JP6471140B2 - Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate - Google Patents
Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate Download PDFInfo
- Publication number
- JP6471140B2 JP6471140B2 JP2016231977A JP2016231977A JP6471140B2 JP 6471140 B2 JP6471140 B2 JP 6471140B2 JP 2016231977 A JP2016231977 A JP 2016231977A JP 2016231977 A JP2016231977 A JP 2016231977A JP 6471140 B2 JP6471140 B2 JP 6471140B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- copper
- metal foil
- composite metal
- clad laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011888 foil Substances 0.000 title claims description 86
- 229910052751 metal Inorganic materials 0.000 title claims description 82
- 239000002184 metal Substances 0.000 title claims description 82
- 239000002131 composite material Substances 0.000 title claims description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 136
- 239000010949 copper Substances 0.000 claims description 94
- 229910052802 copper Inorganic materials 0.000 claims description 92
- 238000000034 method Methods 0.000 claims description 32
- 238000005530 etching Methods 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 28
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 239000011164 primary particle Substances 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 229
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 81
- 239000011889 copper foil Substances 0.000 description 44
- 239000000758 substrate Substances 0.000 description 22
- 238000007747 plating Methods 0.000 description 15
- 239000000654 additive Substances 0.000 description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 238000009713 electroplating Methods 0.000 description 12
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 12
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 12
- 230000000996 additive effect Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 238000007772 electroless plating Methods 0.000 description 9
- 239000011651 chromium Substances 0.000 description 8
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 5
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 4
- 229940044175 cobalt sulfate Drugs 0.000 description 4
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 239000011684 sodium molybdate Substances 0.000 description 4
- 235000015393 sodium molybdate Nutrition 0.000 description 4
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 4
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 4
- 229910000368 zinc sulfate Inorganic materials 0.000 description 4
- 229960001763 zinc sulfate Drugs 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 229910018104 Ni-P Inorganic materials 0.000 description 3
- 229910018536 Ni—P Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003296 Ni-Mo Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 2
- 229910001096 P alloy Inorganic materials 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WINXNKPZLFISPD-UHFFFAOYSA-M Saccharin sodium Chemical compound [Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 WINXNKPZLFISPD-UHFFFAOYSA-M 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- WPUMTJGUQUYPIV-JIZZDEOASA-L disodium (S)-malate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](O)CC([O-])=O WPUMTJGUQUYPIV-JIZZDEOASA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000019265 sodium DL-malate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- SIGUVTURIMRFDD-UHFFFAOYSA-M sodium dioxidophosphanium Chemical compound [Na+].[O-][PH2]=O SIGUVTURIMRFDD-UHFFFAOYSA-M 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000001394 sodium malate Substances 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- -1 sodium tetrahydroborate Chemical compound 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0296—Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
- H05K1/0298—Multilayer circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
- ing And Chemical Polishing (AREA)
Description
本発明は複合金属箔及び該複合金属箔を用いた銅張積層板並びに該銅張積層板の製造方法に関する。
詳しくは、該複合金属箔は、極薄銅層を積層した銅張積層板を簡便な方法で製造することができ、また、該極薄銅層は極めて薄い上に緻密でピンホールが生じ難いため、該極薄銅層をアディティブ工法のシード層とすれば、シード層を短時間でエッチング除去することができるから回路自体のエッチングを抑制してファインパターンの回路を形成することができると共に該複合金属箔で製造した銅張積層板を用いて多層基板を製造すれば、層間接続のため貫通孔や非貫通孔を無電解めっき及び/又は電解めっきしても銅層自体が極めて薄いから多層基板全体が厚くなることを抑制して、高密度な多層基板を製造することができる複合金属箔及び該複合金属箔を用いた銅張積層板及び該銅張積層板の製造方法に関する。
The present invention relates to a composite metal foil, a copper-clad laminate using the composite metal foil, and a method for producing the copper-clad laminate.
Specifically, the composite metal foil can be produced by a simple method of a copper-clad laminate in which an ultrathin copper layer is laminated, and the ultrathin copper layer is extremely thin and dense and hardly causes pinholes. Therefore, if the ultra-thin copper layer is used as a seed layer for the additive method, the seed layer can be removed by etching in a short time, so that etching of the circuit itself can be suppressed and a fine pattern circuit can be formed. If a multilayer substrate is manufactured using a copper-clad laminate made of composite metal foil, the copper layer itself is very thin even if the through-holes and non-through-holes are electrolessly plated and / or electroplated for interlayer connection. The present invention relates to a composite metal foil capable of producing a high-density multilayer substrate while suppressing the entire substrate from becoming thick, a copper-clad laminate using the composite metal foil, and a method for producing the copper-clad laminate.
小型化や処理速度の向上が求められる電子機器には、微細なパターン(以下「ファインパターン」と言う)の回路を形成したプリント配線板や、多層構造のプリント配線板を用いて、半導体素子が高密度に実装されたパッケージ基板を搭載している。 Electronic devices that require miniaturization and improved processing speed include semiconductor devices that use printed wiring boards with fine pattern circuits (hereinafter referred to as “fine patterns”) and multilayer printed wiring boards. A package board mounted with high density is mounted.
また実装される素子にも再配線のためビルドアップ基板が用いられており、このビルドアップ基板にも素子の小型化に伴いファインパターンの回路が求められている。 Also, a build-up board is used for rewiring for the elements to be mounted, and a fine pattern circuit is also required for the build-up board as the elements are miniaturized.
従来ファインパターンの回路と呼ばれるライン及びライン間(=スペース)の幅(以下、「L/S」と言う)はL/S=30μm/30μmであったが、近年ではL/S=15μm/15μm、更にはL/S=10μm/10μmという超ファインパターンの回路の要望もある。 Conventionally, the fine pattern circuit and the line-to-line (= space) width (hereinafter referred to as “L / S”) were L / S = 30 μm / 30 μm, but in recent years L / S = 15 μm / 15 μm Furthermore, there is a demand for a circuit with an ultra fine pattern of L / S = 10 μm / 10 μm.
一般的に、ファインパターンの回路を形成させる銅張積層板としては、絶縁性樹脂基材(以下「基材」と言う)に極薄銅箔を張り合わせた銅張積層板を用いるが、厚さが9μm未満の銅箔では、銅張積層板に張り合わせる際にシワや亀裂が生じ易くなるといった問題がある。 In general, as a copper clad laminate for forming a fine pattern circuit, a copper clad laminate in which an ultrathin copper foil is laminated to an insulating resin base material (hereinafter referred to as `` base material '') is used. However, when the copper foil is less than 9 μm, there is a problem that wrinkles and cracks are likely to occur when it is laminated to a copper clad laminate.
そこで、支持体(以下「キャリア」と言う)上に極薄銅箔を積層した複合金属箔の極薄銅箔表面に粗化処理を施した上で基材に張り合わせ、その後、キャリアを剥離することで、極薄銅箔が積層された銅張積層板を製造する方法が開発されている。 Therefore, the surface of the ultra-thin copper foil of the composite metal foil obtained by laminating ultra-thin copper foil on a support (hereinafter referred to as “carrier”) is subjected to a roughening treatment and bonded to a substrate, and then the carrier is peeled off. Thus, a method for producing a copper clad laminate in which ultrathin copper foils are laminated has been developed.
極薄銅箔層が積層された銅張積層板を製造する方法としては、キャリア付極薄銅箔を使用する以外にも、12μm以下の銅箔を張り合わせ、ハーフエッチング技術等により銅箔を薄くして極薄銅箔層とする方法も開発されている。 In addition to using an ultrathin copper foil with a carrier, a copper-clad laminate with an ultrathin copper foil layer can be manufactured by laminating copper foil of 12 μm or less, and thinning the copper foil by half-etching technology, etc. A method of forming an ultrathin copper foil layer has also been developed.
極薄銅箔層を備えた銅張積層板を用いてファインパターンの回路を形成させる方法としては、サブトラクティブ工法やアディティブ工法が知られている。 As a method for forming a fine pattern circuit using a copper-clad laminate having an ultrathin copper foil layer, a subtractive method or an additive method is known.
しかしながら、サブトラクティブ工法では、導体(極薄銅箔層)の厚みがそのままでは薄く回路として使用できない。
厚くするためにめっきアップを行うと、スペース部分がライン部分から成長しためっきで狭くなってしまい、結果としてファインパターンの回路の形成が難しくなるといった問題がある。
However, in the subtractive construction method, the conductor (ultra thin copper foil layer) cannot be used as a circuit because it is thin as it is.
If the plating is performed to increase the thickness, the space portion becomes narrow due to the plating grown from the line portion, and as a result, it is difficult to form a fine pattern circuit.
アディティブ工法では、導体の厚みは電解めっきで制御できるが、極薄銅箔と極薄銅箔表面の粗化処理とからなる層がシード層となるため、エッチングにより短時間でシード層を除去することができず、エッチング時に回路までもエッチングされてしまうため、ファインパターンの回路形成が難しくなるといった問題がある。 In the additive method, the thickness of the conductor can be controlled by electrolytic plating. However, the layer consisting of ultrathin copper foil and the roughening treatment on the surface of the ultrathin copper foil becomes the seed layer, so the seed layer is removed in a short time by etching. However, since the circuit is etched even during etching, it is difficult to form a fine pattern circuit.
ハーフエッチング技術等によって極薄銅箔層をさらに薄くすれば、エッチング時間が短くなるため回路のエッチングを抑制することもできるが、極薄銅箔層のエッチング量の制御は非常に精密に行わなければならず、また、極薄銅箔の箔厚分布も極めて精度が要求されるため非常に困難である。 If the ultra-thin copper foil layer is made even thinner by half-etching technology, etc., the etching time will be shortened and the etching of the circuit can be suppressed. However, the etching amount of the ultra-thin copper foil layer must be controlled very precisely. In addition, the foil thickness distribution of the ultrathin copper foil is extremely difficult because it requires extremely high accuracy.
また、極薄銅箔自体を薄くすれば、エッチング時間が短くなるため回路のエッチングを抑制することができるが、ピンホールが発生しやすくなり、ピンホール部分では回路が欠けることになる。ファインパターンの回路では回路が少しでも欠けると回路断線のリスクが高くなるため問題になる。 Further, if the ultrathin copper foil itself is made thin, the etching time is shortened, so that etching of the circuit can be suppressed. However, pinholes are easily generated, and the circuit is missing at the pinhole portion. In the fine pattern circuit, if any circuit is missing, the risk of circuit disconnection increases, which is a problem.
また、サブトラクティブ工法、アディティブ工法共に、多層化の際の層間接続のための必須工程である貫通孔や非貫通孔を無電解めっき及び/又は電解めっきする工程により、極薄銅箔層もめっきされて厚くなるため、結果として基板全体が厚くなり、高密度化が妨げられるという問題がある。 In both subtractive method and additive method, ultrathin copper foil layer is also plated by the process of electroless plating and / or electrolytic plating of through-holes and non-through-holes, which is an indispensable process for interlayer connection in multilayering. As a result, there is a problem in that the entire substrate becomes thick as a result, and density increase is hindered.
そこで、極薄銅箔層よりも薄い極薄銅層を備える銅張積層板であって、該極薄銅層をアディティブ工法のシード層として用いれば、非常に短時間でエッチング除去できて、回路までエッチングされることを抑制できるため、ファインパターンの回路の形成に好適に用いることができ、また、多層化の際には、全体の厚みの増加を抑制できるため、高密度な多層基板を製造することができる極薄銅層を備える銅張積層板を、簡便な方法で製造できる複合金属箔の開発が望まれている。 Therefore, a copper-clad laminate having an ultrathin copper layer thinner than an ultrathin copper foil layer, and if the ultrathin copper layer is used as a seed layer for an additive method, the circuit can be removed by etching in a very short time. Can be suitably used for forming fine pattern circuits, and when increasing the number of layers, the increase in overall thickness can be suppressed, producing a high-density multilayer substrate. It is desired to develop a composite metal foil capable of producing a copper clad laminate having an ultrathin copper layer that can be manufactured by a simple method.
特許文献1にはキャリア箔上に剥離層を介して設けたFe-Ni合金層、銅又は銅合金層がこの順で積層されたキャリア付き複合箔が記載されている。 Patent Document 1 describes a composite foil with a carrier in which an Fe—Ni alloy layer, a copper or copper alloy layer provided on a carrier foil via a release layer are laminated in this order.
しかしながら、特許文献1記載のキャリア付き複合箔は、キャリア箔に剥離層が積層されているため、高温・高圧で基材と張り合わせた際に、剥離機能の耐熱性が低く、キャリア箔が界面できれいに剥離しないといった問題がある。 However, since the composite foil with a carrier described in Patent Document 1 has a release layer laminated on the carrier foil, the heat resistance of the release function is low when bonded to a substrate at high temperature and high pressure, and the carrier foil is at the interface. There is a problem that it does not peel off cleanly.
また、基材と張り合わせる際には、銅又は銅合金層に粗化処理層を設けるため、アディティブ工法のシード層として用いれば、短時間でシード層をエッチング除去できず、回路までもエッチングされて、ファインパターンの回路が形成できない虞がある。 In addition, since a roughening layer is provided on the copper or copper alloy layer when pasting to the base material, the seed layer cannot be removed by etching in a short time if the additive layer is used as a seed layer, and even the circuit is etched. Therefore, there is a possibility that a fine pattern circuit cannot be formed.
加えて、Fe-Ni合金層をNiの選択エッチングによって除去しようとしても、合金であるためきれいに除去できない。 In addition, even if the Fe—Ni alloy layer is removed by selective etching of Ni, it cannot be removed cleanly because it is an alloy.
特許文献2には、キャリア箔の表面に剥離層と、拡散防止層と、電気銅めっき層がこの順で積層されたキャリア付き極薄銅箔であって、前記拡散防止層としてNi層を用いることができることが記載されている。 Patent Document 2 discloses an ultrathin copper foil with a carrier in which a peeling layer, a diffusion prevention layer, and an electrolytic copper plating layer are laminated in this order on the surface of a carrier foil, and a Ni layer is used as the diffusion prevention layer. It is described that it can be.
しかしながら、特許文献2記載のキャリア付き極薄銅箔では、特許文献1記載のキャリア付き複合箔と同様、キャリア箔に剥離層が積層されているため、剥離機能の耐熱性が低く、キャリア箔が界面できれいに剥離しないといった問題がある。 However, in the ultrathin copper foil with a carrier described in Patent Document 2, since the release layer is laminated on the carrier foil, similarly to the composite foil with a carrier described in Patent Document 1, the heat resistance of the peeling function is low, and the carrier foil is There is a problem that it does not peel off at the interface.
また、極薄銅箔層上のNi層が非常に薄いため、Ni層にピンホールが生じる可能性が高く、Ni層にピンホールが生じると、電気銅めっき層にピンホールを生じさせ、回路に欠けが生じるといった問題がある。 In addition, since the Ni layer on the ultrathin copper foil layer is very thin, there is a high possibility that pinholes will occur in the Ni layer. There is a problem that chipping occurs.
特許文献3には、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層の上に極薄銅箔層とがこの順に積層されたキャリア付き銅箔であって、前記中間層が前記銅箔キャリア上に積層されたクロム層又はクロメート層、及び、Ni層又はNi-リン合金層であるキャリア付き銅箔が記載されている。 Patent Document 3 discloses a copper foil with a carrier in which a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper foil layer laminated on the intermediate layer in this order, A copper foil with a carrier is described in which a layer is a chromium layer or chromate layer laminated on the copper foil carrier and a Ni layer or a Ni-phosphorus alloy layer.
しかしながら、特許文献3記載のキャリア付き銅箔では、Ni層又はNi-リン合金層で凝集破壊する剥離形態であるため、場合によっては極薄銅箔層をも破壊してしまう虞がある。 However, since the copper foil with a carrier described in Patent Document 3 is a peeled form in which the Ni layer or the Ni-phosphorus alloy layer cohesively breaks, the ultrathin copper foil layer may be broken depending on circumstances.
また、特許文献1〜3記載のキャリア付き複合箔は何れも、Ni若しくはNi合金層の上に極薄銅箔が形成されており、該極薄銅箔表面を粗化処理して基材と張り合わせることが記載されているから、仮に、基材と張り合わせた後にNi若しくはNi合金層を選択的に除去できたとしても、極薄銅箔と粗化処理粒子が残ることになるため、多層化の際には、基板全体の厚みが増すといった問題がある。 In addition, all of the composite foils with carriers described in Patent Documents 1 to 3 have an ultrathin copper foil formed on a Ni or Ni alloy layer, and roughen the surface of the ultrathin copper foil to form a substrate. Since it is described that bonding is performed, even if the Ni or Ni alloy layer can be selectively removed after bonding to the base material, the ultrathin copper foil and the roughened particles will remain. There is a problem in that the thickness of the entire substrate is increased.
本発明者らは、前記諸問題を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、金属箔キャリアと前記金属箔キャリアの少なくとも一方の面上に第1のNi又はNi合金層が積層され、前記第1のNi又はNi合金層の少なくとも一方の面上に剥離層、第2のNi層及び極薄銅層がこの順序で積層された複合金属箔であって、前記極薄銅層の銅粒子の一次粒子径が10〜200nm、付着量が300〜6000mg/m2であり、前記第2のNi層の厚みが0.3〜5μmである複合金属箔であれば、基材に高温で張り合わせたとしても、剥離層の耐熱性が極めて高いから金属箔キャリアと第1のNi又はNi合金層と剥離層とを剥離層界面できれいに剥離して、極薄銅層及び第2のNi層が積層された金属箔積層板を製造することができ、また、選択エッチングにより第2のNi層を容易に除去することができるため、緻密でピンホール等が発生し難い極薄銅層を備える銅張積層板を非常に簡便な方法で製造することができるという刮目すべき知見を得て、前記技術的課題を達成したものである。
The present inventors made it a technical subject to solve the above-mentioned problems, and as a result of many trial and error trials and experiments, the first results were obtained on at least one surface of the metal foil carrier and the metal foil carrier. And a composite metal foil in which a release layer, a second Ni layer and an ultrathin copper layer are laminated in this order on at least one surface of the first Ni or Ni alloy layer. there are, the pole primary particle size of the copper particles in the thin copper layer is 10 to 200 nm, the adhesion amount is 300~6000mg / m 2, a thickness of the second Ni layer is a composite metal foil is 0.3~5μm If there is, even if it is bonded to the substrate at a high temperature, the release layer has extremely high heat resistance, so the metal foil carrier, the first Ni or Ni alloy layer, and the release layer are peeled cleanly at the interface of the release layer, making it extremely thin. A metal foil laminate in which a copper layer and a second Ni layer are laminated can be manufactured, and the second Ni layer can be obtained by selective etching. Since it can be easily removed, it is possible to manufacture a copper-clad laminate including an extremely thin copper layer that is dense and hardly generates pinholes, etc. It has achieved technical challenges.
前記技術的課題は次のとおりの、本発明によって解決できる。 The technical problem can be solved by the present invention as follows.
本発明は、金属箔キャリアと前記金属箔キャリアの少なくとも一方の面上に第1のNi又はNi合金層が積層され、前記第1のNi又はNi合金層の少なくとも一方の面上に剥離層、第2のNi層及び極薄銅層がこの順序で積層された複合金属箔であって、前記極薄銅層の銅粒子の一次粒子径が10〜200nm、付着量が300〜6000mg/m2であり、前記第2のNi層の厚みが0.3〜5μmである複合金属箔である。 The present invention is a metal foil carrier and a first Ni or Ni alloy layer is laminated on at least one surface of the metal foil carrier, a release layer on at least one surface of the first Ni or Ni alloy layer, A composite metal foil in which a second Ni layer and an ultrathin copper layer are laminated in this order, wherein the primary particle diameter of the copper particles of the ultrathin copper layer is 10 to 200 nm, and the adhesion amount is 300 to 6000 mg / m 2 And the thickness of the second Ni layer is 0.3-5 μm.
また、本発明は、前記第1のNi又はNi合金層の厚みが0.001〜5μmである複合金属箔である。 The present invention is the composite metal foil in which the first Ni or Ni alloy layer has a thickness of 0.001 to 5 μm.
また、本発明は、前記剥離層が、CrとZnの少なくとも1種を含む層である複合金属箔である。 The present invention is the composite metal foil, wherein the release layer is a layer containing at least one of Cr and Zn.
また、本発明は、前記第2のNi層のNiの純度が99.6%以上である複合金属箔である。 The present invention is the composite metal foil in which the Ni purity of the second Ni layer is 99.6% or more.
また、本発明は、前記第2のNi層と前記極薄銅層との間に金属層が形成されている複合金属箔である。 The present invention is a composite metal foil in which a metal layer is formed between the second Ni layer and the ultrathin copper layer.
また、本発明は、前記複合金属箔の極薄銅層に絶縁性樹脂基材を加熱圧縮して張り合わせた後、前記剥離層によって剥離層及び第1のNi又はNi合金層及び金属箔キャリアを剥離して製造する金属張積層板の製造方法である。 In the present invention, after the insulating resin base material is heat-compressed and bonded to the ultrathin copper layer of the composite metal foil, the release layer, the first Ni or Ni alloy layer, and the metal foil carrier are bonded by the release layer. It is a manufacturing method of the metal-clad laminate manufactured by peeling.
また、本発明は、前記金属張積層板をNi選択エッチング液により前記第2のNi層をエッチング除去して製造する銅張積層板の製造方法である。 The present invention is also a method for producing a copper-clad laminate, wherein the metal-clad laminate is produced by removing the second Ni layer by etching with a Ni selective etching solution.
本発明によれば、剥離層が第1のNi又はNi合金層と第2のNi層で挟まれる構成であって、剥離層の耐熱性が極めて高いため、ガラス転移温度の高い基材を張り合わせる際の過酷な温度条件でも、剥離機能が低下せずに金属箔キャリアと第1のNi又はNi合金層と剥離層とを剥離層界面で容易に剥離することができる。 According to the present invention, the peeling layer is sandwiched between the first Ni or Ni alloy layer and the second Ni layer, and the heat resistance of the peeling layer is extremely high. Even under severe temperature conditions, the metal foil carrier, the first Ni or Ni alloy layer, and the release layer can be easily separated at the interface of the release layer without lowering the release function.
また、本発明によれば、第2のNi層の厚みが0.3〜5μmであるから、第2のNi層にピンホール等が生じ難く、極薄銅層にピンホールが発生することを抑制できる。 Further, according to the present invention, since the thickness of the second Ni layer is 0.3 to 5 μm, it is difficult for pinholes or the like to occur in the second Ni layer, and generation of pinholes in the ultrathin copper layer can be suppressed. .
また、第2のNi層はNi選択エッチング液により除去できるため、極薄銅層が積層された銅張積層板を簡便な方法で製造することができる。 Further, since the second Ni layer can be removed by a Ni selective etching solution, a copper clad laminate on which an ultrathin copper layer is laminated can be manufactured by a simple method.
また、本発明に係る極薄銅層は、形成する銅粒子の一次粒子径が10〜200nmと小さく、また、付着量が300〜6000mg/m2であるため、非常に緻密な極薄銅層になる。 In addition, the ultrathin copper layer according to the present invention has a very fine ultrathin copper layer because the primary particle diameter of the copper particles to be formed is as small as 10 to 200 nm and the adhesion amount is 300 to 6000 mg / m 2. become.
なお、本発明における一次粒子径とは、析出した銅粒子のうち、粒子と認められる最小単位(一次粒子)(31)の粒子径であり、一次粒子の集合体(32)を二次粒子と言う。
本明細書における「緻密な極薄銅層」とは、図12に示すような銅層を言う。
The primary particle size in the present invention is the particle size of the smallest unit (primary particle) (31) recognized as a particle among the precipitated copper particles, and the aggregate (32) of primary particles is defined as secondary particles. say.
In the present specification, the “dense ultrathin copper layer” refers to a copper layer as shown in FIG.
本発明に係る極薄銅層をアディティブ工法のシード層として回路を形成した場合には、シード層が非常に薄く、極めて短時間でエッチング除去することができるから、回路までエッチングされることを抑制し、ファインパターンの回路の形成が可能になる。 When the circuit is formed using the ultra-thin copper layer according to the present invention as a seed layer for the additive method, the seed layer is very thin and can be removed by etching in a very short time. In addition, a fine pattern circuit can be formed.
また、本発明に係る極薄銅層は緻密で微細な銅粒子で構成されるから、基材と張り合わせた際の密着性に優れる。 Moreover, since the ultra-thin copper layer which concerns on this invention is comprised with a precise | minute and fine copper particle, it is excellent in the adhesiveness at the time of bonding with a base material.
したがって、本発明に係る複合金属箔と張り合わせて製造した銅張積層板を用いて多層化すれば、層間接続の必須工程である貫通孔や非貫通孔を無電解めっき及び/又は電解めっきする工程において、極薄銅層もめっきされて厚くなったとしても、もともとの厚みが極めて薄いため、多層基板全体の厚みの増加を抑制することができ高密度化を実現することができる。 Therefore, if the copper clad laminate produced by laminating with the composite metal foil according to the present invention is multilayered, the step of electroless plating and / or electrolytic plating of through holes and non-through holes, which are essential steps for interlayer connection However, even if the ultrathin copper layer is also thickened by plating, since the original thickness is extremely thin, an increase in the thickness of the entire multilayer substrate can be suppressed, and high density can be realized.
なお、本発明に係る極薄銅層に対して、耐熱性・耐薬品性処理、防錆処理、化成処理等の従来のプリント配線板用銅箔と同様の表面処理を施して、更に密着性を向上させることもできる。 In addition, the ultrathin copper layer according to the present invention is subjected to the same surface treatment as conventional copper foil for printed wiring boards, such as heat resistance / chemical resistance treatment, rust prevention treatment, chemical conversion treatment, etc. Can also be improved.
また、第1のNi又はNi合金層の厚みを0.001〜5μmとすれば、さらに剥離層の耐熱性を向上させることができる。 Further, if the thickness of the first Ni or Ni alloy layer is 0.001 to 5 μm, the heat resistance of the release layer can be further improved.
また、剥離層にCr又はZnの少なくとも一つを含有させれば、さらに剥離機能に優れる複合金属箔となる。 Moreover, if at least one of Cr or Zn is contained in the release layer, a composite metal foil having a further excellent release function can be obtained.
本発明に係る銅張積層板は、アディティブ工法によりファインパターンの回路を好適に形成でき、また、サブトラクティブ工法やその他の工法によって回路を形成させることもできる。 The copper clad laminate according to the present invention can suitably form a fine pattern circuit by an additive method, and can also form a circuit by a subtractive method or other methods.
本発明における金属箔キャリア(2)は特に限定されるものではないが、圧延法や電解法によって形成された銅箔や、銅合金箔を好適に用いることができる。 The metal foil carrier (2) in the present invention is not particularly limited, but a copper foil or a copper alloy foil formed by a rolling method or an electrolytic method can be suitably used.
金属箔キャリアに各層を積層する面(以下「積層面」という)は、必要に応じて適宜選択すればよく、図2に示すように、両面であってもよい。 The surface on which each layer is laminated on the metal foil carrier (hereinafter referred to as “lamination surface”) may be appropriately selected as necessary, and may be both surfaces as shown in FIG.
金属箔キャリアの厚みは特に限定されるものではないが、9〜300μmが好ましく、さらに好ましくは12〜70μmである。 Although the thickness of a metal foil carrier is not specifically limited, 9-300 micrometers is preferable, More preferably, it is 12-70 micrometers.
厚みが9μm未満であると、積層時にシワや亀裂を生じさせ易くなり、また、300μmを超えると、複合金属箔全体の剛性が強くなり過ぎて取り扱いが困難になるからである。 This is because if the thickness is less than 9 μm, wrinkles and cracks are likely to occur during lamination, and if it exceeds 300 μm, the rigidity of the composite metal foil becomes too strong and handling becomes difficult.
また、金属箔キャリアに各層を積層しない面には、粗化処理や耐熱性・耐薬品性処理、防錆処理、化成処理等、従来のプリント配線板用銅箔と同様の表面処理を施すことができる。 Also, the same surface treatment as conventional copper foils for printed wiring boards, such as roughening treatment, heat and chemical resistance treatment, rust prevention treatment, and chemical conversion treatment, should be applied to the surface where each layer is not laminated on the metal foil carrier. Can do.
なお、第2のNi層(5)及び極薄銅層(6)の表面を低粗度にする場合は、積層面の表面粗さRzjis(JIS-B0601(2013)記載の十点平均粗さ)が1.0μm以下の圧延銅箔や電解銅箔を金属箔キャリアとして用いればよい。 When the surface of the second Ni layer (5) and the ultrathin copper layer (6) is made to have a low roughness, the surface roughness of the laminated surface Rzjis (ten-point average roughness described in JIS-B0601 (2013)) ) Is 1.0 μm or less of rolled copper foil or electrolytic copper foil may be used as the metal foil carrier.
本発明における第1のNi又はNi合金層(3)の厚みは0.001〜5μmが好ましく、さらに好ましくは0.005〜3μmである。 The thickness of the first Ni or Ni alloy layer (3) in the present invention is preferably 0.001 to 5 μm, more preferably 0.005 to 3 μm.
厚みが0.001μm未満であると、基材に張り合わせる際の高温の影響を受け易くなって剥離層界面から剥離することが困難になる虞があり、また、5μmより厚くても更なる機能の向上は望めないからである。 If the thickness is less than 0.001 μm, it is likely to be affected by the high temperature when pasting to the substrate and it may be difficult to peel from the interface of the release layer, and even if it is thicker than 5 μm, it has further functions. It is because improvement cannot be expected.
基材と張り合わせる加熱圧縮工程において、金属箔キャリアの焼け(酸化)を防ぐ耐熱層として機能させるため、図3に示すように、各層を積層する面と反対側の面に第1のNi又はNi合金層(3)のみを設けてもよい。 In order to function as a heat-resistant layer that prevents burning (oxidation) of the metal foil carrier in the heat-compression process that is laminated to the base material, as shown in FIG. 3, the first Ni or Only the Ni alloy layer (3) may be provided.
本発明おける複合金属箔は、金属箔キャリア(2)と第1のNi又はNi合金層(3)と剥離層(4)を剥離層(4)と第2のNi層(5)との界面で剥離させることができる。 The composite metal foil in the present invention comprises a metal foil carrier (2), a first Ni or Ni alloy layer (3), a release layer (4), and an interface between the release layer (4) and the second Ni layer (5). Can be peeled off.
剥離層(4)には、Cr又はZnの少なくとも1種が含まれていることが好ましい。 The release layer (4) preferably contains at least one of Cr and Zn.
Cr又はZnを含む層として、Cr、Znのいずれか1種類の元素から成る単一金属層、水和物層、酸化物層、若しくは2種類の元素から成る合金層、水和物層、酸化物層、又は、これらの単一金属、水和物、酸化物、該2種類の元素から成る合金、水和物、酸化物の複合体の層等が例示できる。 As a layer containing Cr or Zn, a single metal layer composed of one element of Cr or Zn, a hydrate layer, an oxide layer, an alloy layer composed of two elements, a hydrate layer, an oxidation Examples include a physical layer, a single metal, a hydrate, an oxide, an alloy of the two kinds of elements, a hydrate, a composite oxide layer, or the like.
剥離層の付着量は0.001〜1000mg/m2が好ましく、さらに好ましくは、0.05〜1000mg/m2である。 The adhesion amount of the release layer is preferably 0.001 to 1000 mg / m 2 , more preferably 0.05 to 1000 mg / m 2 .
0.001mg/m2未満であると、剥離が困難になる虞があり、1000mg/m2を超えて付着させても機能の更なる向上は望めないからである。 If it is less than 0.001 mg / m 2 , peeling may be difficult, and even if it exceeds 1000 mg / m 2 , further improvement in function cannot be expected.
第1のNi又はNi合金層(3)の厚みや剥離層(4)の金属の種類及び付着量を変化させることで望ましい剥離強度に調整することができる。 The desired peel strength can be adjusted by changing the thickness of the first Ni or Ni alloy layer (3), the type of metal of the release layer (4), and the amount of adhesion.
剥離強度は、210℃・4時間加熱後において、0.1kN/m以下であることが好ましく、さらに好ましくは、0.05kN/m以下である。 The peel strength is preferably 0.1 kN / m or less, more preferably 0.05 kN / m or less after heating at 210 ° C. for 4 hours.
0.1kN/mより大きいと、意図しない剥離は防げるが、剥離する際に大きな力と時間を要するため作業性が低下するためである。
また、剥離する際にかかった力により基板に反りや歪みが生じる虞もあるためである。
If it exceeds 0.1 kN / m, unintentional peeling can be prevented, but workability is lowered because a large force and time are required for peeling.
Moreover, it is because there exists a possibility that a board | substrate may warp and distortion by the force applied when peeling.
第2のNi層(5)はNiの純度が99.6%以上であることが好ましい。純度が低いと選択エッチングでの除去性が劣ったり、除去できなかったりする虞があるからである。 The second Ni layer (5) preferably has a Ni purity of 99.6% or more. This is because if the purity is low, the removability by selective etching may be inferior or may not be removed.
第2のNi層がきれいに除去できないと、回路形成時において残渣したNiにより絶縁不良(回路ショート)になるリスクが高まる。 If the second Ni layer cannot be removed cleanly, the risk of insulation failure (circuit short) due to residual Ni during circuit formation increases.
第2のNi層の厚みは0.3〜5μmであり、さらに好ましくは、1〜3μmである。
0.3μm未満であると、第2のNi層にピンホールが発生し易くなり、第2のNi層にピンホールがあるとピンホール個所では極薄銅層が形成されず、回路断線のリスクが高まるためである。
The thickness of the second Ni layer is 0.3 to 5 μm, more preferably 1 to 3 μm.
If it is less than 0.3 μm, pinholes are likely to occur in the second Ni layer, and if there are pinholes in the second Ni layer, an ultrathin copper layer will not be formed at the pinhole locations, which may result in circuit disconnection risk. It is to increase.
また、厚みが5μmを超えてもさらなる機能の向上は望めず、選択エッチングによる除去工程にも時間がかかるため好ましくない。 Further, even if the thickness exceeds 5 μm, further improvement in the function cannot be expected, and the removal process by selective etching takes time, which is not preferable.
極薄銅層を形成する銅粒子は一次粒子径が10〜200nmが好ましく、さらに好ましくは10〜40nmである。付着量は300〜6000mg/m2であり、さらに好ましくは1000〜4000mg/m2である。 The copper particles forming the ultrathin copper layer preferably have a primary particle diameter of 10 to 200 nm, more preferably 10 to 40 nm. Adhesion amount is 300~6000mg / m 2, more preferably from 1000~4000mg / m 2.
一次粒子径が10nm未満であると、表面エネルギーが著しく上昇するため粒子としての形状を保持できず、また、200nmを超えると粒子が大き過ぎて、300〜6000mg/m2の付着量において緻密な極薄銅層を形成することができないためである。 If the primary particle diameter is less than 10 nm, the surface energy increases remarkably, so that the shape of the particles cannot be maintained. If the particle diameter exceeds 200 nm, the particles are too large and are dense in an adhesion amount of 300 to 6000 mg / m 2. This is because an ultrathin copper layer cannot be formed.
また、付着量が300mg/m2未満であると、緻密な極薄銅層を形成することができず、また、6000mg/m2を超えて付着させると、除去に時間がかかったり、銅粒子の脱落によって導電性異物が発生したりするためいずれも好ましくない。 Also, if the adhesion amount is less than 300 mg / m 2 , a dense ultrathin copper layer cannot be formed. If the adhesion amount exceeds 6000 mg / m 2 , it takes time to remove or copper particles. Since the conductive foreign matter is generated by dropping off, it is not preferable.
なお、本発明に係る極薄銅層の厚みは非常に薄く直接測定することが容易ではないため、付着量で表すこととした。 In addition, since the thickness of the ultra-thin copper layer concerning this invention is very thin and it is not easy to measure directly, it decided to represent with the adhesion amount.
極薄銅層は緻密であり微細な銅粒子で構成されるため基材との密着性は良いが、さらに密着性を上げるために、プリント配線板用銅箔の表面処理として公知の耐熱・耐薬品性処理、防錆処理、化成処理等を施すこともできる。 The ultra-thin copper layer is dense and composed of fine copper particles, so it has good adhesion to the base material. However, in order to further improve the adhesion, the known heat resistance / resistance to surface treatment of copper foil for printed wiring boards Chemical treatment, rust prevention treatment, chemical conversion treatment, etc. can also be performed.
なお、第2のNi層の表面抵抗が大きいため、極薄銅層のめっき時の電圧が高くなったり、密着性が得られ難くなったりする場合には、スパッタリングや蒸着等の物理的製膜工程、又は、電解めっきや無電解めっき等の化学的製膜工程により、第2のNi層上に金属層を設け、該金属層上に極薄銅層を設けても良い。 In addition, since the surface resistance of the second Ni layer is large, when the voltage during plating of the ultrathin copper layer becomes high or it becomes difficult to obtain adhesion, physical film formation such as sputtering or vapor deposition is performed. A metal layer may be provided on the second Ni layer and a very thin copper layer may be provided on the metal layer by a process or a chemical film formation process such as electrolytic plating or electroless plating.
本発明に係る複合金属箔、銅張積層板及びプリント配線板は、以下の方法により製造することができる。 The composite metal foil, the copper clad laminate and the printed wiring board according to the present invention can be produced by the following method.
(第1のNi又はNi合金層)
ワット浴(硫酸ニッケル240〜300g/L、塩化ニッケル40〜70 g/L、ホウ酸30〜45mL/L、pH3.8〜4.2、浴温50〜60℃、電流密度0.5〜8A/dm2)やスルファミン酸浴(スルファミン酸ニッケル440〜500 g/L、ホウ酸30〜50 mL/L、pH3.8〜4.4、浴温50〜60℃、電流密度2〜40 A/dm2)に金属箔キャリアの表面を浸漬して電解めっき、又は、ヒドラジン浴(代表例として、酢酸ニッケル60g/L、グリコール酸60g/L、エチレンジアミン四酢酸25g/L、ヒドラジン100mL/L、pH11、浴温90℃)等に金属箔キャリアの表面を浸漬して無電解めっきすることで、金属箔キャリア上にNi層を形成させることができる。
(First Ni or Ni alloy layer)
Watt bath (nickel sulfate 240-300 g / L, nickel chloride 40-70 g / L, boric acid 30-45 mL / L, pH 3.8-4.2, bath temperature 50-60 ° C., current density 0.5-8 A / dm 2 ) And metal foil in sulfamic acid bath (nickel sulfamate 440-500 g / L, boric acid 30-50 mL / L, pH 3.8-4.4, bath temperature 50-60 ° C, current density 2-40 A / dm 2 ) Electroplating by immersing the surface of the carrier, or hydrazine bath (typically nickel acetate 60 g / L, glycolic acid 60 g / L, ethylenediaminetetraacetic acid 25 g / L, hydrazine 100 mL / L, pH 11, bath temperature 90 ° C) etc. the surface of the metal foil carrier by electroless plating is immersed in, it is possible to form a Ni layer on the metal foil carrier.
ワット浴、スルファミン酸浴には必要に応じて、光沢剤、ナフタレンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、サッカリン等の添加剤を適量添加することもできる。 If necessary, additives such as brightener, sodium naphthalene sulfonate, sodium dodecyl sulfate, and saccharin can be added to the Watt bath and sulfamic acid bath as appropriate.
Ni合金層を形成するには、Ni-P(硫酸ニッケル20〜300g/L、塩化ニッケル35〜50g/L、ほう酸30〜50g/L、亜リン酸1〜30g/L、酢酸ナトリウム1〜30g/L、pH1〜5、浴温40〜70℃、電流密度1〜15A/dm2)、Ni-Co(硫酸ニッケル50〜200g/L、硫酸コバルト50〜200g/L、クエン酸ナトリウム15〜30g/L、pH3〜6、浴温25〜60℃、電流密度1〜15A/dm2)、Ni-Mo(硫酸ニッケル30〜70g/L、モリブデン酸ナトリウム30〜120g/L、クエン酸ナトリウム15〜30g/L、pH7〜12、浴温20〜50℃、電流密度1〜15A/dm2)、Ni-Zn(硫酸ニッケル250〜300g/L、硫酸亜鉛50〜400g/L、クエン酸ナトリウム15〜30g/L、pH3〜6、浴温50〜70℃、電流密度3〜15A/dm2)、Ni-Co-Mo(硫酸ニッケル50〜200g/L、硫酸コバルト50〜200g/L、モリブデン酸ナトリウム30〜120g/L、クエン酸ナトリウム15〜30g/L、pH7〜12、浴温20〜50℃、電流密度1〜15A/dm2)浴等に金属箔キャリアの表面を浸漬して電解めっき、又はNi-P(代表例として、塩化ニッケル16g/L、ホスフィン酸ナトリウム24g/L、コハク酸ナトリウム16g/L、リンゴ酸ナトリウム18g/L、pH5.6、浴温100℃)、Ni-B(代表例として、塩化ニッケル30g/L、エチレンジアミン60g/L、水酸化ナトリウム40g/L、テトラヒドロホウ酸ナトリウム0.6g/L、浴温90℃)浴等に金属箔キャリアの表面を浸漬して無電解めっきすることで、金属箔キャリア上にNi合金層を形成させることができる。 Ni-P (nickel sulfate 20-300 g / L, nickel chloride 35-50 g / L, boric acid 30-50 g / L, phosphorous acid 1-30 g / L, sodium acetate 1-30 g / L, pH 1-5, bath temperature 40-70 ° C, current density 1-15A / dm 2 ), Ni-Co (nickel sulfate 50-200g / L, cobalt sulfate 50-200g / L, sodium citrate 15-30g / L, pH 3-6, bath temperature 25-60 ° C, current density 1-15 A / dm 2 ), Ni-Mo (nickel sulfate 30-70 g / L, sodium molybdate 30-120 g / L, sodium citrate 15- 30g / L, pH 7-12, bath temperature 20-50 ° C, current density 1-15A / dm 2 ), Ni-Zn (nickel sulfate 250-300g / L, zinc sulfate 50-400g / L, sodium citrate 15- 30g / L, pH 3-6, bath temperature 50-70 ° C, current density 3-15A / dm 2 ), Ni-Co-Mo (nickel sulfate 50-200g / L, cobalt sulfate 50-200g / L, sodium molybdate) 30 to 120 g / L, sodium citrate 15~30g / L, pH7~12, bath temperature 20 to 50 ° C., a current density of 1 through 15A / dm 2) bath, etc. Electroplating by dipping the surface of the metal foil carrier, or Ni-P (typically nickel chloride 16g / L, sodium phosphinate 24g / L, sodium succinate 16g / L, sodium malate 18g / L, pH 5. 6, bath temperature 100 ° C), Ni-B (typically, nickel chloride 30g / L, ethylenediamine 60g / L, sodium hydroxide 40g / L, sodium tetrahydroborate 0.6g / L, bath temperature 90 ° C) The Ni alloy layer can be formed on the metal foil carrier by immersing the surface of the metal foil carrier and performing electroless plating.
Ni-P、Ni-Co、Ni-Mo、Ni-Zn、Ni-Co-Mo浴には、必要に応じて、光沢剤、サッカリン、ナフタレンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等の添加剤を適量添加することもできる。 Ni-P, Ni-Co, Ni-Mo, Ni-Zn, Ni-Co-Mo baths may contain appropriate amounts of additives such as brightener, saccharin, sodium naphthalene sulfonate, sodium dodecyl sulfate, etc. You can also
(剥離層)
無水クロム酸200〜400g/L、硫酸1.5〜4g/L、pH1〜4、浴温45〜60℃、電流密度10〜40A/dm2、又は無水クロム酸若しくは二クロム酸カリウム1〜30g/L、pH2〜6、浴温20〜60℃、電流密度0.1〜10A/dm2、又は二クロム酸カリウム1〜30g/L、硫酸亜鉛0.1〜20g/L、pH2〜6、浴温20〜60℃、電流密度0.1〜10A/dm2のめっき浴に第1のNi又はNi合金層を形成させた面を浸漬させて、電気めっきにより形成させることができる。
(Peeling layer)
Chromic anhydride 200-400 g / L, sulfuric acid 1.5-4 g / L, pH 1-4, bath temperature 45-60 ° C., current density 10-40 A / dm 2 , or chromic anhydride or potassium dichromate 1-30 g / L , PH 2-6, bath temperature 20-60 ° C, current density 0.1-10 A / dm 2 , or potassium dichromate 1-30 g / L, zinc sulfate 0.1-20 g / L, pH 2-6, bath temperature 20-60 ° C The surface on which the first Ni or Ni alloy layer is formed is immersed in a plating bath having a current density of 0.1 to 10 A / dm 2 and can be formed by electroplating.
(第2のNi層)
剥離層を形成させた面をワット浴又はスルファミン酸浴に浸漬して電気めっきにより第2のNi層を形成させることができる。
(Second Ni layer)
The surface on which the release layer is formed can be immersed in a watt bath or a sulfamic acid bath to form a second Ni layer by electroplating.
電解法で形成させれば、Ni純度を99.6%以上の高純度にすることができる。 If formed by the electrolytic method, the Ni purity can be increased to 99.6% or higher.
(極薄銅層)
極薄銅層は例えば、特開平1−246393記載の方法によって形成させることができる。
詳しくは、ジエチレントリアミン五酢酸五ナトリウム10〜300g/L、硫酸銅五水塩10〜100g/Lの混合液を硫酸でpH2.5〜13.0に調整し、浴温30〜60℃、電流密度2〜10A/dm2で1〜120秒処理することによって形成させることができる。
(Ultra-thin copper layer)
The ultrathin copper layer can be formed, for example, by the method described in JP-A-1-246393.
Specifically, diethylenetriaminepentaacetic acid pentasodium 10 to 300 g / L, copper sulfate pentahydrate 10 to 100 g / L was adjusted to pH 2.5 to 13.0 with sulfuric acid, bath temperature 30 to 60 ° C, current density 2 to It can be formed by treating at 10 A / dm 2 for 1 to 120 seconds.
(基材)
本発明に係る複合金属箔は、高温によって剥離機能が低下し難く、ガラス転移温度の高い樹脂であっても加熱圧縮によって張り合わせた後、容易に剥離することができるから、張り合わせる基材は特に限定されず、適宜選択できる。
(Base material)
The composite metal foil according to the present invention is less likely to have a peeling function at high temperatures, and even a resin having a high glass transition temperature can be easily peeled after being laminated by heat compression. It is not limited and can be selected appropriately.
(金属張積層板)
複合金属箔の極薄銅層と基材とを加熱圧縮により張り合わせた後、剥離層界面から剥離層及び第1のNi又はNi合金層及び金属箔キャリアを剥離して、金属張積層板を製造することができる(図5)。
(Metal-clad laminate)
After bonding the ultra-thin copper layer of the composite metal foil and the base material by heat compression, the release layer, the first Ni or Ni alloy layer, and the metal foil carrier are peeled off from the release layer interface to produce a metal-clad laminate. (Figure 5).
(銅張積層板)
金属張積層板をNi選択エッチングにより第2のNi層を除去することによって、基材上に極薄銅層が積層された銅張積層板を製造することができる(図6)。
(Copper clad laminate)
By removing the second Ni layer from the metal-clad laminate by Ni selective etching, a copper-clad laminate in which an ultrathin copper layer is laminated on the substrate can be produced (FIG. 6).
なお、本発明において、基材の両面に複合金属箔を張り合わせて、両面の金属張積層板や両面の銅張積層板を製造することもできる。 In the present invention, a double-sided metal-clad laminate or a double-sided copper-clad laminate can be produced by laminating composite metal foils on both sides of a substrate.
(プリント配線板)
銅張積層板上の極薄銅層をシード層として使用すれば、アディティブ工法によりファインパターンの回路を形成させることができる(図7)。
(Printed wiring board)
If an ultra-thin copper layer on a copper clad laminate is used as a seed layer, a fine pattern circuit can be formed by an additive method (FIG. 7).
なお、銅張積層板上の極薄銅層にサブトラクティブ工法やその他工法により回路形成することもできる。 In addition, a circuit can also be formed in the ultra-thin copper layer on a copper clad laminated board by a subtractive construction method or other construction methods.
(多層プリント配線板)
また、形成した回路を粗化し、粗化した回路上に第2の基材(7(a))、及び本発明に係る複合金属箔を加熱圧縮により積層して本発明に係る複合金属箔により第2の極薄銅層(6(a))を形成し(図8)、第2の極薄銅層及び第2の基材に、該粗化した回路に達するまで非貫通孔(12)を形成し(図9)、非貫通孔の内壁を無電解めっき(13)、及び、電解めっき(20)によって接続して(図10)、先に形成した回路上にさらに回路(10(a))を形成させることもできる。
(Multilayer printed wiring board)
Further, the formed circuit is roughened, and the second base material (7 (a)) and the composite metal foil according to the present invention are laminated on the roughened circuit by heat compression, and the composite metal foil according to the present invention is used. A second ultrathin copper layer (6 (a)) is formed (FIG. 8), and the second ultrathin copper layer and the second substrate are non-through holes (12) until the roughened circuit is reached. (FIG. 9), the inner walls of the non-through holes are connected by electroless plating (13) and electrolytic plating (20) (FIG. 10), and the circuit (10 (a )) Can also be formed.
同様の方法にて第2の回路(10(a))上にさらに回路(10(b))を形成させることもできる(図11)。 A circuit (10 (b)) can be further formed on the second circuit (10 (a)) by the same method (FIG. 11).
本発明に係る銅張積層板を積層して多層化すれば、多層基板全体の厚みを抑制し、多層基板の高密度化を実現することができる。 If the copper-clad laminate according to the present invention is laminated to form a multilayer, it is possible to suppress the thickness of the entire multilayer substrate and realize a high density of the multilayer substrate.
多層プリント配線板とするには、本発明に係る複合金属箔に限定されず、従来のプリント配線板用銅箔を積層しても良い。 The multilayer printed wiring board is not limited to the composite metal foil according to the present invention, and a conventional copper foil for printed wiring board may be laminated.
本発明の実施例及び比較例を以下に示すが本発明はこれらに限定されるものではない。 Examples and Comparative Examples of the present invention are shown below, but the present invention is not limited thereto.
(実施例1)
金属箔キャリアとして、厚みが18μmの電解銅箔を用いた。
(Example 1)
As the metal foil carrier, an electrolytic copper foil having a thickness of 18 μm was used.
銅箔キャリア表面をワット浴(浴組成:硫酸ニッケル250g/L、塩化ニッケル50g/L、ホウ酸30mL/L、pH4.0、浴温50℃)に浸漬し、電流密度5A/dm2で30秒間処理し第1のNi層を形成した。 The surface of the copper foil carrier is immersed in a watt bath (bath composition: nickel sulfate 250 g / L, nickel chloride 50 g / L, boric acid 30 mL / L, pH 4.0, bath temperature 50 ° C.), 30 at a current density of 5 A / dm 2 The first Ni layer was formed by treating for 2 seconds.
第1のNi層を形成した面を、二クロム酸カリウム20g/L、pH4.5、浴温30℃のめっき浴に浸漬し、電流密度1A/dm2で2秒間処理して、Crの水和物複合体を形成させて剥離層とした。 The surface on which the first Ni layer was formed was immersed in a plating bath with potassium dichromate 20 g / L, pH 4.5, bath temperature 30 ° C., and treated at a current density of 1 A / dm 2 for 2 seconds to obtain Cr water. A Japanese composite was formed into a release layer.
剥離層を形成した面を第1のNi層と同一のワット浴に浸漬し、電流密度5A/dm2で120秒間処理して第2のNi層を形成させた。 The surface on which the release layer was formed was immersed in the same watt bath as the first Ni layer, and treated at a current density of 5 A / dm 2 for 120 seconds to form a second Ni layer.
第2のNi層を形成した面をジエチレントリアミン五酢酸五ナトリウム20g/L、硫酸銅五水和物30g/L、pH4.0、浴温40℃のめっき浴に浸漬し、電流密度2A/dm2で30秒間処理して、極薄銅層を形成させた。 The surface on which the second Ni layer was formed was immersed in a plating bath of diethylenetriaminepentaacetic acid pentasodium 20 g / L, copper sulfate pentahydrate 30 g / L, pH 4.0, bath temperature 40 ° C., and a current density of 2 A / dm 2 For 30 seconds to form an ultrathin copper layer.
極薄銅層を形成する銅粒子の一次粒子径は10〜40nmであった。 The primary particle diameter of the copper particles forming the ultrathin copper layer was 10 to 40 nm.
(実施例2)
二クロム酸カリウム15g/L、硫酸亜鉛10g/L、pH4.9、浴温30℃のめっき浴に浸漬し、電流密度0.5A/dm2で2秒間処理してCrとZnからなる複合体からなる剥離層を形成させた以外は実施例1と同様の方法にて製造した。
(実施例3)
硫酸ニッケル30g/L、亜リン酸2g/L、酢酸ナトリウム10g/L、pH4.5、浴温30℃のめっき浴に浸漬し、電流密度2A/dm2で5秒間処理してNiとPからなる合金層を形成させた以外は実施例1と同様の方法にて製造した。
(実施例4)
硫酸ニッケル50g/L、硫酸コバルト50g/L、クエン酸30g/L、pH4.0、浴温30℃のめっき浴に浸漬し、電流密度2A/dm2で2秒間処理してNi、Coからなる合金層を形成させた以外は実施例1と同様の方法にて製造した。
(実施例5)
硫酸ニッケル50g/L、モリブデン酸ナトリウム30g/L、クエン酸30g/L、pH9.0、浴温30℃のめっき浴に浸漬し、電流密度7A/dm2で2秒間処理してNi、Moからなる合金層を形成させた以外は実施例1と同様の方法にて製造した。
(実施例6)
硫酸ニッケル250g/L、硫酸亜鉛50g/L、クエン酸30g/L、pH4.0、浴温50℃のめっき浴に浸漬し、電流密度5A/dm2で2秒間処理してNi、Znからなる合金層を形成させた以外は実施例1と同様の方法にて製造した。
(実施例7)
硫酸ニッケル50g/L、硫酸コバルト50g/L、モリブデン酸ナトリウム30g/L、クエン酸30g/L、pH9.0、浴温30℃のめっき浴に浸漬し、電流密度7A/dm2で2秒間処理してNi、Co、Moからなる合金層を形成させた以外は実施例1と同様の方法にて製造した。
(実施例8〜15)
第1のNi層の厚み、剥離層の付着量、又は、極薄銅層の付着量を表1記載のとおり変化させた以外は実施例1と同様の方法によって製造した。
(実施例16)
第2のNi層と極薄銅層の間にCuスパッタリングにより銅層を設けた以外は実施例1と同様の方法にて製造した。
(Example 2)
From a composite consisting of Cr and Zn by dipping in a plating bath with potassium dichromate 15g / L, zinc sulfate 10g / L, pH 4.9, bath temperature 30 ° C and treating with current density 0.5A / dm 2 for 2 seconds It was produced in the same manner as in Example 1 except that a release layer was formed.
(Example 3)
Nickel sulfate 30g / L, phosphorous acid 2g / L, sodium acetate 10g / L, pH 4.5, bath temperature 30 ° C, immersed in a plating bath, treated with current density 2A / dm 2 for 5 seconds from Ni and P This was manufactured in the same manner as in Example 1 except that an alloy layer was formed.
(Example 4)
Nickel sulfate 50g / L, cobalt sulfate 50g / L, citric acid 30g / L, pH 4.0, bath temperature 30 ° C, immersed in a plating bath, treated with current density 2A / dm 2 for 2 seconds and made of Ni and Co Manufactured in the same manner as in Example 1 except that an alloy layer was formed.
(Example 5)
Nickel sulfate 50g / L , sodium molybdate 30g / L, citric acid 30g / L, pH 9.0, bath temperature 30 ° C, immersed in a plating bath, treated with current density 7A / dm 2 for 2 seconds from Ni, Mo This was manufactured in the same manner as in Example 1 except that an alloy layer was formed.
(Example 6)
Nickel sulfate 250g / L, zinc sulfate 50g / L, citric acid 30g / L, pH 4.0, bath temperature 50 ° C, immersed in a plating bath, treated with current density 5A / dm 2 for 2 seconds, consisting of Ni and Zn Manufactured in the same manner as in Example 1 except that an alloy layer was formed.
(Example 7)
Immerse in a plating bath with nickel sulfate 50 g / L, cobalt sulfate 50 g / L, sodium molybdate 30 g / L, citric acid 30 g / L, pH 9.0, bath temperature 30 ° C, and treat for 2 seconds at a current density of 7 A / dm 2 Then, it was manufactured in the same manner as in Example 1 except that an alloy layer made of Ni, Co, and Mo was formed.
(Examples 8 to 15)
It was produced in the same manner as in Example 1 except that the thickness of the first Ni layer, the adhesion amount of the release layer, or the adhesion amount of the ultrathin copper layer was changed as shown in Table 1.
(Example 16)
It was manufactured in the same manner as in Example 1 except that a copper layer was provided by Cu sputtering between the second Ni layer and the ultrathin copper layer.
(実施例17)
第2のNi層と極薄銅層の間にCu蒸着により銅層を設けた以外は実施例1と同様の方法にて製造した。
(Example 17)
It was manufactured in the same manner as in Example 1 except that a copper layer was provided by Cu vapor deposition between the second Ni layer and the ultrathin copper layer.
(比較例1)
剥離層を形成させなかった以外は実施例1と同様の方法にて製造した。
(比較例2)
第1のNi層を形成させなかった以外は実施例1と同様の方法にて製造した。
(比較例3〜8)
第1のNi層の厚み、剥離層の付着量、又は、極薄銅層の付着量を表1記載のとおり変化させた以外は実施例1と同様の方法によって製造した。
(Comparative Example 1)
It was produced in the same manner as in Example 1 except that no release layer was formed.
(Comparative Example 2)
It was produced in the same manner as in Example 1 except that the first Ni layer was not formed.
(Comparative Examples 3-8)
It was produced in the same manner as in Example 1 except that the thickness of the first Ni layer, the adhesion amount of the release layer, or the adhesion amount of the ultrathin copper layer was changed as shown in Table 1.
(剥離強度)
実施例、比較例の各複合金属箔を210℃に加温した大気オーブンで2時間及び4時間加熱した。
(Peel strength)
The composite metal foils of Examples and Comparative Examples were heated in an atmospheric oven heated to 210 ° C. for 2 hours and 4 hours.
その後、平坦な支持板に固定し、ミネベア株式会社製PT50NにてJIS-C6481(1996)における引き剥がし強さの試験方法に従って剥離強度を測定した。
また、剥離の可否につき、剥離できたものは○、剥離できなかったものは×として評価した。
Then, it fixed to the flat support plate and measured peeling strength in accordance with the peeling strength test method in JIS-C6481 (1996) in PT50N by Minebea Co., Ltd.
Further, as to whether or not peeling was possible, those that could be peeled were evaluated as ◯ and those that could not be peeled were evaluated as ×.
銅箔キャリアを剥離した金属張積層板をNi選択エッチング液(メックリムーバーNH-1866メック株式会社製)に揺動浸漬し、第2のNi層の除去に要する時間(秒)を測定した。 The metal-clad laminate from which the copper foil carrier had been peeled was rocked and immersed in a Ni selective etching solution (Mekkuri Mover NH-1866 Mec Co., Ltd.), and the time (seconds) required to remove the second Ni layer was measured.
また、第2のNi層を除去した銅張積層板に、極薄銅層をシード層とし、アディティブ工法により、L/S=10μm/10μmの超ファインパターンの回路を形成し、回路の形成性について、L/S=10μm/10μmが形成できていたものを○、できていなかったものを×として評価した。 In addition, the ultra-fine pattern circuit of L / S = 10μm / 10μm is formed by the additive method on the copper clad laminate from which the second Ni layer has been removed, using the ultra-thin copper layer as a seed layer. As for, the case where L / S = 10 μm / 10 μm was formed was evaluated as ○, and the case where it was not formed was evaluated as ×.
各実施例及び比較例の複合金属箔を表1に示す。
また、各実施例及び比較例の評価を表2に示す。
Table 1 shows the composite metal foils of Examples and Comparative Examples.
Table 2 shows the evaluation of each example and comparative example.
実施例及び比較例から、本発明に係る複合金属箔であれば、210℃4時間加熱後であっても剥離強度は低く、簡単に剥離することができ、また、L/S=10μm/10μmという超ファインパターンの回路であっても好適に形成できることが証明された。
また、比較例4及び比較例6においては、Ni層の厚さが厚くコストアップとなり好ましくない。更に比較例6においては、第2のNi層の除去にも時間がかかり、好ましくない。
From the examples and comparative examples, the composite metal foil according to the present invention has low peel strength even after heating at 210 ° C. for 4 hours, and can be easily peeled, and L / S = 10 μm / 10 μm It has been proved that even an ultrafine pattern circuit can be suitably formed.
Further, in Comparative Example 4 and Comparative Example 6, the thickness of the Ni layer is large, which increases the cost, which is not preferable. Furthermore, in Comparative Example 6, it takes time to remove the second Ni layer, which is not preferable.
本発明に係る複合金属箔は、高温であっても剥離層の剥離機能が低下し難いので、ガラス転移温度の高い基材に高温で張り合わせたとしても剥離強度が低く安定しており、金属箔キャリアと第1のNi又はNi合金層及び剥離層を剥離層の界面から容易に剥離することができる。
また、第2のNi層は選択エッチングにより除去することができるから、緻密な極薄銅層を積層した銅張積層板を簡便な方法で製造することができる。
また、本発明に係る複合金属箔を使用して製造した銅張積層板は銅層が極めて薄いため、該極薄銅層をシード層としてアディティブ工法により回路を形成させた場合には、エッチング処理によってシード層を短時間で除去でき、回路までエッチングされることを抑制できるから、L/S=10μm/10μmのような超ファインパターンの回路であっても好適に形成でき、ピンホールも発生し難いため回路断線リスクの低いプリント配線板を製造することができると共に、多層化においては、貫通孔や非貫通孔を無電解めっき及び/又は電解めっきで層間接続する際、該極薄銅層もめっきされて厚くなってしまう影響を最小限に抑制することができるから、多層基板とした場合の基板全体の厚みの増加を抑制して、高密度な多層基板を製造することができる。
したがって、本発明は産業上の利用可能性が高い発明であると言える。
The composite metal foil according to the present invention is less likely to deteriorate the release function of the release layer even at high temperatures. Therefore, even when laminated to a substrate having a high glass transition temperature at high temperatures, the composite metal foil has low and stable peel strength. The carrier, the first Ni or Ni alloy layer, and the release layer can be easily peeled from the interface of the release layer.
In addition, since the second Ni layer can be removed by selective etching, a copper-clad laminate in which dense ultrathin copper layers are laminated can be produced by a simple method.
In addition, since the copper clad laminate manufactured using the composite metal foil according to the present invention has a very thin copper layer, when the circuit is formed by an additive method using the ultrathin copper layer as a seed layer, an etching treatment is performed. Since the seed layer can be removed in a short time and etching to the circuit can be suppressed, even a circuit with an ultrafine pattern such as L / S = 10 μm / 10 μm can be formed suitably, and pinholes are also generated. Since it is difficult, printed wiring boards with low risk of circuit disconnection can be manufactured, and in multilayering, when connecting through holes and non-through holes with electroless plating and / or electrolytic plating, the ultrathin copper layer is also Since the influence of plating and becoming thick can be suppressed to a minimum, an increase in the overall thickness of the multilayer substrate can be suppressed, and a high-density multilayer substrate can be manufactured.
Therefore, it can be said that the present invention has high industrial applicability.
1 複合金属箔
2 金属箔キャリア
3 第1のNi又はNi合金層
4 剥離層
5 第2のNi層
6 極薄銅層
6(a) 第2の極薄銅層
7 基材
7(a) 第2の基材
8 金属張積層板
9 銅張積層板
10 回路
10(a) 2層目の回路
10(b) 3層目の回路
12 非貫通孔
13 無電解めっき
16 多層プリント配線板
20 電解めっき
31 一次粒子
32 二次粒子
DESCRIPTION OF SYMBOLS 1 Composite metal foil 2 Metal foil carrier 3 1st Ni or Ni alloy layer 4 Release layer 5 2nd Ni layer 6 Ultrathin copper layer 6 (a) 2nd ultrathin copper layer 7 Base material 7 (a) First 2 substrate 8 metal clad laminate 9 copper clad laminate 10 circuit 10 (a) second layer circuit 10 (b) third layer circuit 12 non-through hole 13 electroless plating 16 multilayer printed wiring board 20 electroplating 31 Primary particle 32 Secondary particle
Claims (7)
7. A method for producing a copper-clad laminate, wherein the metal-clad laminate produced by the method according to claim 6 is produced by etching away the second Ni layer with a Ni selective etching solution.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016231977A JP6471140B2 (en) | 2016-11-30 | 2016-11-30 | Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate |
KR1020170136320A KR102118245B1 (en) | 2016-11-30 | 2017-10-20 | Composite metal foil, copper-clad laminate using the composite metal foil, and manufacturing method of the copper-clad laminate |
TW106136898A TWI694757B (en) | 2016-11-30 | 2017-10-26 | Composite metal foil, copper-clad laminate using the composite metal foil, and method for manufacturing the copper-clad laminate |
CN201711172750.7A CN108124391B (en) | 2016-11-30 | 2017-11-22 | Composite metal foil, copper-clad laminate, and method for producing copper-clad laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016231977A JP6471140B2 (en) | 2016-11-30 | 2016-11-30 | Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018087369A JP2018087369A (en) | 2018-06-07 |
JP6471140B2 true JP6471140B2 (en) | 2019-02-13 |
Family
ID=62228587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016231977A Active JP6471140B2 (en) | 2016-11-30 | 2016-11-30 | Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6471140B2 (en) |
KR (1) | KR102118245B1 (en) |
CN (1) | CN108124391B (en) |
TW (1) | TWI694757B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110798986A (en) * | 2018-12-10 | 2020-02-14 | 广州方邦电子股份有限公司 | Metal foil with carrier |
WO2020195748A1 (en) * | 2019-03-27 | 2020-10-01 | 三井金属鉱業株式会社 | Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same |
JP7283349B2 (en) * | 2019-10-25 | 2023-05-30 | 株式会社豊田自動織機 | Manufacturing method of electrode foil |
CN113811093A (en) * | 2021-08-09 | 2021-12-17 | 广州方邦电子股份有限公司 | Metal foil, copper-clad laminated board, circuit board and preparation method of circuit board |
CN118510944A (en) * | 2022-08-08 | 2024-08-16 | 宁德时代新能源科技股份有限公司 | Composite foil and preparation method and application thereof |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3690962B2 (en) * | 2000-04-26 | 2005-08-31 | 三井金属鉱業株式会社 | Electrolytic copper foil with carrier foil, method for producing electrolytic copper foil with carrier foil, and copper-clad laminate |
US7026059B2 (en) | 2000-09-22 | 2006-04-11 | Circuit Foil Japan Co., Ltd. | Copper foil for high-density ultrafine printed wiring boad |
JP2004052001A (en) * | 2002-07-16 | 2004-02-19 | Mitsui Mining & Smelting Co Ltd | Nickel peeling solution and method of peeling nickel based covering layer using the same |
JP2005288856A (en) * | 2004-03-31 | 2005-10-20 | Mitsui Mining & Smelting Co Ltd | Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil |
CN1984527B (en) | 2005-12-15 | 2010-12-01 | 古河电气工业株式会社 | Ultrathin copper foil with carrier and printed circuit board |
JP5360703B2 (en) * | 2008-01-11 | 2013-12-04 | メック株式会社 | Etching solution |
JP4805300B2 (en) | 2008-03-31 | 2011-11-02 | 古河電気工業株式会社 | Manufacturing method of Fe-Ni alloy foil with carrier for circuit board lamination, manufacturing method of composite foil with carrier for circuit board lamination, alloy foil with carrier, composite foil with carrier, metal-clad board, printed wiring board, and printed wiring laminated board |
KR101281146B1 (en) * | 2008-09-05 | 2013-07-02 | 후루카와 덴끼고교 가부시키가이샤 | Ultrathin copper foil with carrier, and copper laminated board or printed wiring board |
TWI511633B (en) * | 2011-03-30 | 2015-12-01 | Mitsui Mining & Smelting Co | Method of manufacturing multi-layer printed wiring board and multi-layer printed wiring board obtained by the manufacturing method |
JP5814168B2 (en) | 2012-03-27 | 2015-11-17 | Jx日鉱日石金属株式会社 | Copper foil with carrier |
KR101391811B1 (en) * | 2012-08-17 | 2014-05-07 | 일진머티리얼즈 주식회사 | Copper foil attached to the carrier foil, copper-clad laminate and printed circuit board using the same |
CN104685109B (en) * | 2012-09-28 | 2017-12-05 | Jx日矿日石金属株式会社 | The copper foil of appendix body and the copper-cover laminated plate with the copper foil for having appendix body |
JP6158573B2 (en) * | 2013-04-03 | 2017-07-05 | Jx金属株式会社 | Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board |
CN104120471B (en) * | 2013-04-26 | 2018-06-08 | Jx日矿日石金属株式会社 | High-frequency circuit copper foil, copper-clad plate, printing distributing board, the copper foil with carrier, electronic equipment and printing distributing board manufacturing method |
JP5651811B1 (en) * | 2013-06-13 | 2015-01-14 | Jx日鉱日石金属株式会社 | Copper foil with carrier, copper-clad laminate, printed wiring board, electronic device, and method for manufacturing printed wiring board |
WO2015012376A1 (en) * | 2013-07-24 | 2015-01-29 | Jx日鉱日石金属株式会社 | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board |
CN106715118B (en) * | 2014-10-30 | 2021-04-16 | 三井金属矿业株式会社 | Copper foil with carrier and method for manufacturing printed wiring board using the copper foil with carrier |
JP6487704B2 (en) * | 2015-02-12 | 2019-03-20 | 福田金属箔粉工業株式会社 | Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board |
JP5859155B1 (en) * | 2015-03-11 | 2016-02-10 | 福田金属箔粉工業株式会社 | Composite metal foil, method for producing the same, and printed wiring board |
WO2016143117A1 (en) * | 2015-03-12 | 2016-09-15 | 三井金属鉱業株式会社 | Metal foil with carrier, and manufacturing method for wiring board |
JP2016194112A (en) * | 2015-03-31 | 2016-11-17 | Jx金属株式会社 | Metal foil with carrier, laminate, printed wiring board, electronic device, method for manufacturing metal foil with carrier, and method for manufacturing printed wiring board |
JP5842077B1 (en) * | 2015-07-01 | 2016-01-13 | 三井金属鉱業株式会社 | Copper foil with carrier, copper-clad laminate and printed wiring board |
-
2016
- 2016-11-30 JP JP2016231977A patent/JP6471140B2/en active Active
-
2017
- 2017-10-20 KR KR1020170136320A patent/KR102118245B1/en active IP Right Grant
- 2017-10-26 TW TW106136898A patent/TWI694757B/en active
- 2017-11-22 CN CN201711172750.7A patent/CN108124391B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108124391B (en) | 2021-04-20 |
CN108124391A (en) | 2018-06-05 |
TW201822606A (en) | 2018-06-16 |
KR20180062344A (en) | 2018-06-08 |
KR102118245B1 (en) | 2020-06-02 |
TWI694757B (en) | 2020-05-21 |
JP2018087369A (en) | 2018-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9788423B2 (en) | Copper foil with carrier | |
JP6471140B2 (en) | Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate | |
TWI544115B (en) | Roughened copper foil, its manufacturing method, copper clad laminate and printed circuit board | |
JP5481577B1 (en) | Copper foil with carrier | |
JP4728723B2 (en) | Ultra-thin copper foil with carrier | |
CN103266335B (en) | Copper foil for printed circuit and copper-clad laminate | |
TWI479958B (en) | Copper foil for printed wiring board and manufacturing method thereof | |
JP4087369B2 (en) | Ultra-thin copper foil with carrier and printed wiring board | |
WO2012133638A1 (en) | Multilayer printed wiring board manufacturing method, and multilayer printed wiring board obtained by said manufacturing method | |
JP2004169181A (en) | Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier | |
JP2010100942A (en) | Ultra-thin copper foil with carrier, method of manufacturing the same and printed circuit board | |
JP2005260058A (en) | Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board | |
JP4748519B2 (en) | Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier | |
JP2014198884A (en) | Copper foil with carrier, print wiring board, print circuit sheet, copper clad laminate and manufacturing method of print wiring board | |
JP5481591B1 (en) | Copper foil with carrier | |
JP5298252B1 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP5481586B1 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP6329727B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP6329731B2 (en) | Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board | |
JP2010047842A (en) | Electrolytic copper foil and method for electropolishing glossy surface of electrolytic copper foil | |
JP2017133105A (en) | Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate and printed wiring board manufacturing method | |
JP2024536265A (en) | Ultra-thin copper foil with carrier foil for easy micro-hole processing, copper foil laminate including same, and method for manufacturing same | |
KR20230046856A (en) | Ultra Thin Copper Foil Attached To Carrier Foil for Embedded PCB and Method of Manufacturing Embedded PCB using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6471140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |