[go: up one dir, main page]

JP6522677B2 - Cu-Ni-Co-Si alloy for electronic parts - Google Patents

Cu-Ni-Co-Si alloy for electronic parts Download PDF

Info

Publication number
JP6522677B2
JP6522677B2 JP2017043100A JP2017043100A JP6522677B2 JP 6522677 B2 JP6522677 B2 JP 6522677B2 JP 2017043100 A JP2017043100 A JP 2017043100A JP 2017043100 A JP2017043100 A JP 2017043100A JP 6522677 B2 JP6522677 B2 JP 6522677B2
Authority
JP
Japan
Prior art keywords
alloy
mass
ratio
bending
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017043100A
Other languages
Japanese (ja)
Other versions
JP2018145495A (en
Inventor
弘泰 堀江
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017043100A priority Critical patent/JP6522677B2/en
Publication of JP2018145495A publication Critical patent/JP2018145495A/en
Application granted granted Critical
Publication of JP6522677B2 publication Critical patent/JP6522677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、電子部品、特にコネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等に好適な電子部品用Cu−Ni−Co−Si合金に関する。   The present invention relates to a Cu-Ni-Co-Si alloy for electronic parts suitable for electronic parts, in particular, connectors, battery terminals, jacks, relays, switches, lead frames and the like.

近年は、電気・電子機器や車載部品に使用されるリードフレーム、コネクタなどの電子部品の小型化が進み、電子部品を構成する銅合金部材の狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する銅合金部材には、必要なバネ性を得るための強度や曲げ加工性が求められる。また、高電流化による発熱を抑制する観点から、銅合金部材の高導電化も求められている。このような要求に対し、Cu−Ni−Co−Si合金は、Cu−Ni−Si合金に比べて強度は低いものの導電率は高く、Cu−Co−Si合金に比べて導電率は低いものの強度が高く、強度と導電率のバランスに優れており、信号系端子用部材として使用されている。   In recent years, the miniaturization of electronic components such as lead frames and connectors used for electric / electronic devices and in-vehicle components has progressed, and the tendency of narrowing the pitch and reducing the height of copper alloy members constituting the electronic components is remarkable. The smaller the connector is, the smaller the pin width is, and the smaller is the folded shape. Therefore, the copper alloy member to be used is required to have the strength and bending processability for obtaining the necessary spring property. In addition, from the viewpoint of suppressing heat generation due to high current, high conductivity of the copper alloy member is also required. To meet these requirements, Cu-Ni-Co-Si alloy has lower strength than Cu-Ni-Si alloy but high conductivity, and lower strength than Cu-Co-Si alloy. High in strength and balance between conductivity and conductivity, and used as a signal system terminal member.

信号系端子用部材の中には、実装時のクリック感を担保するために、予め端子の両側にたたき加工することで、板厚を薄くした後に、従来と同様の曲げ加工を加えるものもある。この際に問題となるのは、たたき加工を加えることで加工歪が導入されるため、たたき加工を加えない状態に比べて曲げ加工性が損なわれてしまう点である。そのため、Cu−Ni−Co−Si合金が従来兼ね備えている強度と導電率のバランスに加え、たたき加工を加えても曲げ加工性を維持することが課題とされている。   In order to secure the click feeling at the time of mounting, some members for signal system terminals are subjected to the same bending process as in the prior art after the plate thickness is reduced by tapping on both sides of the terminals beforehand. . A problem in this case is that bending distortion is impaired as compared to a state in which tapping is not applied because processing strain is introduced by adding tapping. Therefore, in addition to the balance of strength and conductivity which a Cu-Ni-Co-Si alloy has conventionally, maintaining bending workability is considered as a subject even if it adds striking processing.

このような背景の下、特許文献1には、Cu−Ni−Co−Si合金の双晶境界頻度やCube方位粒の面積率を制御することで、強度および導電性に加え、曲げ加工性が改善された旨が記載されている。具体的には、1.0〜3.5質量%のNi、0.5〜2.0質量%のCo、0.3〜1.5質量%のSiを含み、かつ、Co/Ni質量比が0.15〜1.5、(Ni+Co)/Si質量比が4〜7であり、残部がCuおよび不可避不純物からなる銅合金板材であって、圧延面において、EBSP測定による結晶粒界性格及び結晶方位の観察結果が、全結晶粒界中の双晶境界密度が40%以上、Cube方位結晶粒の面積率が20%以上である銅合金板材が開示されている。   Under such background, Patent Document 1 discloses that bending workability is improved in addition to strength and conductivity by controlling the twin boundary frequency of Cu-Ni-Co-Si alloy and the area ratio of Cube orientation grains. It states that the improvement has been made. Specifically, 1.0 to 3.5% by mass of Ni, 0.5 to 2.0% by mass of Co, 0.3 to 1.5% by mass of Si, and Co / Ni mass ratio Is a copper alloy sheet having a ratio of 0.15 to 1.5, (Ni + Co) / Si mass ratio of 4 to 7 with the balance being Cu and unavoidable impurities, and the grain boundary character by EBSP measurement on the rolling surface A copper alloy sheet is disclosed in which the observation result of the crystal orientation is that the twin boundary density in all grain boundaries is 40% or more and the area ratio of Cube orientation crystal grains is 20% or more.

特許文献2には、Cu−Ni−Si合金の加工硬化係数を制御することで、疲労特性を向上させた技術が記載されている。具体的には、Ni及びCoから選択される1種又は2種を合計で1.0〜4.5質量%、Siを0.2〜1.3質量%含有し、(Ni+Co)/Si(質量比)=3.0〜5.5であり、残部銅及び不可避的不純物からなる電子材料用銅合金であって、圧延面の{220}結晶面からのX線回折強度ピークの半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度ピークの半価幅であるβ0{220}と次式:1.5≦β{220}/β0{220}≦3を満たし、且つ、加工硬化係数(n値)が0.04未満である電子材料用銅合金が開示されている。 Patent Document 2 describes a technology in which the fatigue characteristics are improved by controlling the work hardening coefficient of the Cu-Ni-Si alloy. Specifically, 1.0 to 4.5% by mass in total of one or two selected from Ni and Co, 0.2 to 1.3% by mass of Si, (Ni + Co) / A copper alloy for electronic materials having Si (mass ratio) = 3.0 to 5.5 and the balance copper and unavoidable impurities, which is a half of the X-ray diffraction intensity peak from the {220} crystal plane of the rolled surface The valence width β {220} is the half value width of the X-ray diffraction intensity peak from the {220} crystal plane of pure copper standard powder, β 0 {220}, and the following formula: 1.5 ≦ β {220} / A copper alloy for electronic materials is disclosed which satisfies β 0 {220} ≦ 3 and has a work hardening coefficient (n value) of less than 0.04.

特開2011−231393号公報JP, 2011-231393, A 特開2012−224898号公報JP 2012-224898 A

Cu−Ni−Co−Si合金の強度、導電率及び曲げ加工性については様々な観点から特性向上が図られているが、一方で電子機器の小型化も同時に進んでおり、より厳しい曲げ加工性が求められている。ノッチ曲げや180度密着曲げ以外にも、材料をテーパー状にたたき加工(板厚を減肉させる)し、その後に曲げ加工を加える方法も採用されている。特許文献1においては双晶境界頻度やCube方位粒の面積率、特許文献2では加工硬化指数を制御することが記載されているが、いずれの方策でも、たたき加工を加えた曲げに対応することは難しい。   The strength, conductivity and bending workability of Cu-Ni-Co-Si alloys have been improved from various points of view, but at the same time, miniaturization of electronic devices has also progressed, and more severe bending workability Is required. Other than notch bending and 180 degree close contact bending, a method is also adopted in which a material is beaten in a tapered shape (thickness reduction is performed) and then bending is applied. Although Patent Document 1 describes controlling the twin boundary frequency and the area ratio of Cube orientation grains, and Patent Document 2 controlling the work hardening index, it is possible to cope with bending to which tapping processing is applied by any measure. Is difficult.

そこで、本発明はCu−Ni−Co−Si合金の曲げ加工性を、従来とは異なるアプローチによって改善することを主たる課題とする。本発明は、従来の手法よりも曲げ加工性に優れたCu−Ni−Co−Si合金を提供することを他の課題とする。   Then, this invention makes it a main subject to improve the bending workability of Cu-Ni-Co-Si alloy by an approach different from the past. Another object of the present invention is to provide a Cu-Ni-Co-Si alloy which is more excellent in bending workability than the conventional method.

本発明者は上記課題を解決すべく鋭意検討を重ねた結果、双晶境界頻度と加工硬化指数を同時に制御することで、たたき加工を加えた曲げにも耐え得ることができるのではないかと考えた。また、新たなプロセスにより双晶境界頻度と加工硬化指数を制御することが特に重要であると考えた。   As a result of intensive investigations to solve the above problems, the present inventor believes that by simultaneously controlling the twin boundary frequency and the work hardening index, it may be able to withstand bending subjected to tapping. The In addition, I thought that controlling twin boundary frequency and work hardening index by new process is especially important.

この点について更に詳細に検討したところ、熱間圧延後に高温の熱処理を加えることで双晶境界頻度、すなわち全結晶粒界に占めるΣ3対応粒界の割合を制御できることを見出した。また、溶体化処理前に低温の熱処理を加えることで加工硬化指数(n値)を制御できることを見出した。たたき加工を加えた曲げ加工性を備えるためには、双晶境界頻度を高く、かつ加工硬化指数を小さくすることが好ましいと考えられるが、従来の方法では前者を高くすると後者も大きくなり、後者を低くすると前者も低くなってしまう。これに対し、上述したプロセスによって両者をバランスよく制御することが可能であるとの新たな知見を得た。更に、Coに対するNiの質量比(Ni/Co)が双晶境界頻度および加工硬化指数に影響を与えていることを見出した。本発明はこのような知見に基づいて完成したものである。   When this point was examined in more detail, it was found that the heat treatment at high temperature after hot rolling can control the twin boundary frequency, that is, the ratio of Σ3 corresponding grain boundaries to all grain boundaries. In addition, it has been found that the work hardening index (n value) can be controlled by applying a low temperature heat treatment before the solution treatment. It is considered preferable to increase the twin boundary frequency and reduce the work-hardening index in order to provide bending workability to which batting processing is added, but in the conventional method, if the former is increased, the latter is increased, the latter If you lower the former, the former will also go lower. On the other hand, new findings were obtained that it was possible to control both in a well-balanced manner by the process described above. Furthermore, it has been found that the mass ratio of Ni to Co (Ni / Co) influences twin boundary frequency and work hardening index. The present invention has been completed based on such findings.

本発明の電子部品用Cu−Ni−Co−Si合金は、3.0〜5.0質量%のNiおよび、0.1〜1.0質量%のCoを含有し、Coに対するNiの質量比(Ni/Co)が3.5〜30.0であり、Siを(Ni+Co)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなり、全結晶粒界に占めるΣ3対応粒界の割合が10〜40%であり、かつ、加工硬化指数が0.01〜0.07であるものである。   The Cu-Ni-Co-Si alloy for electronic parts of the present invention contains 3.0 to 5.0% by mass of Ni and 0.1 to 1.0% by mass of Co, and the mass ratio of Ni to Co (Ni / Co) is 3.5 to 30.0, Si is contained so that the mass ratio of (Ni + Co) / Si is 3 to 5, and the balance is composed of Cu and unavoidable impurities, and all crystal grains The proportion of Σ3 corresponding grain boundaries in the world is 10 to 40%, and the work hardening index is 0.01 to 0.07.

本発明の電子部品用Cu−Ni−Co−Si合金は、更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有することができる。   The Cu-Ni-Co-Si alloy for electronic parts of the present invention further comprises a total of at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn. 1.0 mass% can be contained.

本発明の電子部品用Cu−Ni−Co−Si合金は、圧延方向に平行な方向での0.2%耐力が900MPa以上であり、かつ、導電率が25%IACS以上であることが好ましい。   The Cu-Ni-Co-Si alloy for electronic parts of the present invention preferably has a 0.2% proof stress in a direction parallel to the rolling direction of 900 MPa or more, and a conductivity of 25% IACS or more.

本発明の電子部品用Cu−Ni−Co−Si合金は、加工度20%で圧延した後の曲げ半径(R)/板厚(t)=5.0として、曲げ軸が圧延方向と同一方向のBadwayでW曲げ試験をしたときの曲げ部表面の平均粗さRaが1.0μm以下であることが好ましい。   In the Cu-Ni-Co-Si alloy for electronic parts of the present invention, the bending axis is the same as the rolling direction, with bending radius (R) / plate thickness (t) = 5.0 after rolling at a working ratio of 20%. It is preferable that average roughness Ra of the bending part surface at the time of performing W bending test by (Badway) is 1.0 micrometer or less.

本発明の電子部品用Cu−Ni−Co−Si合金の製造方法は、3.0〜5.0質量%のNiおよび、0.1〜1.0質量%のCoを含有し、Coに対するNiの質量比(Ni/Co)が3.5〜30.0であり、Siを(Ni+Co)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなるCu−Ni−Co−Si合金のインゴットを鋳造する工程と、均質化焼鈍を施す工程と、熱間圧延を施す工程と、850〜900℃で3〜24時間にわたって第一熱処理を施す工程と、加工度90%以上の冷間圧延を施す工程と、450〜650℃で1〜10時間の第二熱処理を施す工程と、溶体化処理を施す工程と、時効処理を施す工程と、最終冷間圧延を施す工程とをこの順序で行うことを含み、全結晶粒界に占めるΣ3対応粒界の割合が10〜40%であり、かつ、加工硬化指数が0.01〜0.07である電子部品用Cu−Ni−Co−Si合金を製造するものである。 The method for producing a Cu-Ni-Co-Si alloy for electronic parts according to the present invention contains 3.0 to 5.0% by mass of Ni and 0.1 to 1.0% by mass of Co, and Ni relative to Co The mass ratio of (Ni / Co) is 3.5 to 30.0, the mass ratio of Si is (Ni + Co) / Si is 3 to 5, and the remainder is Cu and the unavoidable impurities A step of casting an ingot of a Ni-Co-Si alloy, a step of subjecting to homogenization annealing, a step of subjecting to hot rolling, a step of subjecting the first heat treatment at 850 to 900 ° C for 3 to 24 hours, and processing Cold rolling at a degree of 90% or more, second heat treatment at 450 to 650 ° C. for 1 to 10 hours, solution treatment, aging treatment, final cold rolling look including to carry out the step of applying in this order, occupied in the total grain boundaries That Σ3 proportion of coincidence boundary is 10-40%, and in which work hardening coefficient to produce a Cu-Ni-Co-Si alloy for electronic parts which is 0.01 to 0.07.

本発明の電子部品用Cu−Ni−Co−Si合金の製造方法では、Cu−Ni−Co−Si合金は、更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有することができる。   In the method for producing a Cu-Ni-Co-Si alloy for electronic parts according to the present invention, the Cu-Ni-Co-Si alloy further comprises Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and At least one selected from the group consisting of Mn can be contained in total up to 1.0% by mass.

本発明の伸銅品は、上記のいずれかのCu−Ni−Co−Si合金を備えたものである。   The copper alloy product of the present invention comprises any of the above-mentioned Cu-Ni-Co-Si alloys.

本発明の電子部品は、上記のいずれかのCu−Ni−Co−Si合金を備えたものである。   An electronic component of the present invention comprises any of the above-described Cu-Ni-Co-Si alloys.

本発明によれば、強度、導電率及び曲げ加工性の三つの特性に優れたCu−Ni−Co−Si合金を得ることができる。このような銅合金は、たたき加工後に曲げ加工を加えて製造されるコネクタやバッテリー端子などの電子部品に特に好適に用いることができ、これら電子部品の信頼性向上に寄与することができる。   According to the present invention, it is possible to obtain a Cu-Ni-Co-Si alloy excellent in three characteristics of strength, conductivity and bending workability. Such a copper alloy can be particularly suitably used for an electronic component such as a connector or a battery terminal manufactured by applying a bending process after tapping, and can contribute to the improvement of the reliability of the electronic component.

(Ni濃度)
Niは、後述のCo、Siとともに、Ni−Co−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Ni含有量が少なすぎる場合には、この効果を十分に発揮させることが困難になる。そのため、Ni含有量は3.0質量%以上とし、3.3質量%以上にすることが好ましく、3.6質量%以上にすることがより一層好ましい。一方、Ni含有量が多すぎると、強度向上効果が飽和するだけでなく、導電率が低下する。また、粗大な析出物が生成し易く、曲げ加工時の割れの原因になる。そのため、Ni含有量は5.0質量%以下とし、4.7質量%以下にすることが好ましく、4.4質量%以下にすることがより一層好ましい。
(Ni concentration)
Ni has the effect of improving the strength and conductivity of a copper alloy sheet material by forming a Ni-Co-Si-based precipitate together with Co and Si described later. When the Ni content is too low, it is difficult to sufficiently exhibit this effect. Therefore, the Ni content is 3.0% by mass or more, preferably 3.3% by mass or more, and still more preferably 3.6% by mass or more. On the other hand, when the Ni content is too large, not only the strength improvement effect is saturated but also the conductivity is lowered. In addition, coarse precipitates are easily formed, which causes cracking during bending. Therefore, the Ni content is 5.0% by mass or less, preferably 4.7% by mass or less, and more preferably 4.4% by mass or less.

(Co濃度)
Coは、Ni、Siとともに、Ni−Co−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Co含有量が少なすぎる場合には、この効果を十分に発揮させることが困難になる。そのため、Co含有量は、0.1質量%以上にすることが好ましく、0.2質量%以上にすることが更に好ましく、0.3質量%以上にすることがより一層好ましい。一方、Coの融点はNiよりも高いので、Co含有量が多すぎると、完全固溶は困難であり、未固溶の部分は強度に寄与しない。そのため、Co含有量は、1.0質量%以下にすることが好ましく、0.9質量%以下にすることが好ましく、0.8質量%以下にすることがより一層好ましい。
(Co concentration)
Co has the effect of improving the strength and conductivity of the copper alloy sheet by forming a Ni-Co-Si-based precipitate together with Ni and Si. If the Co content is too low, it will be difficult to fully exhibit this effect. Therefore, the Co content is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and still more preferably 0.3% by mass or more. On the other hand, since the melting point of Co is higher than that of Ni, when the Co content is too large, complete solid solution is difficult, and the undissolved part does not contribute to the strength. Therefore, the Co content is preferably 1.0% by mass or less, preferably 0.9% by mass or less, and more preferably 0.8% by mass or less.

(Si濃度)
Siは、Ni、Coとともに、Ni−Co−Si系析出物を形成する。但し、合金中のNi、CoおよびSiは、時効処理によってその全てが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNi、CoおよびSiは、銅合金板材の強度を若干向上させるが、析出状態と比べてその効果は小さく、また、導電率を低下させる要因になる。そのため、Siの含有量は、一般的には、できるだけ析出物(Ni+Co)2Siの組成比に近づけるのが好ましい。すなわち、(Ni+Co)/Siの質量比を、約4.2を中心として3〜5の範囲内に調整するのが一般的であり、Siは、(Ni+Co)/Siの質量比がこの範囲となるように添加する。(Ni+Co)/Siの質量比は、3.7〜4.7とすることが好ましい。
(Si concentration)
Si forms a Ni-Co-Si-based precipitate together with Ni and Co. However, Ni, Co and Si in the alloy do not necessarily all become precipitates by the aging treatment, and exist to some extent in a solid solution state in the Cu matrix. Ni, Co and Si in the solid solution state slightly improve the strength of the copper alloy sheet, but the effect is smaller than in the precipitation state, and it also causes the conductivity to be lowered. Therefore, it is generally preferable that the content of Si be as close as possible to the composition ratio of the precipitate (Ni + Co) 2 Si. That is, the mass ratio of (Ni + Co) / Si is generally adjusted in the range of 3 to 5 with a center at about 4.2, and the mass ratio of (Ni + Co) / Si in this range is Si Add to make The mass ratio of (Ni + Co) / Si is preferably 3.7 to 4.7.

(Coに対するNiの質量比(Ni/Co))
Ni/Coを調整することにより、強度と導電率の両立を図る。Niの比率を高くする(Coの比率を低くする)と、強度は高くなり、導電率は低下する。一方、Coの比率を高くする(Niの比率を低くする)と、強度は低下し、導電率は高くなる。圧延方向に平行な方向での0.2%耐力を900MPa以上とし、かつ、導電率を25%IACS以上とするためには、Ni/Coを3.5〜30.0、好ましくは5.0〜12.0となるように調整しておくとよい。
(Mass ratio of Ni to Co (Ni / Co))
By adjusting Ni / Co, both strength and conductivity are achieved. If the ratio of Ni is increased (the ratio of Co is decreased), the strength increases and the conductivity decreases. On the other hand, if the ratio of Co is increased (the ratio of Ni is decreased), the strength decreases and the conductivity increases. In order to set the 0.2% proof stress in the direction parallel to the rolling direction to 900 MPa or more and to set the conductivity to 25% IACS or more, Ni / Co is 3.5 to 30.0, preferably 5.0 It is good to adjust to be 12.0.

(添加元素)
必要に応じて、Fe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnのうちの少なくとも一種を添加してもよい。例えば、SnとMgは耐応力緩和特性の向上効果があり、Znは銅合金板材のはんだ付け性および鋳造性を改善する効果があり、Fe、Cr、Mn、Ti、Zr、Alなどは強度を向上させる作用を有する。そのほかに、Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。ただし、これら添加元素の量が大きすぎると、製造性や導電率が大きく損なわれる。そこで、添加元素は、合計で0〜1.0質量%とすることができる。また、強度、導電率、曲げ加工性のバランスを考慮すると、上記の元素の一種以上を総量で0.01〜0.7質量%含有させることが好ましい。
(Additive element)
If necessary, at least one of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn may be added. For example, Sn and Mg have an effect of improving stress relaxation resistance, Zn has an effect of improving the solderability and castability of a copper alloy sheet, and Fe, Cr, Mn, Ti, Zr, Al etc have strengths. It has an action to improve. In addition, P has a deoxidizing effect, and B has a refining effect on the cast structure, and has an effect of improving hot workability. However, when the amount of these additive elements is too large, the productivity and the conductivity are largely impaired. Then, the additive element can be made to be 0 to 1.0% by mass in total. Further, in consideration of the balance of strength, conductivity and bending workability, it is preferable to contain one or more of the above elements in a total amount of 0.01 to 0.7% by mass.

なお、添加元素ごとには、耐応力緩和特性、強度、はんだ付け性、鋳造性、熱間加工性の向上などのバランスを考慮して、合計量を超えない範囲で、Znは0.1質量%以上かつ1.0質量%以下含有させることができ、SnおよびCrは0.1質量%以上かつ0.8質量%以下含有させることができ、Fe、MgおよびMnは0.01質量%以上かつ0.5質量%以下含有させることができ、B、P、Zr、TiおよびAlは0.01質量%以上かつ0.2質量%以下含有させることができる。   In addition, in consideration of the balance of stress relaxation resistance, strength, solderability, castability, improvement of hot workability, etc., Zn is 0.1 mass in a range not exceeding the total amount for each additive element. % And 1.0% by mass or less, Sn and Cr can be contained 0.1% by mass or more and 0.8% by mass or less, and Fe, Mg and Mn are 0.01% by mass or more And 0.5 mass% or less can be contained, B, P, Zr, Ti, and Al can be contained 0.01 mass% or more and 0.2 mass% or less.

(全結晶粒界に占めるΣ3対応粒界の割合)
対応粒界理論によると、Σ3対応粒界は双晶境界のことを指す。双晶境界は境界間の原子の整合性が良い為、境界近傍において不均一変形が起こりにくく、曲げ変形時、境界近傍を基点とする割れやしわが発生しにくいため、その割合が高いほど曲げ加工性は良好になる。
(Percentage of Σ3 corresponding grain boundaries in total grain boundaries)
According to the corresponding grain boundary theory, the 33 corresponding grain boundary refers to a twin boundary. Since the twin boundaries have good atomic consistency between the boundaries, nonuniform deformation is less likely to occur near the boundaries, and cracks and wrinkles originating from the vicinity of the boundaries are less likely to occur during bending, so the higher the ratio, the more bending. Processability becomes good.

全結晶粒界に占めるΣ3対応粒界の割合は、EBSD(Electron Back Scatter Diffraction Pattern)法によって測定することができる。より詳細には、EBSD法により結晶方位を解析した後、隣接結晶方位間の方位差を求め、ランダム粒界及び各対応粒界の割合(粒界性格分布)を決定することができる。そして、全結晶粒界に占めるΣ3対応粒界の割合は、(対応粒界Σ3の長さの総和)/(結晶粒界の長さの総和)×100で計算することができる。   The ratio of Σ3 corresponding grain boundaries to total grain boundaries can be measured by the EBSD (Electron Back Scatter Diffraction Pattern) method. More specifically, after analyzing the crystal orientation by the EBSD method, it is possible to determine the difference in orientation between adjacent crystal orientations and to determine the ratio of random grain boundaries and each corresponding grain boundary (grain boundary character distribution). The ratio of Σ3 corresponding grain boundaries to total grain boundaries can be calculated by (sum of lengths of corresponding grain boundaries 33) / (sum of lengths of crystal grain boundaries) × 100.

本発明では、材料表面(圧延面)に対するEBSD測定における結晶方位解析において、全結晶粒界に占めるΣ3対応粒界の割合が10〜40%である。この割合が10%を下回った場合および40%を上回った場合はいずれも、特にたたき加工を施した後の曲げ加工性が悪くなる。この観点から、当該割合は、好ましくは15〜35%であり、より好ましくは20〜30%である。   In the present invention, in the crystal orientation analysis in EBSD measurement for the material surface (rolled surface), the ratio of Σ3 corresponding grain boundaries to all grain boundaries is 10 to 40%. When this ratio is less than 10% or more than 40%, bending workability after being subjected particularly to a tapping process is deteriorated. In this respect, the ratio is preferably 15 to 35%, more preferably 20 to 30%.

全結晶粒界に占めるΣ3対応粒界の割合の測定においては、測定結果の安定性のために、1視野当たり400μm×400μmの面積を5視野測定し、それぞれの視野において全結晶粒界に占めるΣ3対応粒界の割合を求め、5視野の平均値を算出して測定値とする。   In the measurement of the proportion of Σ3 corresponding grain boundaries in all grain boundaries, the area of 400 μm × 400 μm per field of view is measured in five fields of view for the stability of the measurement results, and occupied in all grain boundaries in each field of view The proportion of Σ3 corresponding grain boundaries is determined, and the average value of the five fields of view is calculated and used as the measured value.

EBSD測定における測定条件としては、以下のものを採用することができる。
(a)SEM条件
・ビーム条件:加速電圧15kV、照射電流量5×10-8
・ワークディスタンス:25mm
・観察視野:400μm×400μm
・観察面:圧延面
・観察面の事前処理:リン酸67%+硫酸10%+水の溶液中で15V×60秒の条件で電解研磨して組織を現出
(b)EBSD条件
・測定プログラム:OIM Data Collection
・データ解析プログラム:OIM Analysis(Ver.5.3)
・ステップ幅:0.5μm
The following can be adopted as measurement conditions in EBSD measurement.
(A) SEM conditions-Beam conditions: acceleration voltage 15 kV, irradiation current amount 5 × 10 -8 A
・ Working distance: 25 mm
・ Viewing field: 400 μm × 400 μm
-Observation surface: rolled surface-Pre-treatment of observation surface: Electropolishing in a solution of phosphoric acid 67% + sulfuric acid 10% + water under conditions of 15V x 60 seconds to reveal the structure (b) EBSD condition-Measurement program : OIM Data Collection
-Data analysis program: OIM Analysis (Ver. 5.3)
・ Step width: 0.5μm

(加工硬化指数(n値))
引張試験において試験片を引張り、荷重を負荷すると、弾性限度を越えて最高荷重点に達するまでの塑性変形域では試験片各部は一様に伸びる(均一伸び)。この均一伸びが発生する塑性変形域では真応力σtと真ひずみεtの間には、下記の式(1)の関係が成立し、これをn乗硬化則という。
σt=Kεt n (1)
ここで、式(1)中、nは、加工硬化指数といい(須藤一著、「材料試験法」、内田老鶴圃社、1976年、p.34)、0≦n≦1の値をとる。
(Work hardening index (n value))
When a test piece is pulled in a tensile test and a load is applied, each part of the test piece extends uniformly (uniform elongation) in a plastic deformation area until the maximum load point is reached beyond the elastic limit. In the plastic deformation area which uniform elongation is generated between the true stress sigma t and the true strain epsilon t, relationship is established in the following equation (1), which is referred to n-th power hardening law.
σ t = Kε t n (1)
Here, in the formula (1), n is a work hardening index (Hajime Sudo, “Materials testing method”, Uchida Rohtsurusha, 1976, p. 34), 0 ≦ n ≦ 1. Take.

n乗硬化則の成立する材料では、応力−ひずみ曲線の最高荷重点における真ひずみと加工硬化係数は一致することから、本発明においては、最高荷重点における真ひずみを加工硬化指数(n値)とする(須藤一著、「材料試験法」、内田老鶴圃社、1976年、p.35)。具体的には、後述する0.2%耐力を測定するのと同様の方法で、圧延方向に平行な方向の引張り試験を、JIS Z2241(2011)に従って行い、応力−ひずみ曲線を得る。真ひずみεtは、得られた応力−ひずみ曲線より読み取った最高荷重点における公称ひずみεを、下記の式(2)に代入して算出する。
εt=ln(1+ε) (2)
In materials that satisfy the n-th hardening law, the true strain at the highest load point of the stress-strain curve and the work hardening coefficient coincide, so in the present invention, the true strain at the highest load point is the work hardening index (n value) Toru (Kazuto Sudo, "Materials testing method", Uchida Rohtsurusha, 1976, p. 35). Specifically, a tensile test in a direction parallel to the rolling direction is performed according to JIS Z2241 (2011) by the same method as that for measuring the 0.2% proof stress described later to obtain a stress-strain curve. The true strain ε t is calculated by substituting the nominal strain ε at the highest load point read from the obtained stress-strain curve into the following equation (2).
ε t = ln (1 + ε) (2)

強度、導電率及び曲げ加工性に優れたCu−Ni−Co−Si合金を得る上では、全結晶粒界に占めるΣ3対応粒界の割合を制御すると共に、n値を所定範囲とすることが重要である。Ni/Coが3.5〜30.0を満たすCu−Ni−Co−Si合金では、たたき加工によって加工硬化が生じ、強度が上昇する。このとき、強度は曲げ加工性とトレード・オフの関係にあるため、強度上昇により曲げ加工性は劣化してしまう。たたき加工による強度上昇を抑えるためには、加工硬化指数が小さくなるように制御しておくことが好ましい。具体的には、圧延方向に平行な方向における加工硬化指数(n値)が0.01〜0.07である。n値は、好ましくは0.01〜0.06であり、さらに好ましくは0.01〜0.05である。   In order to obtain a Cu-Ni-Co-Si alloy excellent in strength, conductivity and bending workability, it is possible to control the ratio of Σ3 corresponding grain boundaries to all grain boundaries and to set n value to a predetermined range. is important. In the case of a Cu-Ni-Co-Si alloy in which Ni / Co satisfies 3.5 to 30.0, work hardening occurs by tapping and the strength increases. At this time, since the strength is in a trade-off relationship with the bending processability, the bending processability is deteriorated due to the increase in strength. In order to suppress the increase in strength due to tapping, it is preferable to control so that the work hardening index becomes small. Specifically, the work hardening index (n value) in the direction parallel to the rolling direction is 0.01 to 0.07. The n value is preferably 0.01 to 0.06, more preferably 0.01 to 0.05.

(0.2%耐力)
圧延方向に平行な方向での0.2%耐力は、JIS Z2241(2011)(金属材料引張試験方法)に準拠して測定する。本発明に係るCu−Ni−Co−Si合金においては一実施形態において、圧延方向に平行な方向での0.2%耐力が900MPa以上を達成することができる。好ましくは950MPa以上であり、より好ましくは1000MPa以上である。0.2%耐力の上限値は、特に規制されないが、25%IACS以上の導電率となるには、1100MPa以下であり、典型的には1050MPa以下である。
(0.2% proof stress)
The 0.2% proof stress in the direction parallel to the rolling direction is measured in accordance with JIS Z 2241 (2011) (Metal material tensile test method). In one embodiment, in the Cu-Ni-Co-Si alloy according to the present invention, 0.2% proof stress in a direction parallel to the rolling direction can achieve 900 MPa or more. Preferably it is 950 MPa or more, More preferably, it is 1000 MPa or more. The upper limit value of the 0.2% proof stress is not particularly limited, but in order to achieve a conductivity of 25% IACS or more, it is 1100 MPa or less, and typically 1050 MPa or less.

(導電率)
JIS H0505(1975)に準拠し、4端子法にて測定する。本発明に係るCu−Ni−Co−Si合金においては一実施形態において、導電率が25%IACS以上を達成することができる。好ましくは30%IACS以上であり、より好ましくは35%IACS以上である。導電率の上限値は、特に規制されないが、900MPa以上の0.2%耐力となるには、45%IACS以下であり、典型的には40%IACS以下である。
(conductivity)
Measure according to the 4-terminal method in accordance with JIS H0505 (1975). In one embodiment, the conductivity of the Cu-Ni-Co-Si alloy according to the present invention can achieve 25% IACS or more. It is preferably 30% IACS or more, more preferably 35% IACS or more. The upper limit value of the conductivity is not particularly limited, but is 45% IACS or less, and typically 40% IACS or less in order to obtain a 0.2% proof stress of 900 MPa or more.

(曲げ加工性)
本発明に係るCu−Ni−Co−Si合金は優れた曲げ加工性を有することができる。本発明に係るCu−Ni−Co−Si合金の一実施形態では、たたき加工を模擬した加工度20%の圧延を加えた後に、JIS H3130(2012)に従い、W曲げ試験をBadway方向に曲げ半径(R)/板厚(t)=5.0で行ったときに、曲げ部の外周表面における平均粗さRaが1.0μm以下であるという特性を有する。平均粗さRaはJIS B0601(2013)に準拠して算出する。曲げ加工後にも曲げ部の平均粗さRaが小さいということは、破断を引き起こすおそれのある有害なクラックが曲げ部に入りにくいことを意味する。一般的には曲げ試験前の本発明に係るCu−Ni−Co−Si合金の表面の平均粗さRaは0.2μm以下である。
上述したクラック発生防止の観点から、曲げ部の表面の平均粗さは、0.8μm以下であることが好ましく、特に0.6μm以下であることが一層好適である。一方、特に好ましい下限値は存在しないが、曲げ部の表面の平均粗さは、典型的には0.1μm以上、より典型的には0.2μm以上となる。
(Bendability)
The Cu-Ni-Co-Si alloy according to the present invention can have excellent bending workability. In one embodiment of the Cu-Ni-Co-Si alloy according to the present invention, after applying rolling with a working degree of 20% simulating tapping, according to JIS H3130 (2012), the W bending test is performed in the bending direction in the bending direction. When (R) / plate thickness (t) = 5.0, the average roughness Ra of the outer peripheral surface of the bent portion is 1.0 μm or less. Average roughness Ra is calculated in accordance with JIS B 0601 (2013). The fact that the average roughness Ra of the bent portion is small even after bending means that harmful cracks that may cause breakage are less likely to enter the bent portion. Generally, the average roughness Ra of the surface of the Cu-Ni-Co-Si alloy according to the present invention before the bending test is 0.2 μm or less.
From the viewpoint of preventing the occurrence of cracks described above, the average roughness of the surface of the bent portion is preferably 0.8 μm or less, and particularly preferably 0.6 μm or less. On the other hand, although there is no particularly preferred lower limit value, the average roughness of the surface of the bent portion is typically 0.1 μm or more, more typically 0.2 μm or more.

(用途)
本発明に係るCu−Ni−Co−Si合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明に係るCu−Ni−Co−Si合金は、限定的ではないが、スイッチ、コネクタ、ジャック、端子(特に、バッテリー端子)、リレー等の電子部品における導電材やばね材に好適に使用することができる。これらの電子部品は例えば車載部品や電気・電子機器用部品として使用可能である。
(Use)
The Cu-Ni-Co-Si alloy according to the invention can be processed into various copper products, such as plates, strips, tubes, bars and wires. The Cu-Ni-Co-Si alloy according to the present invention is suitably used as a conductive material or a spring material in electronic parts such as switches, connectors, jacks, terminals (particularly battery terminals), relays, but not limited thereto. be able to. These electronic components can be used, for example, as in-vehicle components or components for electric and electronic devices.

(製造方法)
本発明に係るCu−Ni−Co−Si合金の好適な製造方法の例を工程毎に説明する。
(Production method)
The example of the suitable manufacturing method of the Cu-Ni-Co-Si alloy which concerns on this invention is demonstrated for every process.

<インゴット鋳造>
大気溶解炉を用い、電気銅、Ni、Co、Si等の原料を溶解し、上述したような所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。Ni、Co、Si以外の添加元素はFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、Al及びMnからなる群から選択される一種または二種以上を合計で0〜1.0質量%含有するように添加する。
<Ingot casting>
Raw materials such as electric copper, Ni, Co, Si and the like are melted using an atmospheric melting furnace to obtain a molten metal having a desired composition as described above. Then, the molten metal is cast into an ingot. The additive elements other than Ni, Co and Si may be at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn in total in a total of 0 to 1. It is added to contain 0% by mass.

<均質化焼鈍及び熱間圧延>
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット鋳造後に、900〜1050℃に加熱して3時間〜24時間にわたる均質化焼鈍を行った後、熱間圧延を実施するのが好ましい。熱間圧延では、元厚から全体の圧下率が90%までのパスは700℃以上とするのが好ましい。その後、水冷にて室温まで急速に冷却させる。
<Homogenized annealing and hot rolling>
It is desirable to solidify and segregate and crystallize out of the ingot during the production of the ingot, so as to make it as small as possible in the matrix and to eliminate it as much as possible in the homogenization annealing. This is because it is effective in preventing bending and cracking. Specifically, after ingot casting, it is preferable to carry out hot rolling after heating to 900 to 1050 ° C. and homogenizing annealing for 3 hours to 24 hours. In hot rolling, it is preferable to make the path from the original thickness to the entire rolling reduction to 90% be 700 ° C. or more. Thereafter, it is rapidly cooled to room temperature by water cooling.

<第一熱処理>
熱間圧延後、高温での第一熱処理を実施する。熱間圧延中に析出する粗大な析出物を再度固溶させることで、積層欠陥エネルギーを低下させ、後述の溶体化処理におけるΣ3対応粒界の割合を高くすることができる。第一熱処理の条件は典型的には、850〜900℃で3時間〜24時間、好ましくは850〜900℃で7時間〜20時間、より好ましくは、860〜890℃で7時間〜20時間とし、加熱後は水冷する。この工程を実施しない場合には、溶体化処理及びその後の工程を適切に実施したとしても全結晶粒界に占めるΣ3対応粒界の割合が低くなる。また、850℃未満で第一熱処理をしても同様に低くなる。一方、900℃を超える温度で第一熱処理をすると、Σ3対応粒界の割合は高くなるが、結晶粒径が大きくなるため、曲げ加工性が低下する。
<First heat treatment>
After hot rolling, the first heat treatment at high temperature is performed. By re-solidifying coarse precipitates precipitated during hot rolling, the stacking fault energy can be reduced, and the proportion of 33 corresponding grain boundaries in the solution treatment described later can be increased. The conditions for the first heat treatment are typically from 3 hours to 24 hours at 850 to 900 ° C., preferably from 7 hours to 20 hours at 850 to 900 ° C., more preferably from 7 hours to 20 hours at 860 to 890 ° C. Water cooling after heating. When this step is not performed, the proportion of Σ3 corresponding grain boundaries in all grain boundaries is low even if the solution treatment and the subsequent steps are properly performed. Moreover, it becomes low similarly, even if it carries out 1st heat processing at less than 850 degreeC. On the other hand, when the first heat treatment is performed at a temperature exceeding 900 ° C., although the proportion of Σ3 corresponding grain boundaries becomes high, the crystal grain diameter becomes large, so the bending workability is lowered.

<冷間圧延および第二熱処理>
第一熱処理の後、加工度(圧下率)90%以上、好ましくは93%以上の条件にて冷間圧延を行い、次いで、低温での第二熱処理を実施する。メカニズムは解明できていないが、ここで低温の第二熱処理を加えることで、全結晶粒界に占めるΣ3対応粒界の割合を維持したまま、加工硬化指数を小さくすることができる。第二熱処理の条件は典型的には450〜650℃で1時間〜10時間とし、好ましくは500〜600℃で1時間〜10時間、より好ましくは500〜600℃で3時間〜8時間とし、加熱後は水冷する。この工程を実施しない場合には、溶体化処理及びその後の工程を適切に実施したとしても、加工硬化指数は大きくなる。また、適切な条件で第二熱処理をしない場合も、同様に大きくなる。第二熱処理前の冷間圧延の加工度が小さすぎる場合もまた、加工硬化指数は大きくなる。なお、加工度(%)は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100}で定義される。
<Cold rolling and second heat treatment>
After the first heat treatment, cold rolling is performed at a working degree (rolling reduction) of 90% or more, preferably 93% or more, and then a second heat treatment at a low temperature is performed. Although the mechanism has not been elucidated, by adding a second heat treatment at a low temperature, the work hardening index can be reduced while maintaining the ratio of Σ3 corresponding grain boundaries to all grain boundaries. The conditions for the second heat treatment are typically 450 to 650 ° C. for 1 hour to 10 hours, preferably 500 to 600 ° C. for 1 hour to 10 hours, and more preferably 500 to 600 ° C. for 3 to 8 hours, Water cooling after heating. If this step is not performed, the work hardening index will be large even if the solution treatment and the subsequent steps are properly performed. Moreover, also when not performing 2nd heat processing on appropriate conditions, it becomes large similarly. The work hardening index also increases when the degree of working of cold rolling before the second heat treatment is too small. The degree of processing (%) is defined by {((thickness before rolling−thickness after rolling) / thickness before rolling) × 100}.

<溶体化処理>
その後、溶体化処理を実施する。具体的には、800〜1000℃に加熱して30秒〜10分加熱し、加熱後は水冷する。
<Solution treatment>
Thereafter, solution treatment is performed. Specifically, it is heated to 800 to 1000 ° C., heated for 30 seconds to 10 minutes, and water cooled after heating.

<時効処理>
溶体化処理に引き続いて時効処理を行う。材料温度400〜550℃で5〜25時間加熱することが好ましく、材料温度430〜520℃で10〜20時間加熱することがより好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging treatment>
Aging treatment is performed following solution treatment. Heating at a material temperature of 400 to 550 ° C. for 5 to 25 hours is preferable, and heating at a material temperature of 430 to 520 ° C. for 10 to 20 hours is more preferable. The aging treatment is preferably performed in an inert atmosphere of Ar, N 2 , H 2 or the like in order to suppress the generation of an oxide film.

<最終の冷間圧延>
時効処理に引き続いて最終の冷間圧延を行う。最終の冷間加工によって強度を高めることができるが、本発明において意図されるような強度および曲げ加工性の良好なバランスを得るためには圧下率を5〜40%、好ましくは10〜35%とすることが望ましい。
<Final cold rolling>
A final cold rolling is performed following the aging treatment. The final cold working can increase the strength, but the rolling reduction is 5 to 40%, preferably 10 to 35%, in order to obtain a good balance of strength and bendability as intended in the present invention. It is desirable to

<歪取焼鈍>
最終の冷間圧延に引き続いて、歪取焼鈍を行う。材料温度300〜600℃で1秒〜3600秒にわたって加熱することが好ましく、材料温度300〜400℃で1500秒〜3600秒、材料温度400〜500℃で500秒〜1500秒、材料温度500〜600℃で1秒〜500秒にわたって加熱することがより好ましい。
<Strain relief annealing>
After the final cold rolling, strain relief annealing is performed. It is preferable to heat at a material temperature of 300 to 600 ° C. for 1 second to 3600 seconds, and a material temperature of 300 to 400 ° C. for 1500 seconds to 3600 seconds, a material temperature of 400 to 500 ° C. for 500 seconds to 1500 seconds, a material temperature of 500 to 600 It is more preferable to heat at 1 ° C for 1 second to 500 seconds.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行うことができることは理解できるだろう。   It will be understood by those skilled in the art that processes such as grinding, polishing, shot blasting and pickling for removing oxide scale on the surface can be appropriately performed between the above-described processes.

以下に本発明の実施例を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention are given below together with comparative examples, which are provided to better understand the present invention and its advantages, and are not intended to be limiting.

表1に示す各元素を含有し、残部が銅及び不純物からなる銅合金を、高周波溶解炉にて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを980℃で5時間加熱後、板厚0.93〜10mmまで熱間圧延し、熱間圧延終了後は速やかに冷却した。次いで、表1に示す条件で第一熱処理を行い、直ちに水冷した。その後、表1に示す冷間圧延を行って厚さ0.117mmの板とした。次いで、表1に示す条件の第二熱処理、溶体化処理を行った。その後、450℃で15時間の時効処理、加工度15%の圧延で板厚を0.1mmとし、450℃で1000秒の歪取焼鈍を実施した。   A copper alloy containing each element shown in Table 1 and the balance being copper and impurities was melted at 1300 ° C. in a high frequency melting furnace and cast into an ingot of 30 mm thickness. Then, after heating this ingot at 980 ° C. for 5 hours, it was hot-rolled to a plate thickness of 0.93 to 10 mm, and was rapidly cooled after the completion of hot rolling. Next, the first heat treatment was performed under the conditions shown in Table 1 and immediately water cooled. Thereafter, cold rolling shown in Table 1 was performed to obtain a plate having a thickness of 0.117 mm. Then, the second heat treatment and solution treatment under the conditions shown in Table 1 were performed. Then, the plate thickness was made into 0.1 mm by the aging treatment for 15 hours at 450 degreeC, and rolling with a working degree of 15%, and strain relief annealing for 1000 seconds was implemented at 450 degreeC.

作製した試験片について、次の評価を行った。
(イ)全結晶粒界に占めるΣ3対応粒界の割合
各試験片の板面(圧延面)を電解研磨した後、EBSD測定を実施した。全結晶粒界長さとΣ3対応粒界の長さを求め、その比を算出した。
(ロ)加工硬化指数(n値)
圧延方向と平行な方向の引張り試験を行い、応力−ひずみ曲線を得て、先述した方法によりn値を求めた。
(ハ)0.2%耐力
JIS13B号試験片を作製し、上述した測定方法に従い引張試験機を用いて圧延方向と平行な方向の0.2%耐力を測定した。
(ニ)導電率
JIS H0505(1975)に準拠し、4端子法で導電率(EC:%IACS)を測定した。
(ホ)加工度20%で圧延した後の曲げ部の表面の平均粗さ
各試験片をたたき加工を模して加工度20%(板厚0.08mm)で圧延した後、JIS H3130(2012)に従いW曲げ試験をBadway(曲げ軸が圧延方向と同一方向)、R/t=5.0で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS B0601(2013)に準拠)を測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できず、平均粗さRaはいずれも0.2μm以下であった。曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
The following evaluation was performed about the produced test piece.
(A) Ratio of Σ3 corresponding grain boundary occupying in all grain boundaries After electropolishing the plate surface (rolled surface) of each test piece, EBSD measurement was performed. The total grain boundary length and the length of Σ3 corresponding grain boundary were determined, and the ratio was calculated.
(B) Work hardening index (n value)
A tensile test was conducted in a direction parallel to the rolling direction to obtain a stress-strain curve, and the n value was determined by the method described above.
(Iii) 0.2% proof stress JIS 13B test pieces were prepared, and 0.2% proof stress in a direction parallel to the rolling direction was measured using a tensile tester according to the measurement method described above.
(D) Conductivity In accordance with JIS H0505 (1975), the conductivity (EC:% IACS) was measured by the four-terminal method.
(E) Average roughness of the surface of the bent portion after rolling at a working ratio of 20% After rolling each test piece at a working ratio of 20% (plate thickness 0.08 mm) to simulate striking work, JIS H 3130 (2012 According to the above, W bending test was conducted at Badway (the bending axis is in the same direction as the rolling direction), R / t = 5.0, and the outer peripheral surface of the bending portion of this test piece was observed. As an observation method, the outer peripheral surface of the bent portion was photographed using a confocal microscope HD100 manufactured by Lasertec Corporation, and the average roughness Ra (based on JIS B 0601 (2013)) was measured and compared using the attached software. In addition, when the sample surface before bending was observed using a confocal microscope, the unevenness | corrugation was not able to be confirmed, but average roughness Ra was 0.2 micrometer or less in all. The case where the surface average roughness Ra after bending was 1.0 μm or less was evaluated as ○, and the case where Ra exceeded 1.0 μm was evaluated as x.

表1及び2に示すところから、発明例1〜20はいずれも、各元素を所定量で含有し、所定の範囲を満たす条件で製造したことにより、全結晶粒界に占めるΣ3対応粒界の割合が10〜40%で加工硬化指数が0.01〜0.07であり、0.2%耐力、導電性、曲げ加工性が良好なものとなった。   As shown in Tables 1 and 2, each of Inventive Examples 1 to 20 contains each element in a predetermined amount, and is manufactured under the condition satisfying the predetermined range, so that the Σ3 corresponding grain boundary occupied in all grain boundaries. When the ratio was 10 to 40%, the work hardening index was 0.01 to 0.07, and the 0.2% proof stress, conductivity and bending workability became good.

一方、比較例1〜3は、第一熱処理の温度条件が所定の範囲を外れたこと、または、第一熱処理を行わなかったことにより、Σ3対応粒界の割合が所定の範囲内とはならず、その結果として、曲げ加工性が悪化した。
比較例4は第一熱処理後の冷間圧延の加工度が小さく、比較例5、6は所定の範囲を外れる温度条件で第二熱処理を行い、比較例7は第二熱処理を行わなかったことにより、いずれの比較例4〜7でも加工硬化指数が所定の範囲を外れ、曲げ加工性が悪化した。
On the other hand, in Comparative Examples 1 to 3, if the temperature condition of the first heat treatment is out of the predetermined range, or the first heat treatment is not performed, the ratio of the Σ3 corresponding grain boundary is within the predetermined range. As a result, bending workability deteriorated.
In Comparative Example 4, the degree of working of cold rolling after the first heat treatment is small, and in Comparative Examples 5 and 6, the second heat treatment is performed under temperature conditions outside the predetermined range, and in Comparative Example 7, the second heat treatment is not performed. As a result, in any of Comparative Examples 4 to 7, the work hardening index was out of the predetermined range, and the bending workability deteriorated.

比較例8、9はNiの含有量に起因して、比較例8では強度が低下し、また比較例9では試験片を製造することができなかった。   In Comparative Examples 8 and 9, the strength was reduced in Comparative Example 8 due to the content of Ni, and in Comparative Example 9, test pieces could not be produced.

比較例10、11については、Coの含有量に起因して、比較例10では曲げ加工性及びΣ3対応粒界の割合が、また比較例11では導電性および曲げ加工性が悪化した。比較例12、13は、Ni/Coの比が所定の範囲外であったことから、曲げ加工性及びΣ3対応粒界の割合が悪化した。比較例14、15は、(Ni+Co)/Siの比が小さすぎるか又は大きすぎたことにより、強度ないし導電率が低下した。比較例16は、所定量を超えて添加元素を含有させたことにより導電率が低下した。
比較例17は特許文献1、比較例18は特許文献2に記載の工程に従ってそれぞれ製造したものであるが、Σ3対応粒界の割合が40%より高くなり、曲げ加工性が悪化した。
In Comparative Examples 10 and 11, the bending workability and the ratio of the Σ3 corresponding grain boundary in Comparative Example 10 and the conductivity and bending workability in Comparative Example 11 were deteriorated due to the content of Co. In Comparative Examples 12 and 13, since the ratio of Ni / Co was outside the predetermined range, the bending workability and the ratio of the Σ3 corresponding grain boundary were deteriorated. In Comparative Examples 14 and 15, the strength or the conductivity decreased due to the ratio (Ni + Co) / Si being too small or too large. In Comparative Example 16, the conductivity decreased due to the addition of the additive element in excess of the predetermined amount.
Comparative Example 17 was produced according to the process described in Patent Document 1 and Comparative Example 18 according to the process described in Patent Document 2, but the proportion of Σ3 corresponding grain boundaries became higher than 40%, and the bending workability deteriorated.

Claims (8)

3.0〜5.0質量%のNiおよび、0.1〜1.0質量%のCoを含有し、Coに対するNiの質量比(Ni/Co)が3.5〜30.0であり、Siを(Ni+Co)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなり、全結晶粒界に占めるΣ3対応粒界の割合が10〜40%であり、かつ、加工硬化指数が0.01〜0.07である電子部品用Cu−Ni−Co−Si合金。   3.0 to 5.0% by mass of Ni and 0.1 to 1.0% by mass of Co, and the mass ratio of Ni to Co (Ni / Co) is 3.5 to 30.0, Si is contained such that the mass ratio of (Ni + Co) / Si is 3 to 5, the balance is Cu and unavoidable impurities, and the ratio of Σ3 corresponding grain boundaries to all grain boundaries is 10 to 40%. And the Cu-Ni-Co-Si alloy for electronic components whose work-hardening index is 0.01-0.07. 更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有する請求項1に記載のCu−Ni−Co−Si合金。   The Cu-Ni according to claim 1, further comprising at most 1.0 mass% in total of at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn. Co-Si alloy. 圧延方向に平行な方向での0.2%耐力が900MPa以上であり、導電率が25%IACS以上である請求項1又は2に記載のCu−Ni−Co−Si合金。   The Cu-Ni-Co-Si alloy according to claim 1 or 2, wherein 0.2% proof stress in a direction parallel to the rolling direction is 900 MPa or more and conductivity is 25% IACS or more. 加工度20%で圧延した後の曲げ半径(R)/板厚(t)=5.0として、曲げ軸が圧延方向と同一方向のBadwayでW曲げ試験をしたときの曲げ部表面の平均粗さRaが1.0μm以下である請求項1〜3の何れか一項に記載のCu−Ni−Co−Si合金。   The average roughness of the surface of the bending portion when the bending axis is subjected to W bending test in the same direction as the rolling direction as bending radius (R) / plate thickness (t) = 5.0 after rolling at a working ratio of 20% The Cu-Ni-Co-Si alloy according to any one of claims 1 to 3, wherein the thickness Ra is 1.0 μm or less. 3.0〜5.0質量%のNiおよび、0.1〜1.0質量%のCoを含有し、Coに対するNiの質量比(Ni/Co)が3.5〜30.0であり、Siを(Ni+Co)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなるCu−Ni−Co−Si合金のインゴットを鋳造する工程と、均質化焼鈍を施す工程と、熱間圧延を施す工程と、850〜900℃で3〜24時間にわたって第一熱処理を施す工程と、加工度90%以上の冷間圧延を施す工程と、450〜650℃で1〜10時間の第二熱処理を施す工程と、溶体化処理を施す工程と、時効処理を施す工程と、最終冷間圧延を施す工程とをこの順序で行うことを含み、
全結晶粒界に占めるΣ3対応粒界の割合が10〜40%であり、かつ、加工硬化指数が0.01〜0.07である電子部品用Cu−Ni−Co−Si合金を製造する、電子部品用Cu−Ni−Co−Si合金の製造方法。
3.0 to 5.0% by mass of Ni and 0.1 to 1.0% by mass of Co, and the mass ratio of Ni to Co (Ni / Co) is 3.5 to 30.0, A process of casting an ingot of a Cu-Ni-Co-Si alloy containing Si at a mass ratio of (Ni + Co) / Si of 3 to 5 and the balance being Cu and unavoidable impurities, and homogenization annealing Applying, hot rolling, first heat treatment at 850 to 900 ° C. for 3 to 24 hours, cold rolling at a working degree of 90% or more, and 450 to 650 ° C. seen containing a step of performing a second heat treatment of 10 hours, a step of performing solution heat treatment, a step of performing an aging treatment, and a step of subjecting the final cold rolling to be performed in this order,
Producing a Cu-Ni-Co-Si alloy for electronic parts, wherein the proportion of Σ3 corresponding grain boundaries in total grain boundaries is 10 to 40%, and the work hardening index is 0.01 to 0.07 . The manufacturing method of the Cu-Ni-Co-Si alloy for electronic components.
Cu−Ni−Co−Si合金が、更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有する、請求項5に記載のCu−Ni−Co−Si合金の製造方法。   The Cu-Ni-Co-Si alloy further contains at most 1.0 mass% in total of at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn. The manufacturing method of the Cu-Ni-Co-Si alloy according to claim 5. 請求項1〜4の何れか一項に記載のCu−Ni−Co−Si合金を備えた伸銅品。   A copper alloy product comprising the Cu-Ni-Co-Si alloy according to any one of claims 1 to 4. 請求項1〜4の何れか一項に記載のCu−Ni−Co−Si合金を備えた電子部品。   The electronic component provided with the Cu-Ni-Co-Si alloy as described in any one of Claims 1-4.
JP2017043100A 2017-03-07 2017-03-07 Cu-Ni-Co-Si alloy for electronic parts Active JP6522677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043100A JP6522677B2 (en) 2017-03-07 2017-03-07 Cu-Ni-Co-Si alloy for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043100A JP6522677B2 (en) 2017-03-07 2017-03-07 Cu-Ni-Co-Si alloy for electronic parts

Publications (2)

Publication Number Publication Date
JP2018145495A JP2018145495A (en) 2018-09-20
JP6522677B2 true JP6522677B2 (en) 2019-05-29

Family

ID=63589627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043100A Active JP6522677B2 (en) 2017-03-07 2017-03-07 Cu-Ni-Co-Si alloy for electronic parts

Country Status (1)

Country Link
JP (1) JP6522677B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7648724B1 (en) 2023-12-07 2025-03-18 Jx金属株式会社 Copper alloys and electronic parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961335B2 (en) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
JP6205105B2 (en) * 2011-04-18 2017-09-27 Jx金属株式会社 Cu-Ni-Si based alloy for electronic material, Cu-Co-Si based alloy and method for producing the same
JP6821290B2 (en) * 2015-03-19 2021-01-27 Jx金属株式会社 Cu-Ni-Co-Si alloy for electronic components
JP6730784B2 (en) * 2015-03-19 2020-07-29 Jx金属株式会社 Cu-Ni-Co-Si alloy for electronic parts

Also Published As

Publication number Publication date
JP2018145495A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP2010126783A (en) Copper alloy sheet or strip for electronic material
JP2009263784A (en) Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL
KR101866129B1 (en) Copper alloy for electronic materials
JP2009242890A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4087307B2 (en) High strength and high conductivity copper alloy with excellent ductility
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2013204140A (en) Titanium copper
JP2019077889A (en) Copper alloy for electronic material
JP6522677B2 (en) Cu-Ni-Co-Si alloy for electronic parts
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP2016176106A (en) Cu-Ni-Co-Si alloy for electronic parts
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP6310004B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211077A (en) Titanium copper
JP2010236029A (en) Cu-Si-Co alloy for electronic materials and method for producing the same
JP7311651B1 (en) Copper alloys for electronic materials and electronic parts
JP2019077890A (en) Copper alloy for electronic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250