[go: up one dir, main page]

JP6479480B2 - Nonvolatile memory device - Google Patents

Nonvolatile memory device Download PDF

Info

Publication number
JP6479480B2
JP6479480B2 JP2015001745A JP2015001745A JP6479480B2 JP 6479480 B2 JP6479480 B2 JP 6479480B2 JP 2015001745 A JP2015001745 A JP 2015001745A JP 2015001745 A JP2015001745 A JP 2015001745A JP 6479480 B2 JP6479480 B2 JP 6479480B2
Authority
JP
Japan
Prior art keywords
thin film
oxide thin
perovskite
buffer layer
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015001745A
Other languages
Japanese (ja)
Other versions
JP2016127209A (en
Inventor
山田 浩之
浩之 山田
彰仁 澤
彰仁 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015001745A priority Critical patent/JP6479480B2/en
Publication of JP2016127209A publication Critical patent/JP2016127209A/en
Application granted granted Critical
Publication of JP6479480B2 publication Critical patent/JP6479480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Description

本発明はメモリ素子およびその作製方法に関する。   The present invention relates to a memory element and a manufacturing method thereof.

金属電極と、導電性を有する強誘電酸化物から構成される不揮発性メモリ素子において、金属電極と強誘電酸化物の界面におけるショットキー型のバリア障壁高さが強誘電分極に依存することにより、不揮発抵抗スイッチングメモリ機能が得られる(特許文献1)。
上記導電性を有する強誘電酸化物としては、p型の半導体であるBi1-xFeO3(1>x>0)を使用し、上記金属電極として、Ptを使用している。
In a nonvolatile memory element composed of a metal electrode and a ferroelectric oxide having conductivity, the Schottky barrier barrier height at the interface between the metal electrode and the ferroelectric oxide depends on the ferroelectric polarization. A nonvolatile resistance switching memory function can be obtained (Patent Document 1).
As the conductive ferroelectric oxide, Bi 1-x FeO 3 (1>x> 0) which is a p-type semiconductor is used, and Pt is used as the metal electrode.

Si基板上に成長させるペロブスカイト酸化物薄膜(SrRuO3)の配向性を制御するため、複数のバッファー層を用いた積層体作製方法を提案している(特許文献2)。
本発明に類似するSrRuO3/SrO/YSZ/Si構造では、[001]配向が得られている。
平坦性を含む他の特性については記載がなく、その方法および効果については説明されていない。
In order to control the orientation of a perovskite oxide thin film (SrRuO 3 ) grown on a Si substrate, a method for producing a laminate using a plurality of buffer layers has been proposed (Patent Document 2).
In the SrRuO 3 / SrO / YSZ / Si structure similar to the present invention, [001] orientation is obtained.
Other properties including flatness are not described, and their methods and effects are not described.

特開2013-008884 抵抗変化型不揮発性メモリ素子Patent application title: RESISTANCE CHANGE TYPE NONVOLATILE MEMORY DEVICE 特開2009-70926 ペロブスカイト型酸化物薄膜の成膜方法および積層体Method for forming perovskite oxide thin film and laminate

厚さ数nmの強誘電酸化物をバリア層として用いたトンネル接合においては、強誘電分極の反転に伴いトンネル抵抗が不揮発スイッチングすることが知られており、不揮発性メモリ素子に応用できる。
強誘電体層の膜厚がわずか数nmのトンネル接合において良好な不揮発メモリ効果を得るためには、強誘電バリア層および下部電極層として用いるペロブスカイト酸化物薄膜が、いずれも完全な[001]配向であることに加え、高い平坦性を有していなければならない。
In a tunnel junction using a ferroelectric oxide with a thickness of several nanometers as a barrier layer, it is known that the tunnel resistance is non-volatilely switched with the reversal of the ferroelectric polarization, and can be applied to a non-volatile memory element.
In order to obtain a good non-volatile memory effect in a tunnel junction with a ferroelectric layer thickness of only a few nanometers, the perovskite oxide thin film used as the ferroelectric barrier layer and the lower electrode layer are both perfectly [001] oriented. In addition, it must have high flatness.

次に、nmオーダーの膜厚で強誘電性を安定させるためには、強いエピタキシャル格子歪(2軸性の圧力効果)が必要である。
このエピタキシャル格子歪は通常、強誘電体と同じペロブスカイト構造を有し、所望の格子定数を有する単結晶基板を用いることにより制御される。
また、高い平坦性・結晶性も、この効果を得るためには必須である。
上記の、薄膜の品質にかかわる高度な要請に対し、シリコン基板は結晶構造が異なる上、金属酸化物および酸素と容易に化学反応するため、これらすべての条件を満たす高品質のペロブスカイトの積層構造を形成することができなかった。
Next, strong epitaxial lattice strain (biaxial pressure effect) is required to stabilize the ferroelectricity with a film thickness on the order of nm.
This epitaxial lattice strain is usually controlled by using a single crystal substrate having the same perovskite structure as the ferroelectric and having a desired lattice constant.
Also, high flatness and crystallinity are essential for obtaining this effect.
In response to the above-mentioned high demands related to the quality of thin films, silicon substrates have different crystal structures and easily react chemically with metal oxides and oxygen. Therefore, a high-quality perovskite layered structure that satisfies all these conditions is used. Could not be formed.

トンネル接合の下部電極として用いるペロブスカイト酸化物層とシリコン基板の間に、平坦性制御層として、岩塩構造とペロブスカイト構造よりなる複合バッファー層を挿入する。
まず、シリコン基板の上に、シリコンとの反応を防止するために蛍石型構造のバッファー層(YSZ)を堆積し、その上に複合バッファー層としてまず岩塩型構造の酸化ストロンチウムを堆積し、ついでペロブスカイト型チタン酸酸化物を堆積する。
A composite buffer layer having a rock salt structure and a perovskite structure is inserted as a flatness control layer between the perovskite oxide layer used as the lower electrode of the tunnel junction and the silicon substrate.
First, a fluorite-type buffer layer (YSZ) is deposited on a silicon substrate to prevent reaction with silicon, and then a strontium oxide with a rock-salt structure is first deposited as a composite buffer layer. Perovskite type titanate oxide is deposited.

シリコン基板上において、高平坦性(平均荒さ0.3nm以下)、完全[001]配向、高結晶性、かつ一定の格子定数を有する高品質のペロブスカイト酸化物の薄膜積層構造を形成できる。
これにより、強誘電体をバリア層として用いたトンネル接合構造において、非常に高い平坦性を有するバリア層・電極界面を実現し、不揮発メモリ素子において、高性能の不揮発メモリ動作を提供することができる。
A high-quality perovskite oxide thin film laminated structure having high flatness (average roughness 0.3 nm or less), perfect [001] orientation, high crystallinity, and a constant lattice constant can be formed on a silicon substrate.
This realizes a barrier layer / electrode interface having very high flatness in a tunnel junction structure using a ferroelectric as a barrier layer, and can provide a high-performance nonvolatile memory operation in a nonvolatile memory element. .

図1(a)は、本発明に関わる不揮発性メモリ素子構造の断面図。図1(b)は本発明ペロブスカイト酸化物薄膜の作製方法に関わる、各バッファー層の結晶構造。FIG. 1A is a sectional view of a nonvolatile memory element structure according to the present invention. FIG. 1B shows the crystal structure of each buffer layer related to the method for producing the perovskite oxide thin film of the present invention. 本発明に関わる作製方法の図2(a)が、従来技術の図2(b)と比較して、高い平坦性を有するペロブスカイト薄膜を実現していることを示した図。FIG. 2A of the manufacturing method according to the present invention shows that a perovskite thin film having high flatness is realized as compared with FIG. 2B of the prior art. 図3(a)は、本発明に関わるBaTiO3/La0.6Sr0.4MnO3/SrTiO3/SrO/YSZ/Si積層構造において、BaTiO3層に強いエピタキシャル格子歪(圧縮ひずみ)が発生していることを示した図。図3(b)は、上記積層構造において、SrTiO3層が、BaTiO3層およびLa0.6Sr0.4MnO3層に対してエピタキシャル格子歪を与えていることを示した図。FIG. 3A shows a strong epitaxial lattice strain (compressive strain) in the BaTiO 3 layer in the BaTiO 3 / La 0.6 Sr 0.4 MnO 3 / SrTiO 3 / SrO / YSZ / Si laminated structure according to the present invention. The figure which showed that. FIG. 3B is a diagram showing that the SrTiO 3 layer gives an epitaxial lattice strain to the BaTiO 3 layer and the La 0.6 Sr 0.4 MnO 3 layer in the laminated structure. 本発明に関わるCo/BaTiO3/La0.6Sr0.4MnO3/SrTiO3/SrO/YSZ/Si積層構造において、強誘電トンネル接合を構成するCo/BaTiO3/La0.6Sr0.4MnO3積層構造が、抵抗スイッチング機能を有していることを示したヒステリシス特性図。In Co / BaTiO 3 / La 0.6 Sr 0.4 MnO 3 / SrTiO 3 / SrO / YSZ / Si multilayer structure according to the present invention, the Co / BaTiO 3 / La 0.6 Sr 0.4 MnO 3 stacked structure constituting the ferroelectric tunnel junction, The hysteresis characteristic figure which showed having a resistance switching function.

図1(a)は、本発明に係るシリコン基板上に形成されたバッファー層積層構造と、その上に形成された強誘電体を用いたトンネル接合型の不揮発性メモリ素子の断面図である。
トンネル接合の上部電極を除く、酸化物薄膜により構成される積層構造の作製方法は次のとおりである。
FIG. 1A is a cross-sectional view of a tunnel junction type nonvolatile memory element using a buffer layer laminated structure formed on a silicon substrate according to the present invention and a ferroelectric formed thereon.
A method for manufacturing a laminated structure including an oxide thin film excluding the upper electrode of the tunnel junction is as follows.

自然酸化膜を有するシリコン(001)基板上に、反応防止層であるYSZ薄膜を基板温度800℃において酸素を供給せずに0.5nm厚により形成し、次いで酸素圧30mTorrにおいて30nm厚にパルスレーザー堆積法により形成した。
つぎに、構造・配向性制御層であるSrO薄膜を基板温度550℃, 酸素圧10mTorrで2nm厚に形成した。
つぎに、格子定数・平坦性制御層であるSrTiO3薄膜を基板温度650℃, 酸素圧10mTorrで4nm厚に形成した。
On a silicon (001) substrate with a natural oxide film, a reaction prevention layer YSZ thin film is formed with a thickness of 0.5 nm without supplying oxygen at a substrate temperature of 800 ° C., and then pulsed laser deposition to a thickness of 30 nm at an oxygen pressure of 30 mTorr Formed by the method.
Next, a SrO thin film as a structure / orientation control layer was formed to a thickness of 2 nm at a substrate temperature of 550 ° C. and an oxygen pressure of 10 mTorr.
Next, a SrTiO 3 thin film as a lattice constant / flatness control layer was formed to a thickness of 4 nm at a substrate temperature of 650 ° C. and an oxygen pressure of 10 mTorr.

上記のバッファー層を形成後、引き続いてLa0.6Sr0.4MnO3のような高い導電性を有する酸化物を下部電極層として、基板温度750℃、酸素圧力1mTorrの作製条件で、パルスレーザー堆積法により40nm厚に形成した。
さらに基板温度650℃、酸素圧力35mTorrの作製条件で、強誘電バリア層となるBaTiO3層を3nm厚に形成した。
After forming the above buffer layer, the oxide layer with high conductivity such as La 0.6 Sr 0.4 MnO 3 is used as the lower electrode layer, and under the conditions of the substrate temperature of 750 ° C. and the oxygen pressure of 1 mTorr by the pulse laser deposition method. The film was formed to a thickness of 40 nm.
Further, a BaTiO 3 layer serving as a ferroelectric barrier layer was formed to a thickness of 3 nm under the production conditions of a substrate temperature of 650 ° C. and an oxygen pressure of 35 mTorr.

図2(a)は、本発明に係る方法で作製した積層構造の、原子間力顕微鏡像により観察した表面形状像とその断面プロファイルである。
peak-to-valleyも最大1nm程度であり、表面の二乗平均平坦度は僅か0.25nmであると見積もられる。
FIG. 2A shows a surface shape image and a cross-sectional profile of the laminated structure produced by the method according to the present invention, observed with an atomic force microscope image.
The peak-to-valley is also about 1 nm at the maximum, and the root mean square flatness of the surface is estimated to be only 0.25 nm.

図2(b)は、従来技術で作製したSrRuO3/SrO/YSZ積層構造の表面形状像とその断面プロファイルである。
peak-to-valleyが約10nmに達するピンホールが多数見られ、二乗平均平坦度も1.1nmであり、トンネル接合に使用することはできない。
FIG. 2B shows a surface shape image and a cross-sectional profile of the SrRuO 3 / SrO / YSZ laminated structure produced by the conventional technique.
Many pinholes with a peak-to-valley of about 10 nm are observed, and the mean square flatness is 1.1 nm, which cannot be used for tunnel junctions.

すなわち、SrTiO3とSrOのエピタキシャル薄膜よりなる複合バッファー層を用いることが平坦化のためには必須であることを示している。 That is, the use of a composite buffer layer made of an epitaxial thin film of SrTiO 3 and SrO is essential for planarization.

図3(a)は、本発明に係る方法で作製したBaTiO3/La0.6Sr0.4MnO3/SrTiO3/SrO/YSZ/Si積層構造において、X線回折2θ-θパターンから見積もったBaTiO3層の積層方向の格子定数を、BaTiO3層の膜厚依存性としてプロットしたものである。
BaTiO3層の積層方向の格子定数は、0.418〜0.419nmと見積もられ、バルクのc軸長さに対応する0.4038nmを大きく上回っている。
この格子定数値は、BaTiO3層の膜厚が8nm以下の範囲でほぼ一定である。
FIG. 3A shows a BaTiO 3 layer estimated from an X-ray diffraction 2θ-θ pattern in a BaTiO 3 / La 0.6 Sr 0.4 MnO 3 / SrTiO 3 / SrO / YSZ / Si laminated structure produced by the method according to the present invention. The lattice constant in the stacking direction is plotted as the film thickness dependence of the BaTiO 3 layer.
The lattice constant in the stacking direction of the BaTiO 3 layer is estimated to be 0.418 to 0.419 nm, which is much larger than 0.4038 nm corresponding to the bulk c-axis length.
This lattice constant value is almost constant when the thickness of the BaTiO 3 layer is 8 nm or less.

図3(b)は本発明に係る方法で作製した、膜厚8nmのBaTiO3層を有する積層構造の(114)逆格子点のマッピングパターンである。
BaTiO3層・La0.6Sr0.4MnO3層・SrTiO3層を示す逆格子点の分布中心におけるqx値は、ほぼ共通であることが分かる。薄膜面内方向の格子定数は、√2/qxにより求められ、約0.391nmと見積もられる。
この値は、SrTiO3の格子定数(0.3905nm)に最も近いことから、高い平坦性と結晶性を有するSrTiO3バッファー層が、BaTiO3層とLa0.6Sr0.4MnO3層の積層面内方向の格子定数を決定していることが分かる。
その結果、SrTiO3より格子定数の大きいBaTiO3層は圧縮歪を受けて成長する。BaTiO3層の有する格子歪の大きさ(積層方向の格子定数と面内方向の格子定数の比)は、0.419/0.391=1.07に達している。
逆にSrTiO3より格子定数の小さいLa0.6Sr0.4MnO3層は、伸長歪を受けて成長する。
FIG. 3B is a mapping pattern of (114) reciprocal lattice points of a laminated structure having a BaTiO 3 layer having a thickness of 8 nm, which was produced by the method according to the present invention.
It can be seen that the q x values at the distribution centers of the reciprocal lattice points indicating the BaTiO 3 layer, La 0.6 Sr 0.4 MnO 3 layer, and SrTiO 3 layer are almost the same. The lattice constant in the in-plane direction of the thin film is obtained by √2 / q x and is estimated to be about 0.391 nm.
Since this value is closest to the lattice constant of SrTiO 3 (0.3905 nm), an SrTiO 3 buffer layer having high flatness and crystallinity is in the in-plane direction of the BaTiO 3 layer and La 0.6 Sr 0.4 MnO 3 layer. It can be seen that the lattice constant is determined.
As a result, a BaTiO 3 layer having a larger lattice constant than SrTiO 3 grows under compressive strain. The magnitude of the lattice strain of the BaTiO 3 layer (ratio of the lattice constant in the stacking direction to the lattice constant in the in-plane direction) has reached 0.419 / 0.391 = 1.07.
Conversely, a La 0.6 Sr 0.4 MnO 3 layer having a lattice constant smaller than that of SrTiO 3 grows under elongation strain.

上記の酸化物の積層構造の上に、さらに金属の上部電極を形成し、トンネル接合を作製する方法は次のとおりである。   A method for forming a tunnel junction by further forming a metal upper electrode on the above-described oxide laminated structure is as follows.

膜厚3nmのBaTiO3層を有するBaTiO3/La0.6Sr0.4MnO3/SrTiO3/SrO/YSZ/Si積層構造の上に、フォトリソグラフィーにより、3μm×3μmの大きさの素子の反転レジストパターンを作製した。次に室温で電子線蒸着によりCoのような金属を10nm厚形成し、さらに酸化防止のためAuのような金属を10nm厚に形成した。
ついで、リフトオフにより、Au/Co/BaTiO3/La0.6Sr0.4MnO3/SrTiO3/SrO/YSZ/Si不揮発性メモリ素子構造を作製した。
On the BaTiO 3 / La 0.6 Sr 0.4 MnO 3 / SrTiO 3 / SrO / YSZ / Si multilayer structure with a 3 nm-thick BaTiO 3 layer, a reverse resist pattern of 3 μm × 3 μm element is formed by photolithography. Produced. Next, a metal such as Co was formed to a thickness of 10 nm by electron beam evaporation at room temperature, and a metal such as Au was formed to a thickness of 10 nm to prevent oxidation.
Then, an Au / Co / BaTiO 3 / La 0.6 Sr 0.4 MnO 3 / SrTiO 3 / SrO / YSZ / Si nonvolatile memory element structure was fabricated by lift-off.

図4は、本発明に係る方法で作製した不揮発性メモリ素子構造において、La0.6Sr0.4MnO3とCoの間に-3V〜+3Vの範囲で掃引した場合に流れる電流を、原子間力顕微鏡の導電性チップを探針として用いて、室温にて測定した結果である。
電流-電圧特性は、特に-1V〜+1Vの電圧範囲で顕著なヒステリシスを描いており、+3Vから-3Vへ掃引した場合と、-3Vから+3Vへ掃引した場合とで特性が一致せず、両者が原点で交差している。
これは、強誘電電気分極が下向きの時と上向きの時とでトンネル障壁高さが異なることを意味し、強誘電特性に対応したトンネル抵抗状態を可逆的にスイッチする抵抗変化メモリ効果が実現されていることが分かる。
FIG. 4 shows an atomic force microscope showing the current that flows when a non-volatile memory device structure manufactured by the method of the present invention is swept between La 0.6 Sr 0.4 MnO 3 and Co in the range of −3 V to +3 V. It is the result of having measured at room temperature using the electroconductive chip | tip of this as a probe.
The current-voltage characteristics show remarkable hysteresis especially in the voltage range of -1V to + 1V, and the characteristics are the same when swept from + 3V to -3V and when swept from -3V to + 3V. Instead, they intersect at the origin.
This means that the tunnel barrier height differs between when the ferroelectric electric polarization is downward and when it is upward, and a resistance change memory effect that reversibly switches the tunnel resistance state corresponding to the ferroelectric characteristics is realized. I understand that

図1(b)は本発明に係る方法で作製したバッファー層の結晶構造を示している。
YSZとSrOは結晶構造が異なるが、格子定数がほぼ同一であるため、SrOはYSZ上に良好なエピタキシャル成長が可能である。
また、SrOとSrTiO3は、結晶構造も格子定数も異なるが、SrOの構造はSrTiO3におけるSrサイト副格子の構造と同一の原子配列と組成を有するため、SrTiO3はSrO上に良好なエピタキシャル成長が可能である。
このことから、各バッファー層は、バルクに近い安定構造を維持してエピタキシャル成長しているとともに、各バッファー層間の界面も安定な状態を有していると考えられる。
その結果、SrTiO3バッファー層の表面は、単結晶基板に近い性質を有し、その上に積層するペロブスカイト薄膜に対して、完全配向性はもちろん、高平坦性・高結晶性・エピタキシャル格子歪の付与が同時に可能になったと考えられる。
FIG. 1B shows the crystal structure of the buffer layer produced by the method according to the present invention.
Although YSZ and SrO have different crystal structures, since the lattice constants are almost the same, SrO can be satisfactorily grown on YSZ.
Further, SrO and SrTiO 3 also differ crystal structure also lattice constant, the structure of SrO is to have a composition the same atomic arrangement and structure of the Sr site sublattice in SrTiO 3, SrTiO 3 is good epitaxial growth on SrO Is possible.
From this, it is considered that each buffer layer is epitaxially grown while maintaining a stable structure close to the bulk, and the interface between the buffer layers has a stable state.
As a result, the surface of the SrTiO 3 buffer layer has a property close to that of a single crystal substrate, and it has high flatness, high crystallinity, and epitaxial lattice strain as well as perfect orientation with respect to the perovskite thin film stacked on it. It is thought that the grant became possible at the same time.

積層構造におけるBaTiO3層の格子定数は、各バッファー層の膜厚に殆ど依存しない。
しかし、各バッファー層の膜厚の増大に伴い、結晶性が向上するが平坦性は劣化する傾向がある。そのため、各バッファー層の膜厚は、YSZ:10-50nm, SrO:2-3nm, SrTiO3:3-6nmの範囲から選択される。
The lattice constant of the BaTiO 3 layer in the laminated structure hardly depends on the film thickness of each buffer layer.
However, as the film thickness of each buffer layer increases, the crystallinity improves, but the flatness tends to deteriorate. Therefore, the thickness of each buffer layer is selected from the ranges of YSZ: 10-50 nm, SrO: 2-3 nm, and SrTiO 3 : 3-6 nm.

本実施例では、反応防止バッファー層としてYSZを用いたが、構造及び化学的性質の類似するHfO2であってもよい。 In this example, YSZ was used as the reaction preventing buffer layer, but HfO 2 having a similar structure and chemical property may be used.

また、本実施例では、格子定数制御バッファー層としてエピタキシャルSrTiO3薄膜を使用したが、これに代えて類似物質のSr1-xAxTiO3, (A=Ca,Ba;0<x<1)やSrTi1-xBxO3 (B=Sn,Hf,Zr; 0<x<1)などを使用すれば、その上に積層するペロブスカイト酸化物薄膜の面内格子定数を0.38nm-0.41nmの範囲の任意の値に設定することができる。
従って、この範囲の格子定数を有するペロブスカイト酸化物であれば、本発明方法により平坦性の高い高品質薄膜をSi(001)基板上に形成することが可能である。
In this example, an epitaxial SrTiO 3 thin film was used as the lattice constant control buffer layer, but instead of this, Sr 1-x A x TiO 3 , (A = Ca, Ba; 0 < x < 1 ) And SrTi 1-x B x O 3 (B = Sn, Hf, Zr; 0 < x < 1), etc., the in-plane lattice constant of the perovskite oxide thin film to be deposited is 0.38 nm-0.41 It can be set to any value in the nm range.
Therefore, a perovskite oxide having a lattice constant in this range can form a high-quality thin film with high flatness on a Si (001) substrate by the method of the present invention.

本実施例では、下部電極材料としてLa0.6Sr0.4MnO3を用いたが、金属的電気伝導度を示すことがしられているLa1-xSrxMnO3(0.2<x<0.5)の組成範囲であれば、同様に使用することができる。 In this example, La 0.6 Sr 0.4 MnO 3 was used as the lower electrode material, but the composition of La 1-x Sr x MnO 3 (0.2 < x < 0.5), which is supposed to exhibit metallic electrical conductivity If it is within the range, it can be used similarly.

本発明は、高速動作、低消費電力、非破壊読出し等の特徴を有する不揮発メモリ素子(Resistance Random Access Memory:ReRAM)として利用する事ができる。   The present invention can be used as a nonvolatile memory element (Resistance Random Access Memory: ReRAM) having features such as high-speed operation, low power consumption, and non-destructive reading.

1 Si基板
2 反応防止バッファー層
3 平坦性制御複合バッファー層
4 トンネル接合
5 YSZ層
6 SrO層
7 SrTiO3
8 下部電極層(La0.6Sr0.4MnO3)
9 トンネルバリア層(BaTiO3)
10 上部電極層(Co)
11 YSZ
12 SrO
13 SrTiO3
14 Srサイト副格子
15 La0.6Sr0.4MnO3
16 SrTiO3
17 BaTiO3
1 Si substrate 2 Reaction prevention buffer layer 3 Flatness control composite buffer layer 4 Tunnel junction 5 YSZ layer 6 SrO layer 7 SrTiO 3 layer 8 Lower electrode layer (La 0.6 Sr 0.4 MnO 3 )
9 Tunnel barrier layer (BaTiO 3 )
10 Upper electrode layer (Co)
11 YSZ
12 SrO
13 SrTiO 3
14 Sr site sublattice 15 La 0.6 Sr 0.4 MnO 3
16 SrTiO 3
17 BaTiO 3

Claims (5)

強誘電体をトンネルバリア層とするトンネル接合型の不揮発性メモリ素子であって
自然酸化膜を有するシリコン(001)基板と
蛍石型構造の薄膜からなるバッファー層と
岩塩構造の酸化物薄膜とその表面が平坦なペロブスカイト構造の酸化物薄膜よりなる複合バッファー層構造と
記複合バッファー層の上に、下部電極として電気伝導性を有するペロブスカイト酸化物薄膜該下部電極の上にトンネルバリア層として強誘電性を有するペロブスカイト酸化物薄膜とが
順に積層され
前記複合バッファー層構造のペロブスカイト構造の酸化物薄膜と、前記下部電極の電気伝導性を有するペロブスカイト酸化物薄膜、及び前記トンネルバリア層の強誘電性を有するペロブスカイト酸化物薄膜が、堆積面内方向に同じ格子定数を有するものであり
前記トンネルバリア層の上に上部電極として金属薄膜が積層されてなることを特徴とする、不揮発性メモリ素子。
A non-volatile memory device of a tunnel junction type using a ferroelectric as a tunnel barrier layer ,
A silicon (001) substrate having a natural oxide film ;
A buffer layer made of a thin film having a fluorite structure ;
A composite buffer layer structure consisting of an oxide thin film with a rock salt structure and an oxide thin film with a perovskite structure with a flat surface ,
On the prior SL composite buffer layer, a perovskite oxide thin film having an electric conductivity as the lower electrode, the perovskite-oxide thin film having ferroelectricity as a tunnel barrier layer on the lower electrode is,
In order ,
An oxide thin film having a perovskite structure having a composite buffer layer structure, a perovskite oxide thin film having electrical conductivity of the lower electrode, and a perovskite oxide thin film having ferroelectricity of the tunnel barrier layer are disposed in a deposition in-plane direction. Have the same lattice constant ,
You wherein a metal thin film as an upper electrode on the tunnel barrier layer are laminated, non-volatile memory device.
記下部電極が、La1−xSrMnO(0.2<x<0.5)であることを特徴とする、請求項に記載の不揮発性メモリ素子。 Before Symbol lower portion electrode, characterized in that it is a La 1-x Sr x MnO 3 (0.2 <x <0.5), non-volatile memory device according to claim 1. 記トンネルバリア層が、BaTiOであることを特徴とする、請求項に記載の不揮発性メモリ素子。 Before Quito tunnel barrier layer, characterized in that it is a B ATiO 3, nonvolatile memory device according to claim 1. 前記蛍石型構造の薄膜からなるバッファー層がイットリウム安定化ジルコニア(YSZ)であることを特徴とする請求項1乃至3のいずれか1項記載の不揮発性メモリ素子 4. The nonvolatile memory device according to claim 1, wherein the buffer layer made of a thin film having a fluorite structure is yttrium-stabilized zirconia (YSZ) . 5. 前記複合バッファー層構造を構成する岩塩構造の酸化物薄膜がSrOで、ペロブスカイト構造の酸化物薄膜がSrTiO であることを特徴とする請求項1乃至4のいずれか1項記載の不揮発性メモリ素子 5. The nonvolatile memory device according to claim 1, wherein the oxide thin film having a rock salt structure constituting the composite buffer layer structure is SrO, and the oxide thin film having a perovskite structure is SrTiO 3. .
JP2015001745A 2015-01-07 2015-01-07 Nonvolatile memory device Active JP6479480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001745A JP6479480B2 (en) 2015-01-07 2015-01-07 Nonvolatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001745A JP6479480B2 (en) 2015-01-07 2015-01-07 Nonvolatile memory device

Publications (2)

Publication Number Publication Date
JP2016127209A JP2016127209A (en) 2016-07-11
JP6479480B2 true JP6479480B2 (en) 2019-03-06

Family

ID=56359742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001745A Active JP6479480B2 (en) 2015-01-07 2015-01-07 Nonvolatile memory device

Country Status (1)

Country Link
JP (1) JP6479480B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6813844B2 (en) * 2016-09-30 2021-01-13 国立研究開発法人産業技術総合研究所 Tunnel junction element and non-volatile memory element
CN106601903A (en) * 2016-12-06 2017-04-26 山东大学苏州研究院 C axis height-oriented barium titanate film and in-situ preparation method of the same at medium and low temperature
CN111254458B (en) * 2018-11-30 2021-05-14 中国科学院大连化学物理研究所 A kind of perovskite composite cathode and its preparation method and application
KR102293876B1 (en) * 2019-12-10 2021-08-27 브이메모리 주식회사 Variable low resistance line based electronic device and controlling thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503810B2 (en) * 1999-11-19 2010-07-14 太陽誘電株式会社 Dielectric thin film, manufacturing method thereof, electronic component thereof
JP2007019504A (en) * 2002-09-30 2007-01-25 Toshiba Corp Insulating film and electronic device
JP3873935B2 (en) * 2003-06-18 2007-01-31 セイコーエプソン株式会社 Ferroelectric memory device
JP4120589B2 (en) * 2004-01-13 2008-07-16 セイコーエプソン株式会社 Magnetoresistive element and magnetic memory device
JP2005294308A (en) * 2004-03-31 2005-10-20 Fujitsu Ltd Electronic device including ferroelectric film and manufacturing method thereof
US7759713B2 (en) * 2006-03-06 2010-07-20 Ut-Battelle, Llc Ferroelectric tunneling element and memory applications which utilize the tunneling element
JP2008066668A (en) * 2006-09-11 2008-03-21 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2009070926A (en) * 2007-09-11 2009-04-02 Tokyo Institute Of Technology Method for depositing perovskite oxide thin film and laminate

Also Published As

Publication number Publication date
JP2016127209A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
KR100919430B1 (en) Nonvolatile memory element
Shannigrahi et al. Fatigue-free lead zirconate titanate-based capacitors for nonvolatile memories
KR100723420B1 (en) Nonvolatile Memory Device Including Amorphous Alloy Oxide Layer
Nguyen et al. Research update: enhanced energy storage density and energy efficiency of epitaxial Pb0. 9La0. 1 (Zr0. 52Ti0. 48) O3 relaxor-ferroelectric thin-films deposited on silicon by pulsed laser deposition
US20100065803A1 (en) Memory device and manufacturing method thereof
JP6479480B2 (en) Nonvolatile memory device
KR101450093B1 (en) Resistance random access memory device with hetero-junction oxides structure
US7754351B2 (en) Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage
US11264448B2 (en) Dielectric thin film and memcapacitor including the same
RU2468471C1 (en) Method of obtainment of nonvolatile storage element
JP2015220445A (en) Resistance change memory and method of manufacturing resistance change memory
US9780295B2 (en) Lead-free piezoelectric material
JP2008066668A (en) Semiconductor device and manufacturing method thereof
Lin et al. Microstructures and ferroelectric properties of PbTiO3/PbZrO3 superlattices deposited by pulse laser deposition
US20150364536A1 (en) Device comprising a plurality of thin layers
Liu et al. Asymmetric electrical properties in Pt/Ba0. 5Sr0. 5Ti0. 99Co0. 01O3/Nb-doped SrTiO3 capacitors
JP2001122698A (en) Oxide electrode thin film
JP6813844B2 (en) Tunnel junction element and non-volatile memory element
JP3705695B2 (en) Method for producing dielectric thin film with layered perovskite structure, dielectric thin film with layered perovskite structure and electronic component having dielectric thin film with layered perovskite structure
Bolstad et al. Synthesis and characterization of (111)-oriented BaTiO3 thin films
JP6367035B2 (en) Nonvolatile memory device and manufacturing method thereof
WO2021132602A1 (en) Ferroelectric thin film, electronic element using same, and method for manufacturing ferroelectric thin film
CN107342357B (en) Thin film piezoelectric element and method for manufacturing the same
Hongbo et al. Recent progress in ferroelectric thin film capacitors for high density energy storage
Nguyen et al. Energy storage performance of silicon-integrated Sr0. 98Mn0. 02TiO3 thin film capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250