JP6523772B2 - Surface coated paper strength agent and paper coated with the same - Google Patents
Surface coated paper strength agent and paper coated with the same Download PDFInfo
- Publication number
- JP6523772B2 JP6523772B2 JP2015092772A JP2015092772A JP6523772B2 JP 6523772 B2 JP6523772 B2 JP 6523772B2 JP 2015092772 A JP2015092772 A JP 2015092772A JP 2015092772 A JP2015092772 A JP 2015092772A JP 6523772 B2 JP6523772 B2 JP 6523772B2
- Authority
- JP
- Japan
- Prior art keywords
- paper
- cellulose
- coated
- strength
- mentioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Paper (AREA)
Description
この発明は、セルロースを含む材料の粉砕物を含むスラリーを用いた紙力増強剤に関する。 The present invention relates to a paper strengthening agent using a slurry containing a pulverized material of a material containing cellulose.
現在、紙は様々な用途に用いられており、その中には、段ボールなどの包装材料に使用される板紙を始めとして、高い強度を要求される製品も多い。高い強度の紙を作るには、強度を発揮しやすい質の高い木材パルプを使用するか、または、紙の強度を向上させるために、ポリアクリルアミド(PAM)、でんぷん、ポリビニルアルコール(PVA)などの紙力増強剤を使用する方法が考えられる。コストの面から考えると、質の高い木材パルプを使用することは難しく、多くの場合、紙力増強剤の添加によって高い強度の紙が作られている。特に古紙を原料とする段ボール用の紙を製造する際は、紙力増強剤が使用されている。 At present, paper is used in various applications, and among them, there are many products that require high strength, including paperboard used for packaging materials such as cardboard. To make high strength paper, use high quality wood pulp that is easy to exert strength, or to improve the strength of paper, such as polyacrylamide (PAM), starch, polyvinyl alcohol (PVA), etc. It is conceivable to use a paper strengthening agent. In terms of cost, it is difficult to use high quality wood pulp and in many cases high strength papers are made by the addition of paper strength agents. In particular, when manufacturing corrugated paper made from used paper as a raw material, a paper strengthening agent is used.
ただし、これらの紙力増強剤も大量に使用すると紙の製造コストが上がる。また、紙力増強剤の中でも、デンプンのような天然物由来のものとPVAやPAMのような合成高分子のものと大きく分けて2種類存在するが、天然物由来のものの方が、環境への負荷を考えると好ましい。このため、低コストで、環境への負荷が少ない紙力増強剤が望まれる。 However, the use of large amounts of these paper strengthening agents also increases the cost of producing paper. Also, among paper strengthening agents, those derived from natural products such as starch and synthetic polymers such as PVA and PAM are roughly classified into two types, but those derived from natural products are more environmentally friendly Considering the load of For this reason, a paper strengthening agent with low impact on the environment at low cost is desired.
ところで、紙は主にセルロースからなるが、これまでにセルロースを粉砕物とすることにより、様々な形態での利用が検討されている。具体的な用途としては、食品添加物や濾過助剤、樹脂充填剤、飼料などが挙げられる。 By the way, although paper mainly consists of cellulose, utilization in various forms is considered by making cellulose into a ground material until now. Specific applications include food additives, filter aids, resin fillers, feeds and the like.
製紙の分野においては、例えば特許文献1に、紙の原料となるパルプと微細繊維状セルロースを混合して抄紙(内添)した塗工紙について記載されており、この塗工紙は剛性が強くなることが記されている。また、セルロースを含む原料の粉砕物を無機物と混合して粉砕したものを填料に利用する例も提案されている(特許文献2)。 In the field of papermaking, for example, Patent Document 1 describes coated paper prepared by mixing pulp as a raw material of paper and fine fibrous cellulose and making (internal addition) paper, and this coated paper has high rigidity. It is written that it becomes. Moreover, the example which utilizes what grind | pulverized the ground material of cellulose containing raw material mixed with an inorganic substance for a filler is proposed (patent document 2).
特許文献1のように、セルロースを含む粉砕物を原料パルプと混合して抄紙することにより、剛度を上げる方法は報告されているが、抄紙後の紙にセルロース粉砕物を塗工(外添)して強度が上がるという例はない。一方、特許文献2においても、白色度、平滑性には寄与するものの、混合して抄紙しても、紙力増強剤としては効果が限定的であり、大量に塗工しても十分に圧縮強度などが上がらないという問題があった。このように、従来検討されている紙力増強剤としての具体的な利用の検討は抄紙の際に混合する利用形態に限られ、塗工用紙力増強剤としての利用方法は具体的な検討が進んでいなかった。 As in Patent Document 1, a method of increasing stiffness by mixing a pulverized material containing cellulose with a raw material pulp for papermaking has been reported, but the cellulose pulverized material is coated on the paper after paper making (external addition) There is no example of increased strength. On the other hand, Patent Document 2 also contributes to whiteness and smoothness, but the effect as a paper strengthening agent is limited even if it is mixed and papermaking, and it is sufficiently compressed even when applied in large amounts. There was a problem that strength did not go up. As described above, the study of specific utilization as a paper strengthening agent, which has been conventionally studied, is limited to the use form mixed at the time of paper making, and the concrete examination of the utilization method as a coated paper strength agent is I was not going forward.
そこでこの発明は、セルロースを含む材料を塗工用の紙力増強剤として好適に利用できるようにし、取り扱いやすい紙力増強紙を得ることを目的とする。 Then, this invention makes it possible to use suitably the material containing a cellulose as a paper strengthening agent for coating, and it aims at obtaining a paper strengthening paper which is easy to handle.
この発明は、セルロースを含む材料を繊維径が1μm以下でなおかつ、最長部のモード径が5μm以上100μm以下となるように粉砕した粉砕物を水に分散させたスラリーを塗工用紙力増強剤とすることにより上記の課題を解決したのである。 In the present invention, a slurry obtained by dispersing a material obtained by pulverizing a material containing cellulose so that the fiber diameter is 1 μm or less and the mode diameter of the longest part is 5 μm or more and 100 μm or less in water is a coated paper strength agent The above-mentioned problem was solved by doing.
この発明では、まず、粉砕物の大きさは上記の範囲となるように最適な調製をしなければならない。単にセルロースを含む材料のスラリーを紙力増強剤として紙に塗布しても紙力向上効果はない。この発明では、上記の範囲の大きさに粉砕した粉砕物を含むスラリーが、その前後の範囲の大きさである粉砕物に比べて、紙力向上効果が特に向上することを見出した。 In the present invention, first, the size of the pulverized material has to be optimally prepared so as to fall within the above range. Simply applying a slurry of a material containing cellulose as a paper strengthening agent to paper does not have the effect of improving the paper strength. In the present invention, it has been found that the slurry containing the pulverized material pulverized into the size of the above range particularly improves the paper strength improvement effect as compared with the pulverized material having the size of the range before and after that.
その原理はおそらく、次のような仕組みと考えられる。まず、繊維径を1μm以下にすることにより、繊維が細くなり、紙上に塗工されると表面の繊維の間に入り込み紙の繊維同士の結合を強化し、紙力強度が向上すると考えられる。さらに上記の最適な大きさである粉砕物が紙上に塗工されると、紙の表面に粉砕物が均一に近い状態で生じ、これが大きく紙力を向上させていると思われる。上記セルロース粉砕物が長手方向に長すぎると、スラリーの粘度が高くなり偏りが生じやすく、また塗工した表面がセルロース粉砕物自体の長さによっても不均一になる。また、粉砕物が長すぎると、粉砕物同士が絡まるので、紙の表面に均一に分散せず、紙力増強効果が十分に得られず、単なる塗工剤に近くなってしまう。一方で、上記粉砕物が短すぎると、粉砕物同士の相互作用が弱くなるため、紙力増強効果が限定的になる。本発明は紙の表面における粉砕物が、上記の特定の長さの範囲である場合にのみ起こす特異な挙動を最大限に利用したものである。 The principle is probably considered as the following mechanism. First, by setting the fiber diameter to 1 μm or less, the fibers become thin, and when coated on paper, they enter between the fibers on the surface and strengthen the bond between the fibers of the paper, which is considered to improve the paper strength. Furthermore, when the above-mentioned optimum size crushed material is coated on the paper, it is considered that the crushed material is formed in a nearly uniform state on the surface of the paper and this greatly improves the paper strength. If the above-mentioned cellulose pulverized material is too long in the longitudinal direction, the viscosity of the slurry becomes high and tends to be uneven, and the coated surface becomes uneven due to the length of the cellulose pulverized material itself. In addition, when the pulverized material is too long, the pulverized materials are entangled with each other, so that they are not uniformly dispersed on the surface of the paper, and a sufficient paper strength enhancing effect can not be obtained, resulting in a mere coating agent. On the other hand, if the above-mentioned pulverized material is too short, the interaction between the pulverized materials becomes weak, so the paper strengthening effect becomes limited. The present invention takes full advantage of the unique behavior which occurs only when the grind on the surface of the paper is within the above specified length range.
上記の粉砕物の効果は、純粋なセルロース由来の粉砕物のみでなくても発揮できる。すなわち、セルロース以外に、ヘミセルロースやリグニンなどの有機物や、植物由来、又は添加物由来の無機物などを含んでいてもよい。ただし、無機物が多すぎると粉砕物による紙力増強効果を妨げる効果があるため、無機物が混合される場合、その量は固形分中の50質量%未満であることが望ましい。材料が50質量%以上の無機物を含んでいる場合には、セルロース含有率の高いその他の材料と混合したり、無機物の一部を何らかの方法で除去したりして、50質量%未満に調整することで、本発明に用いることができる。 The effect of the above-mentioned pulverized material can be exhibited not only by pure cellulose-derived pulverized material. That is, in addition to cellulose, an organic substance such as hemicellulose or lignin, or a plant-derived or additive-derived inorganic substance may be contained. However, if the amount of the inorganic substance is too large, it has the effect of preventing the paper reinforcing effect by the pulverized material, and therefore, when the inorganic substance is mixed, the amount is desirably less than 50% by mass in the solid content. If the material contains 50% by mass or more of inorganic matter, adjust it to less than 50% by mass by mixing with other materials with high cellulose content or removing some of the inorganic matter in any way Can be used in the present invention.
この発明にかかる塗工用紙力増強剤を用いることで、ろ紙や古紙だけでなく、稲藁などの植物バイオマス、紙粉、製紙時に生じる廃棄物(スカムや余剰汚泥)などの種々のセルロースを含む材料を、紙力増強剤として好適に利用することが出来る。これにより、紙に必要な紙力を効果的に付与することができ、好適に紙力増強紙を得ることができる。 By using the coating paper power enhancing agent according to the present invention, not only filter paper and waste paper but also various types of cellulose such as plant biomass such as rice straw, paper powder, waste generated during paper making (scum and excess sludge) The material can be suitably used as a paper strengthening agent. Thereby, the necessary paper strength can be effectively imparted to the paper, and a paper strength-enhancing paper can be suitably obtained.
以下、この発明を詳細に説明する。この発明は、セルロースを含む材料の粉砕物を含有するスラリーからなる塗工用紙力増強剤と、それを塗工した紙力増強紙、及びその製造方法である。 Hereinafter, the present invention will be described in detail. The present invention relates to a coated paper strength agent comprising a slurry containing a pulverized material of a material containing cellulose, a paper strength paper coated with the same, and a method for producing the same.
上記粉砕物の原料となるセルロースを含む材料は特に限定されない。例えば、ろ紙、古紙、微結晶セルロース、稲藁、籾殻、木粉などの植物バイオマス、紙粉、製紙時に生じるスカムや余剰汚泥など、セルロースを含む材料が利用できる。特に、製紙の際に生じる廃棄物であるスカムや余剰汚泥を利用すると、製紙工程全体での廃棄物を減らしながら、得られる紙の強度を向上できるので好ましい。すなわち、上記材料は、純粋なセルロースである必要はなく、ヘミセルロースやリグニンなどのその他の有機物や、無機物などを含んでいてもよい。従って、これらセルロースを含む材料を粉砕した粉砕物のスラリーには、それらの水不溶性の有機物や無機物が含まれていてもよい。ただし、セルロースの含有量が低すぎると、塗工する際に無駄に重量が多くなり、一旦不純物を取り除く必要に迫られる場合もあるため、少なくとも10質量%以上のセルロースを含有する材料であることが好ましい。なお、セルロースの含量はα-セルロースについてのものである。 The material containing the cellulose used as the raw material of the said ground material is not specifically limited. For example, materials containing cellulose such as filter paper, waste paper, microcrystalline cellulose, plant biomass such as rice bran, rice husk, wood powder, paper powder, scum generated during paper making, excess sludge, etc. can be used. In particular, it is preferable to use scum and excess sludge, which are wastes generated during papermaking, because the strength of the obtained paper can be improved while reducing the wastes in the whole papermaking process. That is, the material does not need to be pure cellulose, and may contain other organic substances such as hemicellulose and lignin, inorganic substances, and the like. Therefore, the slurry of the ground material obtained by grinding the material containing cellulose may contain the water-insoluble organic matter and inorganic matter. However, if the content of cellulose is too low, the weight will increase unnecessarily when coating, and it may be necessary to remove impurities once, so it is a material containing at least 10% by mass of cellulose or more. Is preferred. The content of cellulose is that of α-cellulose.
上記粉砕物は、最長部のモード径(最頻値に対応する粒子径)が、5μm以上である必要があり、10μm以上であると好ましい。モード径が5μm未満では、紙に塗工しても粉砕物が亀裂を生じてしまい、本発明の効果である紙に対する特に高い紙力増強効果を発揮しきれず、単に添加物が載っただけの効果程度に留まってしまいやすくなるからである。一方で、モード径が100μm以下である必要があり、80μm以下であると好ましい。モード径が100μmを超えると、スラリーの粘度が高くなりすぎてしまい表面の粉砕物の厚みに偏りが生じたり、上記粉砕物の繊維が長すぎて絡まり塊となってしまったりして、紙の表面に形成させる粉砕物が十分に均一なものにならない。また、上記粉砕物が複数本集まると自体の大きさによっても、凹凸が無視できなくなる恐れがある。これらの作用が重なるため、大きすぎる粉砕物が多いと、紙に対する特異な紙力増強効果を発揮しきれずに、単に添加物が載っただけの効果程度に留まってしまう。なお、以降の記載において「粒子径」という場合は、粉砕物の最長部の長さのことをいう。 In the above pulverized material, the mode diameter (particle diameter corresponding to the mode value) of the longest part needs to be 5 μm or more, and preferably 10 μm or more. If the mode diameter is less than 5 μm, the ground material will crack even when coated on paper, and the effect of the present invention on the paper can not exhibit a particularly high strength enhancing effect on the paper, but merely the additives It is because it is easy to stay at the effect grade. On the other hand, the mode diameter needs to be 100 μm or less, preferably 80 μm or less. When the mode diameter exceeds 100 μm, the viscosity of the slurry becomes too high, and the thickness of the ground product on the surface becomes uneven, or the fibers of the ground product become too long and become entangled and become lumps. The ground matter formed on the surface is not sufficiently uniform. In addition, when a plurality of the above-mentioned pulverized materials are collected, there is a possibility that the unevenness can not be neglected depending on the size of itself. Because these effects overlap, if there is a large amount of pulverized material that is too large, it will not be able to exert a unique paper-strengthening effect on paper, and will remain only to the extent that the additive is merely placed. In the following description, the term “particle diameter” refers to the length of the longest part of the pulverized material.
なお後述するように上記材料に無機物が含まれている場合でも、このモード径の値は基本的にはセルロース由来の成分を粉砕したもの(以後、「セルロース由来粉砕物」と表記する。)により決定される。上記材料に含まれている無機物は総じて、繊維状に連なったセルロース由来の成分よりも小さいため、最頻値として現れるのはセルロース由来の成分の値となる。 In addition, even when an inorganic substance is contained in the above-mentioned material as described later, the value of this mode diameter is basically based on a product obtained by grinding a component derived from cellulose (hereinafter referred to as "a pulverized product derived from cellulose"). It is determined. Since the inorganic substances contained in the above-mentioned materials are generally smaller than the fibrous component derived from cellulose, what appears as the mode value is the value of the component derived from cellulose.
なお、上記粉砕物のうちセルロース由来の成分は、元々繊維状であるセルロースを粉砕したものであるため、粉砕後も繊維径よりも繊維長さの方が長い形状を維持していることが多い。この発明において定義する上記のモード径は粒子としては最大径に対応する繊維長さについての値である。 In addition, since the component derived from cellulose among the said pulverized materials is what grind | pulverized the cellulose which is fibrous originally, the shape where a fiber length is longer than a fiber diameter is often maintained also after a grinding | pulverization . The above-mentioned mode diameter defined in the present invention is a value for the fiber length corresponding to the maximum diameter as particles.
上記粉砕物を調製するにあたっては、元になる上記材料と粉砕の仕方によって、その粒度分布が異なってくる。このため、上記のモード径の条件を満たすだけでなく、その他の分布条件も満たしているとより好ましい。 When preparing the above-mentioned pulverized material, the particle size distribution differs depending on the above-mentioned material and the method of pulverization. For this reason, it is more preferable not only to satisfy the condition of the above-mentioned mode diameter but also to meet other distribution conditions.
上記粉砕物は、メジアン径(d50)が5μm以上であると好ましく、10μm以上であると好ましい。メジアン径が5μm以上であることで、モード径が上記の範囲を満たしていることに加えて、紙力増強効果を好適に発揮できる大きさの粒子数が十分に確保できることになる。一方で、メジアン径が50μm以下であると好ましく、40μm以下であるとより好ましい。全体的にスラリーの粘度を抑制しやすくなり、表面に形成される粉砕物の均一性が高まるため、紙力向上効果が上がりやすくなる。なお、上記材料が無機物を含む場合、無機物はセルロース由来粉砕物よりも小さい傾向にあるため、無機物の含有量が多い上記粉砕物は、その分メジアン径がセルロース由来の成分のみの値よりも低い値となる可能性がある。 The above-mentioned pulverized material preferably has a median diameter (d50) of 5 μm or more, and preferably 10 μm or more. When the median diameter is 5 μm or more, in addition to the mode diameter satisfying the above range, it is possible to secure a sufficient number of particles having a size capable of suitably exhibiting the paper strength enhancing effect. On the other hand, the median diameter is preferably 50 μm or less, and more preferably 40 μm or less. The viscosity of the slurry is easily suppressed as a whole, and the uniformity of the pulverized material formed on the surface is enhanced, so that the paper strength improvement effect is likely to be enhanced. In the case where the above material contains an inorganic substance, the inorganic substance tends to be smaller than the cellulose-derived pulverized substance, so the pulverized substance having a large content of the inorganic substance has a median diameter smaller than the value of only the cellulose-derived component. It may be a value.
さらに、上記粉砕物は、含有する上記セルロース由来粉砕物の、繊維の長手方向ではなく、繊維状である粉砕物の最短部である径(以下、「繊維径」とする。)が、1μm以下にならないと紙力向上効果は見られない。このため、少なくとも繊維径が1μm以下となるまで粉砕された粒子が含まれていることが必要となる。実質的には、10%以上の粒子が1μm以下でなければほとんど紙力向上効果を得られないと考えられる。より具体的には、上記粉砕物を構成する上記セルロース由来粉砕物の繊維径の50%以上が1μm以下となるまで粉砕されていることが望ましい。さらに、90%以上の上記セルロース由来粉砕物の繊維径が1μm以下となっているとさらに望ましい。 Furthermore, the above-mentioned pulverized material has a diameter (hereinafter referred to as "fiber diameter") which is the shortest part of the pulverized material in the form of fibers, not the longitudinal direction of fibers, of the above-mentioned pulverized material derived from cellulose If it does not, the paper strength improvement effect can not be seen. For this reason, it is necessary to include particles crushed to at least a fiber diameter of 1 μm or less. It is considered that substantially no improvement in paper strength can be obtained unless particles of 10% or more are 1 μm or less. More specifically, it is preferable that 50% or more of the fiber diameter of the cellulose-derived pulverized material constituting the pulverized material is 1 μm or less. Furthermore, it is more preferable that the fiber diameter of the above-mentioned pulverized material derived from cellulose of 90% or more is 1 μm or less.
この発明にかかる表面塗工用紙力増強剤として用いる際の上記スラリーには、上記粉砕物が0.5質量%以上含まれていると好ましく、1質量%以上含まれているとより好ましい。薄すぎると十分な量の上記粉砕物を紙上に載せるために手間がかかり、また、塗工後に乾燥するにも時間が掛かりすぎてしまう。一方で、上記スラリーに含まれる上記粉砕物の含有量は7質量%以下であると好ましく、5質量%以下であるとより好ましい。濃すぎると上記スラリーの粘度が高くなりすぎ、紙上に均一に塗工することが難しくなってくる。 The above-mentioned pulverized material is preferably contained in an amount of 0.5% by mass or more, more preferably 1% by mass or more, in the above-mentioned slurry when used as a surface-coated paper strength agent according to the present invention. If it is too thin, it takes time to put a sufficient amount of the above-mentioned pulverized material on paper, and it takes too long to dry after coating. On the other hand, the content of the pulverized material contained in the slurry is preferably 7% by mass or less, and more preferably 5% by mass or less. If it is too thick, the viscosity of the above-mentioned slurry becomes too high, and it becomes difficult to apply uniformly on paper.
また、上記スラリー中において、水に溶解せずに残存する成分である固形分中に占める上記粉砕物の割合は、15質量%以上であると好ましく、30質量%以上であるとより好ましく、50質量%以上であるとさらに好ましい。少なすぎると、上記スラリーを乗せることで得られる紙力増強効果の効率が悪く、紙が無駄に重くなってしまう場合がある。 In the above slurry, the proportion of the above-mentioned pulverized material in solid content which is a component remaining without being dissolved in water is preferably 15% by mass or more, more preferably 30% by mass or more, and 50 It is further preferable that it is mass% or more. If the amount is too small, the efficiency of the paper strengthening effect obtained by placing the above-mentioned slurry may be poor, and the paper may be unnecessarily heavy.
上記スラリーにおいて上記粉砕物を水中にて分散させるには、上記粉砕物の原料となる上記セルロース材料を水中に投下し、湿式粉砕で好適な時間に亘って粉砕処理を行う手法が挙げられる。また、上記セルロース材料を水中に投下する前に、予め離解機により繊維をほぐしたり、攪拌ミルなどで乾式粉砕したりしておいてもよい。さらに、一旦湿式粉砕した後に、多段階的に湿式粉砕を行ってもよい。これらの手法以外にも、上記の径の条件を満たす上記スラリーを得られるのであれば手法は特に限定されない。 In order to disperse the above-mentioned pulverized material in water in the above-mentioned slurry, the above-mentioned cellulose material as a raw material of the above-mentioned pulverized material is dropped into water, and a method of carrying out pulverization treatment for wet grinding for suitable time is mentioned. Moreover, before dropping the above-mentioned cellulose material into water, the fibers may be loosened in advance by a disintegrator, or dry-pulverized by a stirring mill or the like. Furthermore, after wet grinding, wet grinding may be performed in multiple stages. Other than these methods, the method is not particularly limited as long as the slurry satisfying the above-described diameter condition can be obtained.
上記スラリーには、無機物が含まれていてもよい。ただし、無機物が含まれる場合、上記スラリー中における上記無機物の含有量は、上記固形分中に占める割合が、50質量%未満であることが好ましい。より好ましくは25質量%以下であり、さらに好ましくは15質量%以下であり、紙力増強効果の点からは少ないほど好ましい。塗工した上記粉砕物が適切な大きさであることにより発揮される特に優れた紙力増強効果は、上記スラリー中に含まれる無機物が多すぎるとその効果が抑制され、あるいは発揮されない。これは、上記粉砕物の一体性が上記無機物によって邪魔されてしまうためと考えられる。このため、元々の上記材料が50質量%以上の無機物を有する場合には、他のセルロース含有量が多い材料と混合するか、何らかの方法で無機物を除去して無機物が含まれる割合を低減させた上で、材料として使用する。ただし、極限まで排除する必要はなく、10質量%未満であれば紙力増強効果に対する抑制作用はほとんど発揮されない。 The slurry may contain an inorganic substance. However, when an inorganic substance is contained, the content of the inorganic substance in the slurry is preferably less than 50% by mass in the solid content. The content is more preferably 25% by mass or less, still more preferably 15% by mass or less, and the less the better in terms of the paper reinforcing effect. The particularly excellent paper-strengthening effect exerted by the coated pulverized material having an appropriate size is suppressed or not exerted when the amount of the inorganic substance contained in the slurry is too large. It is considered that this is because the integrity of the crushed material is disturbed by the inorganic matter. For this reason, when the above-mentioned original material has an inorganic substance of 50% by mass or more, it is mixed with another material having a high cellulose content, or the inorganic substance is removed by some method to reduce the proportion of the inorganic substance contained. Above, used as a material. However, it is not necessary to exclude it to the limit, and if it is less than 10% by mass, the suppressing effect on the paper strengthening effect is hardly exerted.
ここで上記無機物とは、水に難溶性又は非溶性であり、金属元素を含有する化合物又は金属元素の粒子をいう。具体的には、炭酸カルシウム、酸化チタン、タルク、マイカ、シリカ、カオリンなどが挙げられる。これらの上記無機物は水に溶けずに細かい粒となって分散しており、紙に塗工した後も紙の表面に留まり続ける。 Here, the above-mentioned inorganic substance means a particle of a metal element or a compound which is poorly soluble or insoluble in water and contains a metal element. Specifically, calcium carbonate, titanium oxide, talc, mica, silica, kaolin and the like can be mentioned. These above-mentioned inorganic substances are not dissolved in water but are dispersed as fine particles, and they remain on the surface of the paper even after being coated on the paper.
これらの上記無機物が上記スラリーに混入する形態としては、例えば、材料が製紙スカムや紙粉などである場合、元の紙に含まれる顔料や添加物として混入する炭酸カルシウムや酸化チタン、タルク、マイカなどが挙げられる。また、材料が稲藁などの草木類であると、これらの植物が元々含有する無機物なども挙げられる。この他、その他の効果を狙って意図的に混合させる成分が含まれていてもよい。 As a form in which these above-mentioned inorganic substances are mixed in the above-mentioned slurry, for example, when the material is papermaking scum or paper powder, calcium carbonate, titanium oxide, talc, mica mixed as pigments or additives contained in the original paper Etc. Moreover, when materials are plants, such as rice straw, the inorganic substance etc. which these plants originally contain are also mentioned. In addition to this, components for intentionally mixing for the purpose of other effects may be included.
なお、意図的に上記無機物を入れる場合は上記のような例に留まらない多種の化合物が含まれうる。しかし、上記スラリーに意図的に上記無機物を混入させるメリットは主に白色度や蛍光度、平滑性の向上であり、本発明の紙力増強効果が減退するデメリットを上回ることは少ないと考えられる。 In addition, when the above-mentioned inorganic substance is intentionally added, various compounds other than the above examples may be included. However, the merit of intentionally mixing the above-mentioned inorganic substance in the above-mentioned slurry is mainly the improvement of whiteness, fluorescence degree, and smoothness, and it is thought that there is little to overcome the demerit that the paper strengthening effect of the present invention declines.
上記スラリーには、上記粉砕物と上記の意図的に添加する無機物の他に、水溶性のその他の添加剤を含有していてもよい。具体的には、pH調整剤や歩留まり向上剤、湿潤紙力向上剤、濾水向上剤、ポリ塩化アルミニウム、PAM、デンプン、アクリル酸ソーダ、硫酸バンドなどが挙げられる。 The above-mentioned slurry may contain other additives soluble in water, in addition to the above-mentioned ground matter and the above-mentioned intentionally added inorganic substance. Specifically, pH adjusters, retention improvers, wet strength improvers, drainage improvers, polyaluminum chloride, PAM, starch, sodium acrylate, sulfuric acid bands, etc. may be mentioned.
上記スラリーは、抄紙された後の紙に対して塗工する塗工用紙力増強剤として用いることができる。塗工する手法は特に限定されるものではなく、例えば、浸漬、噴霧、塗布などの一般的な手法により塗工できる。 The above-mentioned slurry can be used as a coated paper strength agent to be coated on the paper after paper making. The method for coating is not particularly limited, and for example, the coating can be performed by a general method such as immersion, spraying, and application.
上記スラリーを塗工用紙力増強剤として用いる際の、紙上への塗工量は、2g/m2以上であると好ましく、4g/m2以上であるとより好ましい。2g/m2未満では紙力向上効果が不十分になる。本発明の塗工用紙力増強剤は材料の調達からコスト面で従来の塗工用紙力増強剤より有利であるため、塗工量を削りすぎるメリットはほとんどない。一方、紙上への塗工量は10g/m2以下であると好ましく、8g/m2以下であるとより好ましい。多すぎても、紙の表面と接触して紙力に寄与する上記粉砕物の量には物理的に限界があり、着量の割には紙力増強効果が得られなくなるからである。 In using the slurry as coated paper strength agent, the coating amount of the paper is preferable to be 2 g / m 2 or more, and more preferably 4g / m 2 or more. If it is less than 2 g / m 2 , the paper strength improvement effect is insufficient. The coated paper strength agent of the present invention is advantageous over the conventional coated paper strength agent in terms of cost of procuring materials, so there is almost no merit of overcutting the coated amount. On the other hand, the coating amount of the paper is preferable to be 10 g / m 2 or less, more preferably 8 g / m 2 or less. Even if it is too large, the amount of the above-mentioned pulverized material which contributes to the paper strength in contact with the surface of the paper is physically limited, and the paper strength enhancing effect can not be obtained for the coating weight.
この発明にかかる塗工用紙力増強剤は、廃棄物として扱われる上記セルロース材料であっても有益な効果を発揮させることができ、廃棄物の処理にかかる費用や手間を減少させることができる。また、単純な嵩高さによる効果ではなく、適切な大きさの粉砕物とすることで、特に優れた紙力増強効果を発揮でき、塗工された紙力増強紙の強度を優れたものにする。 The coating paper strength agent according to the present invention can exert beneficial effects even with the above-mentioned cellulose material treated as waste, and can reduce the cost and labor for waste treatment. In addition, not only the effect by simple bulkiness, but by making the crushed product of appropriate size, it is possible to exert a particularly excellent paper strengthening effect and to make the strength of the coated paper reinforced paper excellent. .
以下、この発明を実際に実施した実施例を挙げて、発明の内容をより具体的に示す。
まず、使用した材料及び原料について説明する。
Hereinafter, the contents of the invention will be more specifically described by way of examples in which the present invention is actually practiced.
First, the materials and raw materials used will be described.
<セルロースを含む材料>
・ろ紙(アドバンテック製:定性濾紙No.1)
・稲藁(灰分は主に植物由来のシリカ)
・製紙廃棄物(レンゴー(株)製紙工場にて採取したスカム。灰分は主に製紙時に添加する添加物由来の炭酸カルシウム又は酸化チタン、カオリンなどの無機物)
・古紙(一般用製紙材料として用いられるもの。灰分は主に製紙時に添加する添加物由来の炭酸カルシウム又は酸化チタンなどの無機物)
・紙粉(レンゴー(株)段ボール工場にて生じる切断粉。灰分は主に製紙時に添加する添加物由来の炭酸カルシウム又は酸化チタンなどの無機物)
<添加無機物>
・炭酸カルシウム(白石カルシウム(株)製:ソフトン#3200)
<Material containing cellulose>
-Filter paper (Advantec: qualitative filter paper No. 1)
-Rice straw (the ash is mainly plant-derived silica)
・ Paper waste (Scum collected at Rengo Co., Ltd. Paper mill. Ash is mainly derived from additives added during papermaking; calcium carbonate or inorganic substances such as titanium oxide and kaolin)
・ Waste paper (used as a general-purpose papermaking material. Ash is mainly an inorganic material such as calcium carbonate or titanium oxide derived from additives added at the time of paper making)
Paper powder (cut powder produced at Corrugated Cardboard Factory, Rengo Co., Ltd. Ash is an inorganic substance such as calcium carbonate or titanium oxide derived mainly from additives added during papermaking)
<Additional inorganic substances>
-Calcium carbonate (manufactured by Shiraishi Calcium Co., Ltd .: Softon # 3200)
用いたセルロースを含む材料の乾燥重量での分析した質量含有率を表1に示す。成分分析方法はTAPPIスタンダードの方法に基づき行い、ホロセルロース含量についてはワイズ法で測定した。ここで、ホロセルロースとはαセルロースとヘミセルロースとを合わせた含有量である。また、灰分とは燃焼後に残存する灰の重量であり、無機物に相当する。なお、その他の成分が入るため、合計値は100%にはならない。 The analyzed mass content on dry weight of the material containing cellulose used is shown in Table 1. The component analysis method was performed based on the method of TAPPI standard, and the holocellulose content was measured by the Wise method. Here, the holocellulose is the combined content of alpha cellulose and hemicellulose. Further, the ash content is the weight of ash remaining after combustion, and corresponds to an inorganic substance. Note that the total value does not reach 100% because other components are included.
<セルロースを含む材料の粉砕物長さについての検討>
まず、セルロースを含む材料としてろ紙を用い、粉砕の程度を変えて調製した粉砕物スラリーについて、粒度分布測定を行った。また、それぞれのスラリーを塗工した紙力増強紙について圧縮強度(リングクラッシュ試験)の試験を行った。
<Study on length of pulverized material of material containing cellulose>
First, using a filter paper as a material containing cellulose, the particle size distribution of the pulverized material slurry prepared by changing the degree of pulverization was measured. In addition, tests of compressive strength (ring crush test) were conducted on paper-strengthened papers coated with the respective slurries.
(参考例1)
まず、JIS P 8220に従い、5mm角のろ紙を水中で繊維状にほぐした離解ろ紙を得た。この離解ろ紙について粒度分布測定を行った結果を参考例1として表2に示す。また、それぞれの例の原料と手順の違いを表3に示す。
(Reference Example 1)
First, in accordance with JIS P 8220, a 5 mm square filter paper was fibrillated in water to obtain a deflocculated paper. The results of particle size distribution measurement of this deflocculated paper are shown in Table 2 as Reference Example 1. Also, Table 3 shows the difference between the raw materials and procedures of each example.
(比較例1)
まず前処理として、ろ紙を5mm角に切り出したものを、フリッチュ製乾式粉砕機ロータースピードミルP−14で0.08mmパスまで粉砕した。この前処理済み材料を表3中「0.08mmパス」と表記する。次に、この前処理済み材料を、攪拌ミルで湿式粉砕にて1時間処理した。具体的には、900ccのポット中に15.3g前後の0.08mmパス原料を入れ、1mm径のジルコニアビーズを450cc(50体積%)まで導入し、さらに、固形分が5.14質量%となるように水を添加し、900rpmにて1時間攪拌した。この粉砕物の粒度分布測定結果を比較例1として表2に示す。
(Comparative example 1)
First, as a pretreatment, a 5 mm square of filter paper was cut to a 0.08 mm pass with a Fritsch dry crusher rotor speed mill P-14. This pretreated material is described as "0.08 mm pass" in Table 3. Next, this pretreated material was treated by wet grinding in a stirring mill for 1 hour. Specifically, about 15.3 g of a 0.08 mm path raw material is put in a 900 cc pot, 1 mm diameter zirconia beads are introduced up to 450 cc (50 volume%), and the solid content is 5.14 mass%. Water was added as it became and stirred at 900 rpm for 1 hour. The particle size distribution measurement results of this pulverized material are shown in Table 2 as Comparative Example 1.
なお、粒度分布の測定にあたっては、レーザー回折式粒度分布測定装置((株)島津製作所製:Shimadzu-SALD2100)を用いた。屈折率は1.80−0.20i、測定方法はフローセルであり、測定範囲は0.01〜1000μmとした。粉砕物を用いる粒度分布測定用サンプルは0.1〜0.5%のスラリーとし、分散剤として1.25%CMCナトリウムを対液量で1質量%添加した物を用いた。なお、「モード径」は最も頻度が高い粒子径である。「d10」は粒子径の細かい物から積算し全体の10%に達した時の粒子径である。「d50」は粒子径の細かい物から積算し全体の50%に達した時の粒子径である。「d90」は粒子径の細かい物から積算し全体の90%に達した時の粒子径である。 In addition, in the measurement of particle size distribution, a laser diffraction type particle size distribution measuring apparatus (manufactured by Shimadzu Corporation: Shimadzu-SALD 2100) was used. The refractive index was 1.80 to 0.20 i, the measurement method was a flow cell, and the measurement range was 0.01 to 1000 μm. The sample for measurement of particle size distribution using the pulverized material was a slurry of 0.1 to 0.5%, and a dispersant to which 1% by mass of sodium 1.25% sodium CMC was added as a liquid amount was used as a dispersant. The “mode diameter” is the particle diameter that is the highest frequency. "D10" is the particle size when integrated from fine particle size and reaching 10% of the whole. “D50” is the particle size when integrated from fine particle size and reaching 50% of the whole. "D90" is the particle size when integrated from fine particle size and reaching 90% of the whole.
(比較例2)
離解ろ紙を原料として、マスコロイダー(石臼式摩砕機、増幸産業製:スーパーマスコロイダーMKCA-6-2R)を用い、7回湿式粉砕処理した。この磨砕粉砕物の粒度分布測定結果を比較例2として表2に示す。
(Comparative example 2)
The wet-grinding process was carried out seven times using muscoroider (a stone mill attrition mill, manufactured by Masuko Sangyo Co., Ltd .: Super Mascoloider MKCA-6-2R) using a deflocculated paper as a raw material. The particle size distribution measurement results of this ground material are shown in Table 2 as Comparative Example 2.
(実施例1)
比較例1と同様に、5mm角に切り出したろ紙をフリッチュ製乾式粉砕機ロータースピードミルで0.08mmパスまで粉砕した。この0.08mmパス原料を比較例1の攪拌ビーズミルを用いて30分間に亘って乾式粉砕処理を行った。この乾式粉砕処理にあたっては、比較例1において湿式粉砕に用いたものと同じポットに、同様にジルコニアビーズを入れ、水を添加せずに粉砕処理を行った。次に固形分が5.14質量%となるように水を添加し、1000rpmにて90分間に亘って湿式粉砕処理を行った。この粉砕物の粒度分布測定結果を実施例1として表2に示す。
Example 1
In the same manner as Comparative Example 1, a filter paper cut into 5 mm square was crushed to a 0.08 mm pass by a Fritsch dry crusher rotor speed mill. The 0.08 mm pass raw material was dry-pulverized using the stirring bead mill of Comparative Example 1 for 30 minutes. In the dry pulverization treatment, zirconia beads were similarly placed in the same pot used for wet pulverization in Comparative Example 1, and the pulverization treatment was performed without adding water. Next, water was added so that the solid content was 5.14% by mass, and wet pulverization treatment was performed at 1000 rpm for 90 minutes. The particle size distribution measurement results of this pulverized material are shown in Table 2 as Example 1.
(実施例2)
実施例1において得られた粉砕物のスラリーについてそこまでの粉砕処理を予備粉砕とし、さらに本粉砕となる湿式粉砕を、同じポットのままさらに750rpmにて5時間に亘って行った。この粉砕物の粒度分布測定結果を実施例2として表2に示す。
(Example 2)
In the slurry of the pulverized material obtained in Example 1, the pulverization treatment up to that point was pre-crushing, and further, wet pulverization to be main pulverization was further performed in the same pot at 750 rpm for 5 hours. The particle size distribution measurement results of this pulverized material are shown in Table 2 as Example 2.
(比較例3)
実施例2において、本粉砕を5時間から24時間に増加させた以外は同様の手順により粉砕処理を行った。その結果を表2に示す。
(Comparative example 3)
In Example 2, the grinding process was performed according to the same procedure except that the main grinding was increased from 5 hours to 24 hours. The results are shown in Table 2.
(比較例4)
実施例2において、本粉砕を5時間から48時間に増加させた以外は同様の手順により粉砕処理を行った。その結果を表2に示す。
(Comparative example 4)
In Example 2, the grinding treatment was performed according to the same procedure except that the main grinding was increased from 5 hours to 48 hours. The results are shown in Table 2.
<粉砕の傾向について>
測定結果から、粉砕の過程においては大きな繊維から順に粉砕されていることがうかがえた。まず粉砕前の参考例1にあった400μm以上の粒子が、比較例1ではほとんど粉砕されていることがわかった。比較例1では、分布のピークは50〜70μmと100〜200μmの二箇所にあるが、モード径は138μmであった。乾式粉砕処理後に湿式粉砕処理を行った実施例1ではこれらの二箇所のピークのいずれも減少してモード径が48.8μmにまで低下した。さらに粉砕を長時間に亘って行うと、モード径が5μm未満となり、48時間ではモード径が1μm未満となった。
<On the tendency of crushing>
From the measurement results, it can be seen that in the process of grinding, the fibers are ground in order from large fibers. First, it was found that particles of 400 μm or more in Reference Example 1 before grinding were almost crushed in Comparative Example 1. In Comparative Example 1, the peaks of the distribution were at two points of 50 to 70 μm and 100 to 200 μm, but the mode diameter was 138 μm. In Example 1 in which wet grinding was performed after dry grinding, any of these two peaks decreased and the mode diameter decreased to 48.8 μm. When grinding was further performed for a long time, the mode diameter was less than 5 μm, and after 48 hours, the mode diameter was less than 1 μm.
<塗工紙の作製>
25cm角のレンゴー(株)製中芯原紙(120g/m2)に、固形分を3.0〜7.0%となるように調整したそれぞれの例の粉砕物の水中分散液を、バーコーター(安田精機製作所製:No.16)により片面約10gとなるように両面へ塗工した。塗工した紙は吸水ろ紙で挟み、圧搾ロールで5往復(20秒間)して圧搾した。その後、120度のドラムドライヤーで2分間乾燥させ、室温23度、湿度50%で24時間以上調湿し、次の紙力試験に供した。
<Production of coated paper>
A dispersion of each of the ground products of each example having a solid content adjusted to 3.0 to 7.0% on a 25 cm square Rengo Co. core base paper (120 g / m 2 ), a bar coater It coated on both sides so that it might become about 10 g of one side by (Yasuda Seiki Mfg. Co., Ltd. make: No. 16). The coated paper was sandwiched with water absorbing filter paper, and squeezed for 5 cycles (20 seconds) with a squeeze roll. Then, it was dried for 2 minutes with a drum dryer at 120 ° C., conditioned at room temperature 23 ° C., humidity 50% for 24 hours or more, and subjected to the next paper strength test.
<圧縮強度測定>
JIS P 8126に従い、塗工紙から長さ152.4mm幅12.7mmの試験片を切り出し、圧縮試験機(日本T.M.C.株式会社製:リングクラッシュテスターTMC-R-200)で圧壊するまで毎分13mmの速度で荷重を加え、圧壊した時の最大荷重を記録した。サンプル1種類に対してN数は6で行い、その平均値を求めた。その値を表4に示す。
<Measurement of compressive strength>
According to JIS P 8126, a test piece of 152.4 mm in length and 12.7 mm in width is cut out from the coated paper, and it is 13 mm per minute until it is crushed by a compression tester (manufactured by Japan TMC Co., Ltd .: ring crush tester TMC-R-200) The load was applied at the speed of and the maximum load when crushing was recorded. The number of N was 6 for one type of sample, and the average value was determined. The values are shown in Table 4.
水のみの添加である参考例2に対して、比較例1及び2は僅かに圧縮強度の増加が見られた。しかし、いずれも参考例2に対して最大で20N未満の増加に留まっている。特に比較例1では8g/m2を添加したにも拘わらず、比較例2−2よりも劣る圧縮強度となってしまった。これらは繊維が大きすぎるために均一に粉砕物が塗工されていないためと考えられる。次に、実施例1及び2では着量2g/m2で20N近い圧縮強度の増加を示し、さらに着量の増加に比例して圧縮強度の大きな向上が見られた。しかしながら、さらに粉砕が進んだ比較例3、4では比較例1、2と同程度にまでしか圧縮強度の増加が現れなかった。これにより、実施例の範囲を含む特定のモード径の範囲でのみ、特異な圧縮強度の増加が見られることが確かめられた。 Comparative Examples 1 and 2 showed a slight increase in compressive strength as compared to Reference Example 2 in which only water was added. However, in each case, the increase is less than 20 N at maximum with respect to Reference Example 2. Particularly in Comparative Example 1, despite the addition of 8 g / m 2 , the compressive strength was inferior to that of Comparative Example 2-2. These are considered to be due to the fact that the ground material is not uniformly applied because the fibers are too large. Next, in Examples 1 and 2, an increase in compressive strength near 20 N was observed at a coating weight of 2 g / m 2 , and a large improvement in compressive strength was observed in proportion to the increase in the coating weight. However, in Comparative Examples 3 and 4 in which crushing was further progressed, the increase in compressive strength appeared to the same extent as Comparative Examples 1 and 2. This confirms that a specific increase in compressive strength is observed only in a specific mode diameter range including the range of the example.
<繊維状態の検証>
参考例1に用いた離解ろ紙の顕微鏡写真を図1に示す。表示されたスケールは1目盛り10μmである。繊維長さは大半が1mm(1000μm)以上であり、繊維径は10〜20μm程度である。
<Fiber condition verification>
A photomicrograph of the disaggregated paper used in Reference Example 1 is shown in FIG. The displayed scale is 10 μm on one scale. The majority of the fiber length is 1 mm (1000 μm) or more, and the fiber diameter is about 10 to 20 μm.
次に、実施例2における一連の手順について前処理(0.08mmパスまで粉砕)後の拡大写真を図2(a)に、乾式粉砕後の拡大写真を図2(b)に、本粉砕直前(実施例1に相当する)の拡大写真を図2(c)に、5時間の本粉砕後の拡大写真を図2(d)に示す。ただし、図2(d)のみ倍率が異なる。いずれもスケールの1目盛りが10μmである。最終段階の図2(d)におけるモード径は17.2μmである。 Next, for the series of procedures in Example 2, a magnified photograph after pretreatment (grind to a 0.08 mm pass) is shown in FIG. 2 (a), and a magnified photograph after dry pulverization is shown in FIG. 2 (b). The enlarged photograph of (corresponding to Example 1) is shown in FIG. 2 (c), and the enlarged photograph after the main crushing for 5 hours is shown in FIG. 2 (d). However, the magnification is different only in FIG. In each case, one scale of the scale is 10 μm. The mode diameter in FIG. 2D at the final stage is 17.2 μm.
図3(a)に、塗工前の中芯原紙の表面写真を示す。なお、倍率は150倍である。図3(b)に実施例2にかかる紙力増強剤を塗工した後の表面写真(150倍)を、図3(c)にその断面写真(1000倍)を示す。元の中芯原紙では繊維による凹凸がはっきりと観測されるが、紙力増強剤を添加した後の図3(b)ではそれらの凹凸の大半が均されている。断面を見ると、表面にほぼ一様の厚さでセルロースの層が形成されており、この層が紙力を増強させる主な要素であることが確認できた。 The surface photograph of the core base paper before coating is shown in FIG. 3 (a). The magnification is 150 times. The surface photograph (150 times) after applying the paper strengthening agent concerning Example 2 in FIG.3 (b) is shown the cross-sectional photograph (1000 times) in FIG.3 (c). Although unevenness due to fibers is clearly observed in the original core base paper, most of the unevenness is evened out in FIG. 3 (b) after the addition of the paper strength agent. Looking at the cross section, it was confirmed that a layer of cellulose was formed on the surface with a substantially uniform thickness, and this layer was the main factor to enhance the paper strength.
<セルロース材料の違いについての検証>
(実施例3〜7、参考例2)
ろ紙以外の材料について、モード径が5〜100μmの範囲に収まるように粉砕物スラリーを調製した。稲藁については、実施例2と同様の手順により粉砕物を得た。他、製紙廃棄物や古紙、紙粉については、乾式粉砕をしないこと以外は実施例2と同様の手順により粉砕物を得た。ただし、それぞれの例における本粉砕の所要時間は適宜調整した。なお、製紙廃棄物は乾燥重量あたり48%の灰分を含んでいるが、灰分の粒子はd90が20μm以下であり、セルロースを含む微細繊維とは重ならないことを確認している。ただし、メジアン径では灰分の影響が表れるため、セルロースを含む微細繊維由来の粉砕物(セルロース由来粉砕物)のみの粒度分布ではない。一方、モード径に関しては後述する理由により、測定値がセルロースを含む微細繊維由来の粉砕物(セルロース由来粉砕物)についての値として考えられる。それぞれの例のスラリーを、実施例2と同様の手順により中芯原紙上に塗工し、圧縮強度を測定した。その結果を表5に示す。含有率は固形分中に占める率である。
<Verification of differences in cellulose materials>
(Examples 3 to 7, Reference Example 2)
The ground material slurry was prepared such that the mode diameter falls within the range of 5 to 100 μm for materials other than filter paper. About rice straw, the ground material was obtained by the same procedure as Example 2. Other than papermaking waste, waste paper, and paper powder, ground materials were obtained by the same procedure as in Example 2 except that dry grinding was not performed. However, the time required for the main crushing in each example was adjusted as appropriate. Although paper waste contains 48% of ash content per dry weight, it has been confirmed that particles of ash content have d90 of 20 μm or less and do not overlap with fine fibers including cellulose. However, since the effect of ash appears in the median diameter, it is not the particle size distribution of only the pulverized material derived from fine fibers containing cellulose (crushed material derived from cellulose). On the other hand, with regard to the mode diameter, the measured value can be considered as a value for a pulverized material derived from fine fibers containing cellulose (crushed product derived from cellulose) for the reason described later. The slurry of each example was coated on a core base paper by the same procedure as in Example 2, and the compressive strength was measured. The results are shown in Table 5. The content rate is a rate in solid content.
セルロースを含む材料の種類に拘わらず、いずれも圧縮強度の高い増加が観測された。このため、材料の種類によらず、本発明は実施可能であることが確かめられた。ただし、これらの中で実施例4のみは圧縮強度が170Nを超えたものの他の実施例と比べると低い値となった。これは、実施例4のみは材料が含有する無機物の量が特に高かったためであると考えられる。無機物以外のリグニンやヘミセルロースについては、紙力向上効果を阻害することはないと考えられる。なぜならば、リグニン16%、ヘミセルロース30%含有している稲藁が、8%リグニン、24%ヘミセルロースを含有している古紙や紙粉と強度が同等であるためである。 Regardless of the type of material containing cellulose, a high increase in compressive strength was observed in all cases. For this reason, it was confirmed that the present invention is practicable regardless of the type of material. However, among these, only Example 4 had a lower value than the other Examples although the compressive strength exceeded 170N. This is considered to be due to the fact that the amount of the inorganic substance contained in the material was particularly high only in Example 4. It is considered that lignin and hemicellulose other than inorganic substances do not inhibit the paper strength improvement effect. This is because rice straw containing 16% lignin and 30% hemicellulose is equivalent in strength to waste paper and paper powder containing 8% lignin and 24% hemicellulose.
<無機物の影響についての検証>
(比較例5)
実施例2と同様のサイズに粉砕したろ紙と、炭酸カルシウム(白石カルシウム(株)製:ソフトン#3200、平均粒子径0.7μm)とを、いずれも固形分濃度が5.0質量%となるように混合させたスラリーを調製した。すなわち、固形分中の無機物の含有率が50質量%となるスラリーである。このスラリーを実施例2と同様の手順により塗工したところ、着量を8.2g/m2としたにも関わらず、圧縮強度は165Nに留まった。このため、固形分中に50質量%以上の無機物が含まれていると、本発明が発揮する特異な紙力向上効果は十分に発揮できないことが確かめられた。
<Verification of the influence of inorganic substances>
(Comparative example 5)
The solid content concentration of the filter paper pulverized to the same size as in Example 2 and the calcium carbonate (manufactured by Shiroishi Calcium Co., Ltd .: Softon # 3200, average particle size 0.7 μm) both become 5.0 mass% A mixed slurry was prepared. That is, it is the slurry used as the content rate of the inorganic substance in solid content will be 50 mass%. When this slurry was applied according to the same procedure as in Example 2, the compressive strength remained at 165 N, although the coating amount was 8.2 g / m 2 . For this reason, it has been confirmed that when the inorganic matter of 50% by mass or more is contained in the solid content, the unique paper strength improvement effect exhibited by the present invention can not be sufficiently exhibited.
<繊維径についての検証>
(比較例6)
微結晶セルロース(モード径17.2μm、メジアン径10.5μm、メルク社製cellulose microcrystalline)を用いて、粉砕せずにそのまま塗工し圧縮強度を測定した(比較例6)。その結果を表6に示す。モード径が17.2μmであるにも拘わらず、圧縮強度はほとんど増加が見られなかった。
<Verification of fiber diameter>
(Comparative example 6)
Using microcrystalline cellulose (mode diameter 17.2 μm, median diameter 10.5 μm, cellulose microcrystal manufactured by Merck Ltd.), compressive strength was measured by applying as it was without pulverization (Comparative Example 6). The results are shown in Table 6. Although the mode diameter was 17.2 μm, the compressive strength was hardly increased.
この比較例6にかかる微結晶セルロースの電子顕微鏡写真を日本電子株式会社製:JSM-6010PLUS/LA走査電子顕微鏡(SEM)により撮影した。その写真を図5(a)に示す。観測された繊維50本について、SEMが有する計測モードにて、繊維径を確認した。その結果を併せて表6に示す。なお、繊維径の短い物から積算し全体の10%に達した時の繊維径をd10とし、短いものから積算し全体の90%に達した時の繊維径をd90とした。繊維径は、最小値でも1μmであり、繊維径が1μm以下の粒子は見あたらなかった。このように、繊維径が細い粒子が足りなかったために、強度増加効果が発揮されなかったものと考えられる。 The electron micrograph of the microcrystalline cellulose according to this Comparative Example 6 was taken by JSM-6010PLUS / LA scanning electron microscope (SEM) manufactured by JEOL. The photograph is shown to Fig.5 (a). The fiber diameter was confirmed in the measurement mode which SEM has about 50 fibers observed. The results are shown in Table 6 together. The fiber diameter when integrated from a short fiber diameter reaches 10% of the whole is set to d10, and the fiber diameter when integrated from a short one reaches 90% of the whole is set to d90. The fiber diameter was 1 μm at the minimum, and no particles with a fiber diameter of 1 μm or less were found. Thus, it is considered that the strength increasing effect was not exhibited because the particles having a thin fiber diameter were insufficient.
(実施例8)
比較例6の微結晶セルロースを、上記表6のような分布となるように、粉砕した。その偏光顕微鏡写真を図4(b)に示す。この材料について同様に紙力増強剤を作成し、圧縮強度を測定したところ、高い圧縮強度の向上が見られた。比較例6と同様に電子顕微鏡写真を撮影した。その写真を図5(b)に示し、計測モードで測定した繊維径を表6に示す。粒子径は全体的に約半分程度になっただけであるが、繊維径は最大でも0.39μmとなるまで細く粉砕されていた。このように繊維径が1μm以下という十分に細い粒子にまで粉砕されることで、高い強度向上効果が発揮されることが確かめられた。
(Example 8)
The microcrystalline cellulose of Comparative Example 6 was pulverized so as to have a distribution as shown in Table 6 above. The polarized light micrograph is shown in FIG. 4 (b). When a paper strengthening agent was similarly prepared for this material and the compressive strength was measured, high compressive strength improvement was observed. An electron micrograph was taken in the same manner as Comparative Example 6. The photograph is shown in FIG. 5 (b), and the fiber diameter measured in the measurement mode is shown in Table 6. Although the particle diameter was only about half as a whole, the fiber diameter was finely ground to 0.39 μm at maximum. Thus, it has been confirmed that a high strength improvement effect is exhibited by pulverizing the particles to a sufficiently thin particle having a fiber diameter of 1 μm or less.
<無機物含有の際におけるモード径の検証>
無機物の含有量が多い製紙廃棄物を粉砕したものについて、測定されるモード径がセルロース粉砕物についての値であることを確認する試験を行った。まず、粉砕前の製紙廃棄物について粒度分布を測定した。この値を参考例3として表7に示す。次に、この製紙廃棄物を600℃で2時間かけて灰化し、粒度分布を測定した。この値を参考例4として表7に示す。この参考例4はすなわち、スカムに含まれる無機物のみを抜き出して測定した値とほぼ同じと考えられる。
<Verification of mode diameter when containing inorganic substance>
A test was conducted to confirm that the mode diameter to be measured is the value for the cellulose pulverized material, for the pulverized papermaking waste having a large content of inorganic substance. First, the particle size distribution of the paper waste before grinding was measured. This value is shown in Table 7 as Reference Example 3. Next, this papermaking waste was incinerated at 600 ° C. for 2 hours, and the particle size distribution was measured. This value is shown in Table 7 as Reference Example 4. This reference example 4 is considered to be substantially the same as the value measured by extracting only the inorganic substance contained in the scum.
粉砕前スカムである参考例3のモード径は138.2μmであるが、この中に含まれる灰分のモード径は参考例4の通り7.5μmである。従って、上記の粉砕前のモード径は、灰分が大量に含んでいる無機物による影響はほとんど無いことが確認できた。また、粉砕後のモード径も60.1μmと、灰分のモード径よりも高い値であるため、無機物灰分の粉砕による影響は特にないことが確かめられる。このため、参考例3の138.2μmから実施例4の60.1μmへとモード径が減少しているのも、灰分とは無関係にセルロースを含む微細繊維の粉砕物(セルロース由来粉砕物)等の粒子径を観測できていることが確かめられた。 Although the mode diameter of Reference Example 3 which is a scum before grinding is 138.2 μm, the mode diameter of the ash contained in this is 7.5 μm as in Reference Example 4. Therefore, it was confirmed that the mode diameter before the above grinding was hardly affected by the inorganic substances which contained a large amount of ash. Further, since the mode diameter after grinding is also 60.1 μm, which is a value higher than the mode diameter of the ash content, it is confirmed that there is no particular influence by the grinding of the inorganic ash content. For this reason, the reason why the mode diameter is reduced from 138.2 μm of Reference Example 3 to 60.1 μm of Example 4 is also the ground material of cellulose fine fibers (ground material derived from cellulose) etc. regardless of the ash content. It was confirmed that the particle diameter of
Claims (4)
A method for producing paper-strengthened paper, wherein the paper-strengthening agent according to claim 1 is applied to paper after paper making.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015092772A JP6523772B2 (en) | 2015-04-30 | 2015-04-30 | Surface coated paper strength agent and paper coated with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015092772A JP6523772B2 (en) | 2015-04-30 | 2015-04-30 | Surface coated paper strength agent and paper coated with the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016211084A JP2016211084A (en) | 2016-12-15 |
JP6523772B2 true JP6523772B2 (en) | 2019-06-05 |
Family
ID=57551250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015092772A Expired - Fee Related JP6523772B2 (en) | 2015-04-30 | 2015-04-30 | Surface coated paper strength agent and paper coated with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6523772B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2950973B2 (en) * | 1990-11-27 | 1999-09-20 | 王子製紙株式会社 | Paper sheet |
JP3063396B2 (en) * | 1992-06-24 | 2000-07-12 | 王子製紙株式会社 | Method for producing fine fibrous cellulose |
JP2967804B2 (en) * | 1995-04-07 | 1999-10-25 | 特種製紙株式会社 | Ultrafine fibrillated cellulose, method for producing the same, method for producing coated paper using ultrafine fibrillated cellulose, and method for producing dyed paper |
JP2001288692A (en) * | 2000-03-31 | 2001-10-19 | Oji Paper Co Ltd | Paper manufacturing method |
JP4009423B2 (en) * | 2000-12-19 | 2007-11-14 | 凸版印刷株式会社 | Modified fine fibrillated cellulose and method for producing the same, paper sheet to which modified fine fibrillated cellulose is added, and coated paper using modified fine fibrillated cellulose |
EP2759402B1 (en) * | 2011-09-22 | 2021-03-24 | Toppan Printing Co., Ltd. | Laminate and method for manufacturing same, and gas barrier material |
JP6035498B2 (en) * | 2012-10-25 | 2016-11-30 | 王子ホールディングス株式会社 | Method for producing fine cellulose fiber-containing sheet |
JP6286131B2 (en) * | 2013-03-19 | 2018-02-28 | 株式会社ダイセル | Fine cellulose fiber, production method thereof and dispersion |
JP6171674B2 (en) * | 2013-07-25 | 2017-08-02 | 凸版印刷株式会社 | Sheet material and barrier packaging container |
-
2015
- 2015-04-30 JP JP2015092772A patent/JP6523772B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016211084A (en) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12018433B2 (en) | Process for treating microfibrillated cellulose | |
JP7018982B2 (en) | Paper filler composition | |
KR102174033B1 (en) | Paper and cardboard products | |
CN101691700B (en) | Pulping method for promoting fibrillation of fibers and application of pulping method in papermaking | |
JP6742526B2 (en) | Binder composition based on vegetable fiber and inorganic filler, its preparation and use | |
WO2013076372A1 (en) | Nanocellulose composites | |
US20240376674A1 (en) | Binder composition and method comprising microfibrillated cellulose and recycled cellulosic materials | |
CN105155340B (en) | A kind of method that wastewater sludge is used as papermaking auxiliary material | |
JP6523772B2 (en) | Surface coated paper strength agent and paper coated with the same | |
JP2019516032A (en) | Compositions and methods for providing increased strength ceilings, flooring and building material products | |
KR101446078B1 (en) | Method for manufacturing paperboard material using chaff | |
CN1510212A (en) | Modified pulp material, high ash pulp board made from the material and preparation method | |
US20220081839A1 (en) | Filler compositions comprising microfibrillated cellulose and microporous inorganic particulate material composites for paper and paperboard applications with improved mechanical properties | |
CN106426443A (en) | Material preparation method for bamboos in production of bamboo pulp for China picture-character paper | |
AU2020378680A1 (en) | Binder composition and method comprising microfibrillated cellulose and recycled cellulosic materials | |
Park et al. | Effects of lignocellulosic bulking agents made from agricultural byproducts on physical properties and drying energy consumption of duplex board | |
RU2823790C1 (en) | Binder composition and method comprising microfibrillated cellulose and recycled cellulose materials | |
CN116157571A (en) | Filler composition containing microfibrillated cellulose and microporous inorganic particle composite material for paper and paperboard applications with improved mechanical properties | |
JPH07279087A (en) | Paper containing chaetomorpha crassa and its production | |
JPH0593395A (en) | Paper and paper product containing chaff as material | |
CN113874579A (en) | Compositions and methods for producing microfibrillated cellulose with increased tensile properties | |
BR112019010762B1 (en) | METHOD FOR PREPARING THE COMPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6523772 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |