[go: up one dir, main page]

JP6500486B2 - Gear processing apparatus and gear processing method - Google Patents

Gear processing apparatus and gear processing method Download PDF

Info

Publication number
JP6500486B2
JP6500486B2 JP2015032482A JP2015032482A JP6500486B2 JP 6500486 B2 JP6500486 B2 JP 6500486B2 JP 2015032482 A JP2015032482 A JP 2015032482A JP 2015032482 A JP2015032482 A JP 2015032482A JP 6500486 B2 JP6500486 B2 JP 6500486B2
Authority
JP
Japan
Prior art keywords
tool
blade
processing
gear
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015032482A
Other languages
Japanese (ja)
Other versions
JP2016155175A (en
Inventor
琳 張
琳 張
尚 大谷
尚 大谷
吉次 竹下
吉次 竹下
中野 浩之
浩之 中野
英紀 柴田
英紀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015032482A priority Critical patent/JP6500486B2/en
Priority to CN201610090953.0A priority patent/CN105904037B/en
Priority to DE102016102946.7A priority patent/DE102016102946A1/en
Publication of JP2016155175A publication Critical patent/JP2016155175A/en
Application granted granted Critical
Publication of JP6500486B2 publication Critical patent/JP6500486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • B23F5/16Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof
    • B23F5/163Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof the tool and workpiece being in crossed axis arrangement, e.g. skiving, i.e. "Waelzschaelen"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/12Other devices, e.g. tool holders; Checking devices for controlling workpieces in machines for manufacturing gear teeth

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)
  • Numerical Control (AREA)

Description

本発明は、加工用工具及び加工物を同期回転させて切削加工により歯車を加工する歯車加工装置及び歯車加工方法に関する。   The present invention relates to a gear machining apparatus and a gear machining method for machining a gear by rotating a machining tool and a workpiece in synchronization and cutting.

切削加工によりはすば歯車などの内歯及び外歯を加工する有効な装置としては、例えば、特許文献1に記載の加工装置がある。この加工装置は、回転軸線回りに回転可能な加工物と、加工物の回転軸線に対して所定の角度で傾斜した回転軸線回り、すなわち交差角を有する回転軸線回りに回転可能な加工用工具、例えば刃すじがねじれている複数枚の工具刃を有するカッタとを同期回転させ、加工用工具を加工物の回転軸線方向に送って切削加工することにより歯を創成する加工装置である。そして、特許文献2には、内歯車加工において、加工用工具の位置や回転を決定して交差角を設定することが記載されている。   As an effective apparatus which processes internal teeth and external teeth, such as a helical gear, by cutting, there exists a processing apparatus of patent document 1, for example. The processing apparatus comprises: a workpiece rotatable about an axis of rotation; and a processing tool rotatable about an axis of rotation inclined at a predetermined angle with respect to the axis of rotation of the workpiece, that is, about an axis of rotation having a crossing angle. For example, it is a processing device that generates teeth by synchronously rotating with a cutter having a plurality of tool blades in which blade lines are twisted and sending a processing tool in the rotation axis direction of a workpiece for cutting. Patent Document 2 describes that in the internal gear machining, the position and the rotation of the machining tool are determined to set the crossing angle.

特開平1−159126号公報Unexamined-Japanese-Patent No. 1-159126 特許第4468632号公報Patent No. 4468632 gazette

一般的に、上述した加工用工具の工具刃の刃すじのねじれ角は、歯車(加工物)のねじれ角と交差角との差で表される。通常、交差角は、10度〜30度の範囲内で設定されるので、例えば、歯車のねじれ角を20度、交差角を17度とした場合、工具刃の刃すじのねじれ角は、3度となる。そして、一般的に、図4Bに示すように、加工物Wの回転軸線Lwと平行な直線に対し、傾斜した歯車Gのねじれ角θと、加工物Wの回転軸線Lwと加工用工具92の回転軸線Lとの交差角φとの差を、工具刃92aの刃すじ92bのねじれ角β´(=θ−φ)として加工用工具92を設計する(図4Bのねじれ角β´は、加工物Wの図示手前側に位置する加工用工具92の加工点における角度を表している)。しかし、その加工用工具92では、工具刃92aのねじれ角β´が小さくなり、工具刃92aの刃先幅も小さくなるので、加工時に刃先が変形しびびり振動が発生して加工精度が低下する問題がある。 Generally, the twist angle of the blade line of the tool blade of the above-described processing tool is represented by the difference between the twist angle of the gear (workpiece) and the crossing angle. Usually, since the crossing angle is set within the range of 10 degrees to 30 degrees, for example, when the twist angle of the gear is 20 degrees and the crossing angle is 17 degrees, the twist angle of the blade edge of the tool blade is 3 Degree. Then, generally, as shown in FIG. 4B, with respect to a straight line parallel to the rotation axis Lw of the workpiece W, the twist angle θ of the gear G inclined, the rotation axis Lw of the workpiece W, and the processing tool 92 Design the processing tool 92 with the difference between it and the rotation axis L as the twist angle β ′ (= θ−φ) of the blade streak 92b of the tool blade 92a (the twist angle β ′ in FIG. 4B is a process) This represents the angle at the processing point of the processing tool 92 located on the near side in the drawing of the object W). However, in the processing tool 92, the twist angle β 'of the tool blade 92a becomes smaller, and the width of the cutting edge of the tool blade 92a also becomes smaller. There is.

本発明は、このような事情に鑑みてなされたものであり、工具刃を工具端面に形成した加工用工具を用いて切削加工により歯車を加工する際のびびり振動を抑制できる歯車加工装置及び歯車加工方法を提供することを目的とする。 The present invention has been made in view of such circumstances, gear cutting can be suppressed chatter vibration at the time of processing the rehearsal vehicle by the cutting using a machining tool to form a tool blade tool end surface It aims at providing an apparatus and gear processing method.

本発明の歯車加工装置は、加工物の回転軸線に対し、交差角だけ傾斜した回転軸線を有する加工用工具を用い、前記加工物歯車を加工する歯車加工装置であって、記憶部と工具設計部と加工制御部を有する制御装置を備え、前記記憶部は、前記交差角、前記加工用工具の刃数及び前記歯車のねじれ角を記憶し、前記工具設計部は、前記歯車のねじれ角に前記交差角を加えた角を前記加工用工具の工具刃の刃すじのねじれ角として算出し、前記刃数及び前記刃すじのねじれ角に基づいて、前記工具刃の刃先幅を求め、前記刃数、前記刃すじのねじれ角及び前記刃先幅に基づいて、前記加工用工具の形状を決定し、前記加工制御部は、前記工具設計部で形状決定した前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して前記歯車を加工するGear machining apparatus of the present invention, with respect to the rotational axis of the workpiece, using a machining tool having an axis of rotation inclined by crossing angle, a gear machining apparatus for machining a gear before Symbol workpiece, a storage unit The control device includes a tool design unit and a processing control unit, the storage unit stores the crossing angle, the number of blades of the processing tool, and the twist angle of the gear, and the tool design unit is configured to twist the gear. The angle obtained by adding the intersection angle to the angle is calculated as the twist angle of the edge of the tool edge of the processing tool, and the width of the edge of the tool edge is determined based on the number of edges and the angle of twist of the edge. The shape of the processing tool is determined based on the number of blades, the twist angle of the blade line, and the cutting edge width, and the processing control unit determines the processing tool whose shape is determined by the tool design unit. Rotation axis direction of the workpiece while rotating in synchronization with Relatively feeding operations to processing the gears.

これにより、工具刃の刃すじのねじれ角が大きくなるので、工具刃の刃先幅も大きくなる。よって、加工時に刃先が変形し難い易ため、びびり振動の発生を抑制して加工精度を向上できる。   As a result, the twist angle of the blade edge of the tool blade is increased, and the blade width of the tool blade is also increased. Therefore, since it is easy to deform a blade edge at the time of processing, generation of chatter vibration can be suppressed and processing accuracy can be improved.

本発明の歯車加工方法は、加工物の回転軸線に対し、交差角だけ傾斜した回転軸線を有し、工具刃の刃すじが前記傾斜した回転軸線に対し、ねじれて形成される加工用工具を用いて歯車を加工する歯車加工方法であって、前記工具刃の刃数を設定する刃数設定工程と、前記歯車のねじれ角に前記交差角を加えた角を前記刃すじのねじれ角として算出するねじれ角演算工程と、前記設定した刃数及び前記求めたねじれ角に基づいて前記工具刃の刃先幅を求める刃先幅演算工程と、前記求めた刃先幅が所定値以上となったときの前記刃すじのねじれ角及び前記設定した刃数に基づいて、前記加工用工具の形状を決定する工具決定工程と、前記決定した加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して前記歯車を加工する加工工程と、を備える。
これにより、上述した歯車加工装置における効果と同様の効果を奏する。
The gear machining method of the present invention has a rotation axis inclined by a crossing angle with respect to the rotation axis of the workpiece, and a cutting tool formed by twisting a blade edge of the tool blade with respect to the inclined rotation axis. A gear machining method for machining a gear by using a blade number setting step of setting the number of blades of the tool blade, and calculating an angle obtained by adding the crossing angle to a twist angle of the gear as a twist angle of the blade. The blade width calculating step of calculating the blade width of the tool blade based on the twist angle calculating step, the blade number set as described above, and the obtained twist angle, and the blade width obtained as described above A tool determination step of determining the shape of the processing tool based on the twist angle of the blade line and the set number of blades, and the rotation axis of the workpiece while synchronously rotating the determined processing tool with the workpiece Feed operation relative to the direction And a processing step of processing the gears.
Thereby, the same effect as the effect in the gear machining device described above is obtained.

本発明の実施の形態に係る歯車加工装置の全体構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the gear processing apparatus which concerns on embodiment of this invention. 図1の歯車加工装置の制御装置による処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process by the control apparatus of the gear processing apparatus of FIG. 加工用工具の概略構成を工具端面側から回転軸線方向に見た図である。It is the figure which looked at schematic structure of the tool for processing from the tool end surface side in the rotation axis direction. 図3Aの加工用工具の概略構成を径方向に見た一部断面図である。It is a fragmentary sectional view which looked at the schematic structure of the processing tool of FIG. 3A in radial direction. 図3Bの加工用工具の工具刃の拡大図である。It is an enlarged view of the tool blade of the processing tool of FIG. 3B. 図3Aの加工用工具で加工する際の加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship of the processing tool at the time of processing with the processing tool of FIG. 3A, and a workpiece. 一般的な加工用工具で加工する際の加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship of the processing tool at the time of processing with a common processing tool, and a workpiece. 加工用工具の刃先幅を求める際に使用する加工用工具の各部位を示す図である。It is a figure which shows each site | part of the processing tool used when calculating | requiring the blade-tip width | variety of the processing tool.

(歯車加工装置の機械構成)
本実施形態では、歯車加工装置の一例として、5軸マシニングセンタを例に挙げ、図1を参照して説明する。つまり、当該歯車加工装置1は、駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)及び2つの回転軸(A軸、C軸)を有する装置である。
(Machine configuration of gear processing device)
In the present embodiment, a 5-axis machining center will be described as an example of a gear machining device, with reference to FIG. That is, the said gear processing apparatus 1 is an apparatus which has three rectilinear axes (X, Y, Z axis | shaft) and two rotation axes (A axis | shaft, C axis | shaft) which mutually orthogonally cross as a drive shaft.

図1に示すように、歯車加工装置1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、チルトテーブル60と、ターンテーブル70と、加工物保持具80と、制御装置100等とから構成される。なお、図示省略するが、ベッド10と並んで既知の自動工具交換装置が設けられる。   As shown in FIG. 1, the gear machining device 1 includes a bed 10, a column 20, a saddle 30, a rotating spindle 40, a table 50, a tilt table 60, a turntable 70, and a workpiece holder 80. , And the control device 100 and the like. Although not shown, a known automatic tool changer is provided alongside the bed 10.

ベッド10は、ほぼ矩形状からなり、床上に配置される。このベッド10の上面には、コラム20をX軸線方向に駆動するための、図略のX軸ボールねじが配置される。そして、ベッド10には、X軸ボールねじを回転駆動するX軸モータ11cが配置される。   The bed 10 has a substantially rectangular shape and is disposed on the floor. An unillustrated X-axis ball screw for driving the column 20 in the X-axis direction is disposed on the upper surface of the bed 10. The bed 10 is provided with an X-axis motor 11 c that rotationally drives an X-axis ball screw.

コラム20のY軸に平行な側面(摺動面)20aには、サドル30をY軸線方向に駆動するための、図略のY軸ボールねじが配置される。そして、コラム20には、Y軸ボールねじを回転駆動するY軸モータ23cが配置される。   On a side surface (sliding surface) 20a parallel to the Y axis of the column 20, a Y axis ball screw (not shown) for driving the saddle 30 in the Y axis direction is disposed. The column 20 is provided with a Y-axis motor 23c that rotationally drives a Y-axis ball screw.

回転主軸40は、加工用工具42を支持し、サドル30内に回転可能に支持され、サドル30内に収容された主軸モータ41により回転される。加工用工具42は、図略の工具ホルダに保持されて回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、加工用工具42は、コラム20及びサドル30の移動に伴ってベッド10に対してX軸線方向及びY軸線方向に移動する。なお、加工用工具42の詳細は後述する。 The rotating spindle 40 supports the processing tool 42, is rotatably supported in the saddle 30, and is rotated by a spindle motor 41 housed in the saddle 30. The processing tool 42 is held by a tool holder (not shown) and fixed to the tip of the rotating spindle 40, and rotates as the rotating spindle 40 rotates. Further, the processing tool 42 moves in the X axis direction and the Y axis direction with respect to the bed 10 as the column 20 and the saddle 30 move. The details of the processing tool 42 will be described later.

さらに、ベッド10の上面には、テーブル50をZ軸線方向に駆動するための、図略のZ軸ボールねじが配置される。そして、ベッド10には、Z軸ボールねじを回転駆動するZ軸モータ12cが配置される。   Further, on the upper surface of the bed 10, a Z-axis ball screw (not shown) for driving the table 50 in the Z-axis direction is disposed. Then, in the bed 10, a Z-axis motor 12c that rotationally drives a Z-axis ball screw is disposed.

テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部63が設けられる。そして、チルトテーブル支持部63には、チルトテーブル60がX軸線と平行なA軸線回りで回転(揺動)可能に設けられる。チルトテーブル60は、テーブル50内に収容されたA軸モータ61により回転(揺動)される。   A tilt table support 63 for supporting the tilt table 60 is provided on the top surface of the table 50. The tilt table 60 is provided on the tilt table support 63 so as to be rotatable (oscillating) around an A axis parallel to the X axis. The tilt table 60 is rotated (rocked) by an A-axis motor 61 accommodated in the table 50.

チルトテーブル60には、ターンテーブル70がA軸線に直角なC軸線回りで回転可能に設けられる。ターンテーブル70には、加工物Wを保持する加工物保持具80が装着される。ターンテーブル70は、加工物W及び加工物保持具80とともにC軸モータ62により回転される。   The turntable 70 is provided on the tilt table 60 so as to be rotatable about a C-axis perpendicular to the A-axis. A workpiece holder 80 for holding the workpiece W is mounted on the turn table 70. The turntable 70 is rotated by the C-axis motor 62 together with the workpiece W and the workpiece holder 80.

制御装置100は、工具設計部101と、加工制御部102と、記憶部103等とを備える。ここで、工具設計部101、加工制御部102及び記憶部103は、それぞれ個別のハードウエアにより構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。   The control device 100 includes a tool design unit 101, a processing control unit 102, a storage unit 103, and the like. Here, the tool design unit 101, the processing control unit 102, and the storage unit 103 can be configured by individual hardware, or can be configured to be realized by software.

工具設計部101は、詳細は後述するが、加工用工具42の工具刃42aのねじれ角β(図3参照)等を求めて加工用工具42を設計する。
加工制御部102は、主軸モータ41を制御して、加工用工具42を回転させ、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、A軸モータ61及びC軸モータ62を制御して、加工物Wと加工用工具42とをX軸線方向、Z軸線方向、Y軸線方向、A軸回り及びC軸回りに相対移動することにより、加工物Wの切削加工を行う。
Tool design unit 101, which will be described in detail later, to design a helix angle β machining tools 42 seeking (Figure 3 C reference) or the like of the tool blades 42a of the working tool 42.
The processing control unit 102 controls the spindle motor 41 to rotate the processing tool 42, and controls the X-axis motor 11c, the Z-axis motor 12c, the Y-axis motor 23c, the A-axis motor 61, and the C-axis motor 62. The workpiece W is cut by relatively moving the workpiece W and the processing tool 42 in the X axis direction, the Z axis direction, the Y axis direction, around the A axis, and around the C axis.

記憶部103は、加工用工具42を設計する際に入力される工具刃42aの刃数Z及び交差角φを記憶する。また、記憶部103には、加工用工具42に関する工具データ、すなわち刃先円直径da、基準円直径d、刃末のたけha、モジュールm、転位係数λ、圧力角α、正面圧力角αt及び刃先圧力角αa、及び加工物Wの切削加工を行うための加工データは予め記憶される。   The storage unit 103 stores the number of blades Z of the tool blade 42 a and the crossing angle φ input when designing the processing tool 42. In the storage unit 103, tool data relating to the processing tool 42, that is, a tip diameter circle da, a reference circle diameter d, a tip end ha, a module m, a dislocation coefficient λ, a pressure angle α, a front pressure angle αt, and a tip The pressure angle αa and processing data for cutting the workpiece W are stored in advance.

(加工用工具)
上述の歯車加工装置1では、加工用工具42と加工物Wとを同期回転させ、加工用工具42を加工物Wの回転軸線方向に送って切削加工することにより歯を創成する。図3Aに示すように、加工用工具42を工具端面42A側から回転軸線L方向に見たときの工具刃42aの形状は、加工される歯車と噛み合う歯の形状、本例ではインボリュート曲線形状と同一形状に形成される。
(Tool for processing)
In the above-described gear machining device 1, the machining tool 42 and the workpiece W are synchronously rotated, and the machining tool 42 is sent in the direction of the rotation axis of the workpiece W for cutting, thereby creating teeth. As shown in FIG. 3A, when the processing tool 42 is viewed from the side of the tool end surface 42A in the direction of the rotation axis L, the shape of the tool blade 42a is the shape of the teeth meshing with the gear to be processed. It is formed in the same shape.

そして、図3Bに示すように、加工用工具42の工具刃42aには、工具端面42A側に回転軸線Lと直角な平面に対し、角度γ傾斜したすくい角が設けられ、工具周面42B側に回転軸線Lと平行な直線に対し、角度δ傾斜した前逃げ角が設けられる。そして、図3Cに示すように、工具刃42aの刃面に対し略直角な方向に延びる刃すじ42bは、回転軸線Lと平行な直線に対し、角度β傾斜したねじれ角を有する。 Then, as shown in FIG. 3B, the tool edge 42a of the processing tool 42 is provided with a rake angle inclined at an angle γ with respect to a plane perpendicular to the rotation axis L on the tool end surface 42A side. With respect to a straight line parallel to the rotation axis L, a front clearance angle inclined by an angle δ is provided. Then, as shown in FIG. 3C, a blade line 42b extending in a direction substantially perpendicular to the blade surface of the tool blade 42a has a twist angle inclined at an angle β with respect to a straight line parallel to the rotation axis L.

ここで、背景技術で説明したように、一般的に、図4Bに示すように、加工物Wの回転軸線Lwと平行な直線に対し、傾斜した歯車のねじれ角θ(以下、「加工物Wのねじれ角θ」という)と、加工物Wの回転軸線Lwと加工用工具92の回転軸線Lとの交差角φとの差を、工具刃92aの刃すじ92bのねじれ角β´(=θ−φ)として加工用工具92を設計する(図4Bのねじれ角β´は、加工物Wの図示手前側に位置する加工用工具92の加工点における角度を表している)。しかし、その加工用工具92では、工具刃92aのねじれ角β´が小さくなり、工具刃92aの刃先幅も小さくなるので、加工時に刃先が変形しびびり振動が発生して加工精度が低下する問題がある。 Here, as described in the background art, generally, as shown in FIG. 4B, a twist angle θ of the gear G inclined with respect to a straight line parallel to the rotation axis Lw of the workpiece W (hereinafter referred to as “workpiece The difference between the twist angle θ of W), the crossing angle φ of the axis of rotation Lw of the workpiece W and the axis of rotation L of the processing tool 92, the twist angle β ′ of the cutting edge 92b of the tool blade 92a (= The processing tool 92 is designed as θ−φ) (the twist angle β ′ in FIG. 4B represents the angle at the processing point of the processing tool 92 located on the near side of the workpiece W in the drawing ). However, in the processing tool 92, the twist angle β 'of the tool blade 92a becomes smaller, and the width of the cutting edge of the tool blade 92a also becomes smaller. There is.

そこで、本実施形態では、工具刃42aの刃すじ42bのねじれ角βを大きくして、工具刃42aの刃先幅も大きくする。このため、図4Aに示すように、加工物Wのねじれ角θと交差角φとの和を工具刃42aの刃すじ42bのねじれ角β(=θ+φ)として加工用工具42を設計する(図4Aのねじれ角βは、加工物Wの図示手前側に位置する加工用工具42の加工点における角度を表している)。なお、図4A,Bは、加工物Wの手前側に加工用工具42,92が位置している状態で加工物Wの加工点を通る径方向から見た図、すなわち加工物Wの回転軸線Lwと直角であって加工点を通る直線方向から見た図であり、交差角φは、加工物Wの回転軸線Lwと加工用工具92の回転軸線Lとを上記直線に直角な平面上に投影したときの角である。 Therefore, in the present embodiment, the twist angle β of the blade line 42b of the tool blade 42a is increased, and the blade width of the tool blade 42a is also increased. For this reason, as shown in FIG. 4A, the processing tool 42 is designed with the sum of the twist angle θ of the workpiece W and the crossing angle φ as the twist angle β (= θ + φ) of the blade stripe 42b of the tool blade 42a (FIG. 4A) The twist angle β of 4A represents the angle at the processing point of the processing tool 42 located on the near side of the workpiece W in the drawing ). 4A and 4B are diagrams seen from the radial direction passing through the processing point of the workpiece W in a state where the processing tools 42 and 92 are located on the front side of the workpiece W, that is, the rotation axis of the workpiece W It is a view seen from a straight direction perpendicular to Lw and passing the processing point, and the crossing angle φ is a plane perpendicular to the above-mentioned straight line between the rotation axis Lw of the workpiece W and the rotation axis L of the processing tool 92 It is a corner when projected.

以下に、刃先幅を求めるための演算例を説明する。
図5に示すように、工具刃42aの刃先幅Saは、刃先円直径da及び刃先円刃厚の半角Ψaで表される(式(1)参照)。
An example of calculation for obtaining the blade width will be described below.
As shown in FIG. 5, the cutting edge width Sa of the tool blade 42 a is represented by a half radius Ψa of a cutting edge circle diameter da and a cutting edge circular thickness (see equation (1)).

Figure 0006500486
Figure 0006500486

刃先円直径daは、基準円直径d及び刃末のたけhaで表され(式(2)参照)、さらに、基準円直径dは、工具刃42aの刃数Z、工具刃42aの刃すじ42bのねじれ角β及びモジュールmで表され(式(3)参照)、刃末のたけhaは、転位係数λ及びモジュールmで表される(式(4)参照)。   The cutting edge circle diameter da is represented by a reference circle diameter d and a cutting edge ha (see equation (2)). Furthermore, the reference circle diameter d is the number Z of the tool blade 42a, and the blade streak 42b of the tool blade 42a. And a module m (see equation (3)), and a blade end ha is represented by a dislocation coefficient λ and a module m (see equation (4)).

Figure 0006500486
Figure 0006500486

Figure 0006500486
Figure 0006500486

Figure 0006500486
Figure 0006500486

また、刃先円刃厚の半角Ψaは、工具刃42aの刃数Z、転位係数λ、圧力角α、正面圧力角αt及び刃先圧力角αaで表される(式(5)参照)。なお、正面圧力角αtは、圧力角α及び工具刃42aの刃すじ42bのねじれ角βで表すことができ(式(6)参照)、刃先圧力角αaは、正面圧力角αt、刃先円直径da及び基準円直径dで表すことができる(式(7)参照)。   Further, the half-angle は a of the cutting edge circular thickness is represented by the number of cutting edges Z of the tool blade 42a, the dislocation coefficient λ, the pressure angle α, the front pressure angle αt, and the cutting edge pressure angle αa (see equation (5)). The front pressure angle αt can be expressed by the pressure angle α and the twist angle β of the blade 42b of the tool blade 42a (refer to equation (6)), and the blade pressure angle αa is the front pressure angle αt and the blade circle diameter It can be represented by da and a reference circle diameter d (see equation (7)).

Figure 0006500486
Figure 0006500486

Figure 0006500486
Figure 0006500486

Figure 0006500486
Figure 0006500486

本実施形態の加工用工具42の刃先円直径daが、従来の加工用工具92の刃先円直径と同一であるとした場合、式(5)〜式(7)から明らかなように、工具刃42aの刃すじ42bのねじれ角βが大きくなるとcosβは小さくなるので、刃先円刃厚の半角Ψaが大きくなる。よって、式(1)から明らかなように、工具刃42aの刃先幅Saは大きくなる。   When it is assumed that the cutting edge circle diameter da of the processing tool 42 of the present embodiment is the same as the cutting edge circle diameter of the conventional processing tool 92, as is apparent from the equations (5) to (7) As the twist angle β of the blade 42b of 42a increases, cos β decreases, so the half-angle Ψa of the blade edge circular thickness increases. Therefore, as is clear from the equation (1), the cutting edge width Sa of the tool blade 42a becomes large.

具体的には、例えば、従来の加工用工具92及び本実施形態の加工用工具42の刃数Z、転位係数λ及びモジュールmを同一とし、加工物Wのねじれ角θを20度、交差角φを17度とした場合、従来の加工用工具92の工具刃92aの刃すじ92bのねじれ角β´は3度となるので、式(1)〜(7)により、工具刃92aの刃先幅Saは、0.16mmとなる。一方、本実施形態の加工用工具42の工具刃42aの刃すじ42bのねじれ角βは37度となるので、式(1)〜(7)により、工具刃42aの刃先幅Saは、0.3mmとなり、従来の加工用工具92の工具刃92aの刃先幅0.16mmよりも大きくなる。   Specifically, for example, the number of blades Z, the dislocation coefficient λ, and the module m of the conventional processing tool 92 and the processing tool 42 of this embodiment are the same, the twist angle θ of the workpiece W is 20 degrees, and the crossing angle When φ is 17 degrees, the twist angle β ′ of the blade streak 92b of the tool blade 92a of the conventional processing tool 92 is 3 degrees, so the blade width of the tool blade 92a is obtained by Equations (1) to (7) Sa is 0.16 mm. On the other hand, the twist angle β of the blade stripe 42b of the tool blade 42a of the processing tool 42 according to the present embodiment is 37 degrees, so that the blade width Sa of the tool blade 42a is 0. It becomes 3 mm, and it becomes larger than 0.16 mm of blade-edge widths of the tool blade 92a of the conventional processing tool 92.

(制御装置による処理)
次に、制御装置100の処理について、図2を参照して説明する。なお、加工用工具42に関するデータ、すなわち刃先円直径da、基準円直径d、刃末のたけha、モジュールm、転位係数λ、圧力角α、正面圧力角αt及び刃先圧力角αaは、記憶部103に予め記憶されているものとする。
(Processing by control device)
Next, the process of the control device 100 will be described with reference to FIG. The data on the processing tool 42, that is, the edge diameter da, the reference circle diameter d, the end edge ha, the module m, the dislocation coefficient λ, the pressure angle α, the front pressure angle αt, and the edge pressure angle αa It is assumed that it is stored in advance in 103.

制御装置100の工具設計部101は、作業者により入力される加工用工具42の工具刃42aの刃数Zを記憶部103に記憶する(図2のステップS1、刃数設定工程)。そして、工具設計部101は、作業者により入力される加工物Wの回転軸線Lwと加工用工具42の回転軸線Lとの交差角φを記憶部103に記憶し、この交差角φに基づいて加工用工具42の工具刃42aの刃すじ42bのねじれ角βを求める(図2のステップS2、ねじれ角演算工程)。   The tool design unit 101 of the control device 100 stores the number of blades Z of the tool blade 42a of the processing tool 42 input by the worker in the storage unit 103 (step S1 in FIG. 2, the number of blades setting process). Then, the tool design unit 101 stores in the storage unit 103 the crossing angle φ between the rotation axis Lw of the workpiece W input by the operator and the rotation axis L of the processing tool 42, and based on this crossing angle φ The twist angle β of the blade line 42b of the tool blade 42a of the processing tool 42 is determined (Step S2 in FIG. 2, a twist angle calculation step).

工具設計部101は、記憶した刃数Z及び求めたねじれ角βに基づいて、工具刃42aの刃先幅Saを求める(図2のステップS3、刃先幅演算工程)。そして、工具設計部101は、記憶部103から予め記憶されている刃先幅Saの閾値SSを読み出し、求めた刃先幅Saが閾値SS以上になったか否かを判断する(図2のステップS4)。   The tool design unit 101 obtains the cutting edge width Sa of the tool blade 42a based on the stored number of blades Z and the obtained twist angle β (Step S3 in FIG. 2, cutting edge width calculation step). Then, the tool design unit 101 reads the threshold value SS of the cutting edge width Sa stored in advance from the storage unit 103, and determines whether the obtained cutting edge width Sa is equal to or greater than the threshold value SS (step S4 in FIG. 2). .

工具設計部101は、求めた刃先幅Saが閾値SS未満のときは、ステップS1に戻って上述の処理を繰り返し、求めた刃先幅Saが閾値SS以上になったら、求めたねじれ角β及び記憶した刃数Zに基づいて、加工用工具42の形状を決定する(図2のステップS5、工具決定工程)。   When the obtained blade width Sa is less than the threshold value SS, the tool design unit 101 returns to step S1 to repeat the above-described process, and when the obtained blade width Sa becomes equal to or more than the threshold value SS, the obtained twist angle β and memory The shape of the processing tool 42 is determined based on the number of blades Z (step S5 in FIG. 2, tool determination step).

この決定した加工用工具42の形状のデータは、例えば制御装置100の図略の表示部に表示される。そこで、作業者は、この表示データに基づいて加工用工具42を製作し、製作した加工用工具42を回転主軸40に取り付け加工物Wに対し交差角φを付ける。加工制御部102は、加工用工具42を加工物Wと同期回転させながら加工物Wの回転軸線Lw方向に相対的に送り操作して加工物Wを加工して歯車を製作する(図2のステップS6、加工工程)。   The data of the determined shape of the processing tool 42 is displayed, for example, on the display unit of the control device 100 (not shown). Therefore, the worker manufactures the processing tool 42 based on the display data, attaches the manufactured processing tool 42 to the rotating spindle 40, and gives the intersection angle φ to the workpiece W. The processing control unit 102 manufactures a gear by processing the workpiece W by relatively feeding operation in the direction of the rotation axis Lw of the workpiece W while rotating the processing tool 42 in synchronization with the workpiece W (FIG. 2 Step S6, processing step).

(効果)
本実施形態の歯車加工装置1は、加工物Wの回転軸線Lwに対し、傾斜した回転軸線Lを有する加工用工具42を用い、加工用工具42を加工物Wと同期回転させながら加工物Wの回転軸線Lw方向に相対的に送り操作して歯車を加工する。そして、加工用工具42の工具刃42aの刃すじ42bは、加工用工具42の回転軸線Lに対し、ねじれて形成され、刃すじ42bのねじれ角βは、歯車のねじれ角θに、加工用工具42の回転軸線Lと加工物Wの回転軸線Lwとの交差角φを加えた角に形成される。
(effect)
The gear machining device 1 according to the present embodiment uses the processing tool 42 having the rotational axis L inclined with respect to the rotational axis Lw of the workpiece W, and rotates the processing tool 42 in synchronization with the workpiece W. The gear is processed relatively by feeding operation in the direction of the rotation axis Lw. The cutting edge 42b of the tool blade 42a of the processing tool 42 is formed to twist with respect to the rotation axis L of the processing tool 42, and the twist angle β of the cutting edge 42b is set to the twist angle θ of the gear. It is formed at an angle obtained by adding the crossing angle φ between the rotation axis L of the tool 42 and the rotation axis Lw of the workpiece W.

これにより、工具刃42aの刃すじ42bのねじれ角βが大きくなるので、工具刃42aの刃先幅Saも大きくなる。よって、加工時に刃先が変形し難い易ため、びびり振動の発生を抑制して加工精度を向上できる。特に、加工物Wの歯底幅が狭いときには、従来の装置では工具刃42aの刃先幅Saが狭くなるが、本実施形態の装置では工具刃42aの刃先幅Saを大きくすることが可能となる。   As a result, the twist angle β of the blade line 42b of the tool blade 42a increases, so the blade width Sa of the tool blade 42a also increases. Therefore, since it is easy to deform a blade edge at the time of processing, generation of chatter vibration can be suppressed and processing accuracy can be improved. In particular, when the tooth base width of the workpiece W is narrow, the cutting edge width Sa of the tool blade 42a becomes narrow in the conventional device, but in the device of this embodiment, the cutting edge width Sa of the tool blade 42a can be increased. .

また、加工用工具42は、工具刃42aの刃数Zを設定し、交差角φを設定して刃すじのねじれ角βを求め、設定した刃数Z及び求めたねじれ角βに基づいて、工具刃42aの刃先幅Saを求めることにより形成される。これにより、刃先幅Saの大きな工具刃42aを有する加工用工具42を得ることができる。   Further, the processing tool 42 sets the number of blades Z of the tool blade 42a, sets the crossing angle φ, obtains the twist angle β of the blade line, and based on the set number of blades Z and the calculated twist angle β It is formed by obtaining the cutting edge width Sa of the tool blade 42a. As a result, it is possible to obtain the processing tool 42 having the large tool edge 42a of the cutting edge width Sa.

また、本実施形態の歯車加工方法は、加工物Wの回転軸線Lwに対し、傾斜した回転軸線Lを有し、工具刃42aの刃すじ42bが傾斜した回転軸線Lに対し、ねじれて形成される加工用工具42を用いて歯車を加工する歯車加工方法である。そして、工具刃42aの刃数Zを設定する刃数設定工程(図2のステップS1)と、加工用工具42の回転軸線Lと加工物Wの回転軸線Lwとの交差角φを設定して刃すじ42bのねじれ角βを求めるねじれ角演算工程(図2のステップS2)と、設定した刃数Z及び求めたねじれ角βに基づいて工具刃42aの刃先幅Saを求める刃先幅演算工程(図2のステップS3)と、を備える。   Further, in the gear machining method of the present embodiment, the rotation axis L is inclined with respect to the rotation axis Lw of the workpiece W, and the blade 42b of the tool blade 42a is formed to be twisted with respect to the rotation axis L. Gear machining method for machining a gear using a machining tool 42. Then, the blade number setting step (step S1 in FIG. 2) for setting the number of blades Z of the tool blade 42a, and the crossing angle φ between the rotation axis L of the processing tool 42 and the rotation axis Lw of the workpiece W The twist angle calculation step (step S2 in FIG. 2) for determining the twist angle β of the blade 42b, and the blade width calculation step (for finding the blade width Sa of the tool blade 42a based on the set number of blades Z and the twist angle β) And step S3) in FIG.

さらに、求めた刃先幅Saが所定値SS以上となったときの刃すじ42bのねじれ角β及び設定した刃数Zに基づいて、加工用工具の形状を決定する工具決定工程(図2のステップS4)と、決定した加工用工具42を加工物Wと同期回転させながら加工物Wの回転軸線Lw方向に相対的に送り操作して歯車を加工する加工工程(図2のステップS6)と、を備える。これにより、工具刃42aの刃すじ42bのねじれ角βが大きくなるので、工具刃42aの刃先幅Saも大きくなる。よって、加工時に刃先が変形し難い易ため、びびり振動の発生を抑制して加工精度を向上できる。また、刃先の剛性が高いので、磨耗が少なく、寿命を向上することができる。   Furthermore, the tool determination step of determining the shape of the processing tool based on the twist angle β of the cutting edge 42b and the set number of cutting edges Z when the calculated cutting edge width Sa becomes equal to or greater than the predetermined value SS (FIG. S4) and a processing step (step S6 in FIG. 2) of processing the gear by relatively feeding operation in the direction of the rotational axis Lw of the workpiece W while synchronously rotating the processing tool 42 determined with the workpiece W; Equipped with As a result, the twist angle β of the blade line 42b of the tool blade 42a increases, so the blade width Sa of the tool blade 42a also increases. Therefore, since it is easy to deform a blade edge at the time of processing, generation of chatter vibration can be suppressed and processing accuracy can be improved. In addition, since the rigidity of the cutting edge is high, the wear can be reduced and the life can be improved.

(その他)
上述した実施形態では、5軸マシニングセンタである歯車加工装置1は、加工物WをA軸旋回可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、加工用工具42をA軸旋回可能とする構成としてもよい。また、本発明をマシニングセンタに適用する場合を説明したが、歯車加工の専用機に対しても同様に適用可能である。また、加工物Wとして、ねじれ角度を有する歯車(はすば歯車)などがよいが、その他の歯車でも加工可能である。
(Others)
In the embodiment described above, the gear machining device 1 which is a 5-axis machining center is configured to be capable of turning the workpiece W along the A axis. On the other hand, the 5-axis machining center may be configured to be capable of turning the processing tool 42 along the A axis as a vertical machining center. Moreover, although the case where this invention was applied to a machining center was demonstrated, it is applicable similarly to the exclusive machine of gear processing. Moreover, although the gear (helical gear) etc. which have a twist angle as a workpiece W, etc. are good, it can process also with another gear.

1:歯車加工装置、 42:加工用工具、 42a:工具刃、 42a:工具刃、 42b:刃すじ、 100:制御装置、 101:工具設計部、 102:加工制御部、 103:記憶部、 W:加工物、β:刃すじのねじれ角   1: Gear processing apparatus 42: Processing tool 42a: Tool blade 42a: Tool blade 42b: Blade streaks 100: Control device 101: Tool design unit 102: Machining control unit 103: Storage unit W : Workpiece, β: Twist angle of blade line

Claims (2)

加工物の回転軸線に対し、交差角だけ傾斜した回転軸線を有する加工用工具を用い、前記加工物歯車を加工する歯車加工装置であって、
記憶部と工具設計部と加工制御部を有する制御装置を備え、
前記記憶部は、前記交差角、前記加工用工具の刃数及び前記歯車のねじれ角を記憶し、
前記工具設計部は、前記歯車のねじれ角に前記交差角を加えた角を前記加工用工具の工具刃の刃すじのねじれ角として算出し、前記刃数及び前記刃すじのねじれ角に基づいて、前記工具刃の刃先幅を求め、前記刃数、前記刃すじのねじれ角及び前記刃先幅に基づいて、前記加工用工具の形状を決定し、
前記加工制御部は、前記工具設計部で形状決定した前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して前記歯車を加工する、歯車加工装置。
Relative to the rotational axis of the workpiece, using a machining tool having an axis of rotation inclined by crossing angle, a gear machining apparatus for machining a gear before Symbol workpiece,
A control unit having a storage unit, a tool design unit, and a processing control unit;
The storage unit stores the crossing angle, the number of blades of the processing tool, and the twist angle of the gear.
The tool design unit calculates an angle obtained by adding the crossing angle to the twist angle of the gear as the twist angle of the blade edge of the tool blade of the processing tool, and based on the number of blades and the twist angle of the blade edge Determining the width of the cutting edge of the tool blade, and determining the shape of the processing tool based on the number of blades, the twist angle of the cutting edge, and the width of the cutting edge;
The processing control unit processes the gear by relatively performing a feed operation in the rotational axis direction of the workpiece while rotating the processing tool whose shape is determined by the tool design unit in synchronization with the workpiece. apparatus.
加工物の回転軸線に対し、交差角だけ傾斜した回転軸線を有し、工具刃の刃すじが前記傾斜した回転軸線に対し、ねじれて形成される加工用工具を用いて歯車を加工する歯車加工方法であって、
前記工具刃の刃数を設定する刃数設定工程と、
前記歯車のねじれ角に前記交差角を加えた角を前記刃すじのねじれ角として算出するねじれ角演算工程と、
前記設定した刃数及び前記求めたねじれ角に基づいて前記工具刃の刃先幅を求める刃先幅演算工程と、
前記求めた刃先幅が所定値以上となったときの前記刃すじのねじれ角及び前記設定した刃数に基づいて、前記加工用工具の形状を決定する工具決定工程と、
前記決定した加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して前記歯車を加工する加工工程と、
を備える、歯車加工方法。
A gear machining that has a rotation axis inclined by a crossing angle with respect to the rotation axis of the workpiece and a gear is machined using a processing tool that is formed by twisting a blade edge of the tool blade with respect to the inclined rotation axis Method,
A blade number setting step of setting the number of blades of the tool blade;
A twist angle calculation step of calculating an angle obtained by adding the crossing angle to the twist angle of the gear as the twist angle of the blade;
A cutting edge width calculating step of calculating a cutting edge width of the tool blade based on the set number of blades and the determined twist angle;
A tool determination step of determining the shape of the processing tool based on the twist angle of the blade and the set number of blades when the calculated blade width becomes equal to or greater than a predetermined value;
A processing step of processing the gear by relatively feeding operation in the rotation axis direction of the workpiece while rotating the determined processing tool in synchronization with the workpiece;
A gear machining method comprising:
JP2015032482A 2015-02-23 2015-02-23 Gear processing apparatus and gear processing method Active JP6500486B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015032482A JP6500486B2 (en) 2015-02-23 2015-02-23 Gear processing apparatus and gear processing method
CN201610090953.0A CN105904037B (en) 2015-02-23 2016-02-18 Gear machining equipment and gear working method
DE102016102946.7A DE102016102946A1 (en) 2015-02-23 2016-02-19 Gear milling device and Zahnradfräsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032482A JP6500486B2 (en) 2015-02-23 2015-02-23 Gear processing apparatus and gear processing method

Publications (2)

Publication Number Publication Date
JP2016155175A JP2016155175A (en) 2016-09-01
JP6500486B2 true JP6500486B2 (en) 2019-04-17

Family

ID=56577634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032482A Active JP6500486B2 (en) 2015-02-23 2015-02-23 Gear processing apparatus and gear processing method

Country Status (3)

Country Link
JP (1) JP6500486B2 (en)
CN (1) CN105904037B (en)
DE (1) DE102016102946A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117368A1 (en) * 2017-07-21 2019-01-24 Jtekt Corporation MACHINING DEVICE AND PROCESSING METHOD
JP6977494B2 (en) * 2017-11-14 2021-12-08 株式会社ジェイテクト How to re-polish gear cutting tools, gear processing equipment, gear cutting tools and how to design gear cutting tools
JP7003656B2 (en) * 2017-12-28 2022-01-20 株式会社ジェイテクト Gear processing equipment and gear processing method
JP7268329B2 (en) * 2018-11-05 2023-05-08 株式会社ジェイテクト Gear processing device and gear processing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2065605A1 (en) * 1970-03-12 1974-05-30 Gehring Christoph Willi MACHINE FOR FINISHING, ESPECIALLY HONING OF GEARS
JPH01159126A (en) 1987-12-14 1989-06-22 Mitsubishi Heavy Ind Ltd Skiving machine
JPH046832A (en) 1990-04-25 1992-01-10 Oki Electric Ind Co Ltd Manufacture of semiconductor element
DE10162823A1 (en) * 2001-12-14 2003-08-28 Gleason Pfauter Maschinenfabri Process for machining essentially cylindrical, internally or externally toothed gears
JP5419473B2 (en) * 2009-01-09 2014-02-19 三菱重工業株式会社 Internal gear machining method
DE102011009027A1 (en) * 2011-01-20 2012-07-26 Gleason-Pfauter Maschinenfabrik Gmbh Method for machining a workpiece and machine tool designed for this purpose
EP2741885B1 (en) * 2011-08-08 2015-09-16 The Gleason Works Bevel gear manufacture with face cutters without swing axis motion
US9067269B2 (en) * 2011-10-13 2015-06-30 Bourn & Koch, Inc. Horizontal gear shaping machine with dual shaping heads
EP2596893A1 (en) * 2011-11-25 2013-05-29 Klingelnberg AG Semi-completing skiving method with two axis intersection angles and use of a corresponding skiving tool for semi-completing skiving
CN102581387A (en) * 2012-03-20 2012-07-18 唐进元 Method for processing face gear
JP2014004643A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Method and device for manufacturing gear wheel
JP2015006713A (en) * 2013-06-25 2015-01-15 株式会社ジェイテクト Gear processing device
CN103611990B (en) * 2013-11-15 2015-12-02 天津大学 A kind of method of processing spiral bevel gear on general six Shaft and NC Machining Test lathes

Also Published As

Publication number Publication date
DE102016102946A1 (en) 2016-08-25
CN105904037A (en) 2016-08-31
JP2016155175A (en) 2016-09-01
CN105904037B (en) 2019-09-03

Similar Documents

Publication Publication Date Title
JP6340764B2 (en) Gear processing equipment
JP6620393B2 (en) Gear machining method
JP6133995B2 (en) Tool path evaluation method, tool path generation method, and tool path generation device
US10569348B2 (en) Groove-forming method, control device for machine tool and tool path generating device
JP6500486B2 (en) Gear processing apparatus and gear processing method
JP6128640B2 (en) Gear cutting method and apparatus for bevel gear
JP6606967B2 (en) Gear processing apparatus and gear processing method
JP5413913B2 (en) Non-circular machining method by turning
US9623502B2 (en) Gear machining device and gear machining method
JP5881850B2 (en) Machine tool control device and machine tool
CN104768684B (en) The control device and lathe of lathe
JP6565399B2 (en) Gear processing equipment
JP6008294B2 (en) Non-circular machining method by turning
JP6531353B2 (en) Gear processing device
JP6871675B2 (en) Gear processing equipment and gear processing method
JP2022115435A (en) Stability limit analyzer
JP7073721B2 (en) Gear processing equipment and gear processing method
JP7268329B2 (en) Gear processing device and gear processing method
JP2012045647A (en) Cutting method and nc data preparing device
JP2018158419A (en) Method and apparatus for working scroll-shaped workpiece
JP2003094223A (en) Cutting machine, machining method, program and recording medium
JP2018158420A (en) Method and apparatus for processing scroll-shaped workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6500486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150