JP6458166B2 - 医用画像処理方法及び装置及びシステム及びプログラム - Google Patents
医用画像処理方法及び装置及びシステム及びプログラム Download PDFInfo
- Publication number
- JP6458166B2 JP6458166B2 JP2017551944A JP2017551944A JP6458166B2 JP 6458166 B2 JP6458166 B2 JP 6458166B2 JP 2017551944 A JP2017551944 A JP 2017551944A JP 2017551944 A JP2017551944 A JP 2017551944A JP 6458166 B2 JP6458166 B2 JP 6458166B2
- Authority
- JP
- Japan
- Prior art keywords
- probability
- pixel
- medical image
- linear
- linear tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
例えば、非特許文献1には、輝度値の連続性を用いた領域抽出に関する技術が開示されている。これは、Region growing法と呼ばれ、隣り合う画素間で輝度値が類似している場合、両者の画素は同じ組織を映したものであるとして統合・拡張するものである。
また、非特許文献2には、局所幾何形状解析に関する技術が記載されている。局所幾何形状解析は、画像内の画素毎に幾何形状(塊、線、面)の判定を行うもので、固有値の関係性を用いて領域を強調、抽出することができる。
医用画像処理方法であって、
前記処理部が、3次元の医用画像に対して、画素毎の画素値に従い実行する局所形状解析に基づき、各画素の画素値が線状らしいかを表す確率Pfを求め、
前記処理部が、記憶部に予め記憶された、臓器識別情報毎に画素値に対して画素が指定された対象臓器らしいかを表す確率Piを記憶した確率情報を参照し、各画素の画素値に基づき、各画素が対象臓器らしいかを表す確率Piを求め、
前記処理部が、各画素の連続性に基づき、周囲の線状組織画素が処理対象の画素上を通る確率を累積することにより確率Pcを求め、
前記処理部が、確率Pi及び確率Pcの積と、確率Pfとを、加算すること又は重み付けて加算することにより、各画素が線状らしいかを表す線状組織確率Pを求め、
前記処理部が、線状組織確率Pに従い線状組織確率画像を生成し、前記線状組織確率画像を表示部に表示する及び/又は前記記憶部に記憶する
医用画像処理方法が提供される。
医用画像処理装置であって、
撮影された3次元の医用画像、臓器識別情報毎に画素値に対して画素が指定された対象臓器らしいかを表す確率Piを示す確率情報、線状組織確率画像を記憶する記憶部と、
表示部と、
処理部と、
を備え、
前記処理部が、3次元の医用画像に対して、画素毎の画素値に従い実行する局所形状解析に基づき、各画素の画素値が線状らしいかを表す確率Pfを求め、
前記処理部が、前記記憶部に予め記憶された前記確率情報を参照し、各画素の画素値に基づき、各画素が対象臓器らしいかを表す確率Piを求め、
前記処理部が、各画素の連続性に基づき、周囲の線状組織画素が処理対象の画素上を通る確率を累積することにより確率Pcを求め、
前記処理部が、確率Pi及び確率Pcの積と、確率Pfとを、加算すること又は重み付けて加算することにより、各画素が線状らしいかを表す線状組織確率Pを求め、
前記処理部が、線状組織確率Pに従い線状組織確率画像を生成し、前記線状組織確率画像を表示部に表示する及び/又は前記記憶部に記憶する
医用画像処理装置が提供される。
医用画像処理システムであって、
3次元の医用画像を撮影及び取得する画像撮影装置と、
前記画像撮影装置から前記医用画像を入力し、前記医用画像に基づき線状組織確率画像を生成する、上述のような医用画像処理装置と、
を備えた医用画像処理システムが提供される。
医用画像処理プログラムであって、
前記処理部が、3次元の医用画像に対して、画素毎の画素値に従い実行する局所形状解析に基づき、各画素の画素値が線状らしいかを表す確率Pfを求めるステップと、
前記処理部が、記憶部に予め記憶された、臓器識別情報毎に画素値に対して画素が指定された対象臓器らしいかを表す確率Piを記憶した確率情報を参照し、各画素の画素値に基づき、各画素が対象臓器らしいかを表す確率Piを求めるステップと、
前記処理部が、各画素の連続性に基づき、周囲の線状組織画素が処理対象の画素上を通る確率を累積することにより確率Pcを求めるステップと、
前記処理部が、確率Pi及び確率Pcの積と、確率Pfとを、加算すること又は重み付けて加算することにより、各画素が線状らしいかを表す線状組織確率Pを求めるステップと、
前記処理部が、線状組織確率Pに従い線状組織確率画像を生成し、前記線状組織確率画像を表示部に表示する及び/又は前記記憶部に記憶するステップと
をコンピュータに実行させるための医用画像処理プログラムが提供される。
本発明及び/又は本実施の形態は、主に、従来困難であった分岐部のトポロジー的に正しい線状組織画像の抽出を高精度に実現するものである。本発明及び/又は本実施の形態は、特に、局所形状解析手法に分岐領域抽出手法を加える事で、線状組織確率Pを高精度に計算するものである。
医用画像処理装置は、次式のように、線状組織確率Pを局所形状解析に基づく線状領域確率Pfと分岐領域における線状領域確率Pbとの合計として算出する。また、線状領域確率Pbは画素値に基づく抽出対象臓器確率Piと周囲の線状組織の幾何的な連続性に基づく確率Pcとの積に基づき算出する。
=Pf+αPcPi
ここで、
P:線状組織確率
Pf:局所形状解析に基づく線状領域確率
Pb:分岐領域抽出法に基づく線状領域確率
α:重みパラメータ
Pc:連続性に基づく確率
Pi:輝度値に基づく確率
また、本発明及び/又は本実施の形態によると、例えば、安定した特徴量を持つ臓器である線状組織確率画像を、元の撮影画像内から抽出・除去することで、がんを含んだ領域を抽出することができる。主な安定した特徴量としては、例えば、線状組織(血管、気管支、神経など)についてのものがある。また、医用画像から線状構造物を表す線状組織確率画像を抽出・除去することで、疾患(の可能性がある)領域を抽出することに応用することができる。従来の線状構造物画像抽出法は不安定である場合が想定されるが、本発明及び/又は本実施の形態によると、安定した線状構造物画像抽出法を実現することができる。
図1に、医用画像処理システムの構成図を示す。
本システムは、医用画像処理装置10、画像撮影装置20を備える。
医用画像処理装置10は、処理部1、入力部2、表示部3、インタフェース部(I/F)4、記憶部5を備える。I/F4は、画像撮影装置20と接続し、撮影された画像を入力するためのインタフェースである。記憶部5は、画像ファイル51、確率Pi情報ファイル52、線状組織確率画像ファイル53を含む。
画像撮影装置20は、臓器等の3次元画像情報を撮影する。医用画像処理装置10は、画像撮影装置20から取得した画像情報を記憶部5に記憶する。撮影された画像は、例えば3次元医用画像(主にX線CT画像、MRIなど。以降、撮影機器のことをモダリティと呼ぶ。)等である。
以下に、フローチャートを参照して、医用画像処理の手順を述べる。
(ステップS101)
処理部1は、入力部2等による指定に従い、記憶部5(画像ファイル51)に記憶されている画像を取得する。
一例として、処理部1は、画像撮影装置20が測定した画像をI/F4を介して入力して記憶部5に画像を特定する予め定められたID毎に予め記憶しているものとすることができる。この場合、処理部1は、入力部1等により指定されたIDに従い、処理対象の臓器の識別情報及び画像を記憶部5から選択して読み出す。あるいは、処理部1は、このステップを実行する際、画像撮影装置20が測定した画像をI/F4を介して取得してもよい。なお、処理部1は、対象がひとつであったり、予め指定されている等の場合は、IDを省略し、ID毎に処理しなくてもよい(以下の処理において同様)。また、入力部2等により画像内の処理特定領域を設定してもよい。
(ステップS103)
処理部1は、処理対象の画像内の画素毎に局所形状解析を行い、画素毎にPfを求める(詳細は後述)。
(ステップS105)
処理部1は、取得した画像から画素を1点選択する。
(ステップS107)
処理部1は、ステップS105で選択した画素に対し、画素値に基づく抽出対象臓器(血管、気管支など)の確率Piを取得又は計算する(詳細は後述)。なお、抽出対象臓器は、ユーザーが入力部1により予め定めることができる。また、確率Piを取得するための情報は、事前情報として記憶部5(確率Pi情報ファイル52)に抽出対応臓器の識別情報に対応して予め記憶されていてもよいし、又は、操作者が入力部2又は外部装置等により任意に設定することも可能である。
(ステップS109)
処理部1は、ステップS105で選択した画素に対し、周囲の線状組織の幾何的な連続性に基づく確率Pcを計算する。連続性に基づく確率Pcは、例えば、周辺画素の第三主成分の固有ベクトルと周辺画素から見た選択画素への方向ベクトルの内積の絶対値に基づくものとし、選択画素と周辺画素間の距離や周辺画素の線状組織確率を重みとして乗じても良い(詳細は後述)。
(ステップS111)
処理部1は、次式のように、ステップS107で得られた確率PiとステップS109で得られたPcを乗じ、分岐領域における線状領域確率Pbとし、確率PbをステップS103で得られたPfに加算し、線状組織確率Pを求める。なお、加算の際、適宜の予め定めた重みパラメータαで重み付けを行っても良い。
(ステップS113)
処理部1は、ステップS105〜ステップS111を、処理対象の全ての画素に対して行う。
(ステップS115)
処理部1は、ステップS113までで得られた線状組織確率Pに対して、線状組織確率画像を生成し、表示部3に表示及び/又は記憶部5に記憶する(詳細は後述)。
[ステップS103:局所形状解析に基づく線状領域確率Pf]
処理部1は、局所幾何形状解析により、画素毎に幾何形状(塊、線、面)の判定を行い線状組織確率を計算することができる。この解析方法は、固有値の関係性を用いて線状組織画素を強調、抽出するものである。固有値、固有ベクトルの物理的意味は、画素値の分散(変化量)とその方向を表すものである。例えば、第3固有ベクトル方向(固有値が最も小さい方向)は、画素値のばらつきが小さい。以下に詳述するように、第1、第2固有値に対して第3固有値が十分に小さい場合、第3固有ベクトル方向に類似した画素値が連続していると考えられる。すなわち、血管や気管支のような線状構造の幾何形状物と考えられる。
なお、主に数式中では、スカラー量の変数をイタリック文字、ベクトル量の変数をボールド文字で記述する。また、3次元画像の画素値をI(x、y、z)またはI(r)とする。ここで、(x、y、z)は画像座標系の座標を表す。(なお、特許庁の出願書類のフォント等の制約上、必ずしもこれらのように記載できない箇所もある。)
また、画素値の変化量を定量的に表す方法に画素の固有値がある。画素の固有値は、次式で表されるHessian行列(ヘッセ行列)Hの固有値を計算することで得られる。
− λ1の方向(e1)は画素値の変化量が多く、λ3の方向(e3)は小さい。
− 変化量は固有値λの絶対値
よって、λ1とλ2がλ3に対して十分に大きい場合、画素が線状組織の確率が高い(|λ1|>|λ2|>>|λ3|≒0)。また、λ3の方向(e3)が線状組織の方向となる。
図3は、画素値(輝度値)に基づく確率Piの関係を示す図である。
この図は、一例として、肺野画像に対する血管の輝度値Iに基づく確率Piの関係を示す。例えば、この関係を示す図の情報を記憶部5(確率Pi情報ファイル52)に予め記憶しておき、処理部1は、この確率Pi情報ファイル52に記憶された確率Pi情報を参照することで、画素値(輝度値)に従い確率Piを求めることができる。
ある臓器を撮影した時、モダリティごとにその臓器が示す画素値はおおよそ同様である。但し、同じ値を持つ画素が必ずしも同じ臓器であるというわけではない。例えば、CT画像では軟組織のコントラストが低く、異なる臓器であるのに同じような画素値で撮影される。また、異なる臓器が同じ画素値で撮影された場合でも、例えば院内の撮影フローで撮影領域が固定されている場合、画素値ごとが対象臓器である確率はおおよそ見積もることができる(例:仮に同じ値をもつ画素が100個あったとしても、そのうち30個が対象臓器であるということがわかっていると、その画素値が対象の臓器であるという確率は0.3と見積もることができる。)。このように、画素値がもつ、それが抽出対象の臓器である、という確率のことを、”画素値に基づく抽出対象臓器確率”Piと定義している。このように、輝度値ごとに血管などの臓器情報としての固有確率が予め存在するとして、画像の輝度値分布(ヒストグラム)内の占める線状組織画素値から輝度値に基づく確率Piを算出することができる。
例として、肺野画像の中の血管組織の確率については、次式のように求めることができる。
分岐とは、線が1つに交わるということであり、周囲から伸びる線が交差する場所である。つまり、周囲の画素から伸びる線が交差する数が多いほど分岐である確率が高まる。処理部1は、分岐領域は複数の線状組織が重なる領域であるとして、周辺画素の線状情報が対象画素上を通る確率を累積し、連続性に基づく確率Pcを算出する。これは幾何情報が連続していることを利用しているので、”周囲の線状組織の幾何的な連続性に基づく確率”Pcと定義している。
処理部1は、次式により、確率Pcを求めることができる。
さらに、周辺画素の線らしさ項としての確率Pfを乗じている。上述のように、処理部1は、この確率Pfを、局所形状解析手法に計算する。
線状組織確率Pは、処理対象の全ての画素に対して計算し、確率画像そのものが血管構造画像等の線状組織確率画像として取得できる。得られた確率画像は線状組織らしい部分の値が大きくなっており、処理部1は、線状組織確率画像を、例えば、ユーザーが閾値を予め指定してやることで線領域を2値化して形状として生成することもでき、複数の閾値で多値化して生成してもよいし、また、線状組織確率P自体の確率画像のまま生成することも可能である。処理部1は、線状組織確率画像を、表示部3に表示及び/又は記憶部5に記憶する。
これは一例として、肺血管を対象例としたものである。図中、医師による手動抽出(Manual segmentation)、局所形状解析による確率Pf、確率PC、本発明及び/又は本発明実施の形態による線状組織確率Pによる、線状組織確率画像をそれぞれ示す。
本発明及び/又は本実施の形態によって作成した線状組織確率画像は、従来手法(局所形状解析)によって作成された確率画像と比べ、血管の分岐部を抽出することができている。
なお、線状組織確率画像に対して閾値を設定し、その血管領域を抽出した結果、従来手法と比べ、医師によるマニュアル抽出結果に近いこともわかった。
このように、幾何情報の連続性を評価することで、従来困難であった、分岐部領域の抽出が一層明確に可能となった。
処理部1は、さらに、上述の実施の形態の、線状組織確率画像を、予め定められた時間間隔ごとに取得及び形成するようにしてもよい。そして、処理部1は、これら情報を、ID毎に記憶部5に記憶し、また、表示部3に時間変化を動画により表示したり、複数の連続する静止画で表示することができる。
本実施の形態によると、形が不安定ながん領域(肺等)等の画像領域の抽出法が提案される。例えば、安定した形状を持つ臓器(気管支、血管など)等の画像領域を抽出・除去することで、残った領域をがん候補等の画素領域として抽出することができる。この抽出法を実現するために、本発明及び/又は本実施の形態のような線状組織確率の計算法が提供される。これを用いて抽出した線状組織確率画像は、例えば幾何情報の連続性を評価することで実現し、従来困難であった分岐部領域の画像領域の抽出が可能になった。
なお、ここでは、一例として肺についての画像を用いたが、本発明及び/又は本実施の形態は、これに限らず、心臓、脳、各種臓器等に適用することができ、また、がん領域に限らず適宜の領域を指定して抽出することに提供することもできる。
(ステップS201)
処理部1は、入力した肺画像に対して、前述の医用画像処理を適用し、線状組織確率Pを求め、線状組織確率画像を得ることで、線状の臓器抽出を行う。この例では、処理部1は、肺の気管支及び/又は血管についての線状組織確率画像Pを抽出する。
(ステップS202)
処理部1は、入力画像から、ステップS201で得られた線状組織確率画像(線状の臓器領域)を除去することでがん領域を抽出する。処理部1は、抽出したがん領域を表示部3に表示及び/又は記憶部5に記憶する。
本発明の応用としては、例えば医用画像セグメンテーションについては、例えば、診断や手術検討に利用が期待される。また、その他の画像からの線状情報抽出については、例えば、実画像の特徴量解析、地質調査、海洋調査、その他への応用が考えられる。
20 画像撮影装置
Claims (11)
- 医用画像処理方法であって、
前記処理部が、3次元の医用画像に対して、画素毎の画素値に従い実行する局所形状解析に基づき、各画素の画素値が線状らしいかを表す確率Pfを求め、
前記処理部が、記憶部に予め記憶された、臓器識別情報毎に画素値に対して画素が指定された対象臓器らしいかを表す確率Piを記憶した確率情報を参照し、各画素の画素値に基づき、各画素が対象臓器らしいかを表す確率Piを求め、
前記処理部が、各画素の連続性に基づき、周囲の線状組織画素が処理対象の画素上を通る確率を累積することにより確率Pcを求め、
前記処理部が、確率Pi及び確率Pcの積と、確率Pfとを、加算すること又は重み付けて加算することにより、各画素が線状らしいかを表す線状組織確率Pを求め、
前記処理部が、線状組織確率Pに従い線状組織確率画像を生成し、前記線状組織確率画像を表示部に表示する及び/又は前記記憶部に記憶する
医用画像処理方法。
- 請求項1に記載の医用画像処理方法において、
前記処理部は、各画素の画素値についてのヘッセ行列により、複数の固有値及び各固有値に対する固有ベクトルを求め、複数の固有値により線状組織画素であれば値が大きくなる予め定めた関数に従い、各画素の確率Pfを計算することを特徴とする医用画像処理方法。
- 請求項1又は2に記載の医用画像処理方法において、
前記記憶部は、予め撮影した画像に基づき求めた、臓器全体の画素値による確率密度に対する線状組織画素の画素値による確率密度の割合を、前記確率情報の確率Piとして予め記憶することを特徴とする医用画像処理方法。
- 請求項1乃至3のいずれかに記載の医用画像処理方法において、
前記処理部は、
処理の対象画素と周囲画素を指定し、
周囲画素の線の方向が対象画素の方向に向かっている程度を表す向きの同一性項と、対象画素と周囲画素との距離に従って値が減少する距離項により、対象画素の線らしさ項を求め、
前記局所形状解析に基づき求めた周辺画素の線らしさ項と、対象画素の線らしさ項との積を、複数の周辺画素について累積することにより、周辺画素から対象画素に線が伸びてくる度合いである、連続性に基づく確率Pcを求める
ことを特徴とする医用画像処理方法。
- 請求項1乃至4のいずれかに記載の医用画像処理方法において、
前記処理部は、線状組織確率Pに対して予め定められたひとつ又は複数の閾値により2値化又は多値化して線状組織確率画像を生成すること、又は、各画素の線状組織確率Pの分布により線状組織確率画像を生成することを特徴とする医用画像処理方法。
- 前記請求項1乃至5のいずれかに記載された医用画像処理方法により線状組織確率画像を生成し、
前記医用画像から、前記線状組織確率画像を除去することでがん領域又は他の対象画像を抽出し、前記がん領域又は前記他の対象画像を表示部に表示する及び/又は前記記憶部に記憶することを特徴とする医用画像処理方法。
- 請求項1乃至6のいずれかに記載の医用画像処理方法において、
前記処理部が、さらに、前記医用画像及び/又は前記線状組織確率画像を、予め定められた時間間隔又は時刻ごとに取得及び形成し、前記記憶部に記憶し、及び/又は、前記表示部に時間変化を動画により表示又は複数の連続する静止画により表示することを特徴とする医用画像処理方法。
- 請求項1乃至7のいずれかに記載の医用画像処理方法において、
前記線状組織確率画像は、それぞれ、血管形状、気管支形状、リンパ管形状、神経形状のいずれかひとつ又は複数を表す線状組織確率画像であることを特徴とする医用画像処理方法。
- 医用画像処理装置であって、
撮影された3次元の医用画像、臓器識別情報毎に画素値に対して画素が指定された対象臓器らしいかを表す確率Piを示す確率情報、線状組織確率画像を記憶する記憶部と、
表示部と、
処理部と、
を備え、
前記処理部が、3次元の医用画像に対して、画素毎の画素値に従い実行する局所形状解析に基づき、各画素の画素値が線状らしいかを表す確率Pfを求め、
前記処理部が、前記記憶部に予め記憶された前記確率情報を参照し、各画素の画素値に基づき、各画素が対象臓器らしいかを表す確率Piを求め、
前記処理部が、各画素の連続性に基づき、周囲の線状組織画素が処理対象の画素上を通る確率を累積することにより確率Pcを求め、
前記処理部が、確率Pi及び確率Pcの積と、確率Pfとを、加算すること又は重み付けて加算することにより、各画素が線状らしいかを表す線状組織確率Pを求め、
前記処理部が、線状組織確率Pに従い線状組織確率画像を生成し、前記線状組織確率画像を表示部に表示する及び/又は前記記憶部に記憶する
医用画像処理装置。
- 医用画像処理システムであって、
3次元の医用画像を撮影及び取得する画像撮影装置と、
前記画像撮影装置から前記医用画像を入力し、前記医用画像に基づき線状組織確率画像を生成する、請求項9に記載された医用画像処理装置と、
を備えた医用画像処理システム。
- 医用画像処理プログラムであって、
前記処理部が、3次元の医用画像に対して、画素毎の画素値に従い実行する局所形状解析に基づき、各画素の画素値が線状らしいかを表す確率Pfを求めるステップと、
前記処理部が、記憶部に予め記憶された、臓器識別情報毎に画素値に対して画素が指定された対象臓器らしいかを表す確率Piを記憶した確率情報を参照し、各画素の画素値に基づき、各画素が対象臓器らしいかを表す確率Piを求めるステップと、
前記処理部が、各画素の連続性に基づき、周囲の線状組織画素が処理対象の画素上を通る確率を累積することにより確率Pcを求めるステップと、
前記処理部が、確率Pi及び確率Pcの積と、確率Pfとを、加算すること又は重み付けて加算することにより、各画素が線状らしいかを表す線状組織確率Pを求めるステップと、
前記処理部が、線状組織確率Pに従い線状組織確率画像を生成し、前記線状組織確率画像を表示部に表示する及び/又は前記記憶部に記憶するステップと
をコンピュータに実行させるための医用画像処理プログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015226214 | 2015-11-19 | ||
JP2015226214 | 2015-11-19 | ||
PCT/JP2016/084239 WO2017086433A1 (ja) | 2015-11-19 | 2016-11-18 | 医用画像処理方法及び装置及びシステム及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017086433A1 JPWO2017086433A1 (ja) | 2018-07-05 |
JP6458166B2 true JP6458166B2 (ja) | 2019-01-23 |
Family
ID=58717420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017551944A Expired - Fee Related JP6458166B2 (ja) | 2015-11-19 | 2016-11-18 | 医用画像処理方法及び装置及びシステム及びプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6458166B2 (ja) |
WO (1) | WO2017086433A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6555785B2 (ja) * | 2017-05-26 | 2019-08-07 | 株式会社アルム | 脳画像データ処理装置、脳画像データ処理方法、および脳画像データ処理プログラム |
JP7318058B2 (ja) * | 2017-06-30 | 2023-07-31 | キヤノンメディカルシステムズ株式会社 | 画像処理装置 |
JP7005191B2 (ja) * | 2017-06-30 | 2022-01-21 | キヤノンメディカルシステムズ株式会社 | 画像処理装置、医用画像診断装置、及びプログラム |
CN112164020B (zh) * | 2020-03-31 | 2024-01-23 | 苏州润迈德医疗科技有限公司 | 精确提取血管中心线的方法、装置、分析系统和存储介质 |
CN112949654B (zh) * | 2021-02-25 | 2025-02-25 | 上海商汤善萃医疗科技有限公司 | 图像检测方法及相关装置、设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5832938B2 (ja) * | 2012-03-15 | 2015-12-16 | 富士フイルム株式会社 | 画像処理装置、方法及びプログラム |
US8958618B2 (en) * | 2012-06-28 | 2015-02-17 | Kabushiki Kaisha Toshiba | Method and system for identification of calcification in imaged blood vessels |
EP2912988A4 (en) * | 2012-12-19 | 2016-07-13 | Olympus Corp | DEVICE FOR PROCESSING MEDICAL PICTURES AND METHOD FOR PROCESSING MEDICAL PICTURES |
US9311570B2 (en) * | 2013-12-06 | 2016-04-12 | Kabushiki Kaisha Toshiba | Method of, and apparatus for, segmentation of structures in medical images |
-
2016
- 2016-11-18 WO PCT/JP2016/084239 patent/WO2017086433A1/ja active Application Filing
- 2016-11-18 JP JP2017551944A patent/JP6458166B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPWO2017086433A1 (ja) | 2018-07-05 |
WO2017086433A1 (ja) | 2017-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112885453B (zh) | 用于标识后续医学图像中的病理变化的方法和系统 | |
JP6058093B2 (ja) | 医療用画像のコンピュータ支援による解析装置、および、医療用画像解析のためのコンピュータプログラム | |
CN109074639B (zh) | 医学成像系统中的图像配准系统和方法 | |
US9275432B2 (en) | Method of, and apparatus for, registration of medical images | |
JP6570145B2 (ja) | 画像を処理する方法、プログラム、代替的な投影を構築する方法および装置 | |
CN107886508B (zh) | 差分减影方法和医学图像处理方法及系统 | |
JP6458166B2 (ja) | 医用画像処理方法及び装置及びシステム及びプログラム | |
JP2016531709A (ja) | 疾患を診断するための画像解析技術 | |
CN109124662B (zh) | 肋骨中心线检测装置及方法 | |
Pulagam et al. | Automated lung segmentation from HRCT scans with diffuse parenchymal lung diseases | |
JP5832938B2 (ja) | 画像処理装置、方法及びプログラム | |
JP2022509155A (ja) | 脳画像内の領域を特定するための装置 | |
US20190392552A1 (en) | Spine image registration method | |
JP2016189946A (ja) | 医用画像位置合わせ装置および方法並びにプログラム | |
CN115861656A (zh) | 用于自动处理医学图像以输出警报的方法、设备和系统 | |
US9390549B2 (en) | Shape data generation method and apparatus | |
JP6827707B2 (ja) | 情報処理装置および情報処理システム | |
JP4709290B2 (ja) | 画像処理装置および方法並びにプログラム | |
JP2015136480A (ja) | 3次元医用画像表示制御装置およびその作動方法並びに3次元医用画像表示制御プログラム | |
Myint et al. | Effective kidney segmentation using gradient based approach in abdominal CT images | |
Starzynski et al. | Morphing algorithm for building individualized 3D skeleton model from CT data | |
JP5343973B2 (ja) | 医用画像処理装置及びプログラム | |
Peter et al. | Novel registration-based framework for CT angiography in lower legs | |
EP4016470A1 (en) | 3d morhphological or anatomical landmark detection method and device using deep reinforcement learning | |
Cerrolaza et al. | Modeling human tissues: an efficient integrated methodology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6458166 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |