JP6451002B2 - Rapid inspection method and system for Salmonella in feed - Google Patents
Rapid inspection method and system for Salmonella in feed Download PDFInfo
- Publication number
- JP6451002B2 JP6451002B2 JP2014045902A JP2014045902A JP6451002B2 JP 6451002 B2 JP6451002 B2 JP 6451002B2 JP 2014045902 A JP2014045902 A JP 2014045902A JP 2014045902 A JP2014045902 A JP 2014045902A JP 6451002 B2 JP6451002 B2 JP 6451002B2
- Authority
- JP
- Japan
- Prior art keywords
- salmonella
- nucleic acid
- feed
- medium
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 110
- 241000607142 Salmonella Species 0.000 title claims description 87
- 238000007689 inspection Methods 0.000 title claims description 49
- 150000007523 nucleic acids Chemical class 0.000 claims description 87
- 108020004707 nucleic acids Proteins 0.000 claims description 78
- 102000039446 nucleic acids Human genes 0.000 claims description 78
- 239000002609 medium Substances 0.000 claims description 25
- 229920000642 polymer Polymers 0.000 claims description 22
- 239000012528 membrane Substances 0.000 claims description 19
- 238000005406 washing Methods 0.000 claims description 19
- 239000006873 mp medium Substances 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 12
- 239000006166 lysate Substances 0.000 claims description 9
- 238000003753 real-time PCR Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000012258 culturing Methods 0.000 claims description 3
- 239000000523 sample Substances 0.000 description 43
- 239000000243 solution Substances 0.000 description 21
- 238000010998 test method Methods 0.000 description 20
- 238000001514 detection method Methods 0.000 description 18
- 230000035945 sensitivity Effects 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 16
- 238000004140 cleaning Methods 0.000 description 12
- 238000000605 extraction Methods 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000011109 contamination Methods 0.000 description 8
- 238000012136 culture method Methods 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 230000009089 cytolysis Effects 0.000 description 6
- 241001138501 Salmonella enterica Species 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 206010016952 Food poisoning Diseases 0.000 description 3
- 208000019331 Foodborne disease Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 description 3
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 244000144972 livestock Species 0.000 description 3
- 239000012139 lysis buffer Substances 0.000 description 3
- 229960002950 novobiocin Drugs 0.000 description 3
- YJQPYGGHQPGBLI-KGSXXDOSSA-N novobiocin Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-N 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000006152 selective media Substances 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 238000007397 LAMP assay Methods 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 2
- 101100082060 Xenopus laevis pou5f1.1 gene Proteins 0.000 description 2
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 229940081735 acetylcellulose Drugs 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- -1 rRNA Proteins 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012340 reverse transcriptase PCR Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- 101000725916 Homo sapiens Putative tumor antigen NA88-A Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 102100027596 Putative tumor antigen NA88-A Human genes 0.000 description 1
- 235000019779 Rapeseed Meal Nutrition 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 244000309740 Salmonella enterica serotype Choleraesuis Species 0.000 description 1
- 241001354013 Salmonella enterica subsp. enterica serovar Enteritidis Species 0.000 description 1
- 241000607132 Salmonella enterica subsp. enterica serovar Gallinarum Species 0.000 description 1
- 241000577475 Salmonella enterica subsp. enterica serovar Paratyphi C Species 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 241001467018 Typhis Species 0.000 description 1
- 208000037386 Typhoid Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000004858 feed analysis Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000004456 rapeseed meal Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 201000008297 typhoid fever Diseases 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-O vancomycin(1+) Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C([O-])=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)[NH2+]C)[C@H]1C[C@](C)([NH3+])[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-O 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
本発明は、飼料中のサルモネラの迅速検査方法及びそのシステムに関する。より詳細には、飼料中のサルモネラを検査するに当たり、まず飼料を培養してサルモネラの増菌培養液を得た後、得られた増菌培養液から高分子多孔質メンブレンフィルターを用いて核酸を抽出し、抽出された核酸をPCR法によって検出するという、従来よりも感度が良く、かつ検査時間が短縮された飼料中のサルモネラの迅速検査方法及びそのシステムに関する。 The present invention relates to a rapid inspection method and system for Salmonella in feed. More specifically, when examining Salmonella in the feed, the feed is first cultured to obtain a Salmonella enrichment culture, and then the nucleic acid is extracted from the enrichment culture using the polymer porous membrane filter. The present invention relates to a rapid test method and system for Salmonella in feed, which is extracted and detects the extracted nucleic acid by a PCR method, which is more sensitive than conventional methods and has a shorter test time.
サルモネラ属に属する細菌(以下「サルモネラ」という。)による汚染は、飼料産業において深刻な問題を引き起こす。すなわち、飼料中のサルモネラ汚染は、家畜などに対する感染源となり、家畜などに基づき生産された食品の汚染につながるものである。その結果、前記食品がヒトにおいて食中毒を引き起こす原因となる可能性も否定できない。そこで、サルモネラのような病原性微生物に汚染された飼料が、製造、使用及び販売されないように、家畜などに供される飼料は、飼料の安全性の確保及び品質の改善に関する法律によって厳重に規制されている。例えば、平成10年には、農林水産省より、「飼料製造に係るサルモネラ対策ガイドライン」が通知され(平成19年改正)、それ以降、飼料工場における管理体制が強化された。そのため、近年、飼料のサルモネラ陽性率は減少しているが、依然として2%前後の陽性率で推移しており、安心できる状況ではない。 Contamination by bacteria belonging to the genus Salmonella (hereinafter referred to as “Salmonella”) causes serious problems in the feed industry. That is, Salmonella contamination in feed becomes a source of infection for livestock and the like, leading to contamination of food produced based on livestock. As a result, it cannot be denied that the food may cause food poisoning in humans. Therefore, in order to prevent feed contaminated with pathogenic microorganisms such as Salmonella from being manufactured, used and sold, feed provided to livestock is strictly regulated by laws on ensuring the safety of feed and improving quality. Has been. For example, in 1998, the Ministry of Agriculture, Forestry and Fisheries notified the “Guidelines for Salmonella Countermeasures for Feed Production” (revised in 2007), and thereafter the management system at the feed factory was strengthened. Therefore, although the salmonella positive rate of feed has been decreasing in recent years, it still remains at a positive rate of around 2%, which is not a reliable situation.
また、上記「ガイドライン」では、飼料工場に対して、飼料原料、製品及び製造工程中のサルモネラの定期検査を求めているが、平成20年には、「飼料分析基準」が通知され、これには、サルモネラ菌を検査するための培養法(いわゆる公定培養法)が規定されている。しかしながら、この公定培養法は、結果がわかるまでに5日間も要するため、迅速性と簡便性が求められる飼料工場においては実用性に欠け、公定培養法に代えて、迅速性のある簡易検査キット法を用いて検査することも、本ガイドラインでは容認されている。そのため、これまで、簡易検査キット法による飼料中のサルモネラの迅速検査方法が、精力的に検討されてきているが、依然として検査を終了するまでに2〜3日かかり、より迅速で簡便な方法が求められていた。 In addition, the above “Guidelines” require the feed factory to conduct periodic inspections of feed ingredients, products, and Salmonella during the manufacturing process. In 2008, the “Feed Analysis Standard” was notified, Stipulates a culture method (so-called official culture method) for examining Salmonella. However, this official culture method requires 5 days to understand the results, so it lacks practicality in feed factories where quickness and simplicity are required, and instead of the official culture method, a quick and simple test kit is available. Inspection by law is also permitted in this guideline. Therefore, until now, the rapid inspection method of Salmonella in feed by the simple inspection kit method has been energetically studied, but it still takes 2-3 days to complete the inspection, and there is a more rapid and simple method. It was sought after.
そこで登場したのが、クオリバックス(登録商標)システムなどのPCR原理を利用した簡易迅速検査方法である(非特許文献1)。非特許文献1では、飼料中のサルモネラを対象に、公定培養法と自動測定装置クオリバックス(登録商標)システムによる検査方法(以下「BAX法」という。)とを比較し、飼料工場における品質管理に用いる検査方法として、BAX法が公定培養法と同程度に有用であることを確認している。しかしながら、このようなBAX法を用いても、試料の調製から判定に至るまでに最短でも24時間を要し、より迅速で簡便な方法が求められていた。 Therefore, a simple rapid inspection method using the PCR principle such as Qualibax (registered trademark) system has appeared (Non-Patent Document 1). In Non-Patent Document 1, for Salmonella in feed, the official culture method is compared with the inspection method (hereinafter referred to as “BAX method”) using an automatic measurement device Qualibax (registered trademark) system, and quality control in the feed factory is performed. It has been confirmed that the BAX method is as useful as the official culture method as the test method used for the test. However, even when such a BAX method is used, a minimum of 24 hours is required from the preparation of the sample to the determination, and a more rapid and simple method has been demanded.
他方、近年、核酸を回収する方法においては目覚ましい進歩があり、核酸を含む試料中の夾雑物を所望の方法で除去し、核酸を固相担体に吸着させ回収した後、担体を洗浄し、担体から核酸を液相に回収するという、いわゆる固相に核酸を吸着、固定化等の手段によって核酸を抽出・精製する技術が多数提案されている。例えば、非特許文献2では、高分子多孔質メンブレンフィルターに核酸を吸着させ、次いでこれを脱着して、生体試料から迅速かつ簡便に核酸を抽出する方法が提案されている。この高分子多孔質メンブレンを用いた迅速かつ簡便な核酸抽出システムはクイックジーン(登録商標)と呼ばれるものであるが、これまで、このような方法は、全血や動物組織から核酸を抽出するためのものであって、医療業界では一定の実績があるものの、飼料業界では全く実績がなく、サルモネラを含む飼料の増菌培養液から核酸を抽出できるどうかかは全く試されていなかった。 On the other hand, in recent years, there has been a remarkable progress in the method of recovering nucleic acids, removing impurities in a sample containing nucleic acids by a desired method, adsorbing and recovering nucleic acids on a solid phase carrier, washing the carrier, Numerous techniques for extracting and purifying nucleic acid by means of adsorbing and immobilizing nucleic acid on a so-called solid phase, such as recovering nucleic acid from a liquid phase have been proposed. For example, Non-Patent Document 2 proposes a method for extracting nucleic acid from a biological sample quickly and easily by adsorbing nucleic acid to a polymer porous membrane filter and then desorbing it. A rapid and simple nucleic acid extraction system using this polymer porous membrane is called Quick Gene (registered trademark). Until now, such a method is used to extract nucleic acid from whole blood or animal tissue. Although it has a certain track record in the medical industry, it has no track record in the feed industry, and no attempt has been made as to whether or not nucleic acid can be extracted from the enrichment culture solution of feed containing Salmonella.
本発明の課題は、従来よりも感度がよく、かつ検査時間が短縮された飼料中のサルモネラの迅速検査方法及びそのシステムを提供することである。 An object of the present invention is to provide a rapid inspection method and system for Salmonella in feed, which is more sensitive than the prior art and has a shorter inspection time.
本発明者らは、飼料中のサルモネラの迅速検査方法について鋭意研究を行った結果、まず飼料を培養してサルモネラの増菌培養液を得た後、得られた増菌培養液から高分子多孔質メンブレンフィルターを用いて核酸を抽出し、抽出された核酸をPCR法によって検出することによって、迅速かつ簡便に飼料中のサルモネラを検出できることを見出し、本発明を完成させた。そして、驚くべきことに、本検査方法を採用すると、従来よりもサンプル調整作業がはかどるだけでなく、極めて高い感度で飼料中のサルモネラを検出できることを見出した。さらに、核酸を抽出する際、洗浄工程を省略すると、エラーが少なく、かつ感度が高い検査が行えることを見出した。また、このような感度のよい検査方法を確立した結果、従来の前増菌培養時間を大幅に短縮できることも見出した。 As a result of earnest research on the rapid inspection method for Salmonella in the feed, the present inventors first cultivated the feed to obtain a Salmonella enrichment culture, and then obtained a polymer porous medium from the enrichment culture obtained. It was found that by extracting a nucleic acid using a quality membrane filter and detecting the extracted nucleic acid by a PCR method, Salmonella in the feed can be detected quickly and easily, and the present invention has been completed. Surprisingly, it has been found that when this inspection method is employed, not only the sample preparation work is accelerated, but also salmonella in the feed can be detected with extremely high sensitivity. Furthermore, when extracting a nucleic acid, when the washing | cleaning process was abbreviate | omitted, it discovered that an inspection with few errors and high sensitivity could be performed. In addition, as a result of establishing such a highly sensitive test method, it was found that the conventional pre-enrichment culture time can be greatly shortened.
すなわち、本発明の一態様によれば、飼料中のサルモネラの迅速検査方法であって、
(a)前記飼料を培地で培養して、サルモネラの増菌培養液を得る工程、
(b)得られた増菌培養液から高分子多孔質メンブレンフィルターを用いて、サルモネラの核酸を抽出する工程、
(c)抽出された核酸をPCR法によって検出する工程、を含む方法を提供することができる。
本発明の好ましい態様によれば、上記前記培地が、MP培地である、飼料中のサルモネラの迅速検査方法を提供することができる。
本発明の好ましい態様によれば、上記PCR法が、リアルタイムPCRである、飼料中のサルモネラの迅速検査方法を提供することができる。
本発明の好ましい態様によれば、上記核酸の抽出において、洗浄工程を含まない、飼料中のサルモネラの迅速検査方法を提供することができる。
本発明の好ましい態様によれば、上記核酸の抽出が、クイックジーン(登録商標)で行われる飼料中のサルモネラの迅速検査方法を提供することができる。
本発明の好ましい態様によれば、上記核酸の検出が、クオリバックス(登録商標)で行われる飼料中のサルモネラの迅速検査方法を提供することができる。
本発明の好ましい態様によれば、上記サルモネラの検出が、9〜11時間以内で終了する、飼料中のサルモネラの迅速検査方法を提供することができる。
また、本発明の一態様によれば、飼料中のサルモネラを迅速に検査するシステムであって、
(a)前記飼料中のサルモネラを増菌するための培地、
(b)高分子多孔質メンブレンフィルターを用いる核酸の抽出装置、
(c)PCR法を用いる核酸の検出装置、を含むシステムを提供することができる。
本発明の好ましい態様によれば、上記培地が、MP培地である、飼料中のサルモネラを迅速に検査するシステムを提供できる。
本発明の好ましい態様によれば、上記PCR法が、リアルタイムPCRである、飼料中のサルモネラを迅速に検査するシステムを提供することができる。
本発明の好ましい態様によれば、上記核酸の抽出において、洗浄工程を含まない、飼料中のサルモネラを迅速に検査するシステムを提供することができる。
本発明の好ましい態様によれば、上記核酸の抽出装置が、クイックジーン(登録商標)である、飼料中のサルモネラを迅速に検査するシステムを提供することができる。
本発明の好ましい態様によれば、上記核酸の検出装置が、クオリバックス(登録商標)である、飼料中のサルモネラを迅速に検査するシステムを提供することができる。
本発明の好ましい態様によれば、上記サルモネラの検査が、9〜11時間以内で終了する、飼料中のサルモネラを迅速に検査するシステムを提供することができる。
That is, according to one aspect of the present invention, a method for quickly testing Salmonella in a feed,
(A) culturing the feed in a medium to obtain a Salmonella enrichment culture,
(B) a step of extracting Salmonella nucleic acid from the obtained enrichment culture using a polymer porous membrane filter;
(C) A method comprising a step of detecting the extracted nucleic acid by a PCR method can be provided.
According to the preferable aspect of this invention, the said culture medium can provide the rapid test | inspection method of the Salmonella in feed which is a MP culture medium.
According to a preferred embodiment of the present invention, it is possible to provide a rapid test method for Salmonella in feed, wherein the PCR method is real-time PCR.
According to a preferred aspect of the present invention, it is possible to provide a rapid inspection method for Salmonella in feed that does not include a washing step in the extraction of the nucleic acid.
According to a preferred embodiment of the present invention, it is possible to provide a rapid inspection method for Salmonella in feed, wherein the extraction of the nucleic acid is performed with Quickgene (registered trademark).
According to a preferred aspect of the present invention, it is possible to provide a rapid inspection method for Salmonella in a feed in which the detection of the nucleic acid is performed by Qualibax (registered trademark).
According to the preferable aspect of this invention, the detection method of the said Salmonella can be provided within 9 to 11 hours, The rapid test | inspection method of the Salmonella in feed can be provided.
Moreover, according to one aspect of the present invention, a system for quickly inspecting Salmonella in feed,
(A) a medium for enriching Salmonella in the feed,
(B) a nucleic acid extraction device using a polymer porous membrane filter,
(C) It is possible to provide a system including a nucleic acid detection device using a PCR method.
According to a preferred aspect of the present invention, it is possible to provide a system for rapidly examining Salmonella in feed, wherein the medium is an MP medium.
According to a preferred aspect of the present invention, it is possible to provide a system for rapidly examining Salmonella in feed, wherein the PCR method is real-time PCR.
According to a preferred aspect of the present invention, it is possible to provide a system for rapidly examining Salmonella in a feed that does not include a washing step in the extraction of the nucleic acid.
According to a preferred aspect of the present invention, it is possible to provide a system for rapidly examining Salmonella in feed, wherein the nucleic acid extraction apparatus is Quick Gene (registered trademark).
According to a preferred aspect of the present invention, it is possible to provide a system for rapidly examining Salmonella in feed, wherein the nucleic acid detection device is Qualibax (registered trademark).
According to a preferred aspect of the present invention, it is possible to provide a system for quickly inspecting Salmonella in feed, in which the inspection of Salmonella ends within 9 to 11 hours.
本発明によれば、飼料を培養してサルモネラの増菌培養液を得た後、得られた増菌培養液から高分子多孔質メンブレンフィルターを用いて核酸を抽出し、抽出された核酸をPCR法によって検出することによって、従来よりも感度がよく、かつ検査時間が短縮された飼料中のサルモネラの迅速検査方法及びそのシステムを提供することができる。
また、本発明によれば、飼料工場における工程汚染の早期発見や安全性が確認された製品の迅速な出荷を可能とするため、例えば、被害の拡大を未然に防止できるだけでなく、在庫保管料などのコストを大幅に削減し、機器の初期費用や分析消耗品費用などを考慮しても、十分採算のとれる実用性の高いサルモネラの検査方法及びシステムを飼料業界に提供することができる。
According to the present invention, after culturing the feed to obtain an enrichment culture solution of Salmonella, nucleic acid is extracted from the obtained enrichment culture solution using a polymer porous membrane filter, and the extracted nucleic acid is subjected to PCR. By detecting by the method, it is possible to provide a rapid inspection method and system for Salmonella in feed, which is more sensitive than conventional methods and has a shorter inspection time.
In addition, according to the present invention, in order to enable early detection of process contamination in a feed factory and quick shipment of a product whose safety has been confirmed, for example, not only can the expansion of damage be prevented, but also inventory storage fees can be prevented. Such a salmonella inspection method and system can be provided to the feed industry that is sufficiently profitable even when the initial cost of the apparatus and the cost of analysis consumables are taken into consideration.
以下、本発明の飼料中のサルモネラの迅速検査方法及びそのシステムについて順を追って説明する。
本発明において「飼料」とは、家禽などが栄養目的で経口的に摂取するもの全てを意味し、具体的には養分含量の面から分類すると、粗飼料、濃厚飼料、無機物飼料、特殊飼料の全てを包含し、また公的規格の面から分類すると、配合飼料、混合飼料、単体飼料の全てを包含する。また、給餌方法の面から分類すると、直接給餌する飼料、他の飼料と混合して給餌する飼料、あるいは飲料水に添加し栄養分を補給するための飼料の全てを包含する。
Hereinafter, the rapid inspection method and system for Salmonella in the feed of the present invention will be described in order.
In the present invention, “feed” means all poultry and the like that are taken orally for nutritional purposes. Specifically, when classified in terms of nutrient content, all of roughage, concentrated feed, inorganic feed, and special feed In addition, when classified from the aspect of official standards, all of mixed feed, mixed feed, and simple feed are included. Moreover, when classifying from the aspect of a feeding method, it includes all feeds that are fed directly, feeds that are mixed with other feeds, or feeds that are added to drinking water to replenish nutrients.
本発明において「サルモネラ」とは、グラム陰性通性嫌気性桿菌の腸内細菌科の一属であるサルモネラ属に属する細菌のことであり、主にヒトや動物の消化管に生息する腸内細菌の一種である。サルモネラ属に属する細菌の一部は、ヒトや動物に経口感染して食中毒を引き起こす。サルモネラによる食中毒は人獣共通の感染症である。 In the present invention, “Salmonella” refers to a bacterium belonging to the genus Salmonella, which is a genus of the Enterobacteriaceae family of Gram-negative facultative anaerobes, and is mainly enteric bacteria that inhabit the digestive tract of humans and animals. It is a kind of. Some of the bacteria belonging to the genus Salmonella can infect humans and animals orally and cause food poisoning. Food poisoning caused by Salmonella is a common infectious disease.
本発明において「培地」とは、当業者に既知の非選択的および/または軽度に選択的な一般的細菌用増殖培地のいずれもが含まれる。例えば、MP培地、BPW、EEMブイヨン、BLB培地またはこれと同様なタイプの培地が含まれる。本培地は、潜在的に損傷を受けたサルモネラの迅速な回復と増殖を可能にする非選択培地および/または軽度に選択的な培地のいずれでもよく、さらに、十分なサルモネラの増殖を可能にし、その結果、サルモネラが最初のサンプルに存在している場合には、少なくとも1個の生存力のあるサルモネラを含むことが可能となるように調製できる培地が含まれる。
適切な非選択増殖培地の例としては、MP培地(MP Media、MP)、緩衝ペプトン水(Buffered Peptone Water、BPW)、EEMブイヨン(EEM Broth、EEM)、BTB加乳糖ブイヨン(Lactose Broth with BTB、BLB)および当業者に既知の他の非選択的培地および/または軽度に選択的培地が挙げられる。以上の培地は、デュポン株式会社(MP培地)、関東化学株式会社(BPW)、メルク社(EEM培地、LB培地)から入手可能である。この中で特に本発明で使用される好ましい培地は、MP培地である。本発明においてMP培地を用いると、培養時間が短縮されるため、好ましい。すなわち、BPW培地、EEM培地、LB培地を用いた場合には18時間必要であるが、MP培地を用いた場合は14時間に短縮できる。
増菌用の培地成分としては、サルモネラの生育に適したものが選択される。例えば、肉エキス、ペプトン、酵母エキス等の栄養成分、乳糖、ブドウ糖等の糖類、及びサルモネラ以外の細菌の生育を抑制するための選択剤や抗生物質を含有する培地成分が用いられる。糖類としては、被検体試料中に混在している可能性が高い大腸菌群が特に資化する乳糖を用いるのが、サルモネラに対する選択性を向上させる上で好ましい。選択剤としては、マラカイトグリーンや塩化マグネシウム、ラウリル硫酸ナトリウム等のアルキル硫酸塩、胆汁酸塩類等が好ましく、さらに抗生物質としては、プロテウス属に有効なノボビオシンの添加が有効である。ノボビオシンまたはそのナトリウム塩は1〜50μg/mlの濃度で添加できる。好ましくはノボビオシンの濃度は20〜40μg/mlで、より好ましい濃度は約25μg/mlである。また、他の抗生物質(例えばバンコマイシン、ペニシリン、アンピシリンおよびアミカシン)を適切な濃度で培地に添加することもできる。
In the present invention, “medium” includes any non-selective and / or mildly selective general bacterial growth medium known to those skilled in the art. For example, MP media, BPW, EEM bouillon, BLB media or similar types of media are included. The medium can be either a non-selective medium and / or a mildly selective medium that allows rapid recovery and growth of potentially damaged Salmonella, and further allows sufficient Salmonella growth, As a result, a medium is included that can be prepared to include at least one viable Salmonella if Salmonella is present in the initial sample.
Examples of suitable non-selective growth media include MP media (MP Media, MP), buffered peptone water (BPW), EEM broth (EEM), BTB lactose broth (Lactose Broth with BTB, BLB) and other non-selective and / or mildly selective media known to those skilled in the art. The above culture media are available from DuPont Co., Ltd. (MP media), Kanto Chemical Co., Inc. (BPW), and Merck (EEM media, LB media). Among these, a preferable medium used in the present invention is MP medium. In the present invention, it is preferable to use an MP medium because the culture time is shortened. That is, 18 hours are required when BPW medium, EEM medium, and LB medium are used, but can be shortened to 14 hours when MP medium is used.
As a medium component for enrichment, those suitable for growth of Salmonella are selected. For example, nutrient components such as meat extract, peptone and yeast extract, saccharides such as lactose and glucose, and media components containing a selective agent and antibiotics for suppressing the growth of bacteria other than Salmonella are used. As the saccharide, it is preferable to use lactose that is particularly assimilated by the coliform group that is highly likely to be present in the sample, in order to improve selectivity for Salmonella. As selective agents, malachite green, magnesium chloride, alkyl sulfates such as sodium lauryl sulfate, bile salts and the like are preferable, and addition of novobiocin effective against Proteus is effective as antibiotics. Novobiocin or its sodium salt can be added at a concentration of 1-50 μg / ml. Preferably the concentration of novobiocin is 20-40 μg / ml, with a more preferred concentration being about 25 μg / ml. Also, other antibiotics (eg vancomycin, penicillin, ampicillin and amikacin) can be added to the medium at appropriate concentrations.
本発明において「核酸」とは、オリゴヌクレオチドまたはポリヌクレオチドを意味し、前記オリゴヌクレオチドまたはポリヌクレオチドは修飾されたり、または修飾された塩基を含むことができる。オリゴヌクレオチドは、2〜60のヌクレオチドを含むヌクレオチドの単一鎖重合体である。ポリヌクレオチドは、2以上のヌクレオチドを含むヌクレオチドの重合体である。ポリヌクレオチドは、第2鎖が第1オリゴヌクレオチドの逆相補的配列のオリゴヌクレオチドとアニーリングされたオリゴヌクレオチドを含む二重鎖DNA、単一鎖RNA、二重鎖RNAまたはRNA/DNAヘテロデュプレックスを含む単一鎖核酸重合体でありうる。核酸は、ゲノムDNA、cDNA、mRNA、rRNA、tRNA、切片化された核酸を含むが、これらに限定されるものではない。 In the present invention, the “nucleic acid” means an oligonucleotide or polynucleotide, and the oligonucleotide or polynucleotide may be modified or may contain a modified base. Oligonucleotides are single-stranded polymers of nucleotides containing 2-60 nucleotides. A polynucleotide is a polymer of nucleotides comprising two or more nucleotides. The polynucleotide comprises a double stranded DNA, single stranded RNA, double stranded RNA or RNA / DNA heteroduplex comprising a oligonucleotide whose second strand is annealed with an oligonucleotide of the reverse complement sequence of the first oligonucleotide. It can be a single stranded nucleic acid polymer. Nucleic acids include, but are not limited to, genomic DNA, cDNA, mRNA, rRNA, tRNA, and segmented nucleic acid.
本発明において「核酸」は、標識を含んでいてもよく、前記標識はヌクレオチド、ヌクレオチド重合体、または核酸結合因子に結合されたいかなる化学的部分をも意味することができ、前記結合は、共有結合または非共有結合でありうる。望ましくは、前記標識は、検出可能であり、本発明の実験者に検出されうる前記ヌクレオチドまたはヌクレオチド重合体でありうる。検出可能な標識は、発光分子、化学発光分子、蛍光色素、蛍光クエンチング剤、色調分子、放射性同位元素などを含む。検出可能な標識は、任意の有用なリンカー分子(例えば、ビオチン、アビジン等)、重金属、酵素(例えば、アルカリホスファターゼ、ペルオキシダーゼ及びルシフェラーゼ等)、電子供与体/受容体、アクリジウムエステル、染料及び熱量測定基質などを含む。また、当業者は、前記で言及されていない有用な検出可能な標識についても容易に認識できるものであり、それらもまた、本発明の実施に使用される。 In the present invention, “nucleic acid” may include a label, and the label may mean a nucleotide, a nucleotide polymer, or any chemical moiety bound to a nucleic acid binding agent, It can be a bond or a non-covalent bond. Desirably, the label may be the nucleotide or nucleotide polymer that is detectable and can be detected by the experimenter of the present invention. Detectable labels include luminescent molecules, chemiluminescent molecules, fluorescent dyes, fluorescent quenching agents, tonal molecules, radioisotopes and the like. The detectable label can be any useful linker molecule (eg, biotin, avidin, etc.), heavy metals, enzymes (eg, alkaline phosphatase, peroxidase and luciferase, etc.), electron donor / acceptor, acridium ester, dye and calorie. Includes measurement substrate. Those skilled in the art can also readily recognize useful detectable labels not mentioned above, which are also used in the practice of the present invention.
核酸増幅のための標的になるサルモネラの核酸配列は、当業界に知られているサルモネラの核酸配列から選択できる。この標的核酸配列には、亜種: enterica(I)、salamae(II)、arizonae(IIIa)、diarizonae(IIIb)、houtenae(IV)及びindica(VI)が含まれるが、これらに限定されるものではない。また、サルモネラ・エンテリカ種及びサルモネラ・ボンゴリ種に由来する核酸配列も含まれるが、これらに限定されるものではない。例えば、亜種サルモネラ・エンテリカの血清群及び血清型は、米国特許第7659381号明細書で確認することができる。 The target Salmonella nucleic acid sequence for nucleic acid amplification can be selected from Salmonella nucleic acid sequences known in the art. This target nucleic acid sequence includes, but is not limited to, subspecies: enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV) and indica (VI) is not. Also included are, but are not limited to, nucleic acid sequences derived from Salmonella enterica species and Salmonella vongori species. For example, the serogroup and serotype of the subspecies Salmonella enterica can be confirmed in US Pat. No. 7,659,381.
本発明において増幅の標的になる例示的なサルモネラ核酸配列は、下記文献に開示されており、これらは、本明細書に参照として挿入される。
LiuWQ et al.,“Salmonella paratyphi C:genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi”,PLoS One,2009;4(2):e4510;Thomson NR et al.,“Comparative genome analysis of Salmonella enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways,“Genome Res,2008 Oct;18(10):1624-37;Encheva V et al.,“Proteome analysis of serovars typhimurium and Pullorum of Salmonella enterica subspeciesI”,BMC Microbiol,2005 Jul 18;5:42;McClell and M et al.,“Comparison of genome degradation in Paratyphi A and Typhi,human-restricted serovars of Salmonella enterica that cause typhoid”,Nat Genet,2004 Dec;36(12):1268-74;Chiu CH et al.,“Salmonella enterica serotype Choleraesuis:epidemiology,pathogenesis,clinical disease, and treatment,“Clin Microbiol Rev,2004 Apr;17(2):311-22;Deng W et al.,“Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18,”J Bacteriol,2003 Apr;185(7):2330-7;Parkhil lJ et al.,“Complete genome sequence of amultiple drug resistant Salmonella enterica serovar Typhi C T18”,Nature,200 1Oct 25;413(6858):848-52;McClell and M et al.,“Complete genome sequence of Salmonella enterica serovar typhimurium LT2,“Nature,2001 Oct 25;413(6858):852-6.
なお、Salmonella enterica subsp.enterica serovar typhimurium str.LT2の完全なゲノム(4857432bp)の例示的なヌクレオチド配列は、GenBank Accession番号:NC_003197で確認することができる。
当業者であれば、これらの核酸配列に基づき、本発明において、サルモネラを検出するためのプローブ、プライマーを適宜作製することができる。
Exemplary Salmonella nucleic acid sequences that are targeted for amplification in the present invention are disclosed in the following references, which are hereby incorporated by reference:
LiuWQ et al. , “Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi”, PLoS One, 2009; 4 (2): e4510; Thomson NR et al. , “Comparative genome analysis of Salmonella enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways,” Genome Res, 2008 Oct; 18 (10): 1624-37; Encheva V et al. "Proteome analysis of serovars typhimurium and Pullorum of Salmonella enterica subspecies I", BMC Microbiol, 2005 Jul 18; 5:42; McClell and M et al. "Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid", Nat Genet, 2004 Dec; 36 (12): 1268-74; Chiu CH et al. , “Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment,” Clin Microbiol Rev, 2004 Apr; 17 (2): 311-22; Deng W et al. "Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18," J Bacteriol, 2003 Apr; 185 (7): 2330-7; Parkhil lJ et al. , “Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi C T18”, Nature, 200 1 Oct 25; 413 (6858): 848-52; McClell and M et al. "Complete genome sequence of Salmonella enterica serovar typhimurium LT2," Nature, 2001 Oct 25; 413 (6858): 852-6.
Salmonella enterica subsp. enterica serovar typhimurium str. An exemplary nucleotide sequence of the complete genome of LT2 (4857432 bp) can be confirmed with GenBank Accession number: NC_003197.
Those skilled in the art can appropriately prepare probes and primers for detecting Salmonella in the present invention based on these nucleic acid sequences.
上記サルモネラのゲノム上の標的核酸配列は、PCR、逆転写酵素PCR(RT−PCR)、リアルタイムPCR、リアルタイムRT−PCR、核酸配列ベース増幅(NASBA)、ループ媒介等温増幅(LAMP)、他の任意の等温核酸増幅、核酸プローブ、および/またはバイオセンサーなどの従来の手法により検出することができる。
ここで、リアルタイムPCRは、核酸増幅と増幅した核酸の蛍光検出とを結び付けるものであり、簡潔に言うと、標的核酸の増幅を目的とする標準的なPCRを、標的核酸に結合した場合に蛍光シグナルを特異的に生じるプローブの存在下で実施し、PCRサイクルが進行する間、蛍光発光をモニターすることによって行うものである。PCRから放出された蛍光が閾値を上回って(すなわち、バックグラウンド蛍光レベルを上回って)測定されるサイクルを閾値サイクル(Ct)と呼ぶ。Ctは、PCRにおいて最初に存在する標的核酸の量の常用対数に比例することが示されている。故に、Ctの測定は、試料中の標的核酸の初期濃度の測定を可能にする。
The target nucleic acid sequence on the Salmonella genome is PCR, reverse transcriptase PCR (RT-PCR), real-time PCR, real-time RT-PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), any other Can be detected by conventional techniques such as isothermal nucleic acid amplification, nucleic acid probes, and / or biosensors.
Here, real-time PCR combines nucleic acid amplification and fluorescence detection of the amplified nucleic acid. Briefly, when a standard PCR intended for amplification of a target nucleic acid is bound to the target nucleic acid, fluorescence is emitted. It is carried out in the presence of a probe that specifically generates a signal and is monitored by monitoring the fluorescence emission during the PCR cycle. The cycle in which the fluorescence emitted from the PCR is measured above the threshold (ie, above the background fluorescence level) is called the threshold cycle (Ct). Ct has been shown to be proportional to the common logarithm of the amount of target nucleic acid initially present in PCR. Thus, measurement of Ct allows measurement of the initial concentration of target nucleic acid in the sample.
本発明では、サルモネラを効率よく迅速に検出する観点から、リアルタイムPCR又はリアルタイムRT−PCRを用いることが好ましい。また、本発明で好適に用いられる一具体例としては、クオリバックス(登録商標)システムが挙げられる。クオリバックス(登録商標)システムでは、PCR増幅された標的核酸断片の2本鎖はサイバーグリーンと結合して蛍光を発するが、温度上昇に伴い1本鎖に変性して蛍光を消失する。この光学的シグナルを70〜95℃の範囲でプロットして得られるメルティングカーブプロファイルを自動的に解析し、陽性あるいは陰性を判定する。なお、不確定と表示され、判定が保留(エラー)となる場合がある。また、前記メルティングカーブプロファイルは、試料ごとに確認が可能であり、サルモネラが陽性である場合には、78〜80℃の範囲にコントロールピークならびに85、88、90℃にターゲットピークが認められ、陰性である場合には、コントロールピークのみが認められる。その違いから、試料が陽性であるかあるいは陰性であるかを判定することができる。 In the present invention, it is preferable to use real-time PCR or real-time RT-PCR from the viewpoint of detecting Salmonella efficiently and rapidly. Moreover, as a specific example suitably used in the present invention, there is a Qualibax (registered trademark) system. In the Qualibax (registered trademark) system, the double strand of the PCR-amplified target nucleic acid fragment binds to cyber green and emits fluorescence. However, as the temperature rises, the strand is denatured into a single strand and disappears. The melting curve profile obtained by plotting this optical signal in the range of 70 to 95 ° C. is automatically analyzed to determine positive or negative. Note that indeterminate is displayed, and determination may be suspended (error). In addition, the melting curve profile can be confirmed for each sample, and when Salmonella is positive, a control peak in the range of 78 to 80 ° C and a target peak at 85, 88, and 90 ° C are recognized, If it is negative, only the control peak is observed. From the difference, it can be determined whether the sample is positive or negative.
また、本発明では、サルモネラの核酸を高分子多孔質メンブレンフィルターに吸着させ回収した後、当該フィルターから核酸を回収するという、核酸の抽出方法が用いられる。本方法では、微量にしか核酸を含まない試料から全量の核酸を回収することができるので、核酸含有量が低い試料でも高分子多孔質メンブレンフィルターに核酸を濃縮させて回収できるというメリットがある。このため、少量の核酸をロスなく増幅反応に供することができ、感度のよい測定が可能となる。したがって、従来行われていたサルモネラの2次培養を省略でき、サルモネラの溶菌と核酸の抽出を同時に行うことができるため、飼料中のサルモネラの検査に必要な工程を短縮することができる(図5を参照されたい)。 In the present invention, a nucleic acid extraction method is used in which a Salmonella nucleic acid is adsorbed on a polymer porous membrane filter and recovered, and then the nucleic acid is recovered from the filter. In this method, since the entire amount of nucleic acid can be recovered from a sample containing only a small amount of nucleic acid, there is an advantage that even a sample having a low nucleic acid content can be recovered by concentrating the nucleic acid on a polymer porous membrane filter. For this reason, a small amount of nucleic acid can be subjected to an amplification reaction without loss, and a highly sensitive measurement is possible. Therefore, the conventional secondary culture of Salmonella can be omitted, and Salmonella lysis and nucleic acid extraction can be performed at the same time, so that the steps necessary for the inspection of Salmonella in the feed can be shortened (FIG. 5). See).
本発明を実施するにあたり、核酸を吸着及び回収できる高分子多孔質メンブレンフィルターであれば、特に制限はされないが、例えば、アセチルセルロースの表面鹸化物が好ましい。アセチルセルロースとしては、モノアセチルセルロース、ジアセチルセルロース、トリアセチルセルロースのいずれでもよいが、特にはトリアセチルセルロースが好ましい。
高分子多孔質メンブレンフィルターの好適な一具体例としては、クイックジーン(登録商標)システムが例示される。このクイックジーン(登録商標)システムは、迅速かつ簡便に生体試料から核酸を抽出する自動システムとして開発されたものであり、高分子多孔質メンブレンフィルターと処理液のキット、および専用自動機からなるものである。本システムのメンブレンは、ガラス繊維(1mm)に比べると非常に薄く(80μm)、不純物の混入が少ない核酸が得られる点にメリットがある。また、メンブレンの孔径は均一性が高く、空気加圧によるろ過に適しており、装置が小型化できるという特徴もある。フィルター表面の親水性を上げると核酸の収量は増加するが、高分子多孔質メンブレンフィルターはガラス繊維ではなく、有機高分子からできているため、各種官能基による表面の改質が容易であり、フィルターへの核酸の吸着、脱着を制御することができる。本システムでは、フィルターの表面特性、および核酸を含むライゼート、洗浄液、回収液の極性を適切に制御することにより、核酸をフィルター表面に吸着させ脱着させることが可能となる。例えば、エタノールのような有機溶媒を添加することによりライゼートの極性を低下させると、フィルターに核酸が吸着する。遊離前に極性の低い液でフィルターを洗浄することにより、目的の核酸は吸着させた状態でフィルターに留まっている核酸以外の成分を洗浄することができる。最後に極性の高い液により核酸を溶離して回収する。このような工程を経ることにより、純度の高い核酸の試料が比較的簡単に得ることができる。なお、後述するように、核酸の吸着及び回収について、洗浄工程を含まないことが好ましい。
In carrying out the present invention, there is no particular limitation as long as it is a polymer porous membrane filter capable of adsorbing and recovering nucleic acids. For example, a surface saponified product of acetylcellulose is preferable. As acetyl cellulose, any of monoacetyl cellulose, diacetyl cellulose, and triacetyl cellulose may be used, and triacetyl cellulose is particularly preferable.
As a suitable specific example of the polymer porous membrane filter, a Quick Gene (registered trademark) system is exemplified. This Quick Gene (registered trademark) system was developed as an automated system for extracting nucleic acids from biological samples quickly and easily, and consists of a polymer porous membrane filter and treatment solution kit, and a dedicated automated machine. It is. The membrane of this system is very thin (80 μm) compared to glass fiber (1 mm), and has an advantage in that a nucleic acid with less impurities can be obtained. In addition, the pore diameter of the membrane is high in uniformity, suitable for filtration by air pressurization, and can be downsized. Increasing the hydrophilicity of the filter surface increases the yield of nucleic acid, but the polymer porous membrane filter is made of organic polymer, not glass fiber, so the surface can be easily modified with various functional groups. It is possible to control the adsorption and desorption of nucleic acids to the filter. In this system, it is possible to adsorb and desorb nucleic acids on the filter surface by appropriately controlling the surface characteristics of the filter and the polarity of the lysate, washing solution, and recovery solution containing the nucleic acid. For example, when the polarity of the lysate is lowered by adding an organic solvent such as ethanol, the nucleic acid is adsorbed on the filter. By washing the filter with a liquid having a low polarity before release, components other than the nucleic acid remaining on the filter in a state where the target nucleic acid is adsorbed can be washed. Finally, the nucleic acid is eluted and collected with a highly polar solution. Through such a process, a nucleic acid sample with high purity can be obtained relatively easily. As will be described later, it is preferable not to include a washing step for the adsorption and recovery of nucleic acids.
次に、実施例および比較例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに何ら制限されるものではない。 EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not restrict | limited to these at all.
[実施例1]前増菌培地の選定
前増菌培地として最適な培地を選定するため、図1に示される実験を行った。すなわち、油粕とサルモネラ菌液を混合し、100cfu/25gである油粕を得た(cfuはコロニー形成単位を表す)。なお、供試した菌株は、製造環境由来の2株である(O1、3、19群とO7群)。これを25gずつ、4つのストマッカー袋に入れ、それぞれBPW、EEM培地、LB培地、MP培地を注ぎ、BPW、EEM培地、LB培地については35℃で18時間培養し、MP培地については42℃で14時間培養した。
その結果を図2に示す。この図から明らかであるように、MP培地を用いた場合、培養時間1〜5時間の初期段階から活発的な増殖が得られ、培養時間5〜14時間にかけて相対的に高い増菌効率が得られた。一方、BPW、EEM培地、LB培地を用いた場合は、培養時間1〜5時間の初期段階ではほとんど増菌は見られず、培養時間5〜14時間ではMP培地よりも低い増菌効率しか得られなかった。したがって、本実験により、サルモネラを増菌する培地としては、MP培地が特に好ましいことが判明した。そこで、以下の実験ではMP培地を用いることに決定した。
[Example 1] Selection of pre-enrichment medium In order to select an optimum medium as the pre-enrichment medium, the experiment shown in Fig. 1 was conducted. That is, the oil cake and Salmonella microbial solution were mixed to obtain an oil cake of 10 0 cfu / 25 g (cfu represents a colony forming unit). In addition, the tested strains are two strains derived from the production environment (groups O1, 3, 19 and O7). Put 25g each into 4 stomacher bags, pour BPW, EEM medium, LB medium and MP medium, respectively, cultivate BPW, EEM medium and LB medium at 35 ° C for 18 hours, and MP medium at 42 ° C. Cultured for 14 hours.
The result is shown in FIG. As is clear from this figure, when MP medium is used, active growth is obtained from the initial stage of culture time of 1 to 5 hours, and relatively high enrichment efficiency is obtained over culture time of 5 to 14 hours. It was. On the other hand, when BPW, EEM medium, and LB medium were used, there was almost no increase in bacteria at the initial stage of culture time of 1 to 5 hours, and only a low increase efficiency was obtained compared with MP medium at culture time of 5 to 14 hours. I couldn't. Therefore, this experiment revealed that MP medium is particularly preferable as a medium for enriching Salmonella. Therefore, it was decided to use MP medium in the following experiment.
本発明の方法を以下「新検査法」といい、これまで行われていた方法を「通常法」という。
[実施例2]サルモネラの検査方法(新検査法)
(1)材料の調製
人工汚染油粕を用いた実験のため、サンプルとして、100cfu/25gの油粕を19検体得た。また、サンプルとして、101cfu/25gの油粕を8検体得た。なお、供試した菌株は、製造環境由来の1株である(O1、3、19群)。
自然汚染サンプルを用いた実験のため、サンプルとして、製造環境由来ダストを32検体準備し、作業床(ふき取り)を6検体準備した。
上記サンプルをMP培地で14時間、前増菌培養をし、サルモネラの増菌培養液を得た。
(2)溶菌サンプルの調製
2mlのPCRチューブに200μlの上記増菌培養液を入れ、これに180μlのMDT(組織溶菌緩衝液)と20μlのEDT(プロテイナーゼK)を加えた。これを2500rpmで15秒間ボルテックスし、室温で2分間静置した。さらに、180μlのLDT(溶菌緩衝液)を加え、2500rpmで15秒間ボルテックスした。次に、これを70℃で10分間加温して、240μlのエタノールを加え、2500rpmで15秒間ボルテックスした。以上の操作により、サルモネラのライゼート液を得た。
(3)DNAの精製
DNAの精製には、クイックジーン(登録商標)システム(クラボウ社製)を用いた。上記のようにして得られたライゼート液を専用カートリッジ(高分子多孔質メンブレンフィルターを含む)へ移し、カートリッジホルダーにセットした。次に、専用カートリッジを加圧して不要な溶液を廃棄し、750μlのWDT(洗浄緩衝液)を加え、加圧して当該洗浄液を廃棄した。この洗浄操作を3回繰り返し、洗浄工程を終了し、DNAを精製した。
(4)検出サンプルの調製
上記(3)で精製を終えた後、ポンプのチューブホルダーの設定ポジションを廃棄から抽出へ切り替えた。200μlのクオリバックス(登録商標)用のライシス液を加えて、加圧して核酸を含むサンプルを回収した。このうち、30μlがクオリバックス(登録商標)システムのサンプルとなる。
(5)DNAの検出
DNAの検出には、クオリバックス(登録商標)システム(デュポン社製)を用いた。上記30μlのサンプルに錠剤試薬を混ぜて、クオリバックス(登録商標)システム装置にセットした。約1時間強で、試験結果の判定が得られた。このクオリバックス(登録商標)システムは、リアルタイムPCRで行われたものであり、その試験結果の判定は、陽性判定アイコン又は陰性判定アイコンで表示された。その結果を図3に示す。なお、図3には、陽性判定された数のみを示した。
なお、上記錠剤試薬には、PCRに必要なポリメラーゼ、プライマー、プローブや蛍光試薬などの反応材料が含まれている。また、この錠剤には、内部陽性コントロールも含まれており、陽性コントロールの準備や検量線の作成も不要である。このように、クオリバックス(登録商標)システムでは、PCRで最も煩雑な工程の1つである試薬調製工程を必要としないので、迅速性を必要とする本発明の実施において特に好ましい。
The method of the present invention is hereinafter referred to as a “new inspection method”, and the method that has been performed so far is referred to as a “normal method”.
[Example 2] Salmonella inspection method (new inspection method)
(1) Preparation of material 19 samples of 10 0 cfu / 25 g oil candy were obtained as samples for the experiment using artificially contaminated oil candy. In addition, 8 samples of 10 1 cfu / 25 g oil candy were obtained as samples. In addition, the tested strain is one strain derived from the production environment (groups O1, 3, 19).
For the experiment using a natural contamination sample, 32 samples of dust derived from the manufacturing environment were prepared as samples, and 6 samples of work floors (wiping off) were prepared.
The sample was subjected to pre-enrichment culture in MP medium for 14 hours to obtain an enrichment culture solution of Salmonella.
(2) Preparation of lysis sample 200 μl of the enrichment culture solution was put in a 2 ml PCR tube, and 180 μl of MDT (tissue lysis buffer) and 20 μl of EDT (proteinase K) were added thereto. This was vortexed at 2500 rpm for 15 seconds and allowed to stand at room temperature for 2 minutes. Further, 180 μl of LDT (lysis buffer) was added and vortexed at 2500 rpm for 15 seconds. Next, this was heated at 70 ° C. for 10 minutes, 240 μl of ethanol was added, and vortexed at 2500 rpm for 15 seconds. By the above operation, a Salmonella lysate solution was obtained.
(3) Purification of DNA Quick DNA (registered trademark) system (manufactured by Kurabo Industries) was used for DNA purification. The lysate obtained as described above was transferred to a dedicated cartridge (including a polymer porous membrane filter) and set in a cartridge holder. Next, the dedicated cartridge was pressurized to discard unnecessary solutions, 750 μl of WDT (washing buffer) was added, and the pressure was discarded to discard the washings. This washing operation was repeated three times to complete the washing step, and the DNA was purified.
(4) Preparation of detection sample After finishing the purification in (3) above, the setting position of the tube holder of the pump was switched from disposal to extraction. 200 μl of qualibux (registered trademark) lysis solution was added, and the sample containing nucleic acid was recovered by pressurization. Of these, 30 μl is a sample of the Qualibax (registered trademark) system.
(5) Detection of DNA For detection of DNA, Qualibax (registered trademark) system (manufactured by DuPont) was used. The 30 μl sample was mixed with a tablet reagent and set in a Qualibax (registered trademark) system apparatus. The test result was judged after about 1 hour. This Qualibax (registered trademark) system was performed by real-time PCR, and the determination of the test result was displayed by a positive determination icon or a negative determination icon. The result is shown in FIG. FIG. 3 shows only the number of positive determinations.
The tablet reagent contains reaction materials such as polymerase, primer, probe and fluorescent reagent necessary for PCR. This tablet also contains an internal positive control, and it is not necessary to prepare a positive control or create a calibration curve. As described above, the Qualibax (registered trademark) system does not require a reagent preparation step, which is one of the most complicated steps in PCR, and thus is particularly preferable in the implementation of the present invention requiring rapidity.
[比較例]サルモネラの検査方法(通常法)
(1)材料の調製
上記実施例1の(1)と同じように材料を調製し、サルモネラの増菌培養液を得た。
(2)溶菌サンプルの調製
上記増菌培養液をさらに、ブレインハートインフュージョン(BHI)培地で37℃3時間培養した。他方、12mlの溶菌緩衝液に150μlのプロテアーゼを加えて溶菌試薬を準備した。PCRチューブにこの溶菌試薬を200μl分注し、さらに上記増菌培養液5μl加えて、37℃で20分加熱し、さらに95℃で10分加熱して、クーリングブロックでチューブを急冷し、サルモネラのライゼート液を得た。
(3)検出サンプルの調製
上記実施例1の(3)のDNAの精製を省略し、サンプルの調製を行った。上記サルモネラのライゼート液に、50μlのクオリバックス(登録商標)用のライシス液を加えて、クオリバックス(登録商標)システム用のサンプルとした。
(4)DNAの検出
上記実施例1の(5)と同じように、クオリバックス(登録商標)システム(デュポン社製)を用いて、DNAを検出した。本試験の結果は、図3に示される。なお、図3には、陽性判定された数のみを示した。
[Comparative example] Salmonella inspection method (normal method)
(1) Preparation of material A material was prepared in the same manner as in (1) of Example 1 to obtain a Salmonella enrichment culture solution.
(2) Preparation of Bacteria Sample The enrichment culture solution was further cultured in a brain heart infusion (BHI) medium at 37 ° C. for 3 hours. On the other hand, 150 μl of protease was added to 12 ml of lysis buffer to prepare a lysis reagent. Dispense 200 μl of this lysis reagent into a PCR tube, add 5 μl of the above enrichment culture solution, heat at 37 ° C. for 20 minutes, further heat at 95 ° C. for 10 minutes, rapidly cool the tube with a cooling block, A lysate solution was obtained.
(3) Preparation of detection sample The purification of the DNA of Example 1 (3) was omitted, and a sample was prepared. To the Salmonella lysate solution, 50 μl of a lysis solution for Qualibax (registered trademark) was added to prepare a sample for the Qualibax (registered trademark) system.
(4) Detection of DNA As in (5) of Example 1 above, DNA was detected using the Qualibax (registered trademark) system (manufactured by DuPont). The results of this test are shown in FIG. FIG. 3 shows only the number of positive determinations.
図3に示されるように、通常法と新検査法(QuickGene法)とを比較すると、新検査法の方が、通常法よりもサルモネラの検出感度が高いことが判明した。すなわち、100cfu/25gである人工汚染油粕10検体において、通常法では7検体しか検出できないが、新検査法では9検体が検出された。このように、低濃度でサルモネラを含む検体からサルモネラを検出する能力が、新検査法では高いことが示唆された。また、自然汚染サンプル38検体においても同様に、通常法では17検体しか検出できないが、新検査法では19検体が検出された。このことからも、新検査法は、通常法よりも検出感度が高いことが示唆された。 As shown in FIG. 3, comparing the normal method and the new test method (QuickGene method), it was found that the new test method has higher detection sensitivity of Salmonella than the normal method. That is, in 10 samples of artificially contaminated oil bottles of 10 0 cfu / 25 g, only 7 samples can be detected by the normal method, but 9 samples are detected by the new test method. Thus, it was suggested that the ability to detect Salmonella from a sample containing Salmonella at a low concentration is high in the new test method. Similarly, in the natural contamination sample 38 samples, only 17 samples can be detected by the normal method, but 19 samples are detected by the new test method. This also suggests that the new test method has higher detection sensitivity than the normal method.
[実施例3]通常法と新検査法における感度分析
上記実施例2及び比較例において、新検査法は、通常法よりも高い検出感度を示すことが示唆されたので、そのことを確認するため、実施例1で得られたサルモネラ純培養液(MP培地で14時間培養、108cfu/ml)を段階的に希釈し、菌濃度が104cfu/ml、103cfu/ml、102cfu/ml、101cfu/ml又は100cfu/mlであるサンプルを得て、これを出発点とし、通常法及び新検査法の両方を、実施例2及び比較例と同様にして2回実施した。その結果を図4に示す。
[Example 3] Sensitivity analysis in the normal method and the new test method In the above Example 2 and the comparative example, it was suggested that the new test method exhibits higher detection sensitivity than the normal method. The pure Salmonella culture solution obtained in Example 1 (cultured in MP medium for 14 hours, 10 8 cfu / ml) was diluted stepwise to give a bacterial concentration of 10 4 cfu / ml, 10 3 cfu / ml, 10 2 Samples of cfu / ml, 10 1 cfu / ml or 10 0 cfu / ml were obtained and used as a starting point. Both the normal method and the new test method were performed twice as in Example 2 and Comparative Example. Carried out. The result is shown in FIG.
図4の結果から明らかであるように、新検査法は、通常法に比べて10倍から100倍高い感度を示した。すなわち、新検査法では、菌濃度が102cfu/mlまたは101cfu/mlである低濃度サンプルでも検出することができたが、通常法では、菌濃度が103cfu/ml以上の高濃度サンプルしか検出できなかった。このことから、新検査法は、通常法よりも高い検出感度を有することが確認された。
しかし、図4にあるように、新検査法を用いた場合、101cfu/ml又は100cfu/mlの低濃度サンプルでエラーが生じた。そこで、エラーの発生原因について次に検討した。
As is clear from the results of FIG. 4, the new inspection method showed a sensitivity 10 to 100 times higher than that of the normal method. In other words, the new test method was able to detect even a low-concentration sample having a bacterial concentration of 10 2 cfu / ml or 10 1 cfu / ml, but the normal method was able to detect a high bacterial concentration of 10 3 cfu / ml or higher. Only concentration samples could be detected. From this, it was confirmed that the new inspection method has higher detection sensitivity than the normal method.
However, as shown in FIG. 4, when the new inspection method was used, an error occurred in a low concentration sample of 10 1 cfu / ml or 10 0 cfu / ml. Therefore, the cause of the error was examined next.
[実施例4]エラーの発生原因についての検討
新検査法の工程を鋭意検討した結果、DNA以外のものを洗い出す洗浄工程に原因があることが判明した。そこで、実施例2の(3)の洗浄工程を3回から順に1回ずつ減らして、菌濃度が101cfu/ml又は100cfu/mlである低濃度サンプルにおいて、エラーが発生するかどうかを確認した。その結果を図6に示す。
[Example 4] Examination of cause of error As a result of intensive investigation of the process of the new test method, it was found that there was a cause in the washing process of washing out things other than DNA. Therefore, whether or not an error occurs in a low concentration sample having a bacterial concentration of 10 1 cfu / ml or 10 0 cfu / ml by reducing the washing step (3) of Example 2 once in order from 3 times. It was confirmed. The result is shown in FIG.
図6に示すように、洗浄工程を3回又は2回行った場合には、エラーが発生した。他方、洗浄工程を1回又は0回とした場合には、エラーは発生しなかった。このことから、洗浄回数が少ない場合、エラーは発生しない、そして、洗浄試薬が混入するとエラーが発生することが判明した。もし洗浄工程を実施しなければエラーの発生リスクは減り、しかも、洗浄作業の手間が少なくなるので、検査の迅速性を高める上で都合がよいと考えた。そこで次に、洗浄工程を行わない場合について、検出感度がどのようになるかについて実験を行った。 As shown in FIG. 6, an error occurred when the cleaning process was performed three or two times. On the other hand, no error occurred when the washing process was performed once or zero. From this, it was found that no error occurs when the number of times of washing is small, and that an error occurs when a cleaning reagent is mixed. If the cleaning process is not carried out, the risk of error occurrence is reduced, and the labor of the cleaning work is reduced, which is considered to be convenient for increasing the speed of inspection. Therefore, next, an experiment was conducted to determine how the detection sensitivity would be when the cleaning process was not performed.
[実施例5]洗浄工程を行わない検査方法
洗浄工程を行わない新検査法について、通常法よりも高い感度を示すかどうかについて実験を行った。
(1)人工汚染油粕(100cfu/25g)を用いた実験
実施例2の(1)と同様にして、人工的に100cfu/菜種粕25gに汚染させたものをサンプルとして、現行法及び新検査法を実施例2及び比較例と同様に実施した。サンプルは10検体用意した。その結果を図6に示す。
(2)工程内溜粕(自然汚染物)を用いた実験
実施例2の(1)と同様にして、自然汚染サンプルを調製し、現行法及び新検査法を実施例2及び比較例と同様にして実施した。サンプルは18検体用意した。その結果を図7に示す。
[Example 5] Inspection method without performing the cleaning step An experiment was conducted to determine whether or not the new inspection method without the cleaning step exhibits higher sensitivity than the normal method.
(1) Experiment using artificially contaminated oil cake (10 0 cfu / 25 g) In the same manner as in (2) of Example 2, samples that were artificially contaminated with 10 0 cfu / rapeseed meal 25 g were used as a sample. The new inspection method was carried out in the same manner as in Example 2 and the comparative example. Ten samples were prepared. The result is shown in FIG.
(2) Experiments using in-process reservoirs (natural contaminants) In the same manner as (2) of Example 2, natural contamination samples were prepared, and the current method and new inspection method were made the same as in Example 2 and Comparative Example. Carried out. 18 samples were prepared. The result is shown in FIG.
図6及び7から明らかであるように、洗浄工程を行わない新検査法は通常法よりも高い検出感度を示した。すなわち、人工汚染油粕を用いた実験において、検体10番は、通常法では陰性と判断されたが、新検査法では陽性と判断された。ここで、公定培養法によれば、検体10番は陽性であったことから、通常法では陽性が1検体見逃されたことになる。
また、自然汚染物を用いた実験において、検体6番は、通常法では陰性と判断されたが、新検査法では陽性と判断された。ここで、公定培養法によれば、検体6番は陽性であったことから、通常法では陽性が1検体見逃されたことになる。
上記結果から、洗浄工程を行わない新検査法は通常法に比べて感度がよく、正確な判定ができることが判明した。また、洗浄工程を省略しても十分な感度が得られることも判明した。したがって、本発明は、核酸の抽出において、洗浄工程を含まないことが好ましい。
As is apparent from FIGS. 6 and 7, the new inspection method without the washing step showed higher detection sensitivity than the normal method. That is, in an experiment using an artificially contaminated oil bottle, specimen # 10 was determined to be negative in the normal method, but positive in the new test method. Here, according to the official culture method, sample 10 was positive, and thus, in the normal method, one sample was missed.
In an experiment using natural contaminants, Sample No. 6 was judged negative by the conventional method but positive by the new test method. Here, according to the official culture method, since sample 6 was positive, one sample was missed in the normal method.
From the above results, it was found that the new inspection method that does not perform the cleaning step has higher sensitivity than the normal method and can make an accurate determination. It has also been found that sufficient sensitivity can be obtained even if the washing step is omitted. Therefore, the present invention preferably does not include a washing step in nucleic acid extraction.
[実施例6]前培養時間の短縮
これまでの実施例1〜5で、新検査法は感度が良いことがわかったので、前培養時間を短縮化することで、さらに迅速化を図り、当日中に検査結果が判明できるようになるかどうかを実験した。
(1)人工汚染油粕(100cfu/25g)を用いた実験
実施例2の(1)と同様にして、人工的に100cfu/25gに汚染させたものをサンプル1〜7として、現行法及び新検査法を実施例2及び比較例と同様に実施した。なお、各サンプルについて、前増菌培養時間を6時間、7時間、8時間、及び9時間とした。その結果を図8に示す。
(2)工程内溜粕(自然汚染物)を用いた実験
実施例2の(1)と同様にして、自然汚染サンプルを調製し、現行法及び新検査法を実施例2及び比較例と同様にして実施した。なお、各サンプルについて、前増菌培養時間を6時間、7時間、8時間、及び9時間とした。その結果を図9に示す。
[Example 6] Shortening of pre-culture time In Examples 1 to 5 so far, it was found that the new test method had good sensitivity. An experiment was conducted to see if the test results could be determined.
(1) Experiment using artificially-contaminated oil cake (10 0 cfu / 25 g) In the same manner as in (1) of Example 2, samples 1 to 7 were artificially contaminated with 10 0 cfu / 25 g. And the new inspection method was implemented like Example 2 and a comparative example. For each sample, the pre-enrichment culture time was 6 hours, 7 hours, 8 hours, and 9 hours. The result is shown in FIG.
(2) Experiments using in-process reservoirs (natural contaminants) In the same manner as (2) of Example 2, natural contamination samples were prepared, and the current method and new inspection method were made the same as in Example 2 and Comparative Example. Carried out. For each sample, the pre-enrichment culture time was 6 hours, 7 hours, 8 hours, and 9 hours. The result is shown in FIG.
図8から明らかであるように、人工汚染油粕を用いた実験においては、前増菌培養時間を9時間まで短縮できることが判明した。また、図9から明らかであるように、自然汚染サンプルを用いた実験においては、前増菌培養時間を7時間まで短縮できることが判明した。
このように、新検査法は通常法よりも感度が高いため、従来、14時間必要であった前増菌培養時間を7〜9時間まで短縮できることが判明した。そして、前増菌培養時間を7〜9時間まで短縮できれば、クイックジーン(登録商標)システムによる核酸の抽出(約1時間)、クオリバックス(登録商標)システムによる核酸の検出(約1時間)を合わせても、合計9〜11時間で飼料中のサルモネラを検査することができ、当日中に検査結果が判明することがわかった。迅速性及び簡便性が要求される飼料工場において、当日中に検査結果が判明することは極めて有用であり、本発明は、製造現場において有効な方法になり得ることは明らかである。
As is clear from FIG. 8, it was found that the pre-enrichment culture time can be shortened to 9 hours in the experiment using the artificially contaminated oil bottle. Further, as is clear from FIG. 9, it was found that the pre-enrichment culture time can be shortened to 7 hours in the experiment using the naturally contaminated sample.
Thus, since the new test method has higher sensitivity than the normal method, it has been found that the pre-enrichment culture time, which conventionally required 14 hours, can be shortened to 7-9 hours. If the pre-enrichment culture time can be shortened to 7 to 9 hours, nucleic acid extraction (about 1 hour) using the Quickgene (registered trademark) system and nucleic acid detection (about 1 hour) using the Qualibax (registered trademark) system can be performed. Even when combined, Salmonella in the feed could be inspected in a total of 9 to 11 hours, and it was found that the inspection results were revealed during the day. In a feed factory that requires quickness and simplicity, it is very useful to find out the test results during the day, and it is clear that the present invention can be an effective method at the production site.
Claims (5)
(a)前記飼料を培地で培養して、サルモネラの増菌培養液を得る工程と、
(b)得られた増菌培養液からライゼート液を得る工程と、
(c)得られたライゼート液から、クイックジーン(登録商標)システムの高分子多孔質メンブレンフィルターを用いて、サルモネラの核酸を抽出する工程と、
(d)抽出された核酸をPCR法によって検出する工程と、を含み
前記核酸を抽出する工程が、前記ライゼート液から前記高分子多孔質メンブレンフィルターに前記核酸を吸着させる工程と、前記核酸が吸着した前記高分子多孔質メンブレンフィルターから前記核酸を回収する工程とを含み、前記核酸を吸着させる工程と、前記核酸を回収する工程との間に、前記核酸が吸着した前記高分子多孔質メンブレンフィルターを洗浄する工程を含まない、
当該方法。 A method for testing salmonella in feed,
(A) culturing the feed in a medium to obtain a Salmonella enrichment culture,
(B) obtaining a lysate from the resulting enriched culture;
(C) extracting Salmonella nucleic acid from the obtained lysate using a polymer porous membrane filter of Quickgene (registered trademark) system ;
(D) a step of detecting the extracted nucleic acid by a PCR method, the step of extracting the nucleic acid, the step of adsorbing the nucleic acid from the lysate solution to the polymer porous membrane filter, and the step of adsorbing the nucleic acid A step of recovering the nucleic acid from the polymer porous membrane filter, wherein the nucleic acid is adsorbed between the step of adsorbing the nucleic acid and the step of recovering the nucleic acid. Does not include the step of washing,
The method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014045902A JP6451002B2 (en) | 2014-03-10 | 2014-03-10 | Rapid inspection method and system for Salmonella in feed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014045902A JP6451002B2 (en) | 2014-03-10 | 2014-03-10 | Rapid inspection method and system for Salmonella in feed |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015167531A JP2015167531A (en) | 2015-09-28 |
JP6451002B2 true JP6451002B2 (en) | 2019-01-16 |
Family
ID=54200852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014045902A Active JP6451002B2 (en) | 2014-03-10 | 2014-03-10 | Rapid inspection method and system for Salmonella in feed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6451002B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008220380A (en) * | 2003-10-31 | 2008-09-25 | Fujifilm Corp | Method of isolating and purifying nucleic acid |
EP1953247A1 (en) * | 2007-01-31 | 2008-08-06 | GC Corporation | A method for measuring the number of oral streptococci, and a PCR primers-probe set used for the same |
BR112012002401A2 (en) * | 2009-08-04 | 2019-09-24 | Du Pont | process for collecting nucleic acids from microorganisms from a particulate sample |
WO2014021351A1 (en) * | 2012-08-03 | 2014-02-06 | 森永乳業株式会社 | Microorganism detection method and microorganism detection kit |
-
2014
- 2014-03-10 JP JP2014045902A patent/JP6451002B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015167531A (en) | 2015-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Morin et al. | Reverse transcription-multiplex PCR assay for simultaneous detection of Escherichia coli O157: H7, Vibrio cholerae O1, and Salmonella Typhi | |
Ripolles‐Avila et al. | From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry | |
Lin et al. | Immuno-and nucleic acid-based current technique for Salmonella detection in food | |
JP6544847B2 (en) | Method for determining the presence or absence of Shiga toxin-producing Escherichia coli (STEC) in food samples | |
CN104087654B (en) | The identification with multi-plex PCR test kit of Salmonellas and five kinds of serotypes thereof | |
CN106434917A (en) | A kind of LAMP primer set, detection kit and application method of Staphylococcus aureus | |
JP2024038515A (en) | Methods for detecting microorganisms using microbial detection proteins and other uses of cell binding components | |
Wang et al. | Rapid, sensitive and reliable detection of Klebsiella pneumoniae by label-free multiple cross displacement amplification coupled with nanoparticles-based biosensor | |
Xin et al. | Rapid detection and differentiating of the predominant Salmonella serovars in chicken farm by TaqMan multiplex real-time PCR assay | |
JP5884108B2 (en) | Batch detection method for food poisoning bacteria by multiplex shuttle PCR | |
Zhuang et al. | Advances in detection methods for viable Salmonella spp.: Current applications and challenges | |
CN104152546A (en) | Kit and method for simultaneously detecting salmonella, listeria monocytogenes and staphylococcus aureus | |
Park et al. | Direct and quantitative analysis of Salmonella enterica serovar Typhimurium using real-time PCR from artificially contaminated chicken meat | |
KR20170030746A (en) | Primers used for LAMP reaction for the detection of Salmonella and its use | |
US20100248238A1 (en) | Detection Of Bacteria Belonging to the Genus Campylobacter By Targeting Cytolethal Distending Toxin | |
JP6451002B2 (en) | Rapid inspection method and system for Salmonella in feed | |
CN105567864A (en) | LAMP (loop-mediated isothermal amplification) detection primers and method of Listeria monocytogenes in food | |
US20060177824A1 (en) | Salmonella detection identification | |
JP6880692B2 (en) | Improved screening method for intestinal bacteria | |
Kačániová et al. | Incidence of Listeria monocytogenes in meat product samples by real time PCR | |
CN103409535B (en) | Detect the primer pair of Cronobacter sakazakii, probe and method | |
JP6446907B2 (en) | Method to isolate and detect food poisoning bacteria | |
CN103866030B (en) | The LAMP detection primer of Escherichia coli O 157: H7 and detection kit | |
Martinon et al. | Comparison of in-house and commercial real-time PCR systems for the detection of Enterobacteriaceae and their evaluation within an interlaboratory study using infant formula samples | |
JP5006607B2 (en) | Method for avoiding inhibition in nucleic acid amplification reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171129 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6451002 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |