[go: up one dir, main page]

JP6498792B2 - Battery charge limit prediction method, battery quick charge method and apparatus using the same - Google Patents

Battery charge limit prediction method, battery quick charge method and apparatus using the same Download PDF

Info

Publication number
JP6498792B2
JP6498792B2 JP2017563991A JP2017563991A JP6498792B2 JP 6498792 B2 JP6498792 B2 JP 6498792B2 JP 2017563991 A JP2017563991 A JP 2017563991A JP 2017563991 A JP2017563991 A JP 2017563991A JP 6498792 B2 JP6498792 B2 JP 6498792B2
Authority
JP
Japan
Prior art keywords
charging
battery
negative electrode
charge
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017563991A
Other languages
Japanese (ja)
Other versions
JP2018520622A (en
Inventor
キム,ヒョ−ミ
リー,ヒョク−ム
オウ,ソン−テク
リー,ソル−ニプ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2018520622A publication Critical patent/JP2018520622A/en
Application granted granted Critical
Publication of JP6498792B2 publication Critical patent/JP6498792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電池充電方法及び装置に関し、特に、電池の寿命を延ばしながら電池を迅速に充電するため、段階的な充電電流減少を用いる電池急速充電方法及び装置に関する。   The present invention relates to a battery charging method and apparatus, and more particularly, to a battery quick charging method and apparatus using stepwise charge current reduction to rapidly charge the battery while extending the life of the battery.

本出願は、2015年8月18日出願の韓国特許出願第10−2015−0116247号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、すべて本出願に援用される。   The present application claims priority based on Korean Patent Application No. 10-2015-0116247 filed on August 18, 2015, and the contents disclosed in the specification and drawings of the corresponding application are all incorporated in the present application. Ru.

最近、ノートパソコン、携帯電話などのような携帯用電子製品の需要が急激に伸び、電動カート、電動車寄子、電動自転車などの需要も伸びるにつれて、繰り返して充放電が可能な高性能電池に対する研究が活発に行われている。さらに最近は、炭素エネルギーが徐々に枯渇し、環境への関心が高まると共に、全世界的にハイブリッド電気自動車(HEV)と電気自動車(EV)に対する需要が徐々に伸びている。それに伴ってHEVやEVの核心的部品である車両用電池に多大な関心と研究が集中され、電池を迅速に充電できる急速充電の技術開発が至急に求められている。特に、追加的なエネルギー源のないEVにおいては、急速充電は非常に重要な性能である。   Recently, as the demand for portable electronic products such as laptop computers and mobile phones rapidly increases, and as the demand for electric carts, electric cars, electric bicycles and the like also increases, for high-performance batteries that can be repeatedly charged and discharged Research is actively conducted. More recently, carbon energy has been gradually depleted, environmental concerns have been increasing, and demand for hybrid electric vehicles (HEVs) and electric vehicles (EVs) has been gradually increasing worldwide. Along with this, much attention and research are concentrated on vehicle batteries, which are the core components of HEVs and EVs, and there is an urgent need for technological development for rapid charging that can quickly charge the batteries. In particular, in an EV without an additional energy source, fast charging is a very important performance.

電池を充電するプロセスは、電池に電流を流して電荷及びエネルギーを蓄積することを含み、このようなプロセスは注意深く制御されなければならない。一般に、過度な充電率(C−rate)または充電電圧は、電池の性能を永久に低下させ、結果的に完全な失敗を引き起こすか、又は、腐食性の強い化学物質の漏れまたは爆発などの突発障害を引き起こす恐れがある。   The process of charging the battery involves passing current through the battery to store charge and energy, such process must be carefully controlled. In general, excessive charge rate (C-rate) or charge voltage permanently degrades the performance of the battery resulting in complete failure or catastrophic failure such as leakage or explosion of highly corrosive chemicals It may cause a failure.

従来の電池充電方式は、充電初期から完了まで一定電流で充電を行う定電流(CC)方式、充電初期から完了まで一定電圧で充電を行う定電圧(CV)方式、及び充電初期には一定電流で充電し、充電末期には一定電圧で充電する定電流−定電圧(CC−CV)方式が用いられる。   The conventional battery charging method is a constant current (CC) method in which charging is performed at a constant current from the initial stage of charging to completion, a constant voltage (CV) system in which charging is performed at a constant voltage from the initial stage of charging to completion, and a constant current at the initial stage of charging In the final stage of charging, a constant current-constant voltage (CC-CV) system is used.

CC方式は、充電初期には電圧差が大きくて大電流が流れる。単に充電が迅速に完了するという点で見れば、充電電流は大きいほど良いが、連続的に大きい電流で充電すれば充電効率が低下し、電池の寿命にも影響を及ぼす。また、CC方式では、充電が完了しても充電初期のような電流が電池に流れ続けるため、リチウム(Li)イオンの特性上、金属めっき膜を形成するLi−めっき(Li−plating)現象が生じ、過充電調整機能を喪失するという安全上の問題がある。そのため、充電が完了すれば速かに充電器と電池とを分離しなければならず、不便である。一方、CV方式では、電池の充電が完了すれば、温度変化と電池自体の発熱によって端子電圧が大きく変化して、定電圧値を予め設定し難く、一般に15.5〜16V程度で20〜24時間電池を充電するため、充電時間が長いという短所がある。   In the CC system, at the beginning of charging, the voltage difference is large and a large current flows. In terms of mere completion of charging, the larger the charging current, the better, but continuously charging with a large current reduces the charging efficiency and affects the life of the battery. In addition, in the CC method, a current such as the initial stage of charging continues to flow in the battery even when charging is completed, so the Li-plating phenomenon of forming a metal plating film is characteristic of lithium (Li) ions. There is a safety problem that occurs and loses the overcharge adjustment function. Therefore, it is inconvenient because the charger and the battery have to be separated quickly if charging is completed. On the other hand, in the CV method, if charging of the battery is completed, the terminal voltage changes largely due to temperature change and heat generation of the battery itself, and it is difficult to set a constant voltage value in advance. There is a disadvantage that the charging time is long because the time battery is charged.

最も広く用いられる方法はCC−CV方式である。電池が多量放電しているときはCCで充電し、充電がほぼ完了する時点ではCVに変えて過充電を防止する方式である。「C」が充電単位(Qで示されることもある)A・hの電池容量であれば、アンペア単位の電流がCの分数(または乗数)として選択される。一般的に最大1Cで充電する。容量700mAhのリチウム電池であれば、約1時間30分程度で充電が完了する。しかし、該充電方式は充電器の充電能力に適した条件で充電しなければならず、円滑に換気ができ常温(約25℃)である場所で充電しなければならない。   The most widely used method is the CC-CV method. When the battery is discharged in a large amount, it is charged by CC, and when charging is almost completed, it is changed to CV to prevent overcharging. If “C” is the battery capacity of the charge unit (sometimes denoted Q) A · h, then the current in amps is selected as the fraction of C (or as a multiplier). Generally charge up to 1C. In the case of a lithium battery having a capacity of 700 mAh, charging is completed in about one hour and thirty minutes. However, the charging system must be charged under the conditions suitable for the charging capacity of the charger, and must be charged in a place which can be ventilated smoothly and at a normal temperature (about 25 ° C.).

急速充電のためにはCC方式が最も有利である。しかし、高い充電電流密度で急速充電すれば、負極にLiがインターカレーション(intercalation)できずに析出されてLi−めっき現象が問題になり、このように析出されたLiは電解液との副反応、電池の運動力学的均衡(kinetic balance)の変更などをもたらして、今後の電池退化の原因になる恐れがある。したがって、Li−めっき現象を発生させないとともに、急速充電を達成する技術が必要である。   The CC system is most advantageous for quick charging. However, if the battery is rapidly charged at a high charge current density, Li is not intercalated on the negative electrode and is deposited, which causes a problem of Li-plating phenomenon. Reactions, changes in the kinetic balance of the battery, etc. may result in future battery degradation. Therefore, there is a need for a technique to achieve rapid charging while not causing the Li-plating phenomenon.

本発明は、Li−めっきが発生しないように、電池充電限界を予測する方法を提供することを目的とする。   An object of the present invention is to provide a method of predicting battery charge limit so that Li-plating does not occur.

また、本発明は、前記の方法によって電池を迅速に充電できる電池充電方法及び装置を提供することを他の目的とする。   Another object of the present invention is to provide a battery charging method and apparatus capable of rapidly charging a battery by the above method.

前記の課題を解決するため、本発明による電池充電限界予測方法は、(a)単位電池と基準電極を備える三電極セルを製作する段階;(b)前記三電極セルを充電しながら、SOCによる負極電位(CCV)を測定する段階;及び(c)前記負極電位が低下せず一定になり始める地点をLi−めっきの発生地点と判断して充電限界として設定する段階を含む。   In order to solve the above problems, the battery charge limit prediction method according to the present invention comprises the steps of: (a) manufacturing a three-electrode cell comprising a unit cell and a reference electrode; (b) charging the three-electrode cell Measuring the negative electrode potential (CCV); and (c) setting the point at which the negative electrode potential starts to become constant without decreasing as the generation point of Li-plating and setting it as the charging limit.

特に、前記SOCによる負極電位(CCV)のグラフにおいて、負極電位の傾きが変わる地点を前記充電限界として設定することが望ましい。   In particular, in the graph of the negative electrode potential (CCV) according to the SOC, it is desirable to set a point at which the slope of the negative electrode potential changes as the charging limit.

充電率を変化させて前記(b)段階及び(c)段階を行う過程を繰り返して、該当充電率における充電限界を取得し、それを総合して充電プロトコルを得ることができる。   By changing the charging rate and repeating the steps (b) and (c), the charging limit at the corresponding charging rate can be obtained and integrated to obtain a charging protocol.

また、前記の課題を解決するため、本発明による電池充電方法は、1Cより高い初期充電率から始めて、電池の負極電位が低下せず一定になり始める地点をLi−めっきの発生地点と判断して充電限界として設定し、前記充電限界に到達すれば次の充電率で充電する方式で前記充電率を段階的に減少させながら電池を充電する方式である。   Further, in order to solve the above-mentioned problems, the battery charging method according to the present invention starts from an initial charge rate higher than 1 C and determines a point at which the negative electrode potential of the battery starts to become constant without decreasing is a generation point of Li-plating. It is a method of charging the battery while stepwise reducing the charging rate by a method of setting as the charging limit and charging at the next charging rate when the charging limit is reached.

特に、前記負極電位が低下せず一定になり始める地点であると共に(及び/又は)負極電位の傾きが変わる地点を前記充電限界として設定することが望ましい。そして、前記初期充電率は1.5C〜5Cであり得る。   In particular, it is desirable to set a point at which the negative electrode potential starts to become constant without decreasing and / or a point at which the gradient of the negative electrode potential changes is set as the charging limit. And, the initial charging rate may be 1.5C to 5C.

充電途中に前記充電限界に到達すれば、前記充電率を減少させて次の段階の充電を行い、このような段階は前記電池のSOCが80%になるまで行うことができる。   If the charging limit is reached during charging, the charging rate may be reduced and charging may be performed at the next stage until such time as the SOC of the battery reaches 80%.

本発明による他の電池充電方法は、単位電池と基準電極を備える三電極セル実験を通じてSOCによる負極電位を相異なる充電率毎に測定するデータ取得段階;前記取得されたデータから前記負極電位が低下せず一定になり始める地点をLi−めっきの発生地点と判断し充電限界として設定して、充電率を段階的に変更するプロトコルを得る段階;及び前記プロトコルで電池を充電する段階を含む。   In another battery charging method according to the present invention, a data acquisition step of measuring a negative electrode potential due to SOC for each different charging rate through a three-electrode cell experiment comprising a unit cell and a reference electrode; the negative electrode potential decreases from the obtained data Determining a point which begins to become constant without failure as a point of occurrence of Li-plating and setting it as a charging limit, obtaining a protocol for stepwise changing the charging rate; and charging the battery with the protocol.

このときにも、前記負極電位が低下せず一定になり始める地点であると共に(及び/又は)負極電位の傾きが変わる地点を前記充電限界として設定することが望ましい。   Also at this time, it is desirable to set a point at which the negative electrode potential starts to become constant without decreasing and / or a point at which the gradient of the negative electrode potential changes is set as the charging limit.

前記データ取得段階の充電率は、0.25C〜5C範囲であり得る。そして、前記プロトコルは初期充電率が1Cより高いものであり得る。   The charging rate of the data acquisition may be in the range of 0.25C to 5C. And, the protocol may have an initial charge rate higher than 1C.

前記プロトコルは、初期充電率が1.5C〜5Cであり得る。   The protocol may have an initial charging rate of 1.5C to 5C.

前記プロトコルは、段階的に減少する充電率、及び各充電率における充電終了後の充電電圧情報を含み得る。   The protocol may include gradually decreasing charge rates, and charge voltage information after the end of charge at each charge rate.

さらに、前記の課題を解決するため、本発明による電池充電装置は、商用電源から入力される充電電圧を出力する電源部;及び前記電源部から入力される充電電圧を電池に充電電流として出力して前記電池を充電し、前記電池の充電電圧が予め設定された段階に到達すれば、充電電流を変更して前記電池に出力される充電電流が段階的に変化するように制御する電池充電部を含み、前記電池充電部は、前記電池の負極電位が低下せず一定になり始める地点をLi−めっきの発生地点と判断し充電限界として設定して、充電率を段階的に変更するプロトコルによって充電電流が段階的に調節されながら電池充電が行われるようにする。   Furthermore, in order to solve the above problems, the battery charging device according to the present invention outputs a charging voltage input from the power supply unit as a charging current to the battery, and a power supply unit outputting the charging voltage input from a commercial power supply. And charging the battery, and changing the charging current when the charging voltage of the battery reaches a preset level, and controlling the charging current output to the battery to change stepwise. The battery charging unit determines a point at which the negative electrode potential of the battery starts to become constant without decreasing the potential as a generation point of Li-plating, and sets it as a charging limit, according to a protocol for changing the charging rate stepwise The battery charging is performed while the charging current is adjusted stepwise.

本発明によれば、CC充電の進行中に、負極電位がそれ以上低下せず一定になり始める地点であると共に(及び/又は)負極電位の低下速度が変わる地点をLi−めっきの発生地点と判断し、該Li−めっきの発生地点を充電限界として設定して、このような充電限界に到達したとき、次の充電率に変更して充電を行う方式で充電率を段階的に変更するプロトコルを提案する。このようなプロトコルによって、充電電流を段階的に調節しながら電池を充電すれば、負極におけるLi−めっき現象の発生を防止しながら急速に電池を充電することができる。   According to the present invention, during the progress of CC charging, a point at which the negative electrode potential starts to fall and does not decrease any further (and / or) the point at which the negative electrode potential declines changes is the generation point of Li-plating. A protocol that changes the charging rate in stages by changing the charging rate to the next charging rate when such a Li-plating occurrence point is set as the charging limit, and such charging limit is reached. Suggest. According to such a protocol, if the battery is charged while the charging current is adjusted stepwise, the battery can be rapidly charged while preventing the occurrence of the Li-plating phenomenon on the negative electrode.

このように本発明によれば、負極電位が低下せず一定になり始める地点をLi−めっきの発生地点と判断して充電限界を設定する基準によって、電池負極のLi−めっきの発生を防止でき、それによって電池の寿命が伸び、迅速に電池を充電することができる。   As described above, according to the present invention, the occurrence of Li-plating of the battery negative electrode can be prevented by the reference that sets the charging limit by determining the point at which the negative electrode potential starts to become constant without decreasing and the occurrence point of Li-plating. Therefore, the life of the battery can be extended and the battery can be charged quickly.

Li−めっき現象なく電池を充電するため、析出されたLiと電解液との副反応、電池の運動力学的均衡の変更などの問題がなく、電池退化の原因を予防することができる。Li−めっきを起こさない限界内で高い充電率で充電するため、急速充電を果たすことができる。   Since the battery is charged without the Li-plating phenomenon, there is no problem such as a side reaction between the deposited Li and the electrolytic solution, or a change in the kinetic balance of the battery, and the cause of the battery degradation can be prevented. In order to charge with a high charge rate within the limit which does not cause Li- plating, rapid charge can be achieved.

負極電位が低下せず一定になり始める地点は各セル毎に異なり得る。本発明は、各セルの特性を無視した一律的な充電限界の提案ではなく、三電極セルを通じた実験により、充電時Li−めっきが発生する条件を明確に把握して、各セルの最適化された充電方式を提案する。   The point at which the negative electrode potential starts to become constant without decreasing can be different for each cell. The present invention is not the proposal of a uniform charging limit ignoring the characteristics of each cell, but the conditions under which Li-plating occurs during charging are clearly understood by experiments through a three-electrode cell to optimize each cell We propose a new charging method.

本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
本発明による電池充電限界予測方法のフロー図である。 本発明の実験に使用したパウチ型三電極セルの構造を示した図である。 本発明の実験によって得られたSOCによる負極電位グラフであり、イン・サイチュ可視化(in−situ visualization)分析結果も共に示した図である。 図3から得たdV/dQグラフである。 本発明による充電限界予測方法の有効性を検証するために行ったサイクル寿命比較グラフである。 本発明による電池充電方法のフロー図である。 充電率による負極電位及びそれに基づいたプロトコル充電時の負極電位である。 本発明による方法で電池を充電した場合、時間毎の充電率(充電電流)を示したグラフである。 本発明による段階的な充電電流減少を用いた充電方法と従来のCC−CV充電方式とによる電池寿命の比較グラフである。
BRIEF DESCRIPTION OF THE DRAWINGS The following drawings, which are appended to the present specification, illustrate preferred embodiments of the present invention, and serve to provide a further understanding of the inventive concept as well as the detailed description of the invention. It should not be interpreted as being limited to the matters described in the drawings.
FIG. 5 is a flow diagram of a battery charge limit prediction method according to the present invention. It is a figure showing the structure of the pouch type three electrode cell used for the experiment of the present invention. It is the negative electrode potential graph by SOC obtained by the experiment of this invention, and is the figure which also showed the in-situ visualization analysis result. It is a dV / dQ graph obtained from FIG. It is the cycle life comparison graph performed in order to verify the effectiveness of the charge limit prediction method by this invention. FIG. 2 is a flow diagram of a battery charging method according to the present invention. It is the negative electrode potential by charge rate, and the negative electrode potential at the time of protocol charge based on it. When charging the battery by the method according to the present invention, it is a graph showing the charging rate (charging current) per hour. It is a comparison graph of the battery life by the charge method using the stepwise charge current reduction by this invention, and the conventional CC-CV charge system.

以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。しかし、本発明は後述する実施例に限定されるものではなく、多様な形態で実現され得る。本実施例は本発明の開示を完全にして、通常の知識を持つ者に発明の範疇を完全に説明するために提供されるものである。   The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. However, the present invention is not limited to the embodiments described below, and can be realized in various forms. The present embodiment is provided to complete the disclosure of the present invention and to fully describe the scope of the invention to those skilled in the art.

CC方式の急速充電の際には、負極表面のLi−めっきによるセルの退化が最も問題になる。Li−めっきは充電電流密度(充電率または充電電流)が高いほど、温度が低いほど、発生し易いが、それを防止しようとして充電電流の密度を低めれば目標とする充電速度を達成できない。本発明によれば、電池のLi−めっき現象を発生させないと共に、充電時間を短縮させる技術を提供することができる。   In the case of CC type rapid charging, cell degeneration due to Li-plating of the negative electrode surface is the most problematic. Li-plating is more likely to occur as the charge current density (charge rate or charge current) is higher or as the temperature is lower, but if the density of the charge current is lowered to prevent it, the target charge rate can not be achieved. According to the present invention, it is possible to provide a technology for shortening the charging time while not causing the Li-plating phenomenon of the battery.

図1は、本発明による電池充電限界予測方法のフロー図である。   FIG. 1 is a flow diagram of a battery charge limit prediction method according to the present invention.

図1を参照すれば、まず三電極セルを製作する(段階S1)。   Referring to FIG. 1, first, a three-electrode cell is fabricated (step S1).

三電極セルとは、二次電池に対する研究時に負極と正極それぞれの挙動を確認するために使用されるものであって、単位電池及び基準電極を備える。このような三電極セルに関しては一般に周知された構造を採用することができる。そのうち図2は本発明の実験に使用したパウチ型三電極セルの構造を示している。   The three-electrode cell is used to confirm the behavior of each of the negative electrode and the positive electrode at the time of research on the secondary battery, and includes a unit cell and a reference electrode. A commonly known structure can be employed for such a three-electrode cell. Among them, FIG. 2 shows the structure of the pouch type three-electrode cell used in the experiment of the present invention.

三電極セル10は、負極20と正極30との間に分離膜40を介在して基準電極60を挿入したものである。基準電極60は、負極20や正極30のように板状構造であっても良く、より正確に電流の流れが分かるように、図示されたようにワイヤ状で構成しても良い。図2には、絶縁層50でコーティングされた銅線55のようなワイヤ型基準電極60を例として示した。三電極セル10は、分極の影響がなく、安定した第3の基準電極60を電池に設け、他の電極20、30との電位差を測定して、イン・サイチュ(in−situ)で各電極の分極を解釈できるため、有用な分析ツールである。   The three-electrode cell 10 has a reference electrode 60 inserted between the negative electrode 20 and the positive electrode 30 with the separation film 40 interposed. The reference electrode 60 may have a plate-like structure like the negative electrode 20 or the positive electrode 30, or may be in the form of a wire as shown so that the current flow can be understood more accurately. In FIG. 2, a wire-type reference electrode 60 such as a copper wire 55 coated with an insulating layer 50 is shown as an example. The three-electrode cell 10 is provided with a stable third reference electrode 60 without the influence of polarization in the battery, and the potential difference with the other electrodes 20 and 30 is measured to make each electrode in-situ (in-situ) It is a useful analytical tool because it can interpret the polarization of

負極20、正極30及び電解液(図示せず)は単位電池を構成する。例えば、負極20は、黒鉛のような黒鉛系負極活物質;前記負極活物質100重量部を基準にして1〜5重量部の導電材;及び1〜5重量部の高分子バインダーを含む。正極30は、LiCoO2のような正極活物質;前記正極活物質100重量部を基準に1〜5重量部の導電材;及び1〜5重量部の高分子バインダーを含む。電解液は一般的な組成の電解液である。このような単位電池と基準電極60をパウチ内に収納する。 The negative electrode 20, the positive electrode 30, and the electrolyte (not shown) constitute a unit cell. For example, the negative electrode 20 includes a graphite-based negative electrode active material such as graphite; 1 to 5 parts by weight of a conductive material based on 100 parts by weight of the negative electrode active material; and 1 to 5 parts by weight of a polymer binder. The positive electrode 30 includes a positive electrode active material such as LiCoO 2 ; 1 to 5 parts by weight of a conductive material based on 100 parts by weight of the positive electrode active material; and 1 to 5 parts by weight of a polymer binder. The electrolytic solution is an electrolytic solution of a general composition. The unit cell and the reference electrode 60 are housed in the pouch.

次いで、段階S1で製作した三電極セルを充電しながら負極電位(CCV)による充電特性を観察する(段階S2)。このような観察結果は、例えば図3のようなSOCによる負極電位グラフとしてまとめることができる。図3は、図2に示したような三電極セル10を充電率3Cで充電しながら得た結果である。   Next, while charging the three-electrode cell manufactured in step S1, the charge characteristic by the negative electrode potential (CCV) is observed (step S2). Such observation results can be summarized, for example, as a negative electrode potential graph by SOC as shown in FIG. FIG. 3 shows the results obtained while charging the three-electrode cell 10 as shown in FIG. 2 at a charging rate of 3C.

一般に、充電時にはLiが負極活物質内にインターカレーションするにつれてステージが低くなりながら、負極電位が低下するようになる。このとき、充電電流密度を高めれば、ステージはよく観察されないが、Liのインターカレーションと抵抗の増加によって負極電位が連続的に落ちるようになる。図3の結果からも、充電の進行とともに負極電位が0.75V程度から徐々に減少して0V以下に落ち、約−0.45V程度にまで低下することが確認できる。   Generally, the negative electrode potential is lowered while the stage is lowered as Li intercalates into the negative electrode active material during charge. At this time, if the charging current density is increased, the stage is not well observed, but the negative electrode potential is continuously lowered due to the intercalation of Li and the increase in resistance. Also from the results of FIG. 3, it can be confirmed that the negative electrode potential gradually decreases from about 0.75 V and falls to 0 V or less with the progress of charging, and falls to about -0.45 V or so.

ところで、充電の際、負極活物質内にLiがインターカレーションする反応とLi−めっきが生成される反応とは競争的に起きる反応である。本発明者らは、充電時にLi−めっきが生成されれば、負極活物質内にLiがインターカレーションできず、その地点以後は負極電位が低下せず一定に維持されることを実験を繰り返すことで見出した。そこで、本発明では、充電時に負極電位が低下せず一定になり始める地点をLi−めっきの発生地点と判断することを提案する。   By the way, at the time of charge, the reaction in which Li intercalates in the negative electrode active material and the reaction in which Li-plating is generated are reactions that occur in a competitive manner. The present inventors repeat the experiment that if Li-plating is generated during charging, Li can not intercalate in the negative electrode active material, and after that point, the negative electrode potential does not decrease and is maintained constant. I found it. Therefore, in the present invention, it is proposed to determine a point at which the negative electrode potential does not decrease during charging and begins to become constant as the occurrence point of Li-plating.

図3から、一定地点、すなわちB地点の以後に負極電位が一定な平坦域(plateau)を見せる領域が観察される。このときには負極活物質の内部にインターカレーションできなかったLiイオンが電極の表面(負極と分離膜との間)にメッキされると判断した。したがって、図3のグラフではB地点を充電限界として設定した。   From FIG. 3, it is observed that the area where the negative electrode potential shows a constant plateau (plateau) is observed after a certain point, that is, point B. At this time, it was determined that Li ions which could not be intercalated inside the negative electrode active material were plated on the surface of the electrode (between the negative electrode and the separation membrane). Therefore, in the graph of FIG. 3, point B is set as the charging limit.

実際充電時の負極電位変化及び充電時の電極状態を確認するため、図2に示した三電極セル10を充電しながらイン・サイチュ可視化分析も行った。イン・サイチュ可視化分析は、電気化学反応可視化共焦点システムの表面観察ブロックセルに三電極セル10を位置させ、充放電時の充放電プロファイルと負極のインターカレーション過程を観察するものである。本実験ではECCS B310装備を使用した。図3の負極電位−SOCグラフにはこのようなイン・サイチュ可視化分析結果も共に示されている。   In order to confirm the negative electrode potential change at the time of actual charge and the electrode state at the time of charge, in-situ visualization analysis was also performed while charging the three-electrode cell 10 shown in FIG. In-situ visualization analysis locates the three-electrode cell 10 in the surface observation block cell of the electrochemical reaction visualization confocal system, and observes the intercalation process of the charge and discharge profile and the negative electrode during charge and discharge. ECCS B310 equipment was used in this experiment. Such in-situ visualization analysis results are also shown in the negative electrode potential-SOC graph of FIG.

一般に、黒鉛系負極では充電の際、上述したように幾つかのステージを経由して、最終的にすべての層間にリチウムイオンが挿入されたSOC100%に到達する。このとき、イン・サイチュ可視化分析を行えば、電極活物質の色相が金色に変わる。充電前の灰色から青色、赤色、金色への色相変化で充電時の反応分布を解釈することができる。   In general, in the case of a graphite-based negative electrode, as described above, the SOC reaches 100% of the state in which lithium ions are finally inserted between all the layers through several stages as described above. At this time, if the in-situ visualization analysis is performed, the hue of the electrode active material turns to gold. It is possible to interpret the reaction distribution at the time of charge by the hue change from gray to blue, red and gold before charge.

図3において、負極電位が低下している区間のうち、負極電位が0VであるA’地点でのイン・サイチュ可視化分析結果を見れば、分離膜と負極との間にLi−めっきが全く観察されない。負極電位が0V以下で、本発明による充電限界の付近であるA地点でも、負極にLiが挿入されて、負極表面ではLi−めっきが観察されないことが確認できる。   In FIG. 3, in the in-situ visualization analysis result at the point A ′ where the negative electrode potential is 0 V in the section where the negative electrode potential is decreasing, Li—plating is completely observed between the separation membrane and the negative electrode. I will not. It can be confirmed that Li is inserted into the negative electrode even at the point A where the negative electrode potential is 0 V or less and in the vicinity of the charging limit according to the present invention, and Li-plating is not observed on the negative electrode surface.

B地点の以後、C地点を通って負極電位が一定な平坦域を見せる領域が観察される。該領域のうち完全に平坦域に入ったC’地点のイン・サイチュ可視化分析結果を見れば、活物質の内部にインターカレーションできなかったLiイオンが電極の表面(負極と分離膜との間)側から金属リチウムに析出されてメッキされていることを確認できる。   After the point B, a region where the negative electrode potential shows a constant flat area through the point C is observed. According to the in-situ visualization analysis result of the point C 'where the region completely enters the flat region in the region, Li ions which can not intercalate inside the active material are on the surface of the electrode (between the negative electrode and the separation membrane It can be confirmed that metal lithium is deposited and plated from the side).

Li−めっきが発生する地点をより明確に見つけるため、図4のようなdV/dQグラフを描いて負極電位の傾きが変わる地点、すなわち負極電位の低下速度が変わる地点(変曲点)をLi−めっきが発生する充電限界として設定する。   In order to find the point at which Li-plating occurs more clearly, draw a dV / dQ graph as shown in FIG. 4 and change the slope of the negative electrode potential, that is, the point (inflection point) at which the rate of decrease of the negative electrode potential changes. -Set as the charging limit at which plating occurs.

このように、段階S2の結果、すなわちSOCによる負極電位グラフから、負極電位が低下せず一定になり始める地点であると共に(及び/又は)負極電位の低下速度が変わる地点(dV/dQグラフで負極電圧の傾きが変わる地点(変曲点))を本発明ではLi−めっきの発生地点、すなわち充電限界であると設定する(段階S3)。   Thus, from the result of step S2, that is, from the negative electrode potential graph by SOC, the point at which the negative electrode potential starts to become constant without decreasing and (and / or) the point at which the negative electrode potential decreases changes (dV / dQ graph) In the present invention, a point (inflection point) at which the slope of the negative electrode voltage changes is set to be a point of occurrence of Li-plating, that is, a charging limit (step S3).

充電率を変えて段階S2とS3をもう一度行えば、該当充電率における充電限界を得ることができる。このように充電率を変化させて段階S2とS3を繰り返して行って、充電終了地点、例えばSOCが80%になるまで充電限界を取得すれば、それら情報を総合してそのセルに対する充電プロトコルを得ることができる。この充電プロトコルで充電することが、本発明による急速充電方法である。   By changing the charging rate and performing steps S2 and S3 again, it is possible to obtain the charging limit at the corresponding charging rate. By changing the charging rate in this way and repeating steps S2 and S3 and acquiring the charging limit until the charging end point, for example, the SOC reaches 80%, the information is integrated to set the charging protocol for that cell. You can get it. Charging according to this charging protocol is the quick charging method according to the present invention.

このように、本発明による充電限界予測方法では、三電極セルを製作して負極電位による充電特性を観察し、それを通じて各充電電流で充電する場合、Li−めっきが発生しない充電限界を数値化する。さらに、それを通じて負極電位が低下せず一定になり始める地点を充電限界として決め、充電限界に到達すれば次の充電率で充電する方式で充電電流を段階的に減らしながら充電することで、Li−めっきが発生せず、充電時間を短縮させたマルチステップ充電技術を提供することができる。   As described above, in the charge limit prediction method according to the present invention, a three-electrode cell is manufactured to observe the charge characteristics at the negative electrode potential, and when charging with each charge current, the charge limit at which Li-plating does not occur is quantified. Do. Furthermore, the point at which the negative electrode potential starts to decrease without falling is determined as the charging limit, and charging is performed at the next charging rate while charging current is gradually reduced by the charging method when the charging limit is reached. -It is possible to provide a multi-step charging technique in which plating does not occur and the charging time is shortened.

該方法は、例えば「負極電位が0V以上になるようにする(Li+/Li vs.0V)」との基準に比べて、負極電位が0V以下にさらに落ちるまで充電を維持するものである。図3を参照すれば、(Li+/Li vs.0V)を基準にする場合は、SOCが15%程度で負極電位が0Vになるため、同じ充電電流密度で低いSOCしか充電できないが、本発明によれば、同じ充電電流密度でSOC30%まで充電でき、短時間に多量充電しなければならない急速充電の観点では、このような基準を有する本発明の充電限界予測がより効果的である。 According to the method, charge is maintained until the negative electrode potential falls further to 0 V or less as compared with, for example, the reference to “set negative electrode potential to 0 V or higher (Li + / Li vs. 0 V)”. Referring to FIG. 3, based on (Li + / Li vs. 0 V), the SOC is about 15% and the negative electrode potential is 0 V, so only a low SOC can be charged at the same charge current density. According to the invention, the charge limit prediction of the present invention having such a criterion is more effective from the viewpoint of rapid charge which can be charged to SOC 30% at the same charge current density and has to be extensively charged in a short time.

このような充電限界予測方法の有効性を検証するため、実験を行った。パウチ型三電極セル(図2の10)を製作し、Li−めっきが形成されると判断される地点(図3のB地点)とその以前(A地点)、以後(C地点)までサイクルを繰り返した結果を図5に示した。   An experiment was conducted to verify the effectiveness of such a charge limit prediction method. A pouch-type three-electrode cell (10 in FIG. 2) is manufactured, and cycles are made from the point where it is determined that Li-plating is to be formed (point B in FIG. 3) and before (point A) and thereafter (point C). The repeated results are shown in FIG.

電池の寿命とは、電池をどれほど長く使用できるかを示す尺度であり、単位は回数(サイクル)であり、これをサイクル特性とも称する。すなわち、電池を何回充電して使用できるかを示し、電気エネルギーの意味では電池を1回充電して完全放電するまで使用したときを1サイクルとし、該サイクルの回数が寿命である。   The battery life is a measure of how long the battery can be used, and the unit is the number of cycles (cycle), which is also called cycle characteristics. That is, it indicates how many times the battery can be charged and used, and in the sense of electric energy, one cycle is the time when the battery is used once charged and completely discharged, and the number of cycles is the life.

図5は、サイクル回数による容量の変化を示した図である。長寿命のためには、充放電サイクルを繰り返した後にも電池の容量が大きく減少せずに維持されることが必要である。   FIG. 5 is a diagram showing a change in capacity according to the number of cycles. For long life, it is necessary to maintain the capacity of the battery without significantly reducing even after repeated charge and discharge cycles.

図5から分かるように、C地点まで80サイクルの寿命テストの後、セルを分解すれば、多量のLi−めっきが観察される。一方、A、B地点まで80サイクルを繰り返したセルの場合には、Li−めっきが観察されなかった。また、寿命テスト結果から分かるように、C地点まで充電したセルは20サイクルを繰り返しただけでも容量維持率が80%に低下し、80サイクル後には容量維持率が64%以下になる。このように、充放電時に生成されたLiメッキ(C地点まで充電したとき発生するもの)はセル寿命特性を低下させることが分かる。本発明で提案するように、B地点を充電限界にしてサイクルを繰り返した場合は、容量維持率が保たれてセルの退化を防止し、寿命を延ばすことができる。   As can be seen from FIG. 5, after 80 cycles of life test up to point C, if the cell is disassembled, a large amount of Li-plating is observed. On the other hand, in the case of the cell which repeated 80 cycles to A and B point, Li- plating was not observed. Further, as can be seen from the life test results, the capacity retention rate drops to 80% even if the cell charged to the point C is repeated only for 20 cycles, and the capacity retention rate becomes 64% or less after 80 cycles. Thus, it can be seen that Li plating (generated when charging to the point C) generated at the time of charge and discharge degrades the cell life characteristics. As proposed in the present invention, when the cycle is repeated with the point B as the charge limit, the capacity retention rate is maintained, the degradation of the cell can be prevented, and the life can be extended.

このような充電限界予測に関する実験結果に基づいて導出した、本発明による電池充電方法について説明すれば、以下のようである。   It will be as follows if the battery charge method by this invention derived | led-out based on the experimental result regarding such a charge limit prediction is demonstrated.

図6は、本発明による電池充電方法のフロー図である。   FIG. 6 is a flow diagram of a battery charging method according to the present invention.

図6を参照すれば、SOCによる電池の負極電位を相異なる充電率毎に測定するデータ取得段階を行う(段階S10)。   Referring to FIG. 6, a data acquisition step of measuring the negative electrode potential of the battery by the SOC for each of different charging rates is performed (step S10).

この段階は、上述した本発明による電池充電限界予測方法によって、単位電池と基準電極を備える三電極セル実験を通じて行うことができる。   This step can be performed through a three-electrode cell experiment including a unit cell and a reference electrode according to the above-described battery charge limit prediction method according to the present invention.

「C」が充電単位(Qで示されることもある)A・hの電池容量であれば、アンペア単位の電流がCの分数(または乗数)として選択される。例えば、1C充電率とは、満充電した電池の容量を1時間内に使い切るか又は満たす充放電速度を意味し、そのときの電流密度を意味することもある。近年、電子機器の機能が多様化するにつれて、一定時間内に機器によって使用される電流の量も大幅に増加している。それによって、エネルギー源として使用される電池においても、一層優れた性能が求められている。携帯電話の場合、従来は殆どC/2の充電率及び放電率を要したが、今後は機能が一層強化して1Cの充電率及び放電率に相応する性能を要求する可能性がある。現在、ノートパソコン、EV、PHEV用電池などでは、これと同等の充電率及びこれ以上高い放電率を要求する。   If “C” is the battery capacity of the charge unit (sometimes denoted Q) A · h, then the current in amps is selected as the fraction of C (or as a multiplier). For example, the 1 C charge rate means a charge / discharge rate that fully discharges or fills the capacity of a fully charged battery in 1 hour, and may also mean the current density at that time. In recent years, as the functions of electronic devices have diversified, the amount of current used by the devices in a given time has also significantly increased. Accordingly, even better performance is required for batteries used as energy sources. In the case of a portable telephone, although the charge rate and discharge rate of C / 2 were conventionally required in the past, from now on, the function may be further strengthened to demand performance corresponding to the charge rate and discharge rate of 1C. At present, batteries for notebook computers, EVs, PHEVs, etc. require a similar charging rate and a higher discharging rate.

充電率は1Cより高いことが急速充電の観点で望ましい。しかし、大きい電流で充電し続ければ、電池内部に高い熱が発生し、電池の抵抗のため各電極が過電圧状態を形成する恐れがある。したがって、電池の種類及び特性を考慮して充電率を決定しなければならない。   It is desirable from the viewpoint of quick charging that the charging rate is higher than 1C. However, if the charging is continued with a large current, high heat may be generated inside the battery, and each electrode may form an overvoltage state due to the resistance of the battery. Therefore, the charging rate must be determined in consideration of the type and characteristics of the battery.

データ取得段階の充電率の範囲は、このような電池の種類及び特性によって変わり得る。例えば、EV用電池は初期充電率を1.5Cに決め、充電率0.25C〜1.5Cの範囲でデータを取得することができる。他の例として、PHEV(plug−in hybrid electric vehicle)用電池は初期充電率を3Cに決め、充電率0.25C〜3Cの範囲でデータを取得することができる。このような初期充電率及び充電率範囲は電池の種類だけでなく、実際自動車で使用されるモーターの最大電流によっても制限され得る。   The range of charging rates at the data acquisition stage may vary depending on the type and characteristics of such batteries. For example, the battery for EV can set the initial charging rate to 1.5 C, and can acquire data in the charging rate range of 0.25 C to 1.5 C. As another example, the battery for PHEV (plug-in hybrid electric vehicle) can set the initial charge rate to 3C, and can acquire data in the charge rate range of 0.25C to 3C. Such an initial charging rate and charging rate range may be limited not only by the type of battery but also by the maximum current of the motor actually used in the vehicle.

上述したように、電池の特性を考慮して、EV用電池は初期充電率を1.5Cに、PHEV用電池は初期充電率を3Cに決定することができる。さらに高速の充電率及び放電率が必要な電池仕様では、初期充電率をさらに高めることができ、例えば5Cまで高めることもできる。したがって、初期充電率は1.5C〜5Cであり得、本発明におけるデータ取得段階の充電率の範囲は0.25C〜5Cであり得る。   As described above, in consideration of the battery characteristics, it is possible to set the initial charge rate to 1.5 C for the EV battery and to 3 C for the PHEV battery. Furthermore, in the battery specifications that require high-speed charge and discharge rates, the initial charge rate can be further increased, for example, up to 5C. Therefore, the initial charging rate may be 1.5 C to 5 C, and the charging rate range of the data acquisition phase in the present invention may be 0.25 C to 5 C.

上述したように、HEVやEVの核心的部品である車両用電池により多くの関心と研究が集中され、それと共に電池を迅速に充電できる急速充電技術の開発も至急に求められている。自動車市場では充電時間に対する要求が益々高くなって、それに応えるためにはより高い初期充電率が必要である。急速充電の観点では初期充電率を高めることが有利であるが、上述したような問題によって充電率が高過ぎれば、電池の抵抗のため各電極が過電圧状態になる恐れがある。また、高過ぎる充電率では、充電が始まると同時に限界(本発明の場合は負極電位0V以下)に達して全体充電時間をあまり短縮できない恐れもある。したがって、初期充電率を高めることには電池の抵抗特性改善が伴わなければならない。本発明では従来普及されている電池に比べて抵抗特性が改善された電池を対象にして、初期充電率を5Cにまで高めることができる。   As described above, much attention and research are concentrated on vehicle batteries, which are the core components of HEVs and EVs, and at the same time, there is an urgent need for the development of rapid charging technology that can rapidly charge the batteries. In the automotive market, the demand for charging time is getting higher and higher initial charging rates are needed to meet it. From the viewpoint of rapid charging, it is advantageous to increase the initial charging rate, but if the charging rate is too high due to the problems as described above, there is a possibility that each electrode may be in an overvoltage state due to battery resistance. Also, if the charging rate is too high, there is a possibility that the limit (in the case of the present invention, the negative electrode potential of 0 V or less) is reached at the same time as charging starts, and the overall charging time can not be shortened too much. Therefore, improving the initial charging rate must be accompanied by improvement of the battery's resistance characteristics. According to the present invention, the initial charging rate can be increased to 5 C for batteries whose resistance characteristics are improved as compared with batteries that have been widely used conventionally.

図7には、充電率による負極電位が示されている。図7に示されたように、3Cから0.5Cまで充電率を変化させながらSOC状態による負極電位を測定してグラフを描いた。   FIG. 7 shows the negative electrode potential according to the charging rate. As shown in FIG. 7, a graph was drawn by measuring the negative electrode potential according to the SOC state while changing the charge rate from 3C to 0.5C.

その後、前記取得されたデータから前記電池の負極電位が低下せず一定になり始める地点をLi−めっきの発生地点として設定し、充電率を段階的に変更するプロトコルを得る(段階S20)。負極電位が低下せず一定になり始める地点をLi−めっきの発生地点に設定すれば、負極にLi−めっきを誘発しない。   Thereafter, from the acquired data, a point at which the negative electrode potential of the battery starts to become constant without decreasing is set as an occurrence point of Li-plating, and a protocol for stepwise changing the charging rate is obtained (step S20). If a point at which the negative electrode potential does not decrease and starts to become constant is set as a point at which Li − plating occurs, Li − plating is not induced on the negative electrode.

例えば、図7では、負極電位が低下せず一定になり始める地点をLi−めっきの発生地点として設定するように、「段階的充電」と示されたようなプロトコルが得られる。3Cの初期充電率で充電すれば、SOC30%の地点でLi−めっきが発生する。すると、充電率をその次の充電率である2.5Cに変更し、充電すれば、SOC37%の地点でLi−めっきが発生する。すると、充電率をその次の充電率である2.0Cに変更し、充電すれば、SOC61%の地点でLi−めっきが発生する。すると、充電率をその次の充電率である1.6Cに変更し、充電すれば、SOC67%の地点でLi−めっきが発生する。すると、充電率をその次の充電率である1.0Cに変更して充電し、充電完了条件として決めたSOC80%の地点に到達すれば、充電を完了する。   For example, in FIG. 7, a protocol as shown as "stepwise charge" is obtained such that the point at which the negative electrode potential starts to become constant without decreasing is set as the occurrence point of Li-plating. When charged at an initial charge rate of 3 C, Li-plating occurs at a point of SOC 30%. Then, the charging rate is changed to the next charging rate of 2.5 C, and if it is charged, Li-plating occurs at a point of 37% of SOC. Then, the charge rate is changed to the next charge rate of 2.0 C, and if it is charged, Li-plating occurs at a point of SOC 61%. Then, the charge rate is changed to the next charge rate of 1.6 C, and if it is charged, Li-plating occurs at a point of SOC 67%. Then, the charging rate is changed to the next charging rate of 1.0 C and charging is performed, and when reaching the point of SOC 80% determined as the charging completion condition, charging is completed.

このような方法でプロトコルが得られ、電池の種類に応じてSOCによる負極電位のグラフは変わるが、プロトコルを得る方法は同様に適用され得る。   Although the protocol is obtained in this way and the graph of the negative electrode potential according to the SOC changes depending on the type of battery, the method for obtaining the protocol can be applied similarly.

また、本実施例では3Cから1.0Cまで充電率を減少させる場合を挙げて説明したが、上述したように初期充電率の範囲及びデータ取得段階の充電率の範囲は自由に変えられ、充電率の減少量も本実施例のような0.5C、0.6C、0.4Cなどではなく、任意の値になり得る。   In the present embodiment, although the case of reducing the charge rate from 3 C to 1.0 C has been described, as described above, the range of the initial charge rate and the range of the charge rate at the data acquisition stage can be freely changed. The rate of decrease may not be 0.5 C, 0.6 C, 0.4 C, etc. as in this embodiment, but may be any value.

図8は、本発明の方法で電池を充電する場合の時間毎の充電率(充電電流)を示したグラフであって、図7に示されたプロトコルを時間による充電率で示したものである。   FIG. 8 is a graph showing the charging rate (charging current) with time in the case of charging the battery by the method of the present invention, showing the protocol shown in FIG. 7 in terms of the charging rate by time .

電池を充電するための充電器の充電電流は時間の経過とともに3Cの初期充電率から1.0Cの最終充電率まで段階的に減少する。各充電率の維持時間(t1〜t5)は、上述したように負極電位が低下せず一定になり始める地点をLi−めっきの発生地点として設定するものであるため、変わり得る。このように、本発明では充電率による負極電位を測定し、それを通じて各電流で充電する場合、Li−めっきが発生しない充電限界を数値化する。   The charging current of the charger for charging the battery gradually decreases with time from an initial charging rate of 3C to a final charging rate of 1.0C. The maintenance time (t1 to t5) of each charging rate can be changed because the point at which the negative electrode potential starts to become constant without decreasing is set as the occurrence point of Li-plating as described above. As described above, in the present invention, the negative electrode potential according to the charging rate is measured, and the charging limit at which Li-plating does not occur is quantified when charging with each current through it.

その後、このようなプロトコルで電池を充電する(段階S30)。前記プロトコルは段階的に減少する充電率、及び各充電率における充電終了後の充電電圧情報を含むことができる。本発明によれば、プロトコルによって最適化された充電電流を印加して充電することができる。   Thereafter, the battery is charged according to such a protocol (step S30). The protocol may include progressively decreasing charge rates, and charge voltage information after the end of charge at each charge rate. According to the present invention, charging can be performed by applying a charging current optimized by a protocol.

充電プロトコルは本発明による電池充電装置を用いて実現することができる。前記電池充電装置は、商用電源から入力される充電電圧を出力する電源部;前記電源部から入力される充電電圧を電池に充電電流として出力して前記電池を充電し、前記電池の充電電圧が予め設定された段階に到達すれば、充電電流を変更して前記電池に出力される充電電流が段階的に変化するように制御する電池充電部を含む。前記電池充電部は、前記電池の負極電位が低下せず一定になり始める地点をLi−めっきの発生地点として設定して充電率を段階的に変更するプロトコルによって充電電流が段階的に調節されながら電池充電が行われるようにする。   The charging protocol can be implemented using the battery charging device according to the invention. The battery charging device is a power supply unit that outputs a charging voltage input from a commercial power supply; the charging voltage output from the power supply unit is output to a battery as a charging current to charge the battery, and the charging voltage of the battery is The battery charging unit may control the charging current to be changed stepwise so as to change the charging current when the predetermined stage is reached. The battery charging unit sets a point at which the negative electrode potential of the battery starts to become constant without decreasing and setting the point as a point of occurrence of Li-plating, and the charging current is adjusted stepwise by a protocol that changes the charging rate stepwise. Allow battery charging to take place.

このように本発明による充電方法のプロトコルのロジッグは電池充電装置に組み入れられて電池の充電に用いることができる。前記電池充電部は急速充電を実現するためのプロセッサを採用する。本発明の実施例によれば、プロセッサは、メモリに充電プロトコルのロジッグを記憶し、正確な制御を達成して装置性能を保存するため、電圧、電流などを高い正確度で測定することができる。   Thus, the logic of the protocol of the charging method according to the present invention can be incorporated into the battery charger and used for charging the battery. The battery charging unit employs a processor for achieving quick charging. According to an embodiment of the present invention, the processor can measure the voltage, current, etc. with high accuracy, to store the logic of the charging protocol in memory, achieve accurate control and preserve the device performance. .

また、本発明によれば、負極電位がLi−めっきの発生地点を超えないように制御する充電過程を有するため、一般的なCC−CV充電方式と比較して、負極にLi−めっきが発生する恐れがなく、それにより寿命が長くなる効果がある。   Further, according to the present invention, since the negative electrode potential has a charging process of controlling so that it does not exceed the occurrence point of Li-plating, the negative electrode generates Li-plating as compared with the general CC-CV charge system. And there is the effect of prolonging the life.

図9は、本発明による段階的な充電電流減少を用いた充電方法と従来のCC−CV充電方式とによる電池寿命の比較グラフである。   FIG. 9 is a comparison graph of battery life according to the charging method using stepwise charge current reduction according to the present invention and the conventional CC-CV charging method.

本発明と従来とにおいて、充電時間は同一にし、放電は同一条件(1C−CC)にしてそれぞれの寿命を比べた。図9のように、従来(CC−CV)の場合は、75サイクル後から容量維持率が減少し、100サイクル後には容量維持率が95%程度まで減少するが、本発明(段階的充電)の場合は、400サイクル後にも容量維持率が100%に達する。   In the present invention and the prior art, the charging time was made the same, and the discharge was made the same condition (1C-CC), and their respective lives were compared. As shown in FIG. 9, in the conventional case (CC-CV), the capacity retention rate decreases after 75 cycles, and after 100 cycles, the capacity retention rate decreases to about 95%, but the present invention (stepwise charging) In the case of, the capacity retention rate reaches 100% even after 400 cycles.

このような電池の寿命は様々な要因によって設定され、電極の構造安定性、特に負極の安定性が重要な要因である。理想的な負極はリチウムイオンとの反応可逆性が高くなければならない。理想的な可逆反応が行われば、サイクルによる容量維持率の変化がない。本発明による段階的な充電電流減少を用いた充電方法は、従来に比べて反応可逆性が一層高いことが分かるが、これは負極におけるLi−めっきを防止した結果である。このように、本発明の段階的な充電電流減少を用いた充電方法によれば、電池劣化を防止して従来より寿命が長くなることを確認できる。   The lifetime of such a battery is set by various factors, and the structural stability of the electrode, in particular, the stability of the negative electrode is an important factor. An ideal negative electrode should have high reaction reversibility with lithium ions. If an ideal reversible reaction is performed, there is no change in capacity retention rate with cycles. The charging method using stepwise charge current reduction according to the present invention is found to have higher reaction reversibility than before, which is the result of preventing Li-plating in the negative electrode. As described above, according to the charging method using the stepwise decrease of the charging current of the present invention, it can be confirmed that the battery deterioration is prevented and the life becomes longer than before.

このような本発明による段階的な充電電流減少を用いた充電方法は、1Cより大きい初期充電率を用いて電池を急速充電しながら、負極電位が低下せず一定になり始める地点をLi−めっきの発生地点として設定して、段階的に充電率を減少させて充電するため、Li−めっきの発生なく電池を急速充電することができる。電池内部の構造に損傷を与えることを防止でき、電池の寿命を向上させることができる。   Such a charging method using stepwise charge current reduction according to the present invention Li-plates a point where the negative electrode potential starts to become constant without decreasing while rapidly charging the battery using an initial charging rate larger than 1 C. Therefore, the battery can be rapidly charged without the occurrence of Li-plating because charging is performed by decreasing the charging rate in stages. Damage to the internal structure of the battery can be prevented, and the battery life can be improved.

また、本発明による充電限界予測方法及び充電方法は、例えば「負極電位が0V以上になるようにする(Li+/Li vs.0V)」との基準に比べて、負極電位が0V以下にさらに落ちるまで充電を維持する。(Li+/Li vs.0V)の基準と比較して、同じ充電電流密度でさらに高いSOCまで充電できるため、短時間に多量充電しなければならない急速充電の観点で非常に効果的である。 The charge limit prediction method and the charge method according to the present invention further reduce the negative electrode potential to 0 V or less as compared with, for example, the reference to "set the negative electrode potential to 0 V or more (Li + / Li vs. 0 V)". Keep charging until it falls. Compared to the standard of (Li + / Li vs. 0 V), since it can be charged to a higher SOC at the same charge current density, it is very effective in terms of rapid charging that must be massively charged in a short time.

以上、本発明の望ましい実施例について説明したが、本発明は上述した特定の望ましい実施例に限定されず、請求範囲で請求する本発明の要旨から逸脱することがなく、本発明が属する技術分野で通常の知識を持つ者であれば多様な変形実施が可能であり、そのような変更が請求範囲の範囲内であることは言うまでもない。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the specific preferred embodiments described above, and does not depart from the subject matter of the present invention as claimed in the claims. It is needless to say that various modifications can be made by those skilled in the art, and such modifications are within the scope of the claims.

Claims (12)

電池充電限界予測方法であって、
(a)負極と、正極と、分離膜とを備えた単位電池と、基準電極とを備え、前記負極と前記正極との間に前記分離膜を介して前記基準電極を挿入し、三電極セルを製作する段階と、
(b)前記三電極セルを充電しながら、前記基準電極と前記負極との電位差を測定し、SOCによる負極電位(CCV)を測定する段階と、
(c)同時に、前記SOCに対する前記負極電位が低下せず一定になり始める地点及び前記SOCに対する前記負極電位の変曲点を、Li−めっきの発生地点と判断し充電限界として設定する段階とを含んでなる、電池充電限界予測方法。
It is a battery charge limit prediction method, and
(A) A unit cell comprising a negative electrode, a positive electrode, and a separation membrane, and a reference electrode, wherein the reference electrode is inserted between the negative electrode and the positive electrode via the separation membrane, and a three-electrode cell Stage of making
(B) measuring a potential difference between the reference electrode and the negative electrode while charging the three-electrode cell, and measuring a negative electrode potential (CCV) by SOC;
(C) At the same time, the point at which the negative electrode potential with respect to the SOC starts to become constant without decreasing and the inflection point of the negative electrode potential with respect to the SOC are determined as occurrence points of Li-plating and set as charging limits A method of predicting battery charge limit comprising:
充電率を変化させて前記(b)段階及び(c)段階を行う過程を繰り返して、前記充電率における充電限界を取得し、それを総合して充電プロトコルを得ることを特徴とする、請求項1に記載の電池充電限界予測方法。   Changing the charging rate and repeating the steps (b) and (c) to obtain the charging limit at the charging rate, and combining them to obtain a charging protocol. The battery charge limit prediction method as described in 1. 電池充電方法であって、
負極と、正極と、分離膜とを備えた単位電池と、基準電極とを備え、前記負極と前記正極との間に前記分離膜を介して前記基準電極を挿入した、三電極セルを用意し、
前記基準電極と前記負極との電位差を測定し、SOCによる負極電位を相異なる充電率毎に測定しデータを取得する段階と、
前記取得されたデータから、同時に、前記SOCに対する前記負極電位が低下せず一定になり始める地点及び前記SOCに対する前記負極電位の変曲点を、Li−めっきの発生地点と判断し充電限界として設定して、充電率を段階的に変更するプロトコルを得る段階と、
前記プロトコルで電池を充電する段階とを含んでなる、電池充電方法。
Battery charging method,
A three-electrode cell is provided, comprising a unit cell comprising a negative electrode, a positive electrode, a separation membrane, and a reference electrode, and inserting the reference electrode between the negative electrode and the positive electrode via the separation membrane. ,
Measuring a potential difference between the reference electrode and the negative electrode, measuring a negative electrode potential due to SOC for each different charging rate, and acquiring data;
From the acquired data, at the same time, the point where the negative electrode potential with respect to the SOC starts to become constant without decreasing and the inflection point of the negative electrode potential with respect to the SOC are determined as occurrence points of Li-plating and set as charging limit Obtaining a protocol that gradually changes the charging rate,
Charging the battery according to the protocol.
前記データ取得段階の充電率が0.25C〜5C範囲であることを特徴とする、請求項3に記載の電池充電方法。   The battery charging method according to claim 3, wherein the charging rate in the data acquisition step is in a range of 0.25C to 5C. 前記プロトコルは初期充電率が1Cより高いことを特徴とする、請求項3又は4に記載の電池充電方法。   The battery charging method according to claim 3 or 4, wherein the protocol has an initial charge rate higher than 1C. 前記プロトコルは初期充電率が1.5C〜5Cであることを特徴とする、請求項3〜5の何れか一項に記載の電池充電方法。   The battery charging method according to any one of claims 3 to 5, wherein the protocol has an initial charging rate of 1.5C to 5C. 前記プロトコルは、段階的に減少する充電率、及び各充電率における充電終了後の充電電圧情報を含んでなることを特徴とする、請求項3〜6の何れか一項に記載の電池充電方法。   The battery charging method according to any one of claims 3 to 6, wherein the protocol includes a stepwise decreasing charging rate, and charging voltage information after completion of charging at each charging rate. . 電池充電装置であって、
電源から入力される充電電圧を出力する電源部と、
前記電源部から入力される前記充電電圧を電池に充電電流として出力して前記電池を充電し、前記電池の前記充電電圧が予め設定された段階に到達した際、前記充電電流を変更して、前記電池に出力される前記充電電流を段階的に変化させるように制御する電池充電部とを備えてなり、
前記電池は、負極と、正極と、分離膜とを備えた単位電池と、基準電極とを備え、前記負極と前記正極との間に前記分離膜を介して前記基準電極を挿入した、三電極セルを備えてなり、
前記電池充電部は、前記基準電極と前記負極との電位差を測定し、SOCによる負極電位を相異なる充電率毎に測定しデータを取得し、
前記取得されたデータから、同時に、前記SOCに対する前記負極電位が低下せず一定になり始める地点及び前記SOCに対する前記負極電位の変曲点を、Li−めっきの発生地点と判断し充電限界として設定して、充電率を段階的に変更するプロトコルを得てなり、
前記プロトコルにより前記充電電流を段階的に調整し、電池の充電を行うものであることを特徴とする、電池充電装置。
A battery charger,
A power supply unit that outputs a charging voltage input from the power supply;
The battery is charged by outputting the charging voltage input from the power supply unit as a charging current to the battery, and when the charging voltage of the battery reaches a preset stage, the charging current is changed, A battery charging unit configured to control the charging current to be output to the battery to change stepwise;
The battery includes a unit battery including a negative electrode, a positive electrode, and a separation membrane, and a reference electrode, and the three electrodes in which the reference electrode is inserted between the negative electrode and the positive electrode via the separation membrane. Equipped with a cell,
The battery charging unit measures the potential difference between the reference electrode and the negative electrode, measures the negative electrode potential due to the SOC for each of different charging rates, and acquires data.
From the acquired data, at the same time, the point at which the negative electrode potential with respect to the SOC starts to become constant without decreasing and the inflection point of the negative electrode potential with respect to the SOC are determined as occurrence points of Li-plating and set as charging limit And get a protocol to change the charging rate in stages,
A battery charging device characterized in that the charging current is adjusted stepwise according to the protocol to charge the battery.
前記データ取得段階の充電率が0.25C〜5C範囲であることを特徴とする、請求項8に記載の電池充電装置 The battery charging device according to claim 8, wherein a charging rate in the data acquisition step is in a range of 0.25C to 5C . 前記プロトコルは初期充電率が1Cより高いことを特徴とする、請求項8又は9に記載の電池充電装置 The battery charging device according to claim 8 or 9, wherein the protocol has an initial charge rate higher than 1C . 前記プロトコルは初期充電率が1.5C〜5Cであることを特徴とする、請求項8〜10の何れか一項に記載の電池充電装置 The battery charging device according to any one of claims 8 to 10, wherein the protocol has an initial charging rate of 1.5C to 5C . 前記プロトコルは、段階的に減少する充電率、及び各充電率における充電終了後の充電電圧情報を含んでなることを特徴とする、請求項8〜11の何れか一項に記載の電池充電装置 The battery charging device according to any one of claims 8 to 11, wherein the protocol includes a charge rate which decreases stepwise and charge voltage information after the end of charge at each charge rate. .
JP2017563991A 2015-08-18 2016-08-04 Battery charge limit prediction method, battery quick charge method and apparatus using the same Active JP6498792B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150116247A KR101985812B1 (en) 2015-08-18 2015-08-18 Charging limit evaluation method of battery, method and apparatus for fast charging using the same
KR10-2015-0116247 2015-08-18
PCT/KR2016/008614 WO2017030309A1 (en) 2015-08-18 2016-08-04 Method for predicting battery charge limit, and method and apparatus for rapidly charging battery using same

Publications (2)

Publication Number Publication Date
JP2018520622A JP2018520622A (en) 2018-07-26
JP6498792B2 true JP6498792B2 (en) 2019-04-10

Family

ID=58051039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017563991A Active JP6498792B2 (en) 2015-08-18 2016-08-04 Battery charge limit prediction method, battery quick charge method and apparatus using the same

Country Status (7)

Country Link
US (1) US10605870B2 (en)
EP (1) EP3287801B1 (en)
JP (1) JP6498792B2 (en)
KR (1) KR101985812B1 (en)
CN (1) CN107710545B (en)
PL (1) PL3287801T3 (en)
WO (1) WO2017030309A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102730913B1 (en) 2017-02-07 2024-11-14 삼성전자주식회사 Method and apparatus for charging battery
KR102254353B1 (en) * 2017-03-10 2021-05-21 주식회사 엘지화학 Charging Method of Secondary Battery
EP3611818B1 (en) * 2017-04-14 2024-09-25 Murata Manufacturing Co., Ltd. Charging device, charging method, secondary battery, battery pack, electric vehicle, electricity storage device, electronic device, and electricity storage system
KR102253781B1 (en) * 2017-04-28 2021-05-20 주식회사 엘지화학 Apparatus and method for controlling discharge
KR102270870B1 (en) * 2017-07-10 2021-07-01 주식회사 엘지에너지솔루션 Regnerative method for lithium rechargeable battery
KR102441469B1 (en) 2017-11-13 2022-09-06 주식회사 엘지에너지솔루션 Battery charging method and battery charging device
KR102634816B1 (en) 2017-12-21 2024-02-07 삼성전자주식회사 An battery monitoring apparatus detecting charge balance of a battery and a method thereof
KR102563753B1 (en) * 2017-12-29 2023-08-04 삼성전자주식회사 Method and apparatus for battery charging
KR102343422B1 (en) 2018-04-10 2021-12-24 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery cell
CN111175662B (en) * 2018-11-13 2021-07-09 清华大学 Li-ion battery evaluation method and lithium-ion battery detection system
DE102019209037A1 (en) * 2019-06-21 2020-12-24 Robert Bosch Gmbh Method for operating an electrical energy storage system
US11159039B2 (en) * 2019-06-29 2021-10-26 Intel Corporation Apparatus and method for battery charging with lithium plating detection and battery degradation detection and separation
KR20210021822A (en) 2019-08-19 2021-03-02 주식회사 엘지화학 Method For Recovering Lithium Battery Cell By Heat Treatment and Method For Manufacturing Lithium Battery Cell Comprising the Same
CN110957785B (en) * 2019-12-10 2022-02-25 维沃移动通信有限公司 Battery assembly, charging control method and system
CN111257772A (en) * 2020-01-22 2020-06-09 重庆金康新能源汽车有限公司 Continuous SOC testing for improved fast charge algorithm
KR20210097525A (en) * 2020-01-30 2021-08-09 주식회사 엘지에너지솔루션 Secondary battery and manufacturing method of the same
US12206271B2 (en) * 2020-01-31 2025-01-21 Lg Energy Solution, Ltd. Battery charge control device and method
CN112366375B (en) * 2020-09-03 2022-03-18 万向一二三股份公司 Quick charging method for lithium ion power battery
CN112180260A (en) * 2020-09-24 2021-01-05 欣旺达电动汽车电池有限公司 Battery lithium analysis window analysis method, lithium analysis detection method, device and storage medium
CN114285103B (en) * 2020-09-27 2024-12-10 比亚迪股份有限公司 Battery charging method, system, vehicle and medium based on lithium plating detection
KR20220072578A (en) * 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Apparatus and method for managing battery
KR102511976B1 (en) 2020-12-29 2023-03-17 아주대학교산학협력단 Fast charge method to prevent lithium plating in an electric vehicle lithium-ion battery
CN113341329A (en) * 2021-04-26 2021-09-03 湖北亿纬动力有限公司 Method and system for determining lithium separation of battery cell through voltage relaxation
CN113193250B (en) * 2021-04-29 2022-09-23 江西安驰新能源科技有限公司 Evaluation method for low-temperature cycle lithium separation degree
US11901759B2 (en) * 2021-07-16 2024-02-13 Southwest Research Institute Development of fast charge profiles for lithium-ion batteries
CN115810834B (en) * 2021-09-14 2024-12-10 比亚迪股份有限公司 Self-heating control method and self-heating control system for charging and discharging batteries
KR20230050107A (en) * 2021-10-07 2023-04-14 주식회사 엘지에너지솔루션 Method for Determining Charging Profile of Battery and Battery Charging System Using the Same
CN116087805A (en) * 2021-11-05 2023-05-09 北京昇科能源科技有限责任公司 A method for calibrating lithium battery fast charging current
EP4254597A4 (en) * 2021-11-25 2024-05-08 Contemporary Amperex Technology Co., Limited CHARGING METHOD FOR POWER BATTERY AND BATTERY MANAGEMENT SYSTEM
WO2023120924A1 (en) * 2021-12-20 2023-06-29 주식회사 엘지에너지솔루션 Three-electrode cell and system for performance analysis using same
CN114089205B (en) * 2022-01-21 2022-05-03 三一汽车制造有限公司 Charging limiting current detection method, device and system and storage medium
US20240072565A1 (en) * 2022-08-24 2024-02-29 GM Global Technology Operations LLC Method and system for charging a battery
KR102676209B1 (en) 2022-11-08 2024-06-19 주식회사 엘지에너지솔루션 Lithium secondary battery charging protocol establishment method, battery management system, battery pack and battery cell charging device
CN119096448A (en) 2022-11-08 2024-12-06 株式会社Lg新能源 Battery management system, battery pack including the system, and method for establishing charging protocol for lithium secondary battery
CN118238638A (en) * 2022-12-22 2024-06-25 北京车和家汽车科技有限公司 Charging method, device, equipment, storage medium and vehicle
CN118610618A (en) * 2023-03-06 2024-09-06 通用汽车环球科技运作有限责任公司 DC fast charging method for charging battery cells including lithium silicon oxide (LSO)
KR20250012388A (en) 2023-07-17 2025-01-24 에스케이온 주식회사 Method and apparatus for evaluating a charging protocol

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459243B1 (en) 2001-12-14 2002-10-01 Zinc Matrix Power, Inc. Multiple plateau battery charging method and system to fully charge the first plateau
US8163410B2 (en) * 2007-09-14 2012-04-24 A123 Systems, Inc. Lithium rechargeable cell with reference electrode for state of health monitoring
JP2010218900A (en) * 2009-03-17 2010-09-30 Toyota Motor Corp Battery system and hybrid automobile
US8754614B2 (en) * 2009-07-17 2014-06-17 Tesla Motors, Inc. Fast charging of battery using adjustable voltage control
BR112012023951A2 (en) * 2010-03-23 2017-12-19 Nec Corp lithium-ion secondary battery charging and discharging method, lithium-ion secondary battery charging and discharging system and information processing device
JP5782803B2 (en) * 2010-06-03 2015-09-24 日産自動車株式会社 Battery charging device and battery charging method
JP5304844B2 (en) 2011-05-24 2013-10-02 トヨタ自動車株式会社 Battery charge control device
WO2013046690A1 (en) 2011-09-30 2013-04-04 パナソニック株式会社 Lithium ion battery charging method and battery-equipped device
JP2013089363A (en) 2011-10-14 2013-05-13 Toyohashi Univ Of Technology Method and device for determining deposition of lithium dendrite
EP2804249B1 (en) 2012-01-13 2017-08-30 Toyota Jidosha Kabushiki Kaisha Method for controlling and device for controlling secondary battery
EP2645467A1 (en) * 2012-03-26 2013-10-02 Samsung SDI Co., Ltd. Battery pack charging system and method of controlling the same
US9130248B2 (en) * 2012-05-25 2015-09-08 GM Global Technology Operations LLC Modeling changes in the state-of-charge open circuit voltage curve by using regressed parameters in a reduced order physics based model
PL3901642T3 (en) 2012-06-13 2022-11-21 Lg Energy Solution, Ltd. Apparatus and method for estimating soc of secondary battery including blended cathode material
US9263908B2 (en) * 2012-06-26 2016-02-16 Samsung Sdi Co., Ltd. Battery pack having linear voltage profile, and SOC algorithm applying to the battery pack
JP2014139520A (en) 2013-01-21 2014-07-31 Toyota Industries Corp Charging rate estimation device and charging rate estimation method
JP5994680B2 (en) 2013-02-27 2016-09-21 株式会社豊田自動織機 Battery remaining capacity estimation method and apparatus
US9438054B2 (en) * 2013-05-01 2016-09-06 Apple Inc. Battery charger integrated circuit chip
JP6192738B2 (en) * 2013-11-29 2017-09-06 日立オートモティブシステムズ株式会社 Battery module and battery pack
WO2017013823A1 (en) * 2015-07-21 2017-01-26 ソニー株式会社 Charging method, battery device, charging device, degradation diagnosis method, battery pack, electric vehicle, and electricity storage device

Also Published As

Publication number Publication date
US20180292461A1 (en) 2018-10-11
US10605870B2 (en) 2020-03-31
CN107710545A (en) 2018-02-16
JP2018520622A (en) 2018-07-26
PL3287801T3 (en) 2019-09-30
KR101985812B1 (en) 2019-06-04
WO2017030309A1 (en) 2017-02-23
CN107710545B (en) 2020-10-02
EP3287801B1 (en) 2019-05-08
KR20170021630A (en) 2017-02-28
EP3287801A1 (en) 2018-02-28
EP3287801A4 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6498792B2 (en) Battery charge limit prediction method, battery quick charge method and apparatus using the same
JP6523450B2 (en) Battery quick charging method and apparatus
US10126367B2 (en) Detection method of LI plating, method and apparatus for charging secondary battery and secondary battery system using the same
CN104335445B (en) How to charge the secondary battery
JP6797438B2 (en) Battery charging method and battery charging device
JP6638227B2 (en) Power storage element deterioration state estimation device, storage element deterioration state estimation method, and power storage system
CN110679056A (en) Battery charging management apparatus and method
KR20170100526A (en) Charging method for lithium ion secondary cell and charging control system therefor, and electronic apparatus and cell pack having charging control system
KR102086631B1 (en) Charging Method of Secondary Battery and Charging Apparatus of the Same
JP7076191B2 (en) Battery charging method and equipment
CN107750408B (en) Method and apparatus for controlling regeneration process of lithium-ion battery cells
CN106058326B (en) A kind of compound method for lithium ion battery optimizing SEI film properties
KR20130126344A (en) Method for charging lithium secondary battery at low temperature
US10553914B2 (en) Rapid forming of an electrode
KR20230060174A (en) Method of charging secondary battery
JP2016126949A (en) Input/output recovery method and control system
US20250112485A1 (en) Method for establishing lithium secondary battery charging protocol, battery management system, battery pack, and battery cell charging device
JP2025517137A (en) Battery management system, battery pack including same, and method for establishing charging protocol for lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6498792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250