JP6457167B2 - CURRENT GENERATION METHOD, CAPACITOR TYPE POWER SUPPLY AND SENSOR WITH CAPACITOR TYPE POWER SUPPLY - Google Patents
CURRENT GENERATION METHOD, CAPACITOR TYPE POWER SUPPLY AND SENSOR WITH CAPACITOR TYPE POWER SUPPLY Download PDFInfo
- Publication number
- JP6457167B2 JP6457167B2 JP2013016125A JP2013016125A JP6457167B2 JP 6457167 B2 JP6457167 B2 JP 6457167B2 JP 2013016125 A JP2013016125 A JP 2013016125A JP 2013016125 A JP2013016125 A JP 2013016125A JP 6457167 B2 JP6457167 B2 JP 6457167B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- load
- current
- generating
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims description 34
- 238000000034 method Methods 0.000 title claims 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- 239000004408 titanium dioxide Substances 0.000 claims description 16
- 235000012239 silicon dioxide Nutrition 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 239000011521 glass Substances 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000003915 cell function Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- IKQCDTXBZKMPBB-UHFFFAOYSA-M 1-ethyl-3-methylimidazol-3-ium;iodide Chemical compound [I-].CCN1C=C[N+](C)=C1 IKQCDTXBZKMPBB-UHFFFAOYSA-M 0.000 description 1
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/26—Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は、キャパシタに関するものである。 The present invention relates to a capacitor.
様々な用途でキャパシタが使用されているが起電する機能を備えたキャパシタはない。 Although capacitors are used in various applications, no capacitor has a function of generating electricity.
また、センサを使用するためには電源が必要だが、充電していなくてもいつでも使用可能な電源はない。 In addition, a power source is required to use the sensor, but there is no power source that can be used at any time even if it is not charged.
シリコン等の半導体を用いた半導体ソーラーセルは変換効率が高い反面、高純度の材料を使用するため高価であるため、比較的安価なソーラーセルとして2酸化チタン(TiO2)あるいは酸化亜鉛(ZnO)を用いるソーラーセルがある。 Semiconductor solar cells using semiconductors such as silicon have high conversion efficiency, but are expensive because of the use of high-purity materials, so titanium dioxide (TiO2) or zinc oxide (ZnO) is used as a relatively inexpensive solar cell. There is a solar cell to use.
本発明者等は、2酸化ケイ素である人工水晶又は溶融石英が、光起電能を有することを発見し、2酸化ケイ素ソーラーセルを国際公開WO2011/049156号で提案し、さらに2酸化チタンソーラーセル要素と2酸化ケイ素ソーラーセル要素を直列に配置したタンデム型ソーラーセルを国際公開WO2012/124655号公報で提案した。
2酸化ケイ素ソーラーセルは材料が安価であり、2酸化チタンソーラーセルが起電に利用できない可視光及び赤外光でも起電する。
The present inventors discovered that artificial quartz or fused quartz, which is silicon dioxide, has photovoltaic ability, and proposed a silicon dioxide solar cell in International Publication WO2011 / 049156, and further a titanium dioxide solar cell. A tandem solar cell in which an element and a silicon dioxide solar cell element are arranged in series was proposed in International Publication No. WO2012 / 124655.
The silicon dioxide solar cell is inexpensive, and can generate electricity even with visible light and infrared light which cannot be used for electromotive force.
本発明者等は様々な実験を行う中でタンデム型ソーラーセルが起電した電荷を蓄積するキャパシタとして機能することを発見した。
負荷が接続されていない状態で起電された電荷はキャパシタとして機能するタンデム型ソーラーセルに蓄積され、負荷が接続されると瞬時に放電し、瞬時放電電流は定常起電時の4倍にも達する。
この特性を利用してセンサを構成することができる。
The present inventors discovered that a tandem solar cell functions as a capacitor for accumulating electric charges generated during various experiments.
Electric charges generated without a load connected are stored in a tandem solar cell that functions as a capacitor. When a load is connected, the electric charge is instantaneously discharged, and the instantaneous discharge current is four times that during steady-state generation. Reach.
A sensor can be configured using this characteristic.
この出願においては、タンデム型ソーラーセルを応用したキャパシタ及びタンデム型ソーラーセルを応用したキャパシタを電源として利用したセンサを提供する。
具体的には、透明導電膜が形成された2枚のガラス基板が各々の透明導電膜を向かい合わせて配置され、前記ガラス基板の一方に2酸化チタン起電体が配置され、前記ガラス基
板の他方に2酸化ケイ素起電体が配置され、2枚のガラス基板の間に電解質が充填された、光起電能を有するキャパシタ型電源を提供する。
In this application, a capacitor using a tandem solar cell and a sensor using a capacitor using a tandem solar cell as a power source are provided.
Specifically, two glass substrates on which a transparent conductive film is formed are disposed so that the transparent conductive films face each other, a titanium dioxide electromotive body is disposed on one of the glass substrates, A capacitor type power supply having photovoltaic ability is provided in which a silicon dioxide oxide body is disposed on the other side and an electrolyte is filled between two glass substrates.
この出願のタンデム型ソーラーセルを応用したキャパシタ及びタンデム型ソーラーセルを応用したキャパシタを電源として利用したセンサはソーラーセル機能により赤外光〜紫外光で起電し、起電した電荷をキャパシタに蓄積し、蓄積した電荷を大きな放電電流として放出する。
このことにより、起電可能な光があればどのような場所でも他の電源無しに動作するセンサが構成される。
The sensor using the tandem solar cell and the sensor using the tandem solar cell of this application as a power source generates electricity from infrared light to ultraviolet light by the solar cell function and accumulates the generated electric charge in the capacitor. Then, the accumulated charge is released as a large discharge current.
This constitutes a sensor that operates without any other power source wherever there is light that can be generated.
以下、図面を参照してこの出願に係る発明の実施例を説明する。
図1に示したのは、本発明実施例である2酸化チタン起電体と2酸化ケイ素起電体を組み合わせて構成した光起電能を有するキャパシタの基本構成である。
この実施例において、1及び3は各々FTO(フッ素ドープ酸化錫)層2及びFTO層4を有するガラス基板であり、FTO層2及び4はキャパシタ電極として機能する。
なお、基板1及び3はPET樹脂あるいはPEN樹脂を使用することもできる。
5は2酸化チタン起電体、6は2酸化ケイ素起電体、7は白金膜である。
Embodiments of the invention according to this application will be described below with reference to the drawings.
FIG. 1 shows a basic configuration of a capacitor having a photovoltaic capacity, which is a combination of a titanium dioxide generator and a silicon dioxide generator, which are embodiments of the present invention.
In this embodiment,
The
5 is a titanium dioxide electromotive body, 6 is a silicon dioxide electromotive body, and 7 is a platinum film.
8は電解質であり、無色の電解質、1−エチル−3−メチルイミダゾリウムアイオダイド0.4mol,テトラブチルアンモニウムアイオダイド0.4mol,4-tert-butyl pyridine:0.2mol,グアニジウムイソチオシアネート0.1molをプロピレンカーボネート液を溶媒として調製したもの等が利用可能である。 8 is an electrolyte, colorless electrolyte, 1-ethyl-3-methylimidazolium iodide 0.4 mol, tetrabutylammonium iodide 0.4 mol, 4-tert-butyl pyridine: 0.2 mol, guanidinium isothiocyanate Those prepared by using 0.1 mol of a propylene carbonate solution as a solvent can be used.
2酸化チタン起電体5は紫外光を照射されると起電し、2酸化ケイ素起電体6は紫外光から可視光、さらには赤外光の照射によって起電する。 The titanium dioxide electromotive body 5 is electromotive when irradiated with ultraviolet light, and the silicon dioxide electromotive body 6 is electrogenerated by irradiation with ultraviolet light, visible light, and further infrared light.
FTO膜2及び4はキャパシタの対向電極として機能する。
2酸化チタン起電体5及び2酸化ケイ素起電体6は赤外光〜紫外光を照射されると起電
し、負荷が接続されていないと起電された電荷はキャパシタの対向電極として機能するF
TO膜2と4の間に蓄積・充電される。このような状態で負荷が接続されると、蓄積され
た電荷が負荷を通して放電する。これによって電流を発生することができる。
The FTO films 2 and 4 function as counter electrodes of the capacitor.
The titanium dioxide electromotive body 5 and the silicon dioxide oxide electromotive body 6 generate electricity when irradiated with infrared light to ultraviolet light, and when the load is not connected, the generated electric charge functions as a counter electrode of the capacitor. F to do
Accumulated and charged between TO films 2 and 4. When the load is connected in such a state, the accumulated charges are discharged through the load. As a result, a current can be generated.
以下、充放電の状況を実験結果のグラフで説明する。
実験に使用したキャパシタの面積は2cm×3cmであり、照射光源として蛍光ランプを使用し、そのときの照度は600luxである。
Hereinafter, the state of charging / discharging will be described with graphs of experimental results.
The area of the capacitor used in the experiment is 2 cm × 3 cm, a fluorescent lamp is used as the irradiation light source, and the illuminance at that time is 600 lux.
図2に示したのは長時間負荷を接続した後、負荷の接続断及び接続を10秒ごとに繰り
返したときの出力電流の変化であり、図4に示したのはそのときの出力電圧の変化である。
FIG. 2 shows the change in output current when the load is disconnected and connected repeatedly every 10 seconds after the load is connected for a long time, and FIG. 4 shows the output voltage at that time. It is a change.
図2において、負荷を接続したときの定常電流値は28.6μAであった。 In FIG. 2, the steady current value when a load was connected was 28.6 μA.
10秒後に負荷を接続断とすると、出力電流は0となる。
その10秒後に負荷を接続すると最大瞬間値で115.3μAと約4倍の放電電流が流れ、その後電流は定常電流値28.6μAに向かって減衰する。
If the load is disconnected after 10 seconds, the output current becomes zero.
When a load is connected after 10 seconds, a discharge current that is about four times as large as 115.3 μA flows at the maximum instantaneous value, and then the current attenuates toward a steady current value of 28.6 μA.
10秒後に再び負荷を接続断とすると、出力電流は0となり、その10秒後に負荷を接続すると大きな放電電流が流れ、その後電流は定常電流値に向かって減衰する。
以後、この変化を繰り返す。
When the load is disconnected again after 10 seconds, the output current becomes 0. When the load is connected after 10 seconds, a large discharge current flows, and then the current attenuates toward the steady current value.
Thereafter, this change is repeated.
図3に充放電出力電流波形の細部を示す。この波形から見て、実施例のキャパシタは積分回路であると推定される。 FIG. 3 shows the details of the charge / discharge output current waveform. From this waveform, it is estimated that the capacitor of the embodiment is an integration circuit.
出力電圧は、図4に示したとおり負荷を接続断としたときに0.02508V、負荷を接続したときに0.29492Vと約10倍であり、負荷接続中及び負荷切断中の電圧変化はない。 The output voltage is 0.02508 V when the load is disconnected as shown in FIG. 4 and 0.29492 V when the load is connected, approximately 10 times, and the voltage change during load connection and load disconnection is Absent.
図3から見て取れるように、負荷が接続されたときに大きな出力電流が流れる。
この出力電流を検出することにより、負荷の接続を確実に検出することができる。
As can be seen from FIG. 3, a large output current flows when a load is connected.
By detecting this output current, it is possible to reliably detect the connection of the load.
また、その場合の電荷は通常の環境に普遍的に存在する赤外光を含む光の照射によって得られるから、負荷の接続を検出するために別途電池等を準備する必要がない。 In addition, since the charge in that case is obtained by irradiation with light including infrared light that is universally present in a normal environment, it is not necessary to separately prepare a battery or the like in order to detect load connection.
負荷の接続断時間を20秒とした場合の出力電流変化を図5に示す。
図5において、負荷を接続したときの定常電流値は28.6μAであった。
FIG. 5 shows the change in output current when the load disconnection time is 20 seconds.
In FIG. 5, the steady-state current value when the load was connected was 28.6 μA.
10秒後に負荷を接続断とすると、出力電流は0となる。
その10秒後に負荷を接続すると最大瞬間値で86.7μAと約3倍の放電電流が流れ、その後電流は定常電流値28.6μAに向かって減衰する。
If the load is disconnected after 10 seconds, the output current becomes zero.
When a load is connected after 10 seconds, a discharge current of about 3 times as large as 86.7 μA flows at the maximum instantaneous value, and then the current attenuates toward a steady current value of 28.6 μA.
10秒後に再び負荷を接続断とすると、出力電流は0となり、その10秒後に負荷を接続すると大きな放電電流が流れ、その後電流は定常電流値に向かって減衰する。
以後、この変化を繰り返す。
When the load is disconnected again after 10 seconds, the output current becomes 0. When the load is connected after 10 seconds, a large discharge current flows, and then the current attenuates toward the steady current value.
Thereafter, this change is repeated.
負荷の切断と接続の時間を各々1秒とした場合の出力電流変化を図6に示す。
この場合最大出力電流は415.5μAと定常電流値の14.5倍にも達した。
The output current changes in the case of the respective second connecting and disconnecting time of the load shown in FIG.
In this case, the maximum output current was 415.5 μA, reaching 14.5 times the steady current value.
最後に、この出願の発明として適用可能なソーラーセルを例示する。
図7(a)に示したのは2酸化チタン起電体5のみを有するキャパシタである。
Finally, a solar cell applicable as the invention of this application will be exemplified.
FIG. 7A shows a capacitor having only the titanium dioxide electromotive body 5.
図7(b)示したのは2酸化チタン起電体5に代えて色素増感2酸化チタンを用いたキャパシタである。 FIG. 7B shows a capacitor using dye-sensitized titanium dioxide instead of the titanium dioxide electromotive body 5.
図7(c)に示したのは2酸化ケイ素起電体6のみを有するキャパシタである。 In shown FIG. 7 (c) is a capacitor having only silicon dioxide electromotive body 6.
なお、実施例として示していないが、図1の2酸化チタン起電体5に代えて色素増感2酸化チタンを用いたキャパシタとすることも可能である。 Although not shown as an example, a capacitor using a dye-sensitized titanium dioxide instead of the titanium dioxide electromotive body 5 of FIG. 1 may be used.
本発明による光起電能を有するキャパシタは電源不要の高感度センサとして極めて有用である。 The photovoltaic capacitor according to the present invention is extremely useful as a high-sensitivity sensor that does not require a power source.
1,3 ガラス基板
2,4 透明導電膜
5 2酸化チタン起電体
6 2酸化ケイ素起電体
7 白金膜
8 電解質
9 色素増感2酸化チタン起電体
DESCRIPTION OF
Claims (7)
前記ガラス基板の一方に2酸化ケイ素起電体が配置され、
前記2枚のガラス基板の間に電解質が充填されている光起電能を有するキャパシタに、
負荷の接続および負荷の切断を繰り返し、放電による電流を発生させる方法。 Two glass substrates on which transparent conductive films are formed are arranged with each transparent conductive film facing each other,
A silicon dioxide electromotive body is disposed on one of the glass substrates;
In a capacitor having a photovoltaic capacity in which an electrolyte is filled between the two glass substrates,
A method of generating current by discharging by repeatedly connecting and disconnecting the load.
前記ガラス基板の他方には、2酸化チタン起電体が配置されていることを特徴とする電流を発生させる方法。 The method of generating a current according to claim 1,
A method of generating an electric current, wherein a titanium dioxide electromotive body is disposed on the other side of the glass substrate.
前記ガラス基板の一方に2酸化ケイ素起電体が配置され、
前記2枚のガラス基板の間に電解質が充填されている光起電能を有するキャパシタに、負荷の接続および負荷の切断を繰り返すことによって、放電による電流を発生する機能を付したキャパシタ型電源。 Two glass substrates on which transparent conductive films are formed are arranged with each transparent conductive film facing each other,
A silicon dioxide electromotive body is disposed on one of the glass substrates;
A capacitor-type power supply having a function of generating a current due to discharge by repeatedly connecting and disconnecting a load to a photovoltaic capacitor filled with an electrolyte between the two glass substrates .
Using as a sensor capacitor power source according to claim 5 or 6.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013016125A JP6457167B2 (en) | 2013-01-30 | 2013-01-30 | CURRENT GENERATION METHOD, CAPACITOR TYPE POWER SUPPLY AND SENSOR WITH CAPACITOR TYPE POWER SUPPLY |
PCT/JP2014/052044 WO2014119645A1 (en) | 2013-01-30 | 2014-01-30 | Capacitor having photovoltaic capability |
DE112014000609.2T DE112014000609T5 (en) | 2013-01-30 | 2014-01-30 | Condenser for photovoltaic use |
CN201480006828.6A CN104995704A (en) | 2013-01-30 | 2014-01-30 | Capacitor having photovoltaic capability |
HK16103050.3A HK1215099A1 (en) | 2013-01-30 | 2016-03-16 | Capacitor having photovoltaic capability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013016125A JP6457167B2 (en) | 2013-01-30 | 2013-01-30 | CURRENT GENERATION METHOD, CAPACITOR TYPE POWER SUPPLY AND SENSOR WITH CAPACITOR TYPE POWER SUPPLY |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014146773A JP2014146773A (en) | 2014-08-14 |
JP6457167B2 true JP6457167B2 (en) | 2019-01-23 |
Family
ID=51262356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013016125A Active JP6457167B2 (en) | 2013-01-30 | 2013-01-30 | CURRENT GENERATION METHOD, CAPACITOR TYPE POWER SUPPLY AND SENSOR WITH CAPACITOR TYPE POWER SUPPLY |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6457167B2 (en) |
CN (1) | CN104995704A (en) |
DE (1) | DE112014000609T5 (en) |
HK (1) | HK1215099A1 (en) |
WO (1) | WO2014119645A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230045460A (en) * | 2021-09-28 | 2023-04-04 | 삼성전자주식회사 | Capacitor, memory device including the capacitor, and method for fabricating the capacitor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243995A (en) * | 2000-02-29 | 2001-09-07 | Fuji Photo Film Co Ltd | Photoelectric conversion element and photoelectric cell |
EP1589548A1 (en) * | 2004-04-23 | 2005-10-26 | Sony Deutschland GmbH | A method of producing a porous semiconductor film on a substrate |
JP4201035B2 (en) * | 2006-09-05 | 2008-12-24 | セイコーエプソン株式会社 | Battery element and electronic device |
RU2011113646A (en) * | 2008-09-09 | 2012-10-20 | Мерк Патент ГмбХ (DE) | ORGANIC MATERIAL AND ELECTROPHOTOGRAPHIC DEVICE |
JP5430925B2 (en) * | 2008-12-26 | 2014-03-05 | 国立大学法人 岡山大学 | Structure in which dye binds to conductive substrate via peptide, and photoelectric conversion element provided with the structure |
JP5581468B2 (en) * | 2009-07-22 | 2014-09-03 | 島根県 | Dye-sensitized solar cell |
EP2492375B1 (en) * | 2009-10-21 | 2017-12-06 | International Frontier Technology Laboratory Inc. | Photocell |
TWI542023B (en) * | 2011-03-11 | 2016-07-11 | Internat Frontier Tech Lab Inc | Silicon dioxide solar cells |
-
2013
- 2013-01-30 JP JP2013016125A patent/JP6457167B2/en active Active
-
2014
- 2014-01-30 DE DE112014000609.2T patent/DE112014000609T5/en active Pending
- 2014-01-30 WO PCT/JP2014/052044 patent/WO2014119645A1/en active Application Filing
- 2014-01-30 CN CN201480006828.6A patent/CN104995704A/en active Pending
-
2016
- 2016-03-16 HK HK16103050.3A patent/HK1215099A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2014119645A1 (en) | 2014-08-07 |
DE112014000609T5 (en) | 2015-10-29 |
HK1215099A1 (en) | 2016-08-12 |
JP2014146773A (en) | 2014-08-14 |
CN104995704A (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sauvage et al. | Butyronitrile-based electrolyte for dye-sensitized solar cells | |
JP2013004566A (en) | Solar cell generator | |
US20160308570A1 (en) | Mobile electronic device casing | |
Mini et al. | Design and development of an integrated device consisting of an independent solar cell with electrical storage capacity | |
US10063182B2 (en) | Hybrid power generating device | |
Sandbaumhüter et al. | Compatibility study towards monolithic self-charging power unit based on all-solid thin-film solar module and battery | |
US10147554B2 (en) | Energy storage dye-sensitized solar cell | |
JP6457167B2 (en) | CURRENT GENERATION METHOD, CAPACITOR TYPE POWER SUPPLY AND SENSOR WITH CAPACITOR TYPE POWER SUPPLY | |
Sun et al. | Laser-assisted fabrication of microphotocapacitors with high energy density and output voltage | |
Lomeri et al. | Integration of a Paper‐Based Supercapacitor and Flexible Perovskite Mini‐Module: Toward Self‐Powered Portable and Wearable Electronics | |
WO2017085929A1 (en) | Photoelectric conversion device | |
JP2012054537A5 (en) | ||
JP6176697B2 (en) | Silicon dioxide solar cell | |
US20110297210A1 (en) | Fastening base and packaging container | |
KR20140082898A (en) | photovoltaic energy ultracapacitor and driving apparatus having the same | |
Sofia et al. | Electrical circuit modeling of photo–supercapacitor using Zubieta–Bonert model | |
JP6159066B2 (en) | Composite solar cell | |
JP6542019B2 (en) | Solar charger | |
JP6176699B2 (en) | Dye-sensitized tandem silicon dioxide solar cell | |
JP2012227457A5 (en) | ||
JP2011187183A5 (en) | ||
JP2011187183A (en) | Dye-sensitized solar cell | |
JP6176698B2 (en) | Dye-sensitized tandem silicon dioxide solar cell | |
JP2012167470A (en) | Lighting device using dye-sensitized solar cell, and display unit using the lighting device | |
JP2019149583A (en) | Dye-sensitized solar cell and electronic apparatus including dye-sensitized solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20150512 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150729 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170104 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170810 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170821 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20171006 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20171101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20171101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6457167 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |