[go: up one dir, main page]

JP6506604B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP6506604B2
JP6506604B2 JP2015087867A JP2015087867A JP6506604B2 JP 6506604 B2 JP6506604 B2 JP 6506604B2 JP 2015087867 A JP2015087867 A JP 2015087867A JP 2015087867 A JP2015087867 A JP 2015087867A JP 6506604 B2 JP6506604 B2 JP 6506604B2
Authority
JP
Japan
Prior art keywords
wiring
disposed
extending portion
substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015087867A
Other languages
Japanese (ja)
Other versions
JP2016206006A (en
Inventor
広明 遠藤
広明 遠藤
安藤 秀人
秀人 安藤
澄人 森田
澄人 森田
貴史 野口
貴史 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Alps Alpine Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2015087867A priority Critical patent/JP6506604B2/en
Priority to US15/093,905 priority patent/US9939498B2/en
Publication of JP2016206006A publication Critical patent/JP2016206006A/en
Application granted granted Critical
Publication of JP6506604B2 publication Critical patent/JP6506604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁気センサに関する。   The present invention relates to a magnetic sensor.

たとえば、特許文献1は、垂直磁界成分を簡単且つ適切に検知できる磁気抵抗効果素子を用いた磁気センサを開示する。当該磁気センサは、基板上に磁性層と非磁性層とが積層されて成る磁気抵抗効果を発揮する磁気抵抗効果素子と、外部からの垂直磁界成分を水平方向への磁界成分に変換し、前記水平方向へ変換された磁界成分を前記磁気抵抗効果素子に与える前記磁気抵抗効果素子と非接触の軟磁性体と、を有する。当該磁気センサによれば、簡単な構成により、垂直磁界成分を検知することが可能な磁気抵抗効果素子を用いた磁気センサを製造することができ、磁気センサを安価に製造でき、小型化も促進できる、とされている。   For example, Patent Document 1 discloses a magnetic sensor using a magnetoresistive effect element that can easily and appropriately detect a perpendicular magnetic field component. The magnetic sensor converts the external magnetic field component from the outside into a magnetic field component in the horizontal direction, and a magnetoresistive effect element that exhibits a magnetoresistive effect in which a magnetic layer and a nonmagnetic layer are stacked on a substrate. The magnetoresistive element and the non-contact soft magnetic body for providing the magnetoresistive element with a magnetic field component converted in the horizontal direction. According to the magnetic sensor, a magnetic sensor using a magnetoresistive effect element capable of detecting a perpendicular magnetic field component can be manufactured with a simple configuration, and the magnetic sensor can be manufactured inexpensively, and miniaturization is also promoted. It is supposed to be possible.

国際公開WO2011/068146号International Publication WO2011 / 068146

特許文献1に記載の磁気センサでは、外部からの垂直磁界を、軟磁性体によって水平方向に変換し、これを磁気抵抗効果素子に与えて垂直磁界を検知する。ここで、変換された水平方向の磁界成分は、軟磁性体を平面視した場合の第1側方向とその反対の第2側方向の2成分に分かれる。よって、たとえばGMR(Giant Magneto Resistive effect)素子等、固定磁性層とフリー磁化層との磁化方向の違いを抵抗値の変化で検出する素子を用いれば、当該素子を、軟磁性体を平面視した場合の第1側方向または第2側方向の何れの側に置くかによって、同じ外部磁界入力に対し、抵抗値変化が逆方向に出力されるよう構成することが可能になる。つまり、第1側方向に配置した素子と第2側方向に配置した素子を組み合わせてブリッジ回路を極めて容易に構成することが可能になる。   In the magnetic sensor described in Patent Document 1, the perpendicular magnetic field from the outside is converted in the horizontal direction by the soft magnetic body, and this is applied to the magnetoresistive element to detect the perpendicular magnetic field. Here, the converted magnetic field component in the horizontal direction is divided into two components of a first side direction and a second side direction opposite to the first side direction in plan view of the soft magnetic body. Therefore, for example, when an element such as a GMR (Giant Magneto Resistive effect) element or the like that detects the difference in the magnetization direction between the fixed magnetic layer and the free magnetization layer by a change in resistance value is used, the element is viewed in plan Depending on whether it is placed on the first side direction or the second side direction in the case, it is possible to configure that the resistance value change is output in the opposite direction to the same external magnetic field input. That is, the bridge circuit can be extremely easily configured by combining the elements arranged in the first side direction and the elements arranged in the second side direction.

ところで、軟磁性体の第1側方向または第2側方向の何れか一方にのみ素子を配置する場合には、他方の磁界は利用されず、素子面積が無駄であり、検出感度の観点からも好ましくない。よって、軟磁性体の第1側方向および第2側方向の両方に素子を配置するような利用が望ましい。   By the way, when the element is arranged only in either the first side direction or the second side direction of the soft magnetic body, the other magnetic field is not used, and the element area is wasted, from the viewpoint of detection sensitivity. Not desirable. Therefore, it is desirable to use the element in both the first side direction and the second side direction of the soft magnetic body.

しかしながら、磁気抵抗効果素子の抵抗値を小さくしたい場合等では磁気抵抗効果素子を並列に接続する必要が生じ、このような場合、磁気抵抗効果素子と軟磁性体との配置条件を満足しつつ、磁気抵抗効果素子を適切に配線することが困難になる場合がある。   However, when it is desired to reduce the resistance value of the magnetoresistive element, it is necessary to connect the magnetoresistive elements in parallel, and in such a case, the arrangement condition of the magnetoresistive element and the soft magnetic material is satisfied. It may be difficult to properly wire the magnetoresistive element.

本発明の目的は、軟磁性体を用いて垂直磁界を検知するような、磁気抵抗効果素子と軟磁性体との相対配置関係に制約が存在するような場合であっても、磁気抵抗効果素子の配線レイアウトの自由度を高め、素子面積を小さくすること、ひいてはコスト削減が可能な技術を提供することにある。   An object of the present invention is to detect a perpendicular magnetic field using a soft magnetic material, and even when there is a restriction on the relative positional relationship between the magnetoresistive effect element and the soft magnetic material, the magnetoresistive effect element It is an object of the present invention to provide a technology capable of increasing the degree of freedom in wiring layout and reducing the element area, and thus reducing the cost.

上記課題を解決するために、本発明の第1の態様においては、基板と、前記基板の表面に配置された複数の磁気抵抗効果素子と、前記基板の表面に配置された第1配線と、前記磁気抵抗効果素子および前記第1配線を覆う絶縁層と、前記絶縁層上に配置された軟磁性体と、前記絶縁層上に配置された第2配線と、を有し、前記基板を平面視した場合に互いに直交する二方向を第1方向および第2方向としたとき、前記複数の磁気抵抗効果素子のそれぞれが、前記第1方向に伸長し、前記第2方向に離間して配置され、前記軟磁性体が、前記第1方向に伸長する第1方向伸長部を有し、平面視した場合に、前記第1方向伸長部が、前記第2方向に離間して配置されている前記磁気抵抗効果素子の間に配置され、前記第2配線が、前記絶縁層に形成されたスルーホールを介して前記第1配線に接続されており、前記第1配線が、前記複数の磁気抵抗効果素子のそれぞれの前記第1方向における端部に接続され、前記第2配線が、前記軟磁性体が配置された軟磁性体配置領域の周辺に配置されている磁気センサを提供する。 In order to solve the above problems, according to a first aspect of the present invention, a substrate, a plurality of magnetoresistance effect elements disposed on the surface of the substrate, and a first wiring disposed on the surface of the substrate An insulating layer covering the magnetoresistive element and the first wiring, a soft magnetic material disposed on the insulating layer, and a second wiring disposed on the insulating layer, wherein the substrate is planar In the case where two directions orthogonal to each other when viewed as a first direction and a second direction, each of the plurality of magnetoresistance effect elements extends in the first direction and is disposed to be separated in the second direction. The soft magnetic body has a first direction extending portion extending in the first direction, and the first direction extending portion is spaced apart in the second direction when viewed in a plan view. The second wiring is disposed between the magnetoresistive elements, and the second wiring is formed on the insulating layer. Is connected to the first wiring through a through-hole which is, the first wiring is connected to an end of each of the first direction of the plurality of magnetoresistive elements, the second wiring, The present invention provides a magnetic sensor disposed around a soft magnetic material disposition area in which the soft magnetic material is disposed .

本発明においては、基板と、前記基板の表面に配置された複数の磁気抵抗効果素子と、前記基板の表面に配置された第1配線と、前記磁気抵抗効果素子および前記第1配線を覆う絶縁層と、前記絶縁層上に配置された軟磁性体と、前記絶縁層上に配置された第2配線と、を有し、前記基板を平面視した場合に互いに直交する二方向を第1方向および第2方向としたとき、前記複数の磁気抵抗効果素子のそれぞれが、前記第1方向に伸長し、前記第2方向に離間して配置され、前記軟磁性体が、前記第1方向に伸長する第1方向伸長部を有し、平面視した場合に、前記第1方向伸長部が、前記第2方向に離間して配置されている前記磁気抵抗効果素子の間に配置され、前記第2配線が、前記絶縁層に形成されたスルーホールを介して前記第1配線に接続されており、前記第1配線が、平面視した場合に櫛形パターンを呈する櫛形配線と、平面視した場合にラインパターンを呈する直線配線と、を有し、前記直線配線が、前記櫛形配線の櫛歯の間に配置され、前記第2配線が、前記櫛形配線の前記櫛歯を跨いで、複数の前記直線配線を接続されている磁気センサを提供する。この場合、前記櫛形配線と、前記直線配線および前記第2配線とによって、複数の前記磁気抵抗効果素子を並列に接続されてもよい。また、前記櫛形配線と、複数の前記磁気抵抗効果素子と、前記直線配線および前記第2配線とを接続することでブリッジ回路を構成することができる。
平面視した場合の前記第1方向伸長部の前記第2方向における両端部の近傍に前記磁気抵抗効果素子が配置されていてもよい。
In the present invention, a substrate, a plurality of magnetoresistance effect elements disposed on the surface of the substrate, a first wiring disposed on the surface of the substrate, and an insulation covering the magnetoresistance effect element and the first interconnection Layer, a soft magnetic material disposed on the insulating layer, and a second wiring disposed on the insulating layer, and the two directions orthogonal to each other in the first direction when the substrate is viewed in plan And the second direction, each of the plurality of magnetoresistance effect elements extends in the first direction and is spaced apart in the second direction, and the soft magnetic body extends in the first direction. And the first direction extending portion is disposed between the magnetoresistive elements which are disposed apart from each other in the second direction, when viewed in a plan view. A wire is disposed in the first distribution via a through hole formed in the insulating layer. Is connected to said first wiring includes a comb-shaped wiring exhibiting comb pattern when viewed in plan, a straight line exhibiting a line pattern in plan view, wherein the straight line is, the comb-shaped interconnection The magnetic sensor is disposed between the comb teeth, and the second wire is connected to the plurality of straight wires across the comb teeth of the comb wire . In this case, a plurality of the magnetoresistance effect elements may be connected in parallel by the comb-shaped wiring, the linear wiring, and the second wiring. A bridge circuit can be configured by connecting the comb-shaped wiring, the plurality of magnetoresistive elements, the linear wiring, and the second wiring.
The magnetoresistive effect element may be disposed in the vicinity of both end portions in the second direction of the first direction extending portion in a plan view.

前記軟磁性体が、前記第2方向に伸長する第2方向伸長部を有し、前記第1方向伸長部の前記第1方向における両端部が、前記第2方向伸長部で短絡され、前記第1方向伸長部および前記第2方向伸長部によって閉磁界路が構成されてもよい。前記軟磁性体が、外部からの垂直磁界成分を水平方向への磁界成分に変換し、前記水平方向へ変換された磁界成分を前記磁気抵抗効果素子に与えるものであってもよい。   The soft magnetic body has a second direction extending portion extending in the second direction, and both ends in the first direction of the first direction extending portion are short-circuited by the second direction extending portion, A closed magnetic path may be configured by the one-direction extending portion and the second direction extending portion. The soft magnetic body may convert a perpendicular magnetic field component from the outside into a magnetic field component in the horizontal direction, and apply the magnetic field component converted in the horizontal direction to the magnetoresistive element.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。   Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a subcombination of these feature groups can also be an invention.

磁気センサ100の平面図である。FIG. 2 is a plan view of the magnetic sensor 100. 磁気センサ100の一部断面図である。FIG. 2 is a partial cross-sectional view of a magnetic sensor 100. 磁気センサ100の一部を拡大して示した平面図である。It is the top view which expanded and showed a part of magnetic sensor 100. FIG. 図3におけるA−A線断面図を示す。An AA line sectional view in Drawing 3 is shown.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through the embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Moreover, not all combinations of features described in the embodiments are essential to the solution of the invention.

図1は、磁気センサ100の平面図を示す。図2は、磁気センサ100の一部断面図である。図2において、図1の特定の場所における正確な断面を示している訳ではない。説明の都合上、一部概念化して示している。なお、図1中、基板102を平面視したときの互いに直交する第1方向および第2方向を、それぞれx方向およびy方向とし、x方向とy方向のどちらにも直交する方向をz方向とする。   FIG. 1 shows a plan view of the magnetic sensor 100. FIG. FIG. 2 is a partial cross-sectional view of the magnetic sensor 100. In FIG. 2, the exact cross section at the particular location of FIG. 1 is not shown. For convenience of explanation, it is partially conceptualized and shown. In FIG. 1, the first direction and the second direction orthogonal to each other when the substrate 102 is viewed in plan are taken as the x direction and the y direction, respectively, and the direction orthogonal to both the x direction and the y direction is the z direction Do.

磁気センサ100は、基板102と、複数の磁気抵抗効果素子104と、第1配線106と、絶縁層108と、軟磁性体110と、第2配線112と、を有する。   The magnetic sensor 100 includes a substrate 102, a plurality of magnetoresistive effect elements 104, a first wire 106, an insulating layer 108, a soft magnetic body 110, and a second wire 112.

基板102は、非磁性材料で構成される。基板102は非磁性材料である限り、特に材料等は問われない。基板102として、セラミック基板や半導体基板などが例示できる。複数の磁気抵抗効果素子104は、基板102の表面に形成され、第1配線106は、基板102の表面に形成されている。絶縁層108は、磁気抵抗効果素子104および第1配線106を覆い、軟磁性体110は、絶縁層108上に配置される。第2配線112は、絶縁層108上に形成される。第1配線106は、平面視した場合に櫛形パターンを呈する櫛形配線106aと、平面視した場合にラインパターンを呈する直線配線106bと、を有する。軟磁性体110は、第1方向(x方向)に伸長する第1方向伸長部110aと、第2方向(y方向)に伸長する第2方向伸長部110bとを有する。   The substrate 102 is made of a nonmagnetic material. As long as the substrate 102 is a nonmagnetic material, any material may be used. As the substrate 102, a ceramic substrate, a semiconductor substrate, or the like can be exemplified. The plurality of magnetoresistance effect elements 104 are formed on the surface of the substrate 102, and the first wiring 106 is formed on the surface of the substrate 102. The insulating layer 108 covers the magnetoresistive effect element 104 and the first wiring 106, and the soft magnetic body 110 is disposed on the insulating layer 108. The second wiring 112 is formed on the insulating layer 108. The first wiring 106 includes a comb-shaped wiring 106 a that exhibits a comb-shaped pattern in a plan view, and a straight wiring 106 b that exhibits a line pattern in a plan view. The soft magnetic body 110 has a first direction extending portion 110a extending in a first direction (x direction) and a second direction extending portion 110b extending in a second direction (y direction).

磁気抵抗効果素子104として、たとえばGMR(Giant Magneto Resistive effect)素子やTMR(Tunnel Magneto Resistance Effect)素子等、磁界に応じて抵抗値が変化する素子が例示できる。たとえば磁気抵抗効果素子104がGMR素子である場合、磁気抵抗効果素子104は、たとえば、下から反強磁性層、固定磁性層、非磁性層およびフリー磁性層の順に積層されて成膜され、フリー磁性層の表面が保護層で覆われる。磁気抵抗効果素子104は例えばスパッタにて成膜される。   As the magnetoresistive effect element 104, for example, an element such as a GMR (Giant Magneto Resistive effect) element or a TMR (Tunnel Magneto Resistance Effect) element can be exemplified as an element whose resistance value changes according to a magnetic field. For example, when the magnetoresistive effect element 104 is a GMR element, the magnetoresistive effect element 104 is formed, for example, by laminating an antiferromagnetic layer, a fixed magnetic layer, a nonmagnetic layer, and a free magnetic layer in this order from the bottom The surface of the magnetic layer is covered with a protective layer. The magnetoresistive effect element 104 is formed, for example, by sputtering.

反強磁性層は、IrMn合金(イリジウム−マンガン合金)などの反強磁性材料で形成されている。固定磁性層はCoFe合金(コバルト−鉄合金)などの軟磁性材料で形成されている。固定磁性層は積層フェリ構造で形成されることが好ましい。非磁性層はCu(銅)などである。フリー磁性層は、NiFe合金(ニッケル−鉄合金)などの軟磁性材料で形成されている。保護層はTa(タンタル)などである。磁気抵抗効果素子の積層構成は他の積層構成であってもよい。   The antiferromagnetic layer is formed of an antiferromagnetic material such as IrMn alloy (iridium-manganese alloy). The pinned magnetic layer is formed of a soft magnetic material such as a CoFe alloy (cobalt-iron alloy). The pinned magnetic layer is preferably formed in a laminated ferrimagnetic structure. The nonmagnetic layer is Cu (copper) or the like. The free magnetic layer is formed of a soft magnetic material such as a NiFe alloy (nickel-iron alloy). The protective layer is Ta (tantalum) or the like. The laminated structure of the magnetoresistive effect element may be another laminated structure.

複数の磁気抵抗効果素子104は、第1方向(x方向)に伸長し、第2方向(y方向)に離間して並設される。軟磁性体110の複数の第1方向伸長部110aは、複数の磁気抵抗効果素子104の第2方向(y方向)の間にそれぞれ配置される。また、磁気抵抗効果素子104は、それぞれの第1方向伸長部110aの第2方向における両端部の近傍に形成される。図3および図4はこれを詳細に示した図であり、複数ある第1方向伸長部110aのうちの一つを拡大した図である。軟磁性体110は、平面視した場合の上下方向(z方向)の磁界を第2方向(y方向)に変換する。磁気抵抗効果素子104が軟磁性体110(第1方向伸長部110a)の第2方向における両端部の近傍に形成されることで、上下方向の磁界をロスなく有効にとらえることができる。このとき、ある第1方向伸長部110aの両端部近傍に配置された2つの磁気抵抗効果素子104は、上下方向(Z方向)の磁界に対して互いに抵抗値変化が逆方向に出力される。   The plurality of magnetoresistance effect elements 104 extend in the first direction (x direction) and are juxtaposed apart in the second direction (y direction). The plurality of first direction extension portions 110 a of the soft magnetic body 110 are respectively disposed between the plurality of magnetoresistance effect elements 104 in the second direction (y direction). Moreover, the magnetoresistive effect element 104 is formed in the vicinity of the both ends in the 2nd direction of each 1st direction extension part 110a. FIGS. 3 and 4 are diagrams showing this in detail, and an enlarged view of one of the plurality of first direction extending portions 110a. The soft magnetic body 110 converts a magnetic field in the vertical direction (z direction) in the plan view into a second direction (y direction). By forming the magnetoresistance effect element 104 in the vicinity of both end portions in the second direction of the soft magnetic body 110 (first direction extending portion 110a), the magnetic field in the vertical direction can be effectively captured without loss. At this time, in the two magnetoresistance effect elements 104 arranged in the vicinity of both end portions of a certain first direction extending portion 110a, resistance value changes are output in opposite directions with respect to the magnetic field in the vertical direction (Z direction).

第1配線106は、磁気抵抗効果素子104の第1方向(x方向)における端部に接続される。ここで、複数の磁気抵抗効果素子104は、上下方向(Z方向)の磁界に対して互いに抵抗値変化が逆方向に出力されるものが、Y方向において交互に配置されている。抵抗値変化が同じ方向の磁気抵抗効果素子104どうしを電気的に並列接続することで得られる出力を大きくすることができ、さらに一方の抵抗値変化が同じ方向の磁気抵抗効果素子104どうしを電気的に並列接続したものと他方の抵抗値変化が同じ方向の磁気抵抗効果素子104どうしを電気的に並列接続したものとでブリッジ回路を構成することで外乱磁界の影響を低減し、検出感度を高めることができる。ところが、上下方向(Z方向)の磁界に対して互いに抵抗値変化が逆方向に出力される磁気抵抗効果素子104がY方向において交互に配置されていることから、抵抗値変化の方向が同じ磁気抵抗効果素子104を電気的に接続するには配線が複雑になるとともに、基板102の表面における配線の引き回しが長くなり配線領域が広くなってしまうことから磁気センサ全体の大きさを小さくすることが難しいという課題がある。   The first wiring 106 is connected to the end of the magnetoresistive effect element 104 in the first direction (x direction). Here, the plurality of magnetoresistance effect elements 104 are alternately arranged in the Y direction in which resistance changes are outputted in opposite directions with respect to the magnetic field in the vertical direction (Z direction). The output obtained by electrically connecting the magnetoresistive elements 104 in the same direction in which the resistance value changes in the same direction can be increased, and furthermore, the magnetoresistive elements 104 in one direction in which the resistance value changes in the same direction can be electrically The effect of the disturbance magnetic field is reduced by configuring a bridge circuit with the parallel connection and the parallel connection of the magnetoresistive effect elements 104 in the same direction as the resistance change of the other, thereby reducing the detection sensitivity. It can be enhanced. However, since the magnetoresistive elements 104 are alternately arranged in the Y direction in which the resistance change is output in the opposite direction with respect to the magnetic field in the vertical direction (Z direction), the direction of the resistance change is the same In order to electrically connect the resistance effect element 104, the wiring becomes complicated, and the wiring of the wiring on the surface of the substrate 102 becomes long and the wiring area becomes wide, so the overall size of the magnetic sensor can be reduced. There is a problem that it is difficult.

上記のような課題に対し、本実施形態の磁気センサ100では、第1配線106は、磁気抵抗効果素子104が形成された領域には存在せず、磁気抵抗効果素子104が形成された領域の周辺にのみ形成されている。このため、磁気抵抗効果素子104の密度を高め、磁気センサ全体の大きさを小さくすることができる。この結果、生産性を向上し、コストを下げることができる。   To solve the above problems, in the magnetic sensor 100 of the present embodiment, the first wiring 106 does not exist in the region where the magnetoresistive effect element 104 is formed, but in the region where the magnetoresistive effect element 104 is formed. It is formed only in the surrounding area. Therefore, the density of the magnetoresistive effect element 104 can be increased, and the size of the entire magnetic sensor can be reduced. As a result, the productivity can be improved and the cost can be reduced.

また、第2配線112は、軟磁性体110が配置された軟磁性体配置領域の周辺に形成されており、第2配線112は、絶縁層108に形成されたスルーホール114を介して第1配線106に接続されている。第2配線112は、第1配線106とは異なる層に形成されるので、絶縁性を保ちながら第1配線106を跨いで形成することができ、この結果、基板102の表面における配線の引き回しが短くなり、配線領域を狭くすることができ、磁気センサ全体の大きさを小さくすることができる。さらに配線設計の自由度も増すことができる。   In addition, the second wiring 112 is formed around the soft magnetic material disposition region in which the soft magnetic material 110 is disposed, and the second wiring 112 is formed through the through hole 114 formed in the insulating layer 108. It is connected to the wiring 106. Since the second wire 112 is formed in a layer different from the first wire 106, the second wire 112 can be formed across the first wire 106 while maintaining the insulation property. As a result, the wire routing on the surface of the substrate 102 is The length can be shortened, the wiring area can be narrowed, and the size of the entire magnetic sensor can be reduced. Furthermore, the freedom of wiring design can be increased.

第1配線106の直線配線106bは、櫛形配線106aの櫛歯の間に形成され、第2配線112は、櫛形配線106aの櫛歯を跨いで、複数の直線配線106bを接続する。櫛形配線106aを用いることで、容易に磁気抵抗効果素子104を並列に接続することができる。また、直線配線106bを、櫛形配線106aの櫛歯の間に形成し、複数の直線配線106bを第2配線112で接続することで、軟磁性体110と磁気抵抗効果素子104の配置上の制約を満たしつつ、磁気抵抗効果素子104の並列接続を実現することができる。また、櫛形配線106aと、複数の磁気抵抗効果素子104と、直線配線106bおよび第2配線112とを接続することでブリッジ回路を構成することができる。   The straight wiring 106b of the first wiring 106 is formed between the comb teeth of the comb wiring 106a, and the second wiring 112 connects the plurality of straight wirings 106b across the comb teeth of the comb wiring 106a. By using the comb wiring 106a, the magnetoresistive effect elements 104 can be easily connected in parallel. Further, by forming the linear wire 106 b between the comb teeth of the comb wire 106 a and connecting the plurality of linear wires 106 b with the second wire 112, restrictions on the arrangement of the soft magnetic body 110 and the magnetoresistive effect element 104 And the parallel connection of the magnetoresistive effect elements 104 can be realized. Further, a bridge circuit can be configured by connecting the comb wiring 106 a, the plurality of magnetoresistance effect elements 104, and the linear wiring 106 b and the second wiring 112.

軟磁性体110の第1方向伸長部110aの第1方向における両端部は、第2方向伸長部110bで短絡され、第1方向伸長部110aおよび第2方向伸長部110bによって閉磁界路が構成される。軟磁性体110の第2方向伸長部110bを設けることで、横方向(x方向またはy方向)からの外部磁界の影響を軽減することができる。   Both ends of the soft magnetic body 110 in the first direction of the first direction extending portion 110a are short-circuited by the second direction extending portion 110b, and a closed magnetic path is formed by the first direction extending portion 110a and the second direction extending portion 110b. Ru. By providing the second direction extension portion 110b of the soft magnetic body 110, the influence of the external magnetic field in the lateral direction (x direction or y direction) can be reduced.

本実施形態の磁気センサ100によれば、磁気抵抗効果素子104と軟磁性体110との相対配置関係に制約があるような場合でも、磁気抵抗効果素子104の配線レイアウトの自由度を高め、素子面積を小さくすることができる。その結果、コスト削減を実現できる。   According to the magnetic sensor 100 of the present embodiment, even when there is a restriction in the relative positional relationship between the magnetoresistive effect element 104 and the soft magnetic body 110, the degree of freedom in the wiring layout of the magnetoresistive effect element 104 is enhanced. The area can be reduced. As a result, cost reduction can be realized.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It is apparent to those skilled in the art that various changes or modifications can be added to the above embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.

100…磁気センサ、102…基板、104…磁気抵抗効果素子、106…第1配線、106a…櫛形配線、106b…直線配線、108…絶縁層、110…軟磁性体、110a…第1方向伸長部、110b…第2方向伸長部、112…第2配線、
114…スルーホール
100 Magnetic sensor 102 Substrate 104 Magnetoresistance effect element 106 First wiring 106a Comb wiring 106b Straight wiring 108 Insulating layer 110 Soft magnetic material 110a First direction extension 110b: second direction extension portion 112: second wiring
114 ... through hole

Claims (7)

基板と、
前記基板の表面に配置された複数の磁気抵抗効果素子と、
前記基板の表面に配置された第1配線と、
前記磁気抵抗効果素子および前記第1配線を覆う絶縁層と、
前記絶縁層上に配置された軟磁性体と、
前記絶縁層上に配置された第2配線と、を有し、
前記基板を平面視した場合に互いに直交する二方向を第1方向および第2方向としたとき、
前記複数の磁気抵抗効果素子のそれぞれが、前記第1方向に伸長し、前記第2方向に離間して配置され、
前記軟磁性体が、前記第1方向に伸長する第1方向伸長部を有し、平面視した場合に、前記第1方向伸長部が、前記第2方向に離間して配置されている前記磁気抵抗効果素子の間に配置され、
前記第2配線が、前記絶縁層に形成されたスルーホールを介して前記第1配線に接続されており、
前記第1配線が、前記複数の磁気抵抗効果素子のそれぞれの前記第1方向における端部に接続され、
前記第2配線が、前記軟磁性体が配置された軟磁性体配置領域の周辺に配置されている
磁気センサ。
A substrate,
A plurality of magnetoresistance effect elements disposed on the surface of the substrate;
A first wire disposed on the surface of the substrate;
An insulating layer covering the magnetoresistive element and the first wire;
A soft magnetic material disposed on the insulating layer;
And a second wire disposed on the insulating layer,
When the two directions orthogonal to each other are the first direction and the second direction when the substrate is viewed in plan,
Each of the plurality of magnetoresistance effect elements extends in the first direction and is spaced apart in the second direction,
The soft magnetic body has a first direction extending portion extending in the first direction, and when viewed in plan, the first direction extending portion is disposed to be separated in the second direction. Placed between the resistive effect elements,
The second wiring is connected to the first wiring through a through hole formed in the insulating layer ,
The first wiring is connected to an end of each of the plurality of magnetoresistive elements in the first direction,
The magnetic sensor wherein the second wiring is disposed around a soft magnetic material disposition region in which the soft magnetic material is disposed .
基板と、
前記基板の表面に配置された複数の磁気抵抗効果素子と、
前記基板の表面に配置された第1配線と、
前記磁気抵抗効果素子および前記第1配線を覆う絶縁層と、
前記絶縁層上に配置された軟磁性体と、
前記絶縁層上に配置された第2配線と、を有し、
前記基板を平面視した場合に互いに直交する二方向を第1方向および第2方向としたとき、
前記複数の磁気抵抗効果素子のそれぞれが、前記第1方向に伸長し、前記第2方向に離間して配置され、
前記軟磁性体が、前記第1方向に伸長する第1方向伸長部を有し、平面視した場合に、前記第1方向伸長部が、前記第2方向に離間して配置されている前記磁気抵抗効果素子の間に配置され、
前記第2配線が、前記絶縁層に形成されたスルーホールを介して前記第1配線に接続されており、
前記第1配線が、平面視した場合に櫛形パターンを呈する櫛形配線と、平面視した場合にラインパターンを呈する直線配線と、を有し、
前記直線配線が、前記櫛形配線の櫛歯の間に配置され、
前記第2配線が、前記櫛形配線の前記櫛歯を跨いで、複数の前記直線配線を接続する
磁気センサ。
A substrate,
A plurality of magnetoresistance effect elements disposed on the surface of the substrate;
A first wire disposed on the surface of the substrate;
An insulating layer covering the magnetoresistive element and the first wire;
A soft magnetic material disposed on the insulating layer;
And a second wire disposed on the insulating layer,
When the two directions orthogonal to each other are the first direction and the second direction when the substrate is viewed in plan,
Each of the plurality of magnetoresistance effect elements extends in the first direction and is spaced apart in the second direction,
The soft magnetic body has a first direction extending portion extending in the first direction, and when viewed in plan, the first direction extending portion is disposed to be separated in the second direction. Placed between the resistive effect elements,
The second wiring is connected to the first wiring through a through hole formed in the insulating layer,
The first wiring includes a comb-shaped wiring that exhibits a comb-shaped pattern when viewed in plan, and a straight wiring that exhibits a line pattern when viewed in plan,
The straight line is disposed between the comb teeth of the comb line,
A magnetic sensor, wherein the second wiring connects the plurality of straight wirings across the comb teeth of the comb wiring.
前記櫛形配線と、前記直線配線および前記第2配線とによって、複数の前記磁気抵抗効
果素子を並列に接続する
請求項2に記載の磁気センサ。
A plurality of the magnetoresistive elements are connected in parallel by the comb-shaped wiring, the straight wiring and the second wiring.
The magnetic sensor according to claim 2 .
前記櫛形配線と、複数の前記磁気抵抗効果素子と、前記直線配線および前記第2配線と
を接続することでブリッジ回路を構成する
請求項2または請求項3に記載の磁気センサ。
A bridge circuit is configured by connecting the comb-shaped wiring, the plurality of magnetoresistive elements, the linear wiring, and the second wiring.
A magnetic sensor according to claim 2 or claim 3 .
平面視した場合の前記第1方向伸長部の前記第2方向における両端部の近傍に前記磁気抵抗効果素子が配置されているThe magnetoresistive effect element is disposed in the vicinity of both end portions in the second direction of the first direction extending portion in a plan view.
請求項1から請求項4の何れか一項に記載の磁気センサ。The magnetic sensor according to any one of claims 1 to 4.
前記軟磁性体が、前記第2方向に伸長する第2方向伸長部を有し、
前記第1方向伸長部の前記第1方向における両端部が、前記第2方向伸長部で短絡され、
前記第1方向伸長部および前記第2方向伸長部によって閉磁界路が構成される
請求項1から請求項5の何れか一項に記載の磁気センサ。
The soft magnetic body has a second direction extending portion extending in the second direction;
Both ends of the first direction extending portion in the first direction are short circuited by the second direction extending portion,
A closed magnetic field path is constituted by the first direction extending portion and the second direction extending portion.
The magnetic sensor according to any one of claims 1 to 5 .
前記軟磁性体が、外部からの垂直磁界成分を水平方向への磁界成分に変換し、前記水平
方向へ変換された磁界成分を前記磁気抵抗効果素子に与える
請求項1から請求項6の何れか一項に記載の磁気センサ。
The soft magnetic material converts an external perpendicular magnetic field component into a horizontal magnetic field component, and applies the horizontal converted magnetic field component to the magnetoresistive element.
The magnetic sensor according to any one of claims 1 to 6 .
JP2015087867A 2015-04-22 2015-04-22 Magnetic sensor Active JP6506604B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015087867A JP6506604B2 (en) 2015-04-22 2015-04-22 Magnetic sensor
US15/093,905 US9939498B2 (en) 2015-04-22 2016-04-08 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087867A JP6506604B2 (en) 2015-04-22 2015-04-22 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2016206006A JP2016206006A (en) 2016-12-08
JP6506604B2 true JP6506604B2 (en) 2019-04-24

Family

ID=57147632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087867A Active JP6506604B2 (en) 2015-04-22 2015-04-22 Magnetic sensor

Country Status (2)

Country Link
US (1) US9939498B2 (en)
JP (1) JP6506604B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995240B (en) * 2014-05-30 2017-11-10 江苏多维科技有限公司 A kind of magneto-resistor Z axis gradient sensor chip
CN108075036B (en) * 2016-11-18 2021-08-13 旭化成微电子株式会社 Hall element and method for manufacturing Hall element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728060B2 (en) * 1984-07-18 1995-03-29 株式会社日立製作所 Magnetic resistance element
US6462541B1 (en) * 1999-11-12 2002-10-08 Nve Corporation Uniform sense condition magnetic field sensor using differential magnetoresistance
CN100356605C (en) * 2001-07-19 2007-12-19 松下电器产业株式会社 Magnetic sensor and method for manufacturing the same
CN1643391A (en) * 2002-03-27 2005-07-20 松下电器产业株式会社 Magnetic sensing element, magnetic sensor, and its manufacturing method
JP4727943B2 (en) * 2004-04-15 2011-07-20 ルネサスエレクトロニクス株式会社 Inspection circuit, inspection method using the same, and semiconductor device including the inspection circuit
JP4899877B2 (en) * 2007-01-15 2012-03-21 三菱電機株式会社 Magnetic field detector
US8106654B2 (en) * 2008-05-27 2012-01-31 Infineon Technologies Ag Magnetic sensor integrated circuit device and method
KR101233742B1 (en) * 2009-02-27 2013-02-18 아이치 세이코우 가부시키가이샤 Magnetoimpedance sensor element and method for manufacturing the same
JP5597206B2 (en) 2009-12-02 2014-10-01 アルプス電気株式会社 Magnetic sensor
JP2012173206A (en) * 2011-02-23 2012-09-10 Yamanashi Nippon Denki Kk Magnetic sensor and manufacturing method thereof
JP6308784B2 (en) * 2014-01-08 2018-04-11 アルプス電気株式会社 Magnetic sensor

Also Published As

Publication number Publication date
US20160313409A1 (en) 2016-10-27
US9939498B2 (en) 2018-04-10
JP2016206006A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5066579B2 (en) Magnetic sensor and magnetic sensor module
US9182458B2 (en) Magnetoresistive sensing device
US9530957B2 (en) Magnetic sensor
CN107976644B (en) Magnetic field detection device
JP4870227B2 (en) Magnetic sensor and magnetic encoder
JP5021764B2 (en) Magnetic sensor
JP6121316B2 (en) Magnetic detector
WO2009151024A1 (en) Magnetic sensor and magnetic sensor module
JP2009175120A (en) Magnetic sensor and magnetic sensor module
JP5171933B2 (en) Magnetic sensor
JP6438930B2 (en) Magnetic field detector
JP5802565B2 (en) Magnetic sensor
US20100079135A1 (en) Magnetic detecting device and method for making the same, and angle detecting apparatus, position detecting apparatus, and magnetic switch each including the magnetic detecting device
US9835692B2 (en) Magnetic detection device
JP6506604B2 (en) Magnetic sensor
JP5223001B2 (en) Magnetic sensor
JP2018096895A (en) Magnetic field detection device
JP2009281784A (en) Magnetometric sensor
JP2012052912A (en) Current sensor
JP5265689B2 (en) Magnetically coupled isolator
JP2017040628A (en) Magnetic sensor
JP4914502B2 (en) Magnetic sensor and magnetic encoder
JPWO2010137606A1 (en) Magnetic sensor
WO2010032823A1 (en) Magnetic coupling-type isolator
CN108574039B (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150