JP6485059B2 - Power system stabilization device and control method - Google Patents
Power system stabilization device and control method Download PDFInfo
- Publication number
- JP6485059B2 JP6485059B2 JP2015009237A JP2015009237A JP6485059B2 JP 6485059 B2 JP6485059 B2 JP 6485059B2 JP 2015009237 A JP2015009237 A JP 2015009237A JP 2015009237 A JP2015009237 A JP 2015009237A JP 6485059 B2 JP6485059 B2 JP 6485059B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- output
- input
- calculation unit
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
本発明は、電力系統の安定化装置とその制御方法に係わり、特に配電系統に放電特性の異なる複数のPCS(Power Conversion System)からなる系統安定化装置が設置された場合、又は設置されたPCSの容量よりも再生可能エネルギー出力総和の方が大きい場合の系統の安定化装置とその制御方法に関するものである。 The present invention relates to a power system stabilization device and a control method thereof, and in particular, when a system stabilization device including a plurality of PCSs (Power Conversion Systems) having different discharge characteristics is installed in a distribution system, or a PCS installed. The present invention relates to a system stabilizing device and its control method when the total renewable energy output is larger than the capacity of the system.
複数の分散電源を電力系統に連系する場合には分散電源の協調運転が行われ、その際、例えば特許文献1で示すように放電特性の異なる2台のPCSからなる系統安定化装置を設置して系統の安定化を図るものが公知となっている。
図9は系統安定化装置を設置した配電系統の例を示したもので、系統安定化装置1は、放電特性の異なる鉛電池システム1aと電気二重層キャパシタシステム1bの2台のシステムで構成されている。2はコージェネレーションシステム、3は太陽光発電装置、4は風力発電装置で、これら各発電装置は送電系統に接続された配電線(受電点)5を介して並設されている。6はグリッドコントローラである。
When a plurality of distributed power sources are connected to the power system, a coordinated operation of the distributed power sources is performed. At that time, for example, as shown in
FIG. 9 shows an example of a power distribution system in which a system stabilization device is installed. The
図9では、太陽光発電装置3-1,3-2と風力発電装置4による3種類の再生可能エネルギー(以下REという(RE:Renewable energy))の発電設備を持っているため、天候や風速などにより発電電力が大きく変動する。この発電電力を検出し、検出された各計測値をグリッドコントローラ6に入力して系統安定化装置1に対する制御指令を演算し、系統安定化装置1は、算出された制御指令に基づいて受電点電力の変動を緩和(以下これをRE変動緩和という)するよう動作する。
In FIG. 9, since the solar power generation devices 3-1 and 3-2 and the wind power generation device 4 have power generation facilities for three types of renewable energy (hereinafter referred to as RE (Re: Renewable energy)), the weather and wind speed The generated power fluctuates greatly due to factors such as This generated power is detected, each detected value is input to the
以下は、説明の簡単化のために鉛電池システム1aと電気二重層キャパシタシステム1bの定格最大出力(放電)、及び最大吸収(充電)能力がともに100kWである場合について説明する。
In the following, a case where the rated maximum output (discharge) and maximum absorption (charge) capacities of the
図10は100kW変動発生時の系統安定化装置へのRE変動緩和指令値の演算例を示す波形図で、波形(a)はRE出力総和、波形(b)は全体のRE変動緩和指令値、波形(c)は鉛電池システムのPCSに対するRE変動緩和指令値、波形(d)は電気二重層キャパシタシステムのPCSに対するRE変動緩和指令値、波形(e)はRE出力総和+PCS(受電点)の各電力波形である。 FIG. 10 is a waveform diagram showing a calculation example of the RE fluctuation mitigation command value to the system stabilizing device when a 100 kW fluctuation occurs. Waveform (a) is the RE output sum, waveform (b) is the entire RE fluctuation mitigation command value, Waveform (c) is the RE fluctuation relaxation command value for the PCS of the lead battery system, waveform (d) is the RE fluctuation relaxation command value for the PCS of the electric double layer capacitor system, and waveform (e) is the total RE output + PCS (power receiving point). Each power waveform.
時刻t1に(a)で示すRE出力総和が0から100kWに変動したとすると、後述の全体指令演算部20からの全体のRE変動緩和指令値は(b)のように吸収する方向の指令値を発生する。この指令値に基づいて、先ず(d)で示す電気二重層キャパシタシステムが急峻に吸収動作を開始し、次いで動作の遅い鉛電池システムが(c)で示すように吸収動作を開始することで、RE出力総和が急変しても(e)の受電点電力は急変しないよう時刻t2まで各別にPCSが動作して電力変動を緩和する。
Assuming that the total RE output indicated by (a) fluctuates from 0 to 100 kW at time t1, the total RE fluctuation relaxation command value from the total
一方、システム構成によっては、PCSの容量よりもRE出力総和の方が大きい場合がある。図6(A)はREの総和が0から300kWに変動したときの従来のRE変動緩和の指令値演算例を示したものである。 On the other hand, depending on the system configuration, the RE output sum may be larger than the PCS capacity. FIG. 6A shows a conventional command value calculation example for mitigating RE fluctuation when the total sum of RE fluctuates from 0 to 300 kW.
時刻t1でRE出力総和が0から300kWに変動したとすると、全体指令演算部20からの全体のRE変動緩和指令値は波形(b)のように吸収する方向の指令値を発生する。この指令値に基づき、波形(d)で示す電気二重層キャパシタシステムのPCSは最大能力の100kWまで急峻な吸収動作を行う。遅い動作の鉛電池システムのPCSは、波形(c)で示すように最大能力の100kWまでは正常な吸収動作を行うが、100kW以上になると最大能力以上であることからRE変動緩和の指令値が飽和してしまう。指令値が飽和すると、RE出力総和の変動が連続して発生した場合にはRE変動緩和動作ができなくなり、受電点の緩和動作は波形(e)で示すように時刻t4にまで伸びることになる。
Assuming that the total RE output varies from 0 to 300 kW at time t1, the entire RE fluctuation relaxation command value from the entire
また、図7(A)はPCSの容量よりもRE出力総和の方が大きい場合で、且つ時刻t1で0→300kWに、時刻t2で300kW→200kW、時刻t3で200kW→300kWに連続変動したときのRE変動緩和の指令値演算の例を示したものである。この例では、時刻t2で波形(c)で示す鉛電池システムのPCSが飽和していることから、波形(e)で示す点線で囲んだ部位のように受電点電力の変動緩和制御は不可能となっている。 FIG. 7A shows the case where the total RE output is larger than the capacity of the PCS, and continuously changes from 0 to 300 kW at time t1, from 300 kW to 200 kW at time t2, and from 200 kW to 300 kW at time t3. This shows an example of command value calculation for mitigating RE fluctuation. In this example, since the PCS of the lead battery system indicated by the waveform (c) is saturated at the time t2, the fluctuation relaxation control of the receiving point power is not possible as in the part surrounded by the dotted line indicated by the waveform (e). It has become.
本発明が目的とするところは、RE変動緩和指令値の飽和を防止したRE変動緩和制御装置と制御方法を提供することにある。 An object of the present invention is to provide an RE fluctuation mitigation control apparatus and a control method that prevent saturation of an RE fluctuation mitigation command value.
本発明は、配電系統に再生可能エネルギーREの発電設備と、充放電特性を有する系統安定化装置を接続し、配電系統の受電点電力の変化に基づいてグリッドコントローラを介して系統安定化装置により電力吸収、電力発生の制御を行って受電点電力の急速変化を緩和するものにおいて、
前記グリッドコントローラに潮流変動緩和制御ブロックを設け、
潮流変動緩和制御ブロックに、RE出力総和値を出力するRE出力振幅演算部と、
前記RE出力総和値を入力して入力追従値を演算する入力追従値演算部、RE出力総和値から算出された入力追従値を減算し、差分に基づいて系統安定化装置の電力吸収,電力発生および所定の変化傾斜に変換して出力する変換テーブルを有する全体指令値演算部を設け、
全体指令値演算部の出力を前記系統安定化装置へのRE変動緩和指令値として出力するよう構成したことを特徴としたものである。
The present invention connects a power generation facility of renewable energy RE to a distribution system and a system stabilization device having charge / discharge characteristics, and the system stabilization device via a grid controller based on a change in power receiving point power of the distribution system. In the one that relieves rapid change of receiving point power by controlling power absorption and power generation,
The grid controller is provided with a tidal fluctuation mitigation control block,
An RE output amplitude calculation unit that outputs an RE output total value to the tidal current fluctuation mitigation control block;
Input follow-up value calculation unit for calculating the input follow-up value by inputting the RE output sum value, subtracting the input follow-up value calculated from the RE output sum value, and power absorption and power generation of the system stabilizing device based on the difference And an overall command value calculation unit having a conversion table for converting to a predetermined change slope and outputting it,
The output of the overall command value calculation unit is configured to output as an RE fluctuation mitigation command value to the system stabilizing device.
また、本発明は系統安定化装置を、充放電特性の異なる鉛電池システムと電気二重層キャパシタシステムの複数のPCSからなる系統安定化装置で構成し、
前記RE出力振幅演算部は、再生可能エネルギーの振幅を求めてローパスフィルタによりノイズ除去処理が施されたRE出力総和値を出力するよう構成すると共に、
前記全体指令値演算部の出力を前記系統安定化装置全体のRE変動緩和指令値とし、全体指令値演算部の出力を入力追従値演算部入力して入力追従値を演算して入力追従値を前記鉛電池システムのRE変動緩和指令値とし、且つ前記全体のRE変動緩和指令値から入力追従値の減算された値を前記電気二重層キャパシタシステムのRE変動緩和指令値として出力する鉛・キャパシタ指令演算部と、を備えたことを特徴としたものである。
In addition, the present invention comprises a system stabilization device composed of a system stabilization device comprising a plurality of PCSs of a lead battery system and an electric double layer capacitor system having different charge / discharge characteristics,
The RE output amplitude calculation unit is configured to calculate the amplitude of the renewable energy and output the RE output sum value subjected to noise removal processing by the low-pass filter,
The output of the overall command value calculation unit is used as the RE fluctuation relaxation command value for the entire system stabilizing device, the output of the overall command value calculation unit is input to the input tracking value calculation unit, and the input tracking value is calculated to obtain the input tracking value. A lead-capacitor command that outputs a value obtained by subtracting an input follow-up value from the overall RE fluctuation relaxation command value as the RE fluctuation relaxation command value of the electric double layer capacitor system as the RE fluctuation relaxation command value of the lead battery system And an arithmetic unit.
本発明の全体指令値演算部は、前記RE出力総和値が前記系統安定化装置の定格を超えるときに、系統安定化装置の定格処理以下となる補正値Nを加算若しくは減算し、その後に前記入力追従値演算部で入力追従値を演算することを特徴としたものである。 The overall command value calculation unit of the present invention adds or subtracts a correction value N that is equal to or less than the rated processing of the system stabilizing device when the RE output total value exceeds the rating of the system stabilizing device, and thereafter The input follow-up value calculation unit calculates the input follow-up value.
また、本発明は、配電系統に再生可能エネルギーREの発電設備と、充放電特性の異なる鉛電池システムと電気二重層キャパシタシステムの複数のPCSからなる系統安定化装置を接続し、配電系統の受電点電力の変化に基づいてグリッドコントローラを介して系統安定化装置により電力吸収、電力発生の制御を行って受電点電力の急速変化を緩和する制御方法において、
前記グリッドコントローラに、RE出力振幅演算部により算出されたRE出力総和値を全体指令値演算部の入力追従値演算部に入力し、前記RE出力総和値と入力追従値演算部の出力との差分をRE変動緩和指令値として出力するとき、前記RE出力総和値が前記系統安定化装置の定格を超えるとき、系統安定化装置の定格処理以下となる補正値Nを加算若しくは減算し、その後に前記入力追従値演算部で入力追従値を演算することを特徴としたものである。
Further, the present invention connects a power generation facility for renewable energy RE to a power distribution system, and a system stabilization device composed of a plurality of PCSs of a lead battery system and an electric double layer capacitor system having different charge / discharge characteristics. In a control method for controlling power absorption and power generation by a grid stabilizing device via a grid controller based on a change in point power to mitigate a rapid change in receiving point power,
The RE output total value calculated by the RE output amplitude calculation unit is input to the grid controller to the input tracking value calculation unit of the overall command value calculation unit, and the difference between the RE output total value and the output of the input tracking value calculation unit Is output as an RE fluctuation mitigation command value, when the RE output total value exceeds the rating of the system stabilizing device, a correction value N that is equal to or less than the rated processing of the system stabilizing device is added or subtracted, and then The input follow-up value calculation unit calculates the input follow-up value.
本発明による全体指令値演算部の演算は、前記RE出力総和値をア、前記入力追従値をイとしたとき、系統安定化装置の定格との関係と、RE出力総和値アと入力追従値イの大小関係において次の(1)式から(4)式に基づいて演算することを特徴としたものである。
(1)、(RE出力総和値ア)−(入力追従値イ)>系統安定化装置の定格時には、
(入力追従値イ)−(RE出力総和値ア)=−系統安定化装置の定格 …… (1)式
となるよう入力追従値イを補正値Nとして急変させる。
(2)、(RE出力総和値ア)−(入力追従値イ)<系統安定化装置の定格時には、
(入力追従値イ)−(RE出力総和値ア)=系統安定化装置の定格 …… (2)式
となるよう入力追従値イを補正値Nとして急変させる。
(3)、(RE出力総和値ア)>(入力追従値イ)の時
(入力追従値イ)+(調整値n) …… (3)式
とする。
(4)、(RE出力総和値ア)<(入力追従値イ)の時
(入力追従値イ)−(調整値n) …… (4)式
とする。
The calculation of the overall command value calculation unit according to the present invention is based on the relationship between the RE output total value and the input follow-up value, where the RE output sum value is a and the input follow-up value is a. It is characterized in that the calculation is performed based on the following formulas (1) to (4) in the magnitude relationship of a.
(1), (RE output total value a)-(input follow-up value a)> When the system stabilizer is rated,
(Input follow-up value A)-(RE output total value A) =-Rating system stabilizing device ... The input follow-up value A is abruptly changed as the correction value N so as to satisfy the equation (1).
(2), (RE output total value a) − (input follow-up value a) <when the system stabilizer is rated,
(Input follow-up value A)-(RE output summation value A) = Rating system stabilization device ...... The input follow-up value A is abruptly changed as the correction value N so as to satisfy the equation (2).
(3), (RE output total value a)> (input follow-up value a) (input follow-up value a) + (adjustment value n) Equation (3).
(4), (RE output total value a) <(input follow-up value a) (input follow-up value a)-(adjustment value n) (4)
以上のとおり、本発明によれば、受電点電力が系統安定化装置の定格以上のRE変動が連続して発生しても、RE変動緩和指令値が飽和することなくRE変動緩和動作が可能となるものである。 As described above, according to the present invention, it is possible to perform the RE fluctuation mitigation operation without saturating the RE fluctuation mitigation command value even if RE fluctuations in which the power at the receiving point exceeds the rating of the system stabilizing device continuously occur. It will be.
図1は、本発明のグリッドコントローラ6におけるRE変動緩和制御ブロックの概略図を示したものである。本発明における系統安定化装置の変動緩和動作は、3台(太陽光発電装置3-1,3-2,風力発電装置4)の再生可能エネルギーREの各発電電力を、RE出力振幅演算部10の各振幅演算部11,12,13に各別に入力して振幅を演算し、加算部14によってREの総和を算出する。求まったRE出力総和は、ローパスフィルタ15を通すことでノイズ除去処理が施されて全体指令演算部20に入力される。全体指令演算部20では、鉛電池システム1aのPCSと電気二重層キャパシタシステム1bのPCSに対する全体のRE変動緩和のための指令値を演算する。
FIG. 1 shows a schematic diagram of an RE fluctuation mitigation control block in the
すなわち、RE出力振幅演算部10からのRE出力総和を入力追従値演算部21に入力し、この入力追従値演算部21において、RE出力総和値アからこの入力追従値イを減算してその差分ウを変換テーブル22に入力する。変換テーブル22では、差分とその極性に基づいて充電・放電の動作状態とその値に基づく全体のRE変動緩和指令値を演算して鉛・キャパシタ指令値演算部30に出力する。
なお、変換テーブル22の特性は、図2で示すような特性でもよい。
That is, the RE output sum total from the RE output
The characteristics of the conversion table 22 may be characteristics as shown in FIG.
図3はRE出力総和値アと入力追従値イとの減算態様を示したもので、(a)はRE出力総和値ア>入力追従値イの場合、(b)はRE出力総和値ア<入力追従値イの場合である。記憶されている入力追従値イに対し、時々刻々変化するRE出力総和値アが図(a)のように大きくなったとき、又は図(b)のように小さくなったとき、時刻t1〜t2の間において所定の時間△t毎に調整値nを加算または減算する演算を行い、入力信号の対象値に対し大きいか小さいかを判断して対象入力追従値の方向に時間的に一定の傾斜で近づくよう加減する。 FIG. 3 shows a subtraction mode between the RE output total value A and the input follow-up value A. FIG. 3A shows a case where the RE output sum value A> the input follow-up value A, and FIG. This is the case of the input tracking value a. Times t1 to t2 when the RE output summation value a that changes from time to time becomes large as shown in FIG. 5A or as shown in FIG. predetermined time Te between smell △ every t performs addition or calculation for subtracting the adjustment value n, the direction of the temporally constant target input following values to determine whether large or small relative to the target value of the input signal Adjust to approach the slope.
鉛・キャパシタ指令値演算部30では、全体指令演算部20の出力をそのまま全体のRE変動緩和指令値として出力すると共に、全体のRE変動緩和指令値を入力追従値演算部31に入力し、鉛電池システム1aのPCSに対するRE変動緩和指令値として出力する。また、入力追従値演算部31からの入力追従値は、減算部32において全体のRE変動緩和指令値との減算処理が行われ、その差分が電気二重層キャパシタシステム1bのPCSに対するRE変動緩和指令値として出力される。入力追従値演算部31は、入力追従値演算部21と同様に、入力信号の対象値に対し大きいか小さいかを判断して対象入力追従値の方向に時間的に一定の傾斜で近づくよう加減する。
The lead / capacitor command
グリッドコントローラ6は、以上のような演算を行って鉛電池システム1aと電気二重層キャパシタシステム1bの各PCSに対する電流指令値を計算し、各システムのPCSはその指令値に基づいて電流が入出力するよう制御する。
The
入力追従値演算部は系統安定化装置の定格との関係と、RE出力総和値アと入力追従値イの大小関係において次の(1)〜(4)のような各状態時で各別に入力追従値演算を行う機能を備え、系統安定化装置として図4で示すような電力の吸収と電力の発生の動作を行う。入力追従値演算部21の入力が一定値であれば、この演算部21の出力も同一の値を出力している。
The input follow-up value calculation unit is input separately for each of the following conditions (1) to (4) in relation to the rating of the system stabilizer and the magnitude relationship between the RE output total value A and the input follow-up value A: A function for performing a follow-up value calculation is provided, and power absorption and power generation operations as shown in FIG. 4 are performed as a system stabilization device. If the input of the input follow-up
(1)RE出力総和が急増の場合で(RE出力総和値ア)−(入力追従値イ)>=装置定格の時(電力吸収動作 系統安定化装置に対して充電動作)、
(入力追従値イ)−(RE出力総和値ア)=−装置定格 ……(1)式
となるように、(入力追従値イ)を補正値Nとして急変させる。以降の演算は(3)式による(図4(a)(b)の動作)。
(1) When the RE output sum is rapidly increasing (RE output sum value a)-(input follow-up value a)> = equipment rating (power absorption operation, charging operation to the system stabilization device),
(Input follow-up value a) − (RE output total value a) = − device rating... (Input follow-up value a) is suddenly changed as the correction value N so as to satisfy the equation (1). Subsequent calculations are based on equation (3) (operations in FIGS. 4A and 4B).
(2)RE出力総和が急減の場合で(RE出力総和値ア)−(入力追従値イ)<=装置定格の時(電力発生動作 系統安定化装置に対して放電動作)、
(入力追従値イ)−(RE出力総和値ア)=装置定格 ……(2)式
となるように、(入力追従値イ)を補正値Nとして急変させる。以降の演算は(4)式による(図4(c)(d)の動作)。
(2) When the RE output total is rapidly decreasing (RE output total value a)-(input follow-up value a) <= device rating (power generation operation, discharge operation for the system stabilization device),
(Input follow-up value a) − (RE output total value a) = equipment rating... (Input follow-up value a) is suddenly changed as a correction value N so as to satisfy the equation (2). Subsequent calculations are based on equation (4) (operations in FIGS. 4C and 4D).
(3)上記(1)(2)以外で(RE出力総和値ア)>(入力追従値イ)の時、
(入力追従値イ)+n ……(3)式
とする。この+n値を新たな(入力追従値イ)として所定の時間毎に繰返し加算する。加算毎に繰返し出力すると同時に、増加する(入力追従値イ)が(RE出力総和値ア)と同じ値となったとき、つまり入力追従値演算部21の入出力が同一値になったとき演算が終了する(図4(e)(f)の動作)。
ここで、nは1緩和の調整値で、例えば入力追従の演算を1ms周期で実施した場合、n=1ms/10s*100kW=10Wとする(10秒で100kW変動する傾きの値を選択する)。
(3) When (RE output total value a)> (input follow-up value a) other than (1) and (2) above,
(Input follow-up value A) + n (3) This + n value is repeatedly added every predetermined time as a new (input follow-up value a). Calculation is performed when (input follow-up value a) increases simultaneously with (RE output total value a), that is, when the input / output of the input follow-up
Here, n is an adjustment value of 1 relaxation. For example, when an input tracking operation is performed in a 1 ms cycle, n = 1 ms / 10 s * 100 kW = 10 W (select a slope value that varies 100 kW in 10 seconds). .
(4)上記以外で、(RE出力総和値ア)<(入力追従値イ)の時、
(入力追従値イ)−n ……(4)式
とする。この−n値を新たな(入力追従値イ)として所定の時間毎に繰返し減算する。減算毎に繰返し出力すると同時に、減算される(入力追従値イ)が(RE出力総和値ア)と同じ値となったとき、つまり入力追従値演算部21の入出力が同一値になったとき演算が終了する(図4(g)の動作)。
なお、(RE出力総和値ア)=(入力追従値イ)の時には操作しない。
(4) Other than the above, when (RE output total value a) <(input tracking value a),
(Input follow-up value A) -n (4) The -n value is newly subtracted every predetermined time as a new (input follow-up value a). At the same time as repeatedly outputting for each subtraction, the subtracted (input follow-up value a) becomes the same value as (RE output total value a), that is, the input / output of the input follow-up
Note that no operation is performed when (RE output total value a) = (input follow-up value a).
図5は入力追従値処理の説明用波形図で、時刻10〜20秒間にRE出力総和が100kWに、時刻30〜40秒間では50kWに、時刻50〜60秒間には300kWにそれぞれ変化した例を示したもので、細線が入力追従値である。通常、入力追従処理を施した場合、入力追従処理ではRE出力総和の大きさに関係なく系統安定化装置の定各100kW時の傾きに追従して常に同じ傾きで変化する。また、時刻50〜60秒間のように、全体のRE変動緩和指令値が300kWに変化した場合、ここでは装置定格の100kW以上の緩和能力がないので200kW分に対して入力追従値を補正値N分だけ急変(所謂ゲタをはかせる)させる。
FIG. 5 is a waveform diagram for explaining the input follow-up value processing, in which the RE output total is changed to 100 kW at the
図6(B)が本発明によるRE変動緩和指令値の演算例を示したもので、(A)の指令値飽和対策なしの場合と対比表現している。電力発生が300kWに変化した場合、系統安定化装置1で吸収できる電力が100kWであることから、入力追従値演算部21で入力追従値の出力に200kW分を補正値Nとして加えて急変させると同時に、急変させた後の差分値(100kW)から入力追従の演算として前述した1緩和調整値nをRE出力総和値アと同じ値になるまで加え続ける演算を行い、同じ値になったとき緩和動作を完了する。このとき補正値Nの演算は(1)式で行い、系統安定化装置1の鉛電池システム1a、及び電気二重層キャパシタシステム1bの各PCSは波形(c),(d)で示すようにそれぞれ定格状態で電力吸収動作を行う。
FIG. 6B shows an example of the calculation of the RE fluctuation relaxation command value according to the present invention, which is contrasted with the case of no command value saturation countermeasure of FIG. When the power generation changes to 300 kW, the power that can be absorbed by the
ゲタをはかせた急変分の200kWは、系統安定化装置1では100kW以上吸収できない電力であるので受電点電力は波形(e)で示すように200kWとなり、系統安定化装置としては電力吸収の動作となっている。その後(3)式に基づいて、例えば前述のように10秒で100kW変動の傾きに選定され、鉛電池システム1aのRE変動緩和指令値は飽和することなく時刻t2でRE変動緩和動作が終了する。
The sudden change of 200 kW with the gain is power that cannot be absorbed by the
図7は、RE変動緩和動作中に300kWから200kWに急変した場合の、従来図(A)と本発明図(B)の対比波形図を示したもので、急変時には本来の動作とは異なった動作を行う。
図7(B)において、例えば、RE出力総和が時刻t2で300kWから200kWに変化したとする。系統安定化装置1からは100kW分の電力発生が可能であることから、ゲタをはかせる急変分は(2)式により100kWとなり、以降の演算は(4)式の入力追従値から−nの減算を行って所定の傾きに選定される。その結果、図7(B)の波形(e)で示すように緩和動作途中での急変の場合でも変動緩和動作が可能となるものである。
FIG. 7 shows a comparison waveform diagram of the conventional diagram (A) and the diagram of the present invention (B) in the case of sudden change from 300 kW to 200 kW during the RE fluctuation mitigation operation, which was different from the original operation at the sudden change. Perform the action.
In FIG. 7B, for example, it is assumed that the RE output total changes from 300 kW to 200 kW at time t2. Since it is possible to generate 100 kW of power from the
図8は、入力追従値演算部21のフローチャートを示したものである。ステップS1が演算動作の開始条件で、RE出力総和値アが所定の電力値以上に変化したか否かを判断する。所定値内であればステップS2を介して(RE出力総和値ア=入力追従値イ)としてメモリーで待機状態となる。ステップS1で所定の電力値以上に変化していると判断したとき、ステップS3でア>イか否かを判断し、Yesの場合には、S4で(ア−イ)>(装置定格A)、すなわち、前述した系統安定化装置の定格、及びRE出力総和値アと入力追従値イの大小関係が状態(1)か否かを判断する。Noの場合には、S5で入力追従値イに1緩和の調整値nを加算して新たな入力追従値イの出力値とし、RE出力総和値アと同一値になるまで所定時間△t毎に繰返し演算を行う。この状態が例えば、図4(a)の例で時刻t1〜t2の区間である。
FIG. 8 shows a flowchart of the input follow-up
状態(1)と判断されたとき、ステップS6でN=ア−Aの演算を行う。例えば、図4(a)の例で時刻t1においてステップS4,S6の演算を行ってゲタ分のNを算出して入力追従値イを補正値Nとする。 When the state (1) is determined, N = A-A is calculated in step S6. For example, in the example of FIG. 4A, the calculation of steps S4 and S6 is performed at time t1 to calculate N for the getter, and the input follow-up value A is set as the correction value N.
一方、ステップS3でNoの場合には、ステップS7で現象(2),すなわち、(ア−イ)<(装置定格A)か否かを判断する。Noの場合にはステップS8で入力追従値イから1緩和の調整値nを減算して新たな入力追従値イとし、RE出力総和値アと同一値になるまで所定時間△t毎に繰返し演算を行う。図4(c)の例で時刻t1〜t2の区間である。
状態(2)と判断されたとき、ステップS9でN=ア+Aの演算を行ってゲタ分のNを算出して入力追従値イを補正値Nとする。
On the other hand, if No in step S3, it is determined in step S7 whether or not phenomenon (2), that is, (Ai) <(device rating A). In the case of No, in step S8, the 1-relaxation adjustment value n is subtracted from the input follow-up value a to obtain a new input follow-up value a, which is repeatedly calculated every predetermined time Δt until it becomes the same value as the RE output total value a. I do. In the example of FIG. 4C, this is a section from time t1 to t2.
When the state (2) is determined, N = A + A is calculated in step S9 to calculate N for the getter, and the input follow-up value A is set as the correction value N.
なお、上記では、配電系統に放電特性の異なる複数のPCSを備えた系統安定化装置について説明してきたが、本発明では、系統安定化装置として、鉛電池システムと電気二重層キャパシタシステムの何れか一方のみ、若しくは両者の組合せであっても、PCSの容量よりもRE出力総和の方が大きい場合の系統安定化装置にも適用できるものである。 In the above description, the system stabilizing device provided with a plurality of PCSs having different discharge characteristics in the distribution system has been described. In the present invention, as the system stabilizing device, either a lead battery system or an electric double layer capacitor system is used. Even if only one or a combination of both is applicable, the present invention can also be applied to a system stabilizing device in the case where the RE output sum is larger than the PCS capacity.
以上本発明によれば、受電点電力が系統安定化装置の定格以上のRE変動が連続して発生しても、RE変動緩和指令値が飽和することなくRE変動緩和動作が可能となるものである。 As described above, according to the present invention, even if RE fluctuations whose receiving point power exceeds the rating of the system stabilizer occur continuously, the RE fluctuation mitigation operation can be performed without saturating the RE fluctuation mitigation command value. is there.
1… 系統安定化装置
2… コージェネレーションシステム
3… 太陽光発電装置
4… 風力発電装置
5… 配電線(受電点)
6… グリッドコントローラ
10… RE出力振幅演算部
20… 全体指令値演算部
21… 入力追従値演算部
22… 変換テーブル
30… 鉛・キャパシタ指令値演算部
31… 入力追従値演算部
DESCRIPTION OF
6 ...
Claims (5)
前記グリッドコントローラに潮流変動緩和制御ブロックを設け、
潮流変動緩和制御ブロックに、RE出力総和値を出力するRE出力振幅演算部と、
前記RE出力総和値を入力して入力追従値を演算する入力追従値演算部、RE出力総和値から算出された入力追従値を減算し、差分に基づいて系統安定化装置の電力吸収,電力発生および所定の変化傾斜に変換して出力する変換テーブルを有する全体指令値演算部を設け、
全体指令値演算部の出力を前記系統安定化装置へのRE変動緩和指令値として出力するよう構成し、
前記全体指令値演算部は、前記RE出力総和値が前記系統安定化装置の定格を超えるときに、系統安定化装置の定格処理以下となる補正値Nを加算若しくは減算し、その後に前記入力追従値演算部で入力追従値を演算することを特徴とした電力系統の安定化装置。 Renewable energy RE power generation equipment and a grid stabilization device with charge / discharge characteristics are connected to the distribution system, and power is absorbed and distributed by the grid stabilization device via the grid controller based on changes in the distribution point power of the distribution system. In the control of the occurrence to mitigate the rapid change in receiving point power,
The grid controller is provided with a tidal fluctuation mitigation control block,
An RE output amplitude calculation unit that outputs an RE output total value to the tidal current fluctuation mitigation control block;
Input follow-up value calculation unit for calculating the input follow-up value by inputting the RE output sum value, subtracting the input follow-up value calculated from the RE output sum value, and power absorption and power generation of the system stabilizing device based on the difference And an overall command value calculation unit having a conversion table for converting to a predetermined change slope and outputting it,
The output of the overall command value calculation unit is configured to output as an RE fluctuation relaxation command value to the system stabilizing device ,
The total command value calculation unit adds or subtracts a correction value N that is equal to or less than the rated processing of the system stabilizing device when the RE output total value exceeds the rating of the system stabilizing device, and then performs the input tracking. A power system stabilization device characterized in that an input follow-up value is calculated by a value calculation unit.
前記グリッドコントローラに潮流変動緩和制御ブロックを設け、
潮流変動緩和制御ブロックに、RE出力総和値を出力するRE出力振幅演算部と、
前記RE出力総和値を入力して入力追従値を演算する入力追従値演算部、RE出力総和値から算出された入力追従値を減算し、差分に基づいて系統安定化装置の電力吸収,電力発生および所定の変化傾斜に変換して出力する変換テーブルを有する全体指令値演算部を設け、
全体指令値演算部の出力を前記系統安定化装置へのRE変動緩和指令値として出力するよう構成し、
前記系統安定化装置を、充放電特性の異なる鉛電池システムと電気二重層キャパシタシステムの複数のPCSからなる系統安定化装置で構成し、
前記RE出力振幅演算部は、再生可能エネルギーREの振幅を求めてローパスフィルタによりノイズ除去処理が施されたRE出力総和値を出力するよう構成すると共に、
前記全体指令値演算部の出力を前記系統安定化装置全体のRE変動緩和指令値とし、全体指令値演算部の出力を入力追従値演算部に入力して入力追従値を演算し、入力追従値を前記鉛電池システムのRE変動緩和指令値とし、且つ前記全体のRE変動緩和指令値から入力追従値の減算された値を前記電気二重層キャパシタシステムのRE変動緩和指令値として出力する鉛・キャパシタ指令演算部と、を備えたことを特徴とした電力系統の安定化装置。 Renewable energy RE power generation equipment and a grid stabilization device with charge / discharge characteristics are connected to the distribution system, and power is absorbed and distributed by the grid stabilization device via the grid controller based on changes in the distribution point power of the distribution system. In the control of the occurrence to mitigate the rapid change in receiving point power,
The grid controller is provided with a tidal fluctuation mitigation control block,
An RE output amplitude calculation unit that outputs an RE output total value to the tidal current fluctuation mitigation control block;
Input follow-up value calculation unit for calculating the input follow-up value by inputting the RE output sum value, subtracting the input follow-up value calculated from the RE output sum value, and power absorption and power generation of the system stabilizing device based on the difference And an overall command value calculation unit having a conversion table for converting to a predetermined change slope and outputting it,
The output of the overall command value calculation unit is configured to output as an RE fluctuation relaxation command value to the system stabilizing device ,
The system stabilizing device is composed of a system stabilizing device composed of a plurality of PCSs of a lead battery system and an electric double layer capacitor system having different charge / discharge characteristics,
The RE output amplitude calculation unit is configured to obtain the amplitude of the renewable energy RE and output the RE output total value subjected to noise removal processing by a low-pass filter,
The output of the overall command value calculation unit is used as the RE fluctuation relaxation command value of the entire system stabilizing device, the output of the overall command value calculation unit is input to the input tracking value calculation unit, and the input tracking value is calculated. Is used as the RE fluctuation relaxation command value of the lead battery system, and the value obtained by subtracting the input follow-up value from the overall RE fluctuation relaxation command value is output as the RE fluctuation relaxation command value of the electric double layer capacitor system. A power system stabilization device comprising: a command calculation unit.
前記グリッドコントローラに、RE出力振幅演算部により算出されたRE出力総和値を全体指令値演算部の入力追従値演算部に入力し、前記RE出力総和値と入力追従値演算部の出力との差分をRE変動緩和指令値として出力するとき、前記RE出力総和値が前記系統安定化装置の定格を超えるとき、系統安定化装置の定格処理以下となる補正値Nを加算若しくは減算し、その後に前記入力追従値演算部で入力追従値を演算することを特徴とする電力系統の安定化装置の制御方法。 Based on the change in receiving power of the distribution system, connecting the power generation facility of renewable energy RE to the distribution system, and a system stabilization device consisting of multiple PCSs of lead battery system and electric double layer capacitor system with different charge / discharge characteristics In the control method to reduce the rapid change of receiving point power by controlling the power absorption and power generation by the grid stabilization device via the grid controller,
The RE output total value calculated by the RE output amplitude calculation unit is input to the grid controller to the input tracking value calculation unit of the overall command value calculation unit, and the difference between the RE output total value and the output of the input tracking value calculation unit Is output as an RE fluctuation mitigation command value, when the RE output total value exceeds the rating of the system stabilizing device, a correction value N that is equal to or less than the rated processing of the system stabilizing device is added or subtracted, and then An input tracking value calculation unit calculates an input tracking value, and a method for controlling a power system stabilizing device.
(1)、(RE出力総和値ア)−(入力追従値イ)>系統安定化装置の定格時には、
(入力追従値イ)−(RE出力総和値ア)=−系統安定化装置の定格 …… (1)式
となるよう入力追従値イを補正値Nとして急変させる。
(2)、(RE出力総和値ア)−(入力追従値イ)<系統安定化装置の定格時には、
(入力追従値イ)−(RE出力総和値ア)=系統安定化装置の定格 …… (2)式
となるよう入力追従値イを補正値Nとして急変させる。
(3)、(RE出力総和値ア)>(入力追従値イ)の時
(入力追従値イ)+(調整値n) …… (3)式
とする。
(4)、(RE出力総和値ア)<(入力追従値イ)の時
(入力追従値イ)−(調整値n) …… (4)式
とする。 The calculation of the overall command value calculation unit is based on the relationship between the rating of the system stabilizing device and the RE output total value A and the input follow-up value A, where the RE output total value is A and the input follow-up value is A. 5. The method of controlling a power system stabilizing device according to claim 4, wherein the calculation is performed based on the following formulas (1) to (4) in the magnitude relation.
(1), (RE output total value a)-(input follow-up value a)> When the system stabilizer is rated,
(Input follow-up value A)-(RE output total value A) =-Rating system stabilizing device ... The input follow-up value A is abruptly changed as the correction value N so as to satisfy the equation (1).
(2), (RE output total value a) − (input follow-up value a) <when the system stabilizer is rated,
(Input follow-up value A)-(RE output summation value A) = Rating system stabilization device ...... The input follow-up value A is abruptly changed as the correction value N so as to satisfy the equation (2).
(3), (RE output total value a)> (input follow-up value a) (input follow-up value a) + (adjustment value n) Equation (3).
(4), (RE output total value a) <(input follow-up value a) (input follow-up value a)-(adjustment value n) (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015009237A JP6485059B2 (en) | 2015-01-21 | 2015-01-21 | Power system stabilization device and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015009237A JP6485059B2 (en) | 2015-01-21 | 2015-01-21 | Power system stabilization device and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016135041A JP2016135041A (en) | 2016-07-25 |
JP6485059B2 true JP6485059B2 (en) | 2019-03-20 |
Family
ID=56434742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015009237A Active JP6485059B2 (en) | 2015-01-21 | 2015-01-21 | Power system stabilization device and control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6485059B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4764982B2 (en) * | 2006-05-09 | 2011-09-07 | 富士電機株式会社 | Power stabilization system using power storage device |
JP5391598B2 (en) * | 2008-07-10 | 2014-01-15 | 株式会社明電舎 | Stabilized control system for distributed power supply |
JP5239767B2 (en) * | 2008-11-14 | 2013-07-17 | 株式会社明電舎 | System stabilization device |
JP2011205824A (en) * | 2010-03-26 | 2011-10-13 | Tokyo Electric Power Co Inc:The | Power storage system |
US8471520B2 (en) * | 2010-05-04 | 2013-06-25 | Xtreme Power Inc. | Managing renewable power generation |
JP2014131369A (en) * | 2012-12-28 | 2014-07-10 | Kawasaki Heavy Ind Ltd | Power control system |
-
2015
- 2015-01-21 JP JP2015009237A patent/JP6485059B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016135041A (en) | 2016-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4715624B2 (en) | Power stabilization system, power stabilization control program, and power stabilization control method | |
JP5354840B2 (en) | New energy generation system output fluctuation mitigation device | |
US11296629B2 (en) | Method, device for sub synchronous oscillation suppression and controller for converter | |
JP6232899B2 (en) | Power compensation device | |
JPWO2011158351A1 (en) | Wind turbine generator control device and control method | |
JP5856028B2 (en) | Power conditioner and control method thereof | |
JP6969152B2 (en) | Control device and static VAR compensator | |
JP5125274B2 (en) | New energy generation system output fluctuation mitigation device | |
JP6548570B2 (en) | POWER SUPPLY SYSTEM, CONTROL DEVICE AND PROGRAM FOR POWER SUPPLY SYSTEM | |
Hung et al. | Double-loop control structure using proportional resonant and sequence-decoupled resonant controllers in static coordinates for dynamic voltage restorer | |
JP2020198705A (en) | Inverter controller, inverter control program and inverter control method | |
JP6149275B2 (en) | Power fluctuation suppression device using multiple power storage devices | |
JP5127513B2 (en) | Output fluctuation suppression device for natural energy generator | |
JP2006042458A (en) | Frequency controller and system frequency controlling method | |
JP6663831B2 (en) | Apparatus and method for designing capacity of power storage device and recording medium | |
JP2015061331A (en) | Voltage fluctuation suppression device | |
JP2007129803A (en) | Power stabilization system using power storage device and control device thereof | |
JP6485059B2 (en) | Power system stabilization device and control method | |
JP2018152943A (en) | Control device, control method and computer program | |
JP7034883B2 (en) | Controls, control methods, and programs | |
JP5951322B2 (en) | Voltage fluctuation suppressing device and voltage fluctuation suppressing method | |
JP2006271070A (en) | Thyristor controlled reactor based svc device | |
JP5678844B2 (en) | Control device for power converter | |
JP6337929B2 (en) | Power stabilization system and control device using power storage device | |
JP6464801B2 (en) | Control device, control method, and autonomous operation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6485059 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |