[go: up one dir, main page]

JP6520688B2 - Magnetic sheet - Google Patents

Magnetic sheet Download PDF

Info

Publication number
JP6520688B2
JP6520688B2 JP2015244175A JP2015244175A JP6520688B2 JP 6520688 B2 JP6520688 B2 JP 6520688B2 JP 2015244175 A JP2015244175 A JP 2015244175A JP 2015244175 A JP2015244175 A JP 2015244175A JP 6520688 B2 JP6520688 B2 JP 6520688B2
Authority
JP
Japan
Prior art keywords
magnetic
sheet
particles
alloy
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015244175A
Other languages
Japanese (ja)
Other versions
JP2017112173A (en
Inventor
謙一郎 松野
謙一郎 松野
良浩 本荘
良浩 本荘
良太 内山
良太 内山
篤人 松川
篤人 松川
櫻井 康弘
康弘 櫻井
芳雄 矢田
芳雄 矢田
伊藤 守
守 伊藤
琢 村▲瀬▼
琢 村▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015244175A priority Critical patent/JP6520688B2/en
Priority to CN201611158254.1A priority patent/CN107025973B/en
Publication of JP2017112173A publication Critical patent/JP2017112173A/en
Application granted granted Critical
Publication of JP6520688B2 publication Critical patent/JP6520688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、たとえば磁気シールドとして用いられる磁性シートに関する。   The present invention relates to a magnetic sheet used, for example, as a magnetic shield.

磁化物体等の磁界発生源が他の物体や電気回路等に影響を与えないようにするために、磁気シールド材が用いられている。磁気シールド材としては高透磁率の金属板がシールド特性からは望ましいが、金属板は性質・コストなどの面で用途が著しく制限される。   A magnetic shield material is used to prevent a magnetic field source such as a magnetized object from affecting other objects, electric circuits, and the like. As a magnetic shielding material, a metal plate of high permeability is desirable from the viewpoint of shielding characteristics, but the metal plate is extremely limited in applications in terms of properties and cost.

一方、磁性粉末材料を、有機結合剤に分散して塗料の形でシールドの必要な個所に塗布して磁性シートを形成したり、あるいは適当な可撓性支持体などに塗布して磁気シールド用磁性シートとしたり、様々な利用が可能である。   On the other hand, a magnetic powder material is dispersed in an organic binder and applied in the form of a paint to a required portion of a shield to form a magnetic sheet, or applied to an appropriate flexible support or the like for a magnetic shield. It can be made into a magnetic sheet and various uses are possible.

このような磁性シートでは、表面抵抗が高いことが求められる。そのため、たとえば下記の特許文献1では、偏平な磁性粒子の表面に無機絶縁物を付着させることが提案されている。   Such a magnetic sheet is required to have a high surface resistance. Therefore, for example, Patent Document 1 below proposes that an inorganic insulator be attached to the surface of a flat magnetic particle.

しかしながら、従来の技術では、偏平な磁性粒子の表面に無機絶縁物を付着させるために、磁気特性が劣化する可能性がある。また、従来では、偏平な磁性粒子の表面に無機絶縁物を付着させるための工程が煩雑であると共に、無機絶縁物としてガラス(アモルファス)を用いていることから、偏平処理の長時間化や設備や装置の摩耗といった問題もある。   However, in the prior art, the magnetic properties may be degraded because the inorganic insulator is attached to the surface of the flat magnetic particles. Also, conventionally, the process for attaching the inorganic insulator to the surface of the flat magnetic particles is complicated, and since glass (amorphous) is used as the inorganic insulator, it takes a long time for flat treatment and equipment And wear of the device.

特許第5384711号公報Patent No. 5384711 gazette

本発明は、このような実状に鑑みてなされ、その目的は、製造が容易でありながら、磁気特性に優れ、しかもシート表面抵抗が高い磁性シートを提供することである。   The present invention has been made in view of such circumstances, and an object thereof is to provide a magnetic sheet which is excellent in magnetic properties and high in sheet surface resistance while being easy to manufacture.

上記目的を達成するために、本発明に係る磁性シートは、
偏平な磁性体粒子が合成樹脂中に分散してある磁性シートであって、
前記偏平な磁性体粒子が、Fe−Si−Cr系合金磁性体、Fe−Si−Al−Cr系系合金磁性体およびFe−Al−Cr系合金磁性体の内の少なくともいずれかであり、
前記偏平な磁性体粒子の表面には、長手方向の長さが0.4μm以上のCrの偏析物が前記磁性体粒子の表面内部に含まれて存在し、
前記磁性体シートの表面または断面において、任意の10μm×10μmの視野内に、前記Crの偏析物が5つ以上観察されることを特徴とする。
In order to achieve the above object, the magnetic sheet according to the present invention is
A magnetic sheet in which flat magnetic particles are dispersed in a synthetic resin,
The flat magnetic particles are at least one of an Fe-Si-Cr alloy magnetic material, an Fe-Si-Al-Cr alloy magnetic material, and an Fe-Al-Cr alloy magnetic material,
On the surface of the flat magnetic particles, a segregated substance of Cr having a length in the longitudinal direction of 0.4 μm or more is contained in the surface of the magnetic particles,
In the surface or cross section of the magnetic material sheet, five or more of the Cr segregants are observed within an arbitrary 10 μm × 10 μm field of view.

本発明に係る磁性シートでは、もともと磁性体粒子に含まれるCrを磁性体粒子の表面に所定長さ以上で偏析させ、そのCrの偏析物を5つ以上となるように制御している。そのため、無機絶縁物を磁性体粒子とは別に用意して付着させる必要がなく、製造が容易でありながら、磁気特性に優れ、しかもシート表面抵抗が高い磁性シートを提供することができる。   In the magnetic sheet according to the present invention, Cr originally contained in the magnetic particles is segregated on the surface of the magnetic particles for a predetermined length or more, and the segregation of Cr is controlled to be 5 or more. Therefore, it is not necessary to prepare and attach the inorganic insulator separately from the magnetic particles, and it is possible to provide a magnetic sheet which is excellent in magnetic properties and high in sheet surface resistance while being easy to manufacture.

好ましくは、前記Crの偏析物の短手方向の長さを長手方向の長さで割り算したアスペクト比が0.3以下である。アスペクト比が所定以下の偏析物であることで、磁気特性に優れ、しかもシート表面抵抗が高い磁性シートを提供することができる。   Preferably, an aspect ratio obtained by dividing the length in the short direction of the Cr segregated material by the length in the longitudinal direction is 0.3 or less. By being a segregant having an aspect ratio of a predetermined value or less, it is possible to provide a magnetic sheet having excellent magnetic properties and high sheet surface resistance.

好ましくは、前記偏平な磁性体粒子の短手方向の長さを長手方向の長さで割り算したアスペクト比が0.3以下である。アスペクト比が所定以下の磁性体粒子であることで、シートの厚みを薄くしても、磁気特性に優れ、しかもシート表面抵抗が高い磁性シートを提供することができる。   Preferably, an aspect ratio obtained by dividing the length in the short direction of the flat magnetic particles by the length in the longitudinal direction is 0.3 or less. By using magnetic particles having an aspect ratio of a predetermined value or less, it is possible to provide a magnetic sheet having excellent magnetic properties and high sheet surface resistance even if the thickness of the sheet is reduced.

図1は本発明の一実施形態に係る磁性シートの拡大断面図である。FIG. 1 is an enlarged cross-sectional view of a magnetic sheet according to an embodiment of the present invention. 図2は図1に示すII部の要部拡大断面図(EPMA像の概略図)である。FIG. 2 is an enlarged sectional view of an essential part of a part II of FIG.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

図1および図2に示すように、本発明の一実施形態に係る磁性シート2は、偏平な磁性体粒子4が合成樹脂8中に分散してある磁性シートである。偏平な磁性体粒子4は、シート2の中で、シート2の面方向に粒子4の長手方向が略一致するように配向してある。   As shown in FIGS. 1 and 2, the magnetic sheet 2 according to an embodiment of the present invention is a magnetic sheet in which flat magnetic particles 4 are dispersed in a synthetic resin 8. The flat magnetic particles 4 are oriented in the sheet 2 so that the longitudinal direction of the particles 4 substantially coincides with the surface direction of the sheet 2.

合成樹脂8としては、特に限定されないが、ウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、セルロース樹脂、エポキシ樹脂、フェノール樹脂、アミド樹脂などの熱可塑性樹脂、熱硬化性樹脂、放射線硬化性樹脂などが例示される。   The synthetic resin 8 is not particularly limited, but urethane resin, polyester resin, polyethylene resin, cellulose resin, epoxy resin, phenol resin, thermoplastic resin such as amide resin, thermosetting resin, radiation curable resin, etc. are exemplified. Ru.

偏平な磁性体粒子4は、Fe−Si−Cr系合金磁性体、Fe−Si−Al−Cr系系合金磁性体およびFe−Al−Cr系合金磁性体の内の少なくともいずれかである。磁性シート2中における磁性体粒子4の充填率は、60〜95wt%であることが好ましい。   The flat magnetic particles 4 are at least one of an Fe-Si-Cr alloy magnetic material, an Fe-Si-Al-Cr alloy magnetic material, and an Fe-Al-Cr alloy magnetic material. The filling ratio of the magnetic particles 4 in the magnetic sheet 2 is preferably 60 to 95 wt%.

Fe−Si−Cr系合金磁性体としては、特に限定されないが、Fe−Si−Cr系合金磁性体の組成をFea1Sib1Crc1d1と表した場合に、下記の式が成り立つ。a1=53〜85、b1=15〜35、c1=0.1〜6、d1=0.1〜6である。 The Fe-Si-Cr alloy magnetic body is not particularly limited, but when the composition of the Fe-Si-Cr alloy magnetic body is represented as Fe a1 Si b1 Cr c1 X d1 , the following equation holds. It is a1 = 53-85, b1 = 15-35, c1 = 0.1-6, d1 = 0.1-6.

ただし、XはFe,Si,Cr以外の1つ以上のその他の元素であり、a1,b1,c1,d1はそれらの元素の原子%比であり、a1+b1+c1+d1=100である。その他の元素Xとしては、特に限定されないが、たとえば遷移金属元素等の各種金属元素や半金属元素などから、必要に応じて選択することができる。なお、その他の元素Xには、磁気特性に悪影響を与えない限り、N、O、S等の不可避的不純物が含有されていてもよい。   However, X is one or more other elements other than Fe, Si and Cr, and a1, b1, c1 and d1 are atomic% ratios of these elements, and a1 + b1 + c1 + d1 = 100. The other element X is not particularly limited, but can be selected from, for example, various metal elements such as transition metal elements and metalloid elements as needed. The other elements X may contain unavoidable impurities such as N, O, and S as long as the magnetic properties are not adversely affected.

Fe−Si−Al−Cr系合金磁性体としては、特に限定されないが、Fe−Si−Al−Cr系合金磁性体の組成をFea2Sib2Ale2Crc2d2と表した場合に、下記の式が成り立つ。a2=53〜85、b2=15〜35、e2=15〜35、c2=0.1〜6、d2=0.1〜6である。 The Fe-Si-Al-Cr alloy magnetic body is not particularly limited, but when the composition of the Fe-Si-Al-Cr alloy magnetic body is represented as Fe a2 Si b2 Al e2 Cr c2 X d2 , The following equation holds. It is a2 = 53-85, b2 = 15-35, e2 = 15-35, c2 = 0.1-6, d2 = 0.1-6.

ただし、XはFe,Si,Cr,Al以外の1つ以上のその他の元素であり、a2,b2,e2,c2,d2はそれらの元素の原子%比であり、a2+b2+e2+c2+d2=100である。その他の元素Xとしては、特に限定されないが、たとえば遷移金属元素等の各種金属元素や半金属元素などから、必要に応じて選択することができる。なお、その他の元素Xには、磁気特性に悪影響を与えない限り、N、O、S等の不可避的不純物が含有されていてもよい。   However, X is one or more other elements other than Fe, Si, Cr, and Al, and a2, b2, e2, c2, d2 are atomic% ratios of those elements, and a2 + b2 + e2 + c2 + d2 = 100. The other element X is not particularly limited, but can be selected from, for example, various metal elements such as transition metal elements and metalloid elements as needed. The other elements X may contain unavoidable impurities such as N, O, and S as long as the magnetic properties are not adversely affected.

Fe−Al−Cr系合金磁性体としては、特に限定されないが、Fe−Al−Cr系合金磁性体の組成をFea3Ale3Crc3d3と表した場合に、下記の式が成り立つ。a3=53〜85、e3=15〜35、c3=0.1〜6、d3=0.1〜6である。 The Fe-Al-Cr alloy magnetic body is not particularly limited, but when the composition of the Fe-Al-Cr alloy magnetic body is represented as Fe a3 Al e3 Cr c3 X d3 , the following equation holds. It is a3 = 53-85, e3 = 15-35, c3 = 0.1-6, d3 = 0.1-6.

ただし、XはFe,Si,Cr以外の1つ以上のその他の元素であり、a3,e3,c3,d3はそれらの元素の原子%比であり、a3+e3+c3+d3=100である。その他の元素Xとしては、特に限定されないが、たとえば遷移金属元素等の各種金属元素や半金属元素などから、必要に応じて選択することができる。なお、その他の元素Xには、磁気特性に悪影響を与えない限り、N、O、S等の不可避的不純物が含有されていてもよい。   However, X is one or more other elements other than Fe, Si and Cr, and a3, e3, c3 and d3 are atomic% ratios of those elements, and a3 + e3 + c3 + d3 = 100. The other element X is not particularly limited, but can be selected from, for example, various metal elements such as transition metal elements and metalloid elements as needed. The other elements X may contain unavoidable impurities such as N, O, and S as long as the magnetic properties are not adversely affected.

偏平な磁性体粒子4の表面には、長手方向の長さが0.4μm以上のCrの偏析物8が磁性体粒子4の表面内部に含まれて存在する。磁性粒子4のアスペクト比は、磁性体粒子4の短手方向の長さL1を長手方向の長さL0で割り算した値であり、本実施形態では、そのアスペクト比が0.3以下である。磁性体粒子4のアスペクト比の下限は、特に限定されないが、好ましくは0.002以上である。また、磁性体粒子4の長手方向の長さL0は、好ましくは5〜60μmである。   On the surface of the flat magnetic particles 4, segregated substances 8 of Cr having a length of 0.4 μm or more in the longitudinal direction are contained in the surface of the magnetic particles 4. The aspect ratio of the magnetic particles 4 is a value obtained by dividing the length L1 in the short direction of the magnetic particles 4 by the length L0 in the longitudinal direction, and in the present embodiment, the aspect ratio is 0.3 or less. The lower limit of the aspect ratio of the magnetic particles 4 is not particularly limited, but is preferably 0.002 or more. The length L0 of the magnetic particles 4 in the longitudinal direction is preferably 5 to 60 μm.

Crの偏析物8のアスペクトは、磁性体粒子4と同様にして定義され、その短手方向の長さを長手方向の長さで割り算した値であり、そのアスペクト比が0.3以下であることが好ましい。Crの偏析物8のアスペクトの下限は、特に限定されないが、好ましくは0.002以上である。また、Crの偏析物8の長手方向の長さは、好ましくは0.4〜20μmであり、磁性体粒子4の長手方向の長さL0の1/200〜1/2である。   The aspect of the segregation 8 of Cr is defined in the same manner as the magnetic particles 4 and is the value obtained by dividing the length in the short direction by the length in the longitudinal direction, and the aspect ratio is 0.3 or less Is preferred. The lower limit of the aspect of the segregation 8 of Cr is not particularly limited, but is preferably 0.002 or more. The length in the longitudinal direction of the Cr segregation 8 is preferably 0.4 to 20 μm, and is 1/200 to 1/2 of the length L0 in the longitudinal direction of the magnetic particles 4.

Crの偏析物8は、磁性体粒子4に含まれるCrが粒子4の表面に析出して偏在したものと考えられ、たとえば磁性体粒子4を偏平処理した後の熱処理条件を特定の条件に選択することで得られる。本実施形態では、磁性体シート2の表面または断面において、任意の10μm×10μmの視野内に、Crの偏析物が5つ以上観察されることが好ましい。このような範囲で偏析物が観察される磁性シートでは、製造が容易でありながら、磁気特性に優れ、しかもシート表面抵抗が向上する。なお、観察されるCrの偏析物の数の上限は特に限定されないが、好ましくは100以下である。   It is considered that Cr contained in the magnetic particles 4 is deposited on the surface of the particles 4 and segregated on the surface of the particles 4. For example, heat treatment conditions after flattening the magnetic particles 4 are selected as specific conditions It is obtained by doing. In the present embodiment, it is preferable that, in the surface or the cross section of the magnetic sheet 2, five or more segregated substances of Cr are observed within an arbitrary 10 μm × 10 μm field of view. In the magnetic sheet in which the segregated matter is observed in such a range, the manufacture is easy, the magnetic properties are excellent, and the sheet surface resistance is improved. The upper limit of the number of Cr segregated substances to be observed is not particularly limited, but is preferably 100 or less.

本実施形態に係る磁性シート2では、もともと磁性体粒子4に含まれるCrを磁性体粒子4の表面に所定長さ以上で析出させている。そのため、無機絶縁物を磁性体粒子とは別に用意して付着させる必要がなく、製造が容易でありながら、磁気特性に優れ、しかもシート表面抵抗が高い磁性シート2を提供することができる。シート表面抵抗が、1.0E+06(1×10)Ω以上の磁性シート2を、容易に得ることができる。 In the magnetic sheet 2 according to the present embodiment, Cr originally contained in the magnetic particles 4 is deposited on the surface of the magnetic particles 4 with a predetermined length or more. Therefore, it is not necessary to prepare and attach an inorganic insulator separately from the magnetic particles, and it is possible to provide the magnetic sheet 2 which is excellent in magnetic characteristics and high in sheet surface resistance while being easy to manufacture. A magnetic sheet 2 having a sheet surface resistance of 1.0E + 06 (1 × 10 6 ) Ω or more can be easily obtained.

本実施形態では、磁性体粒子4のアスペクト比が0.3以下である。アスペクト比が所定以下の磁性体粒子4であることで、磁性シート2の厚みを薄くしても、シート化しやすいと共に、磁気特性に優れ、しかもシート表面抵抗が高い磁性シート2を提供することができる。磁性シート2の厚みは、特に限定されないが、好ましくは50〜100μmである。   In the present embodiment, the aspect ratio of the magnetic particles 4 is 0.3 or less. By providing magnetic particles 4 having an aspect ratio of a predetermined value or less, it is possible to easily form a sheet even if the thickness of magnetic sheet 2 is reduced, and to provide magnetic sheet 2 having excellent magnetic properties and high sheet surface resistance. it can. The thickness of the magnetic sheet 2 is not particularly limited, but preferably 50 to 100 μm.

本実施形態の磁性シート2は、たとえば磁気シールドの用途に用いられるが、その他の用途としては、ノイズフィルター、電波吸収体などが例示される。   The magnetic sheet 2 of the present embodiment is used, for example, for the use of a magnetic shield, but as other uses, a noise filter, a radio wave absorber, and the like are exemplified.

本実施形態の磁性シート2は、たとえば以下のようにして製造される。まず、上述した組成を有する合金粒子を偏平化して偏平状の磁性体粒子4を得る。合金粒子の製造は、合金溶湯の急冷や合金インゴットの粉砕により行なえばよく、その方法に特に制限はない。 合金溶湯を急冷する方法に特に制限はないが、粉砕工程なしで所望の粒径の合金粒子が得られて生産性が高いことから、水アトマイズ法を用いることが好ましい。   The magnetic sheet 2 of the present embodiment is manufactured, for example, as follows. First, the alloy particles having the above-described composition are flattened to obtain flat magnetic particles 4. The production of the alloy particles may be performed by quenching the molten alloy or crushing of the alloy ingot, and the method is not particularly limited. The method for quenching the molten alloy is not particularly limited, but it is preferable to use the water atomization method because alloy particles having a desired particle diameter can be obtained without the grinding step and the productivity is high.

水アトマイズ法は、合金溶湯に高圧水を噴射して凝固・粉末化した後、水中で冷却するものであり、その詳細は、例えば、特願平1−12267号に記載されている。   In the water atomizing method, high-pressure water is injected into a molten alloy to solidify and pulverize it, and then it is cooled in water, the details of which are described in, for example, Japanese Patent Application No. 1-12267.

水アトマイズ法の他、溶湯を冷却基体に衝突させて、薄帯状や薄片状、あるいは粒状の合金を得る方法を用いてもよい。このような方法としては、片ロール法や双ロール法、あるいはアトマイズ法が挙げられる。これらの方法では、得られた急冷合金を必要に応じて粉砕し、所望の粒径の合金粒子とすればよい。   Instead of the water atomization method, a method may be used in which a molten metal is made to collide with a cooling substrate to obtain a thin strip, flake, or granular alloy. Such methods include a single roll method, a double roll method, or an atomization method. In these methods, the obtained quenched alloy may be crushed as needed to obtain alloy particles of a desired particle size.

合金インゴットの粉砕により合金粒子を製造する場合、インゴットに容体化処理を施した後、粉砕することが好ましい。   In the case of producing alloy particles by crushing of an alloy ingot, it is preferable that the ingot be subjected to a solution treatment and then crushed.

合金粒子の平均粒径は、目的とする偏平状軟磁性粒子の粒径やアスペクト比に応じて適宜決定すればよいが、通常、重量平均粒径D50で5〜30μm、好ましくは7〜20μmとすればよい。   The average particle size of the alloy particles may be suitably determined in accordance with the particle size and aspect ratio of the intended flat soft magnetic particles, but usually, the weight average particle size D50 is 5 to 30 μm, preferably 7 to 20 μm. do it.

なお、合金粒子には、結晶構造を整えるための熱処理が施されることが好ましい。偏平化前の合金粒子に施される熱処理の際の保持温度および温度保持時間は、100〜600°Cにて10分間〜10時間とすることが好ましい。より好ましい熱処理条件は、300〜500℃にて30分間〜2時間である。   The alloy particles are preferably subjected to a heat treatment for adjusting the crystal structure. The holding temperature and temperature holding time at the time of heat treatment applied to the alloy particles before flattening are preferably 10 minutes to 10 hours at 100 to 600 ° C. More preferable heat treatment conditions are at 300 to 500 ° C. for 30 minutes to 2 hours.

合金粒子を偏平化する手段に特に制限はなく、所望の偏平化が可能であればどのような手段を用いてもよい。   There are no particular limitations on the means for flattening the alloy particles, and any means may be used as long as the desired flattening is possible.

ただし、本実施形態では、主として劈開により合金粒子の偏平化が進行するので、劈開を効率よく行なえる手段を用いることが好ましい。   However, in the present embodiment, since flattening of the alloy particles proceeds mainly by cleavage, it is preferable to use a means capable of efficiently performing cleavage.

このような手段としては、媒体撹拌ミル、転動ボールミル等が挙げられ、これらのうち、特に媒体撹拌ミルを用いることが好ましい。   As such means, a medium stirring mill, a rolling ball mill, etc. may be mentioned, and among these, it is particularly preferable to use a medium stirring mill.

媒体撹拌ミルは、ピン型ミル、ビーズミルあるいはアジテーターボールミルとも称される撹拌機であり、例えば特開昭61−259739号公報、特願平1−12267号などに記載されている。   The medium stirring mill is a stirrer also referred to as a pin type mill, a bead mill or an agitator ball mill, and is described, for example, in JP-A-61-259739, JP-A-1-12267, and the like.

このようにして得られた偏平状軟磁性粒子には、熱処理が施されることが好ましい。この熱処理の際の保持温度は、390〜550°Cにて20分〜4時間とすることが好ましい。また、より好ましい熱処理の保持温度は、390〜500°Cである。保持時間は、特に限定されないが、好ましくは30分〜3時間である。   The flat soft magnetic particles thus obtained are preferably subjected to a heat treatment. It is preferable to make holding temperature in the case of this heat processing into 390 to 550 degreeC for 20 minutes-4 hours. Moreover, the holding | maintenance temperature of more preferable heat processing is 390-500 degreeC. The holding time is not particularly limited, but preferably 30 minutes to 3 hours.

本実施形態では、上記の温度範囲とすると共に、特に、昇温速度と降温速度が重要であり、100°Cからの昇温速度は、好ましくは5〜50°C/分、さらに好ましくは10〜50°C/分である。また、100°Cまでの降温速度は、好ましくは2〜20°C/分、さらに好ましくは5〜20°C/分である。   In the present embodiment, the temperature rise rate and the temperature drop rate are particularly important as well as the above temperature range, and the temperature rise rate from 100 ° C. is preferably 5 to 50 ° C./min, more preferably 10 50 ° C / min. In addition, the temperature lowering rate up to 100 ° C. is preferably 2 to 20 ° C./min, more preferably 5 to 20 ° C./min.

さらに、本実施形態では、いったん真空度を0.1Pa未満にしてから、不活性ガスを導入して、酸素濃度を1×10−8〜0.01Paとして、熱処理(昇温、保持および降温の全行程)することが好ましい。不活性ガスとしては、窒素、アルゴン、ヘリウム、二酸化炭素などが例示される。 Furthermore, in the present embodiment, once the degree of vacuum is less than 0.1 Pa, an inert gas is introduced to set the oxygen concentration to 1 × 10 −8 to 0.01 Pa, and heat treatment (temperature rise, retention and temperature decrease It is preferable to do the whole process). Examples of the inert gas include nitrogen, argon, helium and carbon dioxide.

このような熱処理条件、すなわち急冷でクエンチに近い熱処理により、熱処理保持時間中に形成されたCrの偏析状態が室温でも熱処理保持時と近い状態で保たれ、偏平な磁性体粒子4の表面に所定数以上のCrを析出させることができると考えられる。なお、この熱処理は、磁場中にて行なわれてもよい。   Under such heat treatment conditions, that is, heat treatment close to quenching by quenching, the segregated state of Cr formed during heat treatment holding time is kept close to that during heat treatment holding even at room temperature, and predetermined on the surface of flat magnetic particles 4. It is believed that several or more Cr can be deposited. The heat treatment may be performed in a magnetic field.

磁性シート2は、このようにして得られる軟磁性粉末から成る磁性体粒子4を、合成樹脂を含むバインダ中に分散させて、シート化することにより得られる。シート化するための方法としては特に限定されないが、たとえば塗布法が例示される。   The magnetic sheet 2 is obtained by dispersing the magnetic particles 4 composed of the soft magnetic powder thus obtained in a binder containing a synthetic resin to form a sheet. The method for forming a sheet is not particularly limited, and an example is a coating method.

なお、シート化される前の磁性シート用ペーストには、軟磁性粉末から成る磁性体粒子4および合成樹脂6の他、硬化剤、分散剤、安定剤、カップリング剤等を含有してもよい。このようなペーストは、通常、所望の形状に成形され、あるいは必要な溶媒を用いて塗布用組成物とされた後に塗布され、次いで、必要に応じて加熱硬化されてシート化される。硬化は、一般に、加熱オーブン中で50〜80℃にて6〜100時間程度加熱すればよい。   In addition to the magnetic particles 4 and the synthetic resin 6 made of soft magnetic powder, the paste for magnetic sheet before sheeting may contain a curing agent, a dispersing agent, a stabilizer, a coupling agent, etc. . Such a paste is usually formed into a desired shape or applied after being made into a composition for application using a necessary solvent, and then heat-cured as necessary to form a sheet. Curing may be generally carried out by heating in a heating oven at 50 to 80 ° C. for about 6 to 100 hours.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。   The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, the present invention will be described based on further detailed examples, but the present invention is not limited to these examples.

実施例1
この実施例では、水アトマイズ法により合金粒子を作製し、次いで、媒体撹拌ミルにより合金粒子を偏平化し、さらに熱処理を施して、偏平状軟磁性粒子からなる軟磁性粉末(磁性体粒子)を得た。
Example 1
In this example, alloy particles are produced by a water atomizing method, then the alloy particles are flattened by a medium stirring mill, and heat treatment is further performed to obtain soft magnetic powder (magnetic particles) comprising flat soft magnetic particles. The

偏平状の軟磁性粒子の組成は、Fe−Si−Cr系合金磁性体であり、Fea1Sib1Crc1d1と表した場合に、a1=70、b1=28、c1=2、d1=0であった。 The composition of the flat soft magnetic particles is an Fe-Si-Cr alloy magnetic material, and when expressed as Fe a1 Si b1 Cr c1 X d1 , a1 = 70, b1 = 28, c1 = 2, d1 = It was 0.

熱処理の際には、いったん真空度を0.1Pa未満にしてから、不活性ガスとしての窒素ガスを導入して、酸素濃度を1×10−8〜0.01Paとして、熱処理(昇温、保持および降温の全行程)を行った。 At the time of heat treatment, after the degree of vacuum is once made less than 0.1 Pa, nitrogen gas as an inert gas is introduced to set the oxygen concentration to 1 × 10 −8 to 0.01 Pa, and heat treatment (heating and holding And the entire process of temperature decrease.

熱処理条件は、下記の通りであった。100°Cからの昇温速度は、20°C/分、100°Cまでの降温速度は、10°C/分であり、保持温度は、390°Cであり、保持時間は、60分であった。   The heat treatment conditions were as follows. The temperature rising rate from 100 ° C. is 20 ° C./min, the temperature falling rate to 100 ° C. is 10 ° C./min, the holding temperature is 390 ° C., and the holding time is 60 minutes. there were.

熱処理後の偏平状の軟磁性粒子を、ポリウレタンを主成分とするバインダ溶液と混合し、磁性体ペーストを作製した。ペースト中の磁性体粒子の充填率は80wt%とした。   The heat-treated flat soft magnetic particles were mixed with a binder solution containing polyurethane as a main component to prepare a magnetic paste. The filling rate of the magnetic particles in the paste was 80 wt%.

磁性体ペーストを、厚さ75μmの長尺PET基板に25μm厚に塗布し、ロール状に巻き取った後、60°Cにて60分間加熱して硬化した。これをシート状に切断し、磁性シートのサンプルを得た。磁性シートのサンプルの磁気特性として、素材100%に換算した場合の保磁力(Hc)を、表1に示す。保持力の測定は、プラスチック製容器に偏平粉約100mgを入れて蓋で偏平粉を固定させた形状で東北特殊鋼株式会社製HcメーターK−HC1000を用いて行った。   The magnetic paste was applied to a long PET substrate having a thickness of 75 μm to a thickness of 25 μm, wound into a roll, and then cured by heating at 60 ° C. for 60 minutes. This was cut into a sheet to obtain a magnetic sheet sample. The coercivity (Hc) when converted to 100% of the material is shown in Table 1 as the magnetic properties of the sample of the magnetic sheet. About 100 mg of flat powder was put into a plastic container and the holding power was measured using Hc meter K-HC1000 manufactured by Tohoku Special Steel Co., Ltd. in a shape in which flat powder was fixed with a lid.

さらに、磁性シートの表面抵抗を、Agilent Technology製HIGH RESISTANCE METER 4339Bで二本の端子を厚さ100μm以下のシートの表面と裏面に接触させる方式で測定した。結果を表1に示す。   Furthermore, the surface resistance of the magnetic sheet was measured by a method in which two terminals were brought into contact with the front and back surfaces of a sheet with a thickness of 100 μm or less using HIGH RESISTANCE METER 4339B manufactured by Agilent Technology. The results are shown in Table 1.

さらに、磁性シートのサンプルのQ値を、以下に示す方法で求めた。すなわち、アジレント・テクノロジー株式会社製Agilent E4991A RFインピーダンス/マテリアル・アナライザを使用して、フィクスチャーとしてHP16454Aを用いて行った。結果を表1に示す。なお、表1では、実施例1のQ値を100に換算して示し、その他の実施例および比較例は、その実施例1のQ値に比較した割合で示した。   Furthermore, the Q value of the sample of the magnetic sheet was determined by the method described below. That is, it carried out using HP16454A as a fixture, using Agilent E4991A RF impedance / material analyzer by Agilent Technologies. The results are shown in Table 1. In Table 1, the Q value of Example 1 is shown converted to 100, and the other Examples and Comparative Examples are shown at a ratio compared to the Q value of Example 1.

また、磁性シートのサンプルを、シート面に垂直な断面で切断し、その切断面をEPMAにより観察したところ、図2に示すように、偏平な磁性体粒子4が合成樹脂6中に分散してあることが確認された。また、長手方向の長さが0.4μm以上のCrの偏析物8が磁性体粒子4の表面内部に含まれて存在することが確認できた。   In addition, when a sample of the magnetic sheet was cut at a cross section perpendicular to the sheet surface and the cut surface was observed by EPMA, flat magnetic particles 4 were dispersed in the synthetic resin 6 as shown in FIG. It was confirmed that there is. In addition, it has been confirmed that the segregated substance 8 of Cr having a length in the longitudinal direction of 0.4 μm or more is contained inside the surface of the magnetic particles 4 and is present.

また、10μm×10μmの視野内に、Crの偏析物8が5つ以上の6個観察され、その視野内で観察される全てのCrの偏析物8のアスペクト比の平均は、0.3以下であり、0.2であることを確認した。また、その視野内で観察される偏平な磁性体粒子4のアスペクト比の平均は、0.3以下であり、0.01であることを確認した。   In addition, six of five or more segregated substances 8 of Cr are observed in a 10 μm × 10 μm field of view, and the average aspect ratio of all the segregated elements 8 of Cr observed in the field of view is 0.3 or less And was confirmed to be 0.2. In addition, it was confirmed that the average of the aspect ratio of the flat magnetic particles 4 observed in the field of view was 0.3 or less, and was 0.01.

Figure 0006520688
Figure 0006520688

実施例2
熱処理時の保持温度を420°Cとした以外は、実施例1と同様にして磁性シートを作製し、同様な測定を行った。結果を表1に示す。
Example 2
A magnetic sheet was produced in the same manner as in Example 1 except that the holding temperature at the heat treatment was changed to 420 ° C., and the same measurement was performed. The results are shown in Table 1.

実施例3
熱処理時の保持温度を450°Cとした以外は、実施例1と同様にして磁性シートを作製し、同様な測定を行った。結果を表1に示す。
Example 3
A magnetic sheet was produced in the same manner as in Example 1 except that the holding temperature at the heat treatment was changed to 450 ° C., and the same measurement was performed. The results are shown in Table 1.

実施例4
熱処理時の保持温度を500°Cとした以外は、実施例1と同様にして磁性シートを作製し、同様な測定を行った。結果を表1に示す。
Example 4
A magnetic sheet was produced in the same manner as in Example 1 except that the holding temperature at the heat treatment was changed to 500 ° C., and the same measurement was performed. The results are shown in Table 1.

実施例5
熱処理時の保持温度を550°Cとした以外は、実施例1と同様にして磁性シートを作製し、同様な測定を行った。結果を表1に示す。
Example 5
A magnetic sheet was produced in the same manner as in Example 1 except that the holding temperature at the heat treatment was changed to 550 ° C., and the same measurement was performed. The results are shown in Table 1.

比較例1
熱処理時の保持温度を370°Cとした以外は、実施例1と同様にして磁性シートを作製し、同様な測定を行った。結果を表1に示す。
Comparative Example 1
A magnetic sheet was produced in the same manner as in Example 1 except that the holding temperature at the heat treatment was changed to 370 ° C., and the same measurement was performed. The results are shown in Table 1.

比較例2
熱処理時の保持温度を450°Cとし、昇温速度と降温速度とを表1に示す値とした以外は、実施例1と同様にして磁性シートを作製し、同様な測定を行った。結果を表1に示す。
Comparative example 2
A magnetic sheet was produced in the same manner as in Example 1 except that the holding temperature at the heat treatment was set to 450 ° C., and the temperature rising rate and the temperature lowering rate were set to values shown in Table 1, and similar measurements were performed. The results are shown in Table 1.

比較例3
熱処理時の保持温度を600°Cとした以外は、実施例1と同様にして磁性シートを作製し、同様な測定を行った。結果を表1に示す。
Comparative example 3
A magnetic sheet was produced in the same manner as in Example 1 except that the holding temperature at the heat treatment was changed to 600 ° C., and the same measurement was performed. The results are shown in Table 1.

評価
実施例1〜5によれば、10μm×10μmの視野内に、長手方向の長さが0.4μm以上のCrの偏析物が5つ以上に存在する構造を実現することが可能になり、その結果、磁気特性が比較例1〜3に比較して同等以上となり、しかも、シート表面抵抗が向上することが確認できた。さらに、実施例1〜5によれば、比較例1〜3に比較してQ値も向上することが確認できた。
According to Evaluation Examples 1 to 5, it is possible to realize a structure in which five or more Cr segregates having a length of 0.4 μm or more in the longitudinal direction are present in a field of 10 μm × 10 μm, As a result, it was confirmed that the magnetic properties were equal to or higher than Comparative Examples 1 to 3 and that the sheet surface resistance was improved. Furthermore, according to Examples 1-5, it has confirmed that Q value was also improved compared with Comparative Examples 1-3.

表1に示すように、シート表面抵抗を向上させる観点からは、Crの偏析物の数は、6〜12が好ましく、さらに好ましくは8〜12である。また、保磁力(またはQ値)とシート抵抗の双方を向上する観点からは、Crの偏析物の数は、6〜12が好ましく、さらに好ましくは8〜12である。   As shown in Table 1, from the viewpoint of improving sheet surface resistance, the number of segregated substances of Cr is preferably 6 to 12, and more preferably 8 to 12. Further, from the viewpoint of improving both the coercivity (or Q value) and the sheet resistance, the number of segregated substances of Cr is preferably 6 to 12, and more preferably 8 to 12.

実施例6
偏平状の軟磁性粒子として、Fe−Si−Al-Cr系合金磁性体を用いた以外は、実施例1〜6および比較例1〜3と同様にして磁性シートを作製し、同様な測定を行った。実施例1〜6および比較例1〜3と同様な結果が得られた。
Example 6
Magnetic sheets are prepared in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 3 except that Fe-Si-Al-Cr alloy magnetic bodies are used as the flat soft magnetic particles, and similar measurements are carried out. went. Similar results to those of Examples 1 to 6 and Comparative Examples 1 to 3 were obtained.

なお、Fe−Si−Al−Cr系合金磁性体の組成をFea2Sib2Ale2Crc2d2と表した場合に、a2=64、b2=16、e2=16、c2=2、d2=2であった。ただし、XはCoであった。 Incidentally, the composition of Fe-Si-Al-Cr-based alloy magnetic Fe a2 Si b2 Al e2 Cr c2 when expressed as X d2, a2 = 64, b2 = 16, e2 = 16, c2 = 2, d2 = It was 2. However, X was Co.

実施例7
偏平状の軟磁性粒子として、Fe−Al-Cr系合金磁性体を用いた以外は、実施例1〜6および比較例1〜3と同様にして磁性シートを作製し、同様な測定を行った。実施例1〜6および比較例1〜3と同様な結果が得られた。
Example 7
Magnetic sheets were produced in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 3 except that Fe-Al-Cr alloy magnetic bodies were used as the flat soft magnetic particles, and similar measurements were performed. . Similar results to those of Examples 1 to 6 and Comparative Examples 1 to 3 were obtained.

なお、Fe−Al−Cr系合金磁性体の組成をFea3Ale3Crc3d3と表した場合に、a3=64、e3=32、c3=2、d3=2であった。ただし、XはTiであった。 In the case where the composition of the Fe-Al-Cr-based alloy magnetic represented as Fe a3 Al e3 Cr c3 X d3 , were a3 = 64, e3 = 32, c3 = 2, d3 = 2. However, X was Ti.

2… 磁性シート
4… 磁性体粒子
6… 合成樹脂
8… Crの偏析物
2 Magnetic sheet 4 Magnetic material particle 6 Synthetic resin 8 Cr segregation product

Claims (3)

偏平な磁性体粒子が合成樹脂中に分散してある磁性シートであって、
前記偏平な磁性体粒子が、Fe−Si−Cr系合金磁性体、Fe−Si−Al−Cr系系合金磁性体およびFe−Al−Cr系合金磁性体の内の少なくともいずれかであり、
前記偏平な磁性体粒子の表面には、長手方向の長さが0.4μm以上のCrの偏析物が前記磁性体粒子の表面内部に含まれて存在し、
前記磁性体シートの表面または断面において、任意の10μm×10μmの視野内に、前記Crの偏析物が5つ以上観察されることを特徴とする磁性シート。
A magnetic sheet in which flat magnetic particles are dispersed in a synthetic resin,
The flat magnetic particles are at least one of an Fe-Si-Cr alloy magnetic material, an Fe-Si-Al-Cr alloy magnetic material, and an Fe-Al-Cr alloy magnetic material,
On the surface of the flat magnetic particles, a segregated substance of Cr having a length in the longitudinal direction of 0.4 μm or more is contained in the surface of the magnetic particles,
5. A magnetic sheet characterized in that five or more segregated substances of Cr are observed within an arbitrary 10 μm × 10 μm field of view on the surface or cross section of the magnetic sheet.
前記Crの偏析物の短手方向の長さを長手方向の長さで割り算したアスペクト比が0.3以下である請求項1に記載の磁性シート。   The magnetic sheet according to claim 1, wherein an aspect ratio obtained by dividing the length in the short direction of the Cr segregated material by the length in the longitudinal direction is 0.3 or less. 前記偏平な磁性体粒子の短手方向の長さを長手方向の長さで割り算したアスペクト比が0.3以下である請求項1または2に記載の磁性シート。   The magnetic sheet according to claim 1 or 2, wherein an aspect ratio obtained by dividing the length in the short direction of the flat magnetic particles by the length in the longitudinal direction is 0.3 or less.
JP2015244175A 2015-12-15 2015-12-15 Magnetic sheet Active JP6520688B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015244175A JP6520688B2 (en) 2015-12-15 2015-12-15 Magnetic sheet
CN201611158254.1A CN107025973B (en) 2015-12-15 2016-12-15 Sheet magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015244175A JP6520688B2 (en) 2015-12-15 2015-12-15 Magnetic sheet

Publications (2)

Publication Number Publication Date
JP2017112173A JP2017112173A (en) 2017-06-22
JP6520688B2 true JP6520688B2 (en) 2019-05-29

Family

ID=59081046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015244175A Active JP6520688B2 (en) 2015-12-15 2015-12-15 Magnetic sheet

Country Status (2)

Country Link
JP (1) JP6520688B2 (en)
CN (1) CN107025973B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107479A1 (en) * 2018-09-27 2020-04-02 Tdk Corporation Metal magnetic film and magnetic sheet
JP7028152B2 (en) * 2018-12-14 2022-03-02 トヨタ自動車株式会社 Resolver

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204322A (en) * 1998-01-19 1999-07-30 Tokin Corp Dust core, its manufacture, and winding part
JP4548035B2 (en) * 2004-08-05 2010-09-22 株式会社デンソー Method for producing soft magnetic material
JP2007273732A (en) * 2006-03-31 2007-10-18 Tdk Corp Noise suppressing soft magnetism metal powder and noise suppressing sheet
JP2009164402A (en) * 2008-01-08 2009-07-23 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
JP5469956B2 (en) * 2008-08-27 2014-04-16 デクセリアルズ株式会社 Magnetic sheet composition, magnetic sheet, and method for producing magnetic sheet
CN101624689A (en) * 2009-08-11 2010-01-13 安泰科技股份有限公司 Flat amorphous alloy powder and electromagnetic wave absorber containing same
JP2013149661A (en) * 2012-01-17 2013-08-01 Hitachi Industrial Equipment Systems Co Ltd Iron powder for pressed powder magnetic body, pressed powder magnetic body, method of manufacturing iron powder for pressed powder magnetic body, and method of manufacturing pressed powder magnetic body
JP5455258B2 (en) * 2012-02-21 2014-03-26 Necトーキン株式会社 Noise suppression sheet
WO2015137303A1 (en) * 2014-03-10 2015-09-17 日立金属株式会社 Magnetic core, coil component and magnetic core manufacturing method

Also Published As

Publication number Publication date
JP2017112173A (en) 2017-06-22
CN107025973A (en) 2017-08-08
CN107025973B (en) 2019-06-07

Similar Documents

Publication Publication Date Title
KR101719496B1 (en) Soft magnetic metal powder core
JP6380769B2 (en) Soft magnetic metal powder and soft magnetic metal powder core.
CN110235212B (en) Magnetic flat powder and magnetic sheet containing the same
JP7333179B2 (en) Alloy powder for magnetic parts
JP6520688B2 (en) Magnetic sheet
JP6427991B2 (en) Dust core
EP3401933A1 (en) Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME
KR102068972B1 (en) Soft magnetic metal powder and soft magnetic metal dust core
KR102393236B1 (en) soft magnetic flat powder
WO2005011899A1 (en) Fe-Ni-Mo FLAKY METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL CONTAINING SOFT MAGNETIC POWDER
KR101607483B1 (en) Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same
JP2018031041A (en) Soft magnetic metal powder body and composite magnetic sheet body containing the same
JP6519418B2 (en) Soft magnetic metal dust core
TW201542838A (en) Fe-Co alloy powder and method for producing the same, and antenna, inductor, and EMI filter
JP6515719B2 (en) Flat soft magnetic metal powder for magnetic sheet, magnetic sheet, and antenna coil
JP6955685B2 (en) Soft magnetic metal powder and its manufacturing method
JP2523388B2 (en) Method for producing soft magnetic powder for magnetic shield and magnetic shield material
JP6589611B2 (en) Magnetic sheet
JP2523390B2 (en) Method for producing soft magnetic powder for magnetic shield and magnetic shield material
JP2007273732A (en) Noise suppressing soft magnetism metal powder and noise suppressing sheet
JP2020057644A (en) Magnetic material, magnet, and method of manufacturing magnet
KR100549041B1 (en) Soft magnetic Fe-based nanoalloy powder with excellent square ratio and its manufacturing method
EP3978164A1 (en) Samarium-iron-nitrogen-based magnetic material
JP6500670B2 (en) Flat soft magnetic metal powder for magnetic sheet, magnetic sheet, and antenna coil
WO2016143664A1 (en) Mnbi-based magnetic powder, method for producing same, compound for bonded magnets, bonded magnet and metal magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150