにより廃水中のアンモニアを生物学的に処理して、亜硝酸および硝酸にする。
The aeration means 20 includes an
廃水処理槽14に供試される原水は、アンモニアを200mg/L以上1000mg/L以下の高濃度で含有する廃液である。アンモニアを高濃度で含有する廃液を用いて馴養することで、担体に高活性化した硝化細菌を高濃度で付着させることができる。担体への硝化細菌の付着量としては、リアルタイムPCRコピー法で測定した値で、2×1010コピー/g−担体以上であることが好ましく、より好ましくは1×1011コピー/g−担体以上である。担体への硝化細菌の付着量を上記の数値以上とすることで、廃水処理槽14において、アンモニア含有廃水の処理を常時安定して行うことができる。また、低温においても、硝化処理を行うことができる。
The raw water to be tested in the
[リアルタイムPCR法]
リアルタイムPCR法は、遺伝子解析により菌体濃度を測定する方法であり、遺伝子解析においては硝化細菌に特有の遺伝子を対象として解析を行って遺伝子数を測定し、さらにその遺伝子数から硝化細菌の菌濃度、菌数を測定する。
[Real-time PCR method]
Real-time PCR is a method of measuring cell concentration by gene analysis, and in gene analysis, analysis is performed on genes specific to nitrifying bacteria to measure the number of genes, and the number of genes is further determined from the number of genes. Measure the concentration and number of bacteria.
amoAプライマーコピー数の測定には、下記のプライマーを使用した。 The following primers were used for measurement of amoA primer copy number.
プライマー名および配列5’→3’
amoA1f(GGG GTT TCT ACT GGT GGT)
amoA2r(CC CTC KGS AAA GCC TTC TTC)
また、担体質量当たりのコピー数は次式(1)によって算出した。
Primer name and sequence 5 'to 3'
amoA1f (GGG GTT TCT ACT GGT GGT)
amoA2r (CC CTC KGS AAA GCC TTC TTC)
Further, the copy number per mass of carrier was calculated by the following formula (1).
X=XO(VP+VW)/VP……(1)
ここで、X:担体内部の生菌数(コピー/g−担体)
XO:前処理後の原液の生菌数(コピー/mL)
VP:前処理した担体量(g)
VW:前処理に用いた液量(mL)
遺伝子解析の方法としては、プライマーペアにより遺伝子を増幅するPCRが好ましく、特に遺伝子を増幅する際、ハイブリダイゼイションプローブを用いて定量するリアルタイムPCR、および最確数法と組み合わせたMPN−PCRが好ましいが、他の解析方法でもよい。
X = X O (V P + V W ) / V P (1)
Here, X: number of viable cells inside the carrier (copy / g-carrier)
X O : viable count of stock solution after pretreatment (copy / mL)
V P : amount of pretreated support (g)
V W : Liquid volume used for pretreatment (mL)
As a method of gene analysis, PCR in which a gene is amplified by a primer pair is preferable, and in particular, when amplifying a gene, real-time PCR quantified using a hybridization probe, and MPN-PCR combined with most probable number method Although preferred, other analysis methods may be used.
<第2実施形態>
次に、第2実施形態のアンモニア含有廃水の処理装置について説明する。図2は第2実施形態のアンモニア含有廃水の処理装置を示す構成図である。第2実施形態のアンモニア含有廃水の処理装置110は、担体12の前処理を行う前処理槽124を備える点が第1実施形態の処理装置と主に異なっている。そして、前処理槽124に硝化細菌の純粋菌または硝化細菌を含有する種汚泥が投入される。
Second Embodiment
Next, the treatment apparatus of the ammonia containing wastewater of a 2nd embodiment is explained. FIG. 2: is a block diagram which shows the processing apparatus of the ammonia containing waste water of 2nd Embodiment. The ammonia-containing
廃水処理槽14にアンモニア性廃水を流入させる原水配管16には、アンモニア性廃水を前処理槽124に流入させるための原水分配管126が原水配管16から分岐して設けられている。原水分配管126には、開閉バルブ128が設けられており、開閉バルブ128により、前処理槽124へのアンモニア性廃水の供給を制御する。前処理槽124には、担体を投入するための担体投入管130を備える。担体投入管130から投入された担体は、前処理槽124内において、アンモニア性廃水中で馴養される。前処理槽124は、曝気手段138を有し、曝気手段138からエアを曝気することにより担体を流動させ、担体表面に微生物を付着増殖させることで、種担体(固定化担体)136を形成する。アンモニア性廃水のアンモニア性窒素濃度は200mg/L以上1000mg/L以下である廃水を用いる。
A
前処理槽124で硝化細菌を担体の存在下で馴養することで、担体に硝化細菌を付着増殖させる。担体に付着、増殖させた硝化細菌の菌体量としては、リアルタイムPCR法により測定した値で、2×1010コピー/g−担体以上であることが好ましく、より好ましくは1×1011コピー/g−担体以上である。また、前処理槽124での馴養期間は、2週間以上16週間以下とすることが好ましく、より好ましくは4週間以上12週間以下である。馴養期間を上記範囲とすることにより、所望の菌体量を担体に保持させることができる。
By conditioning the nitrifying bacteria in the presence of the carrier in the
前処理槽124で馴養された種担体136は、馴養済み担体投入管132から廃水処理槽14に投入される。処理装置110の廃水処理槽14の立ち上げ時には、廃水処理槽14内は、種担体と新担体の総量に対して5%以上30%以下が、前処理槽124で馴養された種担体を用いる。好ましくは、種担体の割合が総量の10%以上20%以下である。処理装置110の立ち上げ時に、廃水処理槽14内で新担体のみを用いて、廃水処理を行うと、十分な処理性能を得るまでに、時間がかかってしまう。立ち上げ時に汚泥種として、種担体を用い、新担体と混合して用いることで、立ち上げ時間を短くすることができる。
The
種担体の割合を多くすることで、立ち上げ時間を短くすることができるが、種担体の製造コストがあがるため、前処理槽124で馴養した種担体の量は上記範囲とすることが好ましい。また、馴養した担体の量が多くなりすぎても立ち上げ時間の短縮の効果は得られない。
Although the start-up time can be shortened by increasing the proportion of the seed carrier, it is preferable to set the amount of the seed carrier acclimated in the
また、担体を前処理槽124において、一週間程度、空曝気することが好ましい。空曝気することで、担体に硝化細菌を付着増殖させ易くすることができる。
In addition, it is preferable that the carrier be aerated in the
なお、種担体は、図2に示すように、前処理槽124で馴養し、廃水処理槽14に投入することもできるが、図1に示すような処理装置においても、他の処理装置で馴養、廃水処理した担体を、立ち上げ時の廃水処理槽に混合することで、馴養済みの種担体と馴養前の新担体とを混合して用いることで、同様の効果を得ることができる。
The seed carrier can be conditioned in the
[廃水処理方法]
本実施形態のアンモニア含有廃水の処理方法について説明する。本実施形態のアンモニア含有廃水は、アンモニア性窒素濃度が200〜1000mg/Lの廃水に用いられる。図3は、原水(処理廃水)のアンモニア性窒素濃度(mg/L)に対する硝化速度(kg−N/m3/day)の関係を示す図である。なお、担体はPVA担体を用い、アンモニア酸化細菌amoAコピー数は、1.04×1011コピー/g−担体のデータである。図3に示すように、アンモニア性窒素濃度が200〜1000mg/Lの原水で処理を行うことで、硝化速度が1.8kg−N/m3/day以上2.0kg−N/m3/day以下の高い硝化速度を得ることができる。
[Waste water treatment method]
The treatment method of the ammonia containing waste water of this embodiment is demonstrated. The ammonia-containing wastewater of the present embodiment is used for wastewater having an ammoniacal nitrogen concentration of 200 to 1000 mg / L. FIG. 3 is a view showing the relationship of the nitrification rate (kg-N / m 3 / day) to the ammoniacal nitrogen concentration (mg / L) of raw water (treated wastewater). The carrier used is a PVA carrier, and the ammonia oxidizing bacteria amoA copy number is data of 1.04 × 10 11 copies / g-carrier. As shown in FIG. 3, the nitrification rate is 1.8 kg-N / m 3 / day or more and 2.0 kg-N / m 3 / day by treating with raw water having an ammoniacal nitrogen concentration of 200 to 1000 mg / L. The following high nitrification rates can be obtained.
本発明においては、このように、高い硝化速度を得ることができる固定化担体を用いることで、1.0kg−N/m3/day以上2.0kg−N/m3/day以下の高い硝化速度で廃水の処理を行うことができる。 In the present invention, as described above, a high nitrification rate of 1.0 kg-N / m 3 / day or more and 2.0 kg-N / m 3 / day or less can be obtained by using the immobilization support capable of obtaining a high nitrification rate. Waste water can be treated at a speed.
また、図4は、菌体量(リアルタイムPCRコピー数)と硝化速度の関係を示す図である。なお、担体はPVA担体を用い、原水のアンモニア性窒素濃度は700mg/Lのデータである。図4に示すように、アンモニア酸化細菌amoAコピー数を2×1010コピー/g−担体以上とすることで、0.8kg−N/m3/dayの高い硝化速度を得ることができる。また、1×1011コピー/g−担体以上とすることで、1.5kg−N/m3/dayの硝化速度を得ることができるので好ましい。 FIG. 4 is a diagram showing the relationship between the amount of cells (real-time PCR copy number) and the nitrification rate. The carrier used is a PVA carrier, and the ammoniacal nitrogen concentration of the raw water is data of 700 mg / L. As shown in FIG. 4, by setting the ammonia oxidizing bacteria amoA copy number to 2 × 10 10 copies / g or more, a high nitrification rate of 0.8 kg-N / m 3 / day can be obtained. In addition, by setting the density to 1 × 10 11 copies / g or more, a nitrification rate of 1.5 kg-N / m 3 / day can be obtained, which is preferable.
図5は、アンモニア性廃水の原水のアンモニア性窒素濃度(NH4−N)、処理水のアンモニア性窒素濃度(NH4−N)、処理水の硝酸性窒素濃度(NO3−N)、および、処理水の亜硝酸性窒素濃度(NO2−N)を測定し、運転の経過日数(日)との関係でプロットしたものである。測定は、菌体量がアンモニア酸化細菌amoAコピー数2.08×1011コピー/g−担体であり、担体にPVA担体を用いた固定化担体を用いて行った。図5で示すように、経過日数20日以降については、処理水のアンモニア性窒素濃度(NH4−N)が低い数値を維持し、安定し良好な処理水が得られていることが確認できる。 FIG. 5 shows the ammoniacal nitrogen concentration (NH 4 -N) of the raw water of ammoniacal wastewater, the ammoniacal nitrogen concentration (NH 4 -N) of the treated water, the nitrate nitrogen concentration (NO 3 -N) of the treated water, and The nitrite nitrogen concentration (NO 2 -N) of the treated water was measured and plotted in relation to the number of days elapsed for operation (days). The measurement was performed using an immobilized carrier in which the amount of cells is an ammonia-oxidizing bacterium amoA copy number 2.08 × 10 11 copies / g-carrier and the carrier is a PVA carrier. As shown in FIG. 5, the ammoniacal nitrogen concentration (NH 4 -N) of the treated water is maintained at a low value for the elapsed days of 20 days or later, and it can be confirmed that stable treated water is obtained. .
また、図6は、容積負荷と硝化速度との関係を示す図である。また、アンモニア除去率が50%、80%、100%である理論値を直線で示す。測定は、菌体量がアンモニア酸化細菌amoAコピー数2.08×1011コピー/g−担体であり、担体にPVA担体を用いた固定化担体を用いて行った。図6に示すように、容積負荷が大きくなると、硝化速度が向上していることがわかる。また、容積負荷が大きくなることで、アンモニアを80%以上除去できることが確認できる。 Moreover, FIG. 6 is a figure which shows the relationship between volume load and a nitrification speed. In addition, theoretical values in which the ammonia removal rates are 50%, 80%, and 100% are shown by straight lines. The measurement was performed using an immobilized carrier in which the amount of cells is an ammonia-oxidizing bacterium amoA copy number 2.08 × 10 11 copies / g-carrier and the carrier is a PVA carrier. As shown in FIG. 6, it can be seen that the nitrification speed is improved when the volume load is increased. Further, it can be confirmed that ammonia can be removed by 80% or more by increasing the volume load.
また、本実施形態のように、高濃度のアンモニア性窒素を含有する原水で馴養した担体は、10℃以下の温度においても、硝化活性を示す。例えば、原水の温度が10℃以下の条件においても、0.1〜0.5kg−N/m3/dayの硝化速度を有する。したがって、本実施形態の担体を用いて処理を行うことで、低温においても硝化反応、脱窒反応を行うことができ、原水の温度制御を行うことなく、廃水処理を行うことができる。 Further, as in the present embodiment, the carrier conditioned with raw water containing high concentration of ammoniacal nitrogen exhibits nitrification activity even at a temperature of 10 ° C. or lower. For example, it has a nitrification rate of 0.1 to 0.5 kg-N / m 3 / day even under conditions of a raw water temperature of 10 ° C. or less. Therefore, by performing the treatment using the carrier of the present embodiment, the nitrification reaction and the denitrification reaction can be performed even at a low temperature, and the waste water treatment can be performed without performing the temperature control of the raw water.
以下に実施例を挙げ、本発明をより詳細に説明する。ただし、本発明はこの実施例に限定されるものではなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。 The present invention will be described in more detail by way of the following examples. However, the present invention is not limited to this embodiment, and the materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following embodiments may be appropriately changed without departing from the spirit of the present invention. it can.
(実施例1)[NH4−N400mg/L合成廃水の処理]
図1に示す装置を用いて処理を行った。充填率13.5%でPVA担体(5mmφ球形)を1.15Lリアクターに充填した。この1.15Lリアクターに2度に分けて活性汚泥200mL(種汚泥)を投入した。中濃度NH4−N含有廃水を想定した無機合成廃水(NH4−N400mg/L)を原水として、連続処理を行った。使用した無機合成廃水の組成を下記表1に示す。また、pHの低下による硝化細菌の失活および死滅を防ぐため、NaHCO3を用いてpHを常時7.5に調節した。水温は25℃、原水は滞留時間を5〜24hに調節して流入し、負荷を調節した。
(Example 1) [Treatment of NH 4 -
The process was performed using the apparatus shown in FIG. The PVA carrier (5 mmφ spherical shape) was loaded into a 1.15 L reactor at a loading rate of 13.5%. Two 200 mL portions of activated sludge (seed sludge) were charged into the 1.15 L reactor. Continuous treatment was performed using inorganic synthetic wastewater (NH 4 -
連続運転30〜80日、負荷0.56〜1.20kg−N/m3/dで亜硝酸型の硝化反応を示し、処理水水質NH4−N1mg/L以下を得た。その後も負荷をかけた結果、最大硝化速度1.95kg−N/m3/dを得、高速処理運転を達成した。これは、PVA担体は多孔質で硝化細菌がゲル内部に入り込んだことで、包括固定化担体としての機能も出たため、高速処理運転が可能になったと考えられる。 Nitrite-type nitrification reaction was shown at a load of 0.56 to 1.20 kg-N / m 3 / d for continuous operation of 30 to 80 days, and treated water quality NH 4 -N 1 mg / L or less was obtained. As a result of applying a load thereafter, a maximum nitrification rate of 1.95 kg-N / m 3 / d was obtained, and high-speed processing operation was achieved. It is considered that this is because the PVA carrier is porous and the nitrifying bacteria enter the inside of the gel, and it also functions as a comprehensive immobilization carrier, enabling high-speed processing operation.
(実施例2)[低温試験]
実施例1で使用した担体を用いて、5℃での長期処理運転を行った。下水処理での硝化を想定し表1の合成廃水を希釈し、NH4-N40mg/Lの廃水を供試した。滞留時間6時間で処理した結果、硝化速度0.16kg−N/m3/dayを得た。5℃の低温雰囲気下でも、硝化性能を有し、処理性能が優れていることが確認できた。
(Example 2) [Low temperature test]
The carrier used in Example 1 was subjected to a long-term treatment operation at 5 ° C. The synthetic wastewater in Table 1 was diluted on the assumption of nitrification in sewage treatment, and a wastewater of NH 4 -N 40 mg / L was used. As a result of processing at a residence time of 6 hours, a nitrification rate of 0.16 kg-N / m 3 / day was obtained. Even in the low temperature atmosphere at 5 ° C., it has been confirmed that it has nitrification performance and the treatment performance is excellent.
(実施例3)[新担体と馴養担体の混合立ち上げ試験]
次に、装置の立ち上げ時の担体において、馴養済みの担体(種担体)と無生物担体である馴養前の担体(新担体)との混合比について検討を行った。馴養済みの担体としては、実施例1で使用した担体を用いた。馴養済みの担体の量が少ない方がより安価に立ち上げることができる。
(Example 3) [Mixing start-up test of new carrier and accustomed carrier]
Next, in the carrier at the time of start-up of the apparatus, the mixing ratio of the carrier after conditioning (seed carrier) and the carrier before conditioning (new carrier) which is an inanimate carrier was examined. As the conditioned carrier, the carrier used in Example 1 was used. A smaller amount of accustomed carrier can be launched at a lower cost.
無生物担体である馴養前の担体と馴養済みの担体を混在させ、立ち上がりの検討を行った。担体総量中の馴養済み担体の割合に対する硝化活性の立ち上がりの結果を図7に示す。試験方法は、実施例1と同様の方法により行い、馴養済みの担体の割合に対する硝化速度比をプロットした。硝化速度比は、(硝化速度比=[立ち上げ中の硝化速度]/[馴養済みの担体100%の硝化速度])により求め、1、2、3、4週間後の硝化速度を測定した。
The start-up was examined by mixing the pre-adapted carrier, which is an inanimate carrier, with the pre-adapted carrier. The results of the rise of the nitrification activity relative to the proportion of the conditioned carrier in the total carrier are shown in FIG. The test method was carried out in the same manner as in Example 1, and the nitrification rate ratio was plotted against the proportion of the conditioned carrier. The nitrification speed ratio was determined by (Nitrification speed ratio = [Nitrification speed during start-up] / [Nitrification speed of
図7に示すように、馴養済みの担体の量が18%以上の場合は、それぞれの時間経過後における硝化速度比に差は見られなかった。馴養済みの担体の量が多くなると立ち上げ時間は早くなるが、担体のコストが高くなるため、馴養済みの担体の量としては、担体総量の5〜30%とすることが好ましく、より好ましくは10〜20%である。 As shown in FIG. 7, when the amount of the conditioned carrier was 18% or more, no difference was found in the nitrification rate ratio after each time elapsed. Although the start-up time becomes faster when the amount of the acclimatized carrier increases, the cost of the carrier increases, so the amount of the acclimatized carrier is preferably 5 to 30% of the total amount of the carrier, and more preferably 10 to 20%.
10、110…処理装置、12…担体、14…廃水処理槽、16…原水配管、18…処理水配管、20、138…曝気手段、22…pH調整手段、124…前処理槽、126…原水分配管、128…開閉バルブ、130…担体投入管、132…馴養済み担体投入管、136…種担体
DESCRIPTION OF
Claims (5)
前記固定化担体に付着、増殖させた硝化細菌の菌体量が、リアルタイムPCR法により測定した値で、1×10 11 コピー/g−担体以上であり、
前記固定化担体を有する廃水処理槽において、硝化速度1.6kg−N/m3/day以上2.0kg−N/m3/day以下で廃水を処理するアンモニア含有廃水の処理方法。 By allowing the nitrifying bacteria to acclimate in the presence of the carrier using a solution having an ammoniacal nitrogen concentration of 200 mg / L or more and 1000 mg / L or less, the nitrifying bacteria are adhered to the carrier and grown to form an immobilized carrier,
The amount of cells of nitrifying bacteria attached to the immobilized carrier and grown is a value of 1 × 10 11 copies / g or more as measured by real-time PCR .
Wherein the wastewater treatment tank with immobilized nitrifying speed 1.6 kg-N / m 3 / day or more 2.0kg-N / m 3 / day processing method of ammonia-containing wastewater treated wastewater below.
前記前処理槽で形成した前記固定化担体を担体総量の5%以上30%以下で含み、他の担体が馴養前の無生物担体である担体を投入し、硝化速度1.6kg−N/m3/day以上2.0kg−N/m3/day以下で処理する廃水処理槽と、を備え、
前記廃水処理槽内の固定化担体に付着、増殖させた硝化細菌の菌体量が、リアルタイムPCR法により測定した値で、1×10 11 コピー/g−担体以上であるアンモニア含有廃水の処理装置。 By allowing the nitrifying bacteria to acclimate in the presence of the carrier using a solution having an ammoniacal nitrogen concentration of 200 mg / L or more and 1000 mg / L or less, the nitrification bacteria adhere to the carrier, thereby growing the nitrifying bacteria to form an immobilized carrier. With the tank,
A carrier containing 5% to 30% of the immobilized carrier formed in the pretreatment tank at 5% to 30% of the total amount of the carrier, and the other carrier being an inanimate carrier before conditioning is charged, and the nitrification rate is 1.6 kg-N / m And a wastewater treatment tank treating at least 3 / day and not more than 2.0 kg-N / m 3 / day,
The attachment to the carrier for immobilization of the waste water treatment tank, cell amount of nitrifying bacteria grown is a value measured by real-time PCR method, 1 × 10 11 copies / g- carrier or der Ru ammonia-containing process wastewater apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015018706A JP6530196B2 (en) | 2015-02-02 | 2015-02-02 | Method and apparatus for treating ammonia containing wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015018706A JP6530196B2 (en) | 2015-02-02 | 2015-02-02 | Method and apparatus for treating ammonia containing wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016140824A JP2016140824A (en) | 2016-08-08 |
JP6530196B2 true JP6530196B2 (en) | 2019-06-12 |
Family
ID=56568083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015018706A Active JP6530196B2 (en) | 2015-02-02 | 2015-02-02 | Method and apparatus for treating ammonia containing wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6530196B2 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02207894A (en) * | 1989-02-08 | 1990-08-17 | Chubu Electric Power Co Inc | Nitrification method using comprehensively immobilized microorganisms |
JPH08323379A (en) * | 1995-06-02 | 1996-12-10 | Chiyoda Corp | Nitrogen-containing wastewater treatment method |
JP3252887B2 (en) * | 1995-08-10 | 2002-02-04 | 日立プラント建設株式会社 | Method and apparatus for biological oxidation of ammoniacal nitrogen |
JP2001300583A (en) * | 2000-04-25 | 2001-10-30 | Nisshinbo Ind Inc | Nitrification and denitrification of organic wastewater |
JP3907004B2 (en) * | 2004-05-14 | 2007-04-18 | 株式会社日立プラントテクノロジー | Wastewater treatment method and apparatus |
JP3894329B2 (en) * | 2004-06-18 | 2007-03-22 | 株式会社日立プラントテクノロジー | Method of operating anaerobic ammonia oxidation tank and anaerobic ammonia oxidation apparatus |
JP4279802B2 (en) * | 2005-05-27 | 2009-06-17 | 株式会社神鋼環境ソリューション | Water treatment management method |
JP5177802B2 (en) * | 2009-03-25 | 2013-04-10 | 株式会社日立プラントテクノロジー | Waste water treatment method and waste water treatment apparatus |
JP5854258B2 (en) * | 2011-06-02 | 2016-02-09 | 栗田工業株式会社 | Soil / groundwater purification by aerobic microorganisms |
JP6161210B2 (en) * | 2012-07-26 | 2017-07-12 | 学校法人 東洋大学 | Method and apparatus for low temperature treatment of ammonia nitrogen containing water |
-
2015
- 2015-02-02 JP JP2015018706A patent/JP6530196B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016140824A (en) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8293109B2 (en) | Wastewater treatment method | |
CN100548905C (en) | The treatment process of nitrogenous liquid and device | |
US8303817B2 (en) | Wastewater treatment method and wastewater treatment apparatus | |
JP5324269B2 (en) | Waste water treatment method and waste water treatment apparatus | |
CN107487840B (en) | Biological filter material for treating nitrate nitrogen in water | |
CN1673121A (en) | Method and apparatus of removing nitrogen | |
JP5098183B2 (en) | Waste water treatment method and apparatus | |
JP2001170684A (en) | Ammonia-containing waste water treatment method and device therefor | |
JP4632135B2 (en) | Method and apparatus for treating ammonia-containing liquid | |
JP2887737B2 (en) | Bioreactor | |
Lei et al. | The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system | |
JP5306296B2 (en) | Waste water treatment apparatus and waste water treatment method | |
JP4978841B2 (en) | Method and apparatus for producing liquid fertilizer | |
WO2014030583A1 (en) | System and method for treating wastewater containing suspended organic substance | |
JP3303665B2 (en) | Nitrification / denitrification method and apparatus | |
JP4600817B2 (en) | Method for treating ammonia-containing water | |
JP2004097974A (en) | Nitrification/denitrification simultaneous advancement type reaction structure and manufacturing method therefor | |
JP2024052993A (en) | Water treatment method and water treatment device | |
JP6530196B2 (en) | Method and apparatus for treating ammonia containing wastewater | |
JP2006061879A (en) | Wastewater treatment method and apparatus | |
JP6651298B2 (en) | Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration | |
JP5240465B2 (en) | Storage system and storage method for anaerobic microorganism-immobilized carrier | |
WO2016067970A1 (en) | Carrier for inclusive immobilization and wastewater treatment device using same | |
JP4600816B2 (en) | Method for treating ammonia-containing water | |
JP5126691B2 (en) | Wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190516 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6530196 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |