JP6448432B2 - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery - Google Patents
Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Download PDFInfo
- Publication number
- JP6448432B2 JP6448432B2 JP2015063206A JP2015063206A JP6448432B2 JP 6448432 B2 JP6448432 B2 JP 6448432B2 JP 2015063206 A JP2015063206 A JP 2015063206A JP 2015063206 A JP2015063206 A JP 2015063206A JP 6448432 B2 JP6448432 B2 JP 6448432B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- active material
- positive electrode
- ion battery
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 46
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 44
- 239000007774 positive electrode material Substances 0.000 title claims description 37
- 239000011149 active material Substances 0.000 claims description 33
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 23
- 229910052717 sulfur Inorganic materials 0.000 claims description 23
- 239000011593 sulfur Substances 0.000 claims description 23
- 239000011164 primary particle Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 48
- 239000011572 manganese Substances 0.000 description 35
- 238000010304 firing Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 229910017052 cobalt Inorganic materials 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 235000007079 manganese sulphate Nutrition 0.000 description 7
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 229940044175 cobalt sulfate Drugs 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229940099596 manganese sulfate Drugs 0.000 description 5
- 239000011702 manganese sulphate Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 4
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 4
- 229940053662 nickel sulfate Drugs 0.000 description 4
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002391 graphite-based active material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 229940087748 lithium sulfate Drugs 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940073644 nickel Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- CENHPXAQKISCGD-UHFFFAOYSA-N trioxathietane 4,4-dioxide Chemical compound O=S1(=O)OOO1 CENHPXAQKISCGD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池に関し、特に表面修飾されたリチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池に関する。 The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery, and more particularly to a surface-modified positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.
リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.
リチウムイオン電池用正極活物質に用いられる技術の一つに、表面修飾がある(特許文献1〜4)。これは、次の3つの技術(a)〜(c)が主体となっている。 One of the techniques used for the positive electrode active material for lithium ion batteries is surface modification (Patent Documents 1 to 4). This is mainly based on the following three technologies (a) to (c).
(a)は、活物質の表面で電解液が分解する副反応をなるべく抑制する技術である。かつてはAl2O3やZrO2などの単独元素の酸化物が主体となっていたが、これで活物質表面を全部修飾してしまうとLiイオンの挿入脱離ができなくなってしまうため、現在は部分的に表面を修飾したり、Liイオン伝導体や活物質で表面修飾する技術が主体となっている。 (A) is a technique for suppressing as much as possible a side reaction in which the electrolytic solution decomposes on the surface of the active material. In the past, oxides of single elements such as Al 2 O 3 and ZrO 2 were mainly used, but if the entire surface of the active material is modified with this, Li ions cannot be inserted or desorbed. Is mainly based on the technique of partially modifying the surface or modifying the surface with a Li ion conductor or an active material.
(b)は、電解液中のフッ化水素不純物により活物質から遷移金属(特にMn)が溶出することを防止する技術である。この場合も(a)と同様に活物質表面を全部修飾することはできないため、現在はNi系活物質とのブレンドにより電解液中のフッ化水素不純物を反応させてMn溶出を抑制する技術が主体となっている。Mnが特に溶出抑制対象となっている理由として、負極の炭素と反応しやすいことが挙げられ、正極がMn系活物質でかつ負極が黒鉛系活物質の電池で充放電を繰り返した場合、電池の設計によっては10サイクルで初期の10分の1の放電容量となってしまう。 (B) is a technique for preventing transition metals (particularly Mn) from being eluted from the active material by hydrogen fluoride impurities in the electrolytic solution. In this case as well, the entire surface of the active material cannot be modified in the same manner as in (a), so there is currently a technology for suppressing Mn elution by reacting hydrogen fluoride impurities in the electrolytic solution by blending with a Ni-based active material. It is the subject. The reason why Mn is particularly targeted for elution suppression is that it easily reacts with carbon of the negative electrode, and when the positive electrode is a Mn-based active material and the negative electrode is a graphite-based active material, charging and discharging are repeated. Depending on the design, the discharge capacity becomes 1/10 of the initial one in 10 cycles.
(c)は、電子伝導性の低い活物質への、電子伝導性の高い物質の被覆に関する技術である。この技術に関しては、リン酸塩系やケイ酸塩系、リチウムチタン系の活物質などに炭素材料を被覆する技術として確立しており、製造も容易であることから工具用などの電池に実用化されている。 (C) is a technique related to the coating of a material having a high electron conductivity on an active material having a low electron conductivity. This technology has been established as a technology for coating carbon materials on phosphate-based, silicate-based, and lithium-titanium-based active materials, and is easy to manufacture. Has been.
(a)〜(c)の技術を考えた場合に、表面修飾技術においても電池特性を向上する機能が求められていると云える。ここで、現在、正極活物質を焼成によって製造する際、あまり一次粒子径を大きくしてしまうと、生成した正極活物質のサイクル特性が悪化するおそれがあることがわかっている。これを防ぐ手段として、焼成パターンを調整することで焼成物の一次粒子径を抑制しているが、既存の焼成パターンに比べて総熱量を低減する方向になるため、未反応原料の発生とのトレードオフになってしまい、電池特性の向上の点で問題が生じる。 When considering the techniques (a) to (c), it can be said that a function for improving battery characteristics is also required in the surface modification technique. Here, when manufacturing a positive electrode active material by baking now, when the primary particle diameter is enlarged too much, it turns out that the cycling characteristics of the produced | generated positive electrode active material may deteriorate. As a means to prevent this, the primary particle size of the fired product is suppressed by adjusting the firing pattern, but since the total calorific value is reduced compared to the existing firing pattern, the generation of unreacted raw materials This is a trade-off, and a problem arises in terms of improving battery characteristics.
そこで、本発明は、電池特性が良好な表面修飾されたリチウムイオン電池用正極活物質を提供することを課題とする。 Therefore, an object of the present invention is to provide a surface-modified positive electrode active material for a lithium ion battery having good battery characteristics.
本発明者は、このような問題を解決するため種々の検討を行った結果、表面に硫酸根を被覆させた活物質の作製において、硫酸根含有化合物などを原料に含ませておき、焼成中に一次粒子の表面に析出させることで当該一次粒子の粒子成長を抑制すること、さらに、電池特性を向上させるため、活物質の断面SIMのXPSを測定したときのS2p結合のピークを制御することが効果的であることを見出した。一般に、活物質表面に別の物質を被覆して表面修飾されたリチウムイオン電池用正極活物質を作製する場合、活物質表面に化学的に強固に結合を形成させるか、ごく短時間焼成することで活物質表面に被覆物質を固着させることが行われている。本発明では、表面に被覆した硫酸根について、活物質内に固溶せず、表面に所定量を留まらせることを狙ってS2p結合のピークを所定の範囲に制御する。 As a result of various studies to solve such problems, the present inventor has included a sulfate group-containing compound or the like in the raw material in the production of an active material whose surface is coated with a sulfate group, In order to suppress the particle growth of the primary particles by precipitating on the surface of the primary particles, and to control the peak of S2p bond when the XPS of the cross section SIM of the active material is measured in order to improve the battery characteristics Has been found effective. In general, when a positive electrode active material for a lithium ion battery whose surface is modified by coating another material on the surface of the active material, a bond is formed chemically on the surface of the active material or is fired for a very short time. The coating material is fixed to the active material surface. In the present invention, the peak of S2p bond is controlled within a predetermined range with the aim of retaining a predetermined amount on the surface of the sulfate radical coated on the surface without dissolving in the active material.
このような構成により、リチウムイオン伝導を阻害せず、かつ電解液分解も抑制した表面修飾を行うことができ、さらに電池特性が向上することを見出した。 It has been found that such a configuration allows surface modification that does not inhibit lithium ion conduction and suppresses electrolyte decomposition, and further improves battery characteristics.
上記知見を基礎にして完成した本発明は一側面において、組成式:LiaNibCocMndMeO2
(前記式において、1.0≦a≦1.05、0.5≦b≦0.9、0.1≦c≦0.3、0.1≦d≦0.3、0≦e≦0.005、b+c+d+e=1、MはMg、Al、Zrからなる群から選ばれる少なくとも1種である。)
で表され、一次粒子の表面に硫黄含有化合物または硫黄含有イオンが付着しており、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.001〜0.005であり、活物質の断面SIMのXPSを測定したとき、S2p結合のピークが、165〜175eVに存在するリチウムイオン電池用正極活物質である。
In one aspect, the present invention completed based on the above knowledge has a composition formula: Li a Ni b Co c Mn d Me O 2
(In the above formula, 1.0 ≦ a ≦ 1.05, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.1 ≦ d ≦ 0.3, 0 ≦ e ≦ 0 .005, b + c + d + e = 1, and M is at least one selected from the group consisting of Mg, Al, and Zr.)
The sulfur-containing compound or the sulfur-containing ion is attached to the surface of the primary particle, and S / (Ni + Co + Mn + M) of the whole particle is 0.001 to 0.005 in molar ratio, and the cross-section SIM of the active material When XPS is measured, the peak of the S2p bond is a positive electrode active material for a lithium ion battery present at 165 to 175 eV.
本発明は別の一側面において、本発明のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。 In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery of the present invention.
本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を用いたリチウムイオン電池である。 In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery of the present invention.
本発明によれば、電池特性が良好な表面修飾されたリチウムイオン電池用正極活物質を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries by which the battery characteristic was favorable can be provided.
(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質は、
組成式:LiaNibCocMndMeO2
(前記式において、1.0≦a≦1.05、0.5≦b≦0.9、0.1≦c≦0.3、0.1≦d≦0.3、0≦e≦0.005、b+c+d+e=1、MはMg、Al、Zrからなる群から選ばれる少なくとも1種である。)
で表される。
リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が1.0〜1.05であるが、これは、1.0未満では、安定した結晶構造を保持し難く、1.05超では電池の高容量が確保できなくなるためである。
また、リチウムイオン電池用正極活物質におけるニッケルの組成が0.5〜0.9であるため、当該リチウムイオン電池用正極活物質を用いたリチウムイオン電池の容量、出力、安全性の三つがバランスよく向上する。リチウムイオン電池用正極活物質におけるニッケルの組成は好ましくは0.7〜0.9、より好ましくは0.8〜0.9である。
(Configuration of positive electrode active material for lithium ion battery)
The positive electrode active material for a lithium ion battery of the present invention is
Composition formula: Li a Ni b Co c Mn d Me O 2
(In the above formula, 1.0 ≦ a ≦ 1.05, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.1 ≦ d ≦ 0.3, 0 ≦ e ≦ 0 .005, b + c + d + e = 1, and M is at least one selected from the group consisting of Mg, Al, and Zr.)
It is represented by
The ratio of lithium to the total metal in the positive electrode active material for a lithium ion battery is 1.0 to 1.05. When the ratio is less than 1.0, it is difficult to maintain a stable crystal structure. This is because the high capacity cannot be secured.
In addition, since the composition of nickel in the positive electrode active material for lithium ion batteries is 0.5 to 0.9, the capacity, output, and safety of the lithium ion battery using the positive electrode active material for lithium ion batteries are balanced. Improve well. The composition of nickel in the positive electrode active material for lithium ion batteries is preferably 0.7 to 0.9, more preferably 0.8 to 0.9.
本発明のリチウムイオン電池用正極活物質は、一次粒子の表面に硫黄含有化合物または硫黄含有イオンが付着している。一次粒子の表面に付着する硫黄含有化合物は、例えば、硫酸リチウム、硫酸ニッケル、硫酸コバルト、硫酸マンガン等であってもよい。また、一次粒子の表面に付着する硫黄含有イオンは、例えば、SO4 2-等であってもよい。焼成前に硫黄含有イオンを含ませておき、正極活物質となった時に上記のような構成とすることで、その一次粒子径が焼成時にあまり発達せず、結果として正極活物質の一次粒子径が小さくなり、電池とした時のサイクル特性が改善する。 In the positive electrode active material for a lithium ion battery of the present invention, a sulfur-containing compound or a sulfur-containing ion is attached to the surface of the primary particles. The sulfur-containing compound adhering to the surface of the primary particles may be, for example, lithium sulfate, nickel sulfate, cobalt sulfate, manganese sulfate or the like. Further, the sulfur-containing ions attached to the surface of the primary particles may be, for example, SO 4 2- etc. By including the sulfur-containing ions before firing and having the above-described configuration when the positive electrode active material is obtained, the primary particle size does not develop much during firing, resulting in the primary particle size of the positive electrode active material. Becomes smaller, and the cycle characteristics of the battery are improved.
本発明のリチウムイオン電池用正極活物質は、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.001〜0.005である。粒子全体のS/(Ni+Co+Mn+M)がモル比で0.001未満であると、一次粒子径があまり小さくならず、サイクル特性が改善しないという問題が生じる。また、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.005を超えると、電池とした時の容量が悪化するという問題が生じる。 As for the positive electrode active material for lithium ion batteries of this invention, S / (Ni + Co + Mn + M) of the whole particle | grains is 0.001-0.005 by molar ratio. When S / (Ni + Co + Mn + M) of the whole particle is less than 0.001 in terms of molar ratio, the primary particle diameter is not so small, and there is a problem that cycle characteristics are not improved. Moreover, when S / (Ni + Co + Mn + M) of the whole particle exceeds 0.005 by molar ratio, the problem that the capacity | capacitance when it is set as a battery will arise.
本発明のリチウムイオン電池用正極活物質は、活物質の断面SIMのXPSを測定したとき、S2p結合のピークが、165〜175eVに存在する。このような構成により、一次粒子径があまり発達せず、従ってサイクル特性が良好となる。また、一次粒子径を抑制する必要が無いため、その結果焼成パターンを調整する必要が無く、未反応原料の発生の問題が解消する。また、硫黄のXPSスペクトルであるS2p結合のピークが165〜175eVであると、一次粒子の表面に硫黄含有化合物または硫黄含有イオンが付着していることがわかる。当該ピーク範囲が175eVを超えて、例えば180eV以上となると、一次粒子の表面に硫黄含有化合物または硫黄含有イオンが「付着」しているのではなく、一次粒子に硫黄含有化合物または硫黄含有イオンが「固溶」していることを示す。このように一次粒子に硫黄含有化合物または硫黄含有イオンが「固溶」していると、一次粒子の表面近傍において格子不整が生じ、サイクル特性が悪くなる。また、該ピークが165eVを下回り、例えば150eV以下となると、一次粒子の表面への硫黄含有化合物または硫黄含有イオンの「付着」の程度が弱くなり、サイクル特性向上への寄与がなくなる。 When the XPS of the cross-section SIM of the active material of the positive electrode active material for a lithium ion battery of the present invention is measured, the peak of S2p bond exists at 165 to 175 eV. With such a configuration, the primary particle diameter does not develop so much and therefore the cycle characteristics are good. Moreover, since it is not necessary to suppress the primary particle size, it is not necessary to adjust the firing pattern as a result, and the problem of generation of unreacted raw materials is solved. Moreover, it turns out that the sulfur containing compound or the sulfur containing ion has adhered to the surface of a primary particle as the peak of S2p coupling | bonding which is an XPS spectrum of sulfur is 165-175 eV. When the peak range exceeds 175 eV, for example, 180 eV or more, the sulfur-containing compound or the sulfur-containing ion is not “attached” to the surface of the primary particle, and the sulfur-containing compound or the sulfur-containing ion is “ "Solution". When the sulfur-containing compound or the sulfur-containing ion is “solid-solved” in the primary particles as described above, lattice irregularities occur in the vicinity of the surface of the primary particles, resulting in poor cycle characteristics. Further, when the peak is lower than 165 eV, for example, 150 eV or less, the degree of “adhesion” of the sulfur-containing compound or the sulfur-containing ions on the surface of the primary particles becomes weak, and the contribution to the improvement of the cycle characteristics is lost.
また、当該S2p結合のピークの位置が165eV未満であると、活物質の被覆が剥がれやすくなり、電池のサイクル特性が劣化する。また、当該S2p結合のピークの位置が175eVを超えると、活物質の被覆が壊れて、活物質内に硫酸根が入ってしまい、電池のサイクル特性が劣化する。 In addition, when the peak position of the S2p bond is less than 165 eV, the coating of the active material is easily peeled off, and the cycle characteristics of the battery are deteriorated. On the other hand, when the peak position of the S2p bond exceeds 175 eV, the coating of the active material is broken, and sulfate radicals enter the active material, thereby degrading the cycle characteristics of the battery.
(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.
(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。まず、硫酸ニッケル、硫酸コバルト、硫酸マンガンを所定の金属のモル比で含む水溶液を用意する。
次に、当該ニッケル、コバルト及びマンガンの硫酸塩の水溶液に、アンモニア水、苛性ソーダ水を加え、これらの溶液のpHが11〜12になるように調整して種晶を作製する。次に、pH10〜11で粒子成長させて共沈中間体を作製する。
次に、ろ過を行って前駆体を得るが、このとき、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.001〜0.005となるように洗浄した。
次に、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.001〜0.005となった前駆体を、O2フロー回転炉で700℃で1時間焼成した後、Li/(Ni+Co+Mn+M)がモル比で1.01〜1.05となるようにLi2CO3と共沈中間体とを混合し、焼成する。当該焼成としては、(1)660〜680℃で2〜4時間焼成した後、(2)720〜750℃で5〜7時間焼成する。あるいは、(1’)690〜710℃で2〜4時間焼成した後、(2’)720〜900℃で3〜5時間焼成する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail. First, an aqueous solution containing nickel sulfate, cobalt sulfate, and manganese sulfate in a molar ratio of a predetermined metal is prepared.
Next, ammonia water and caustic soda water are added to the nickel, cobalt, and manganese sulfate aqueous solution, and the pH of these solutions is adjusted to 11 to 12 to prepare seed crystals. Next, particles are grown at a pH of 10 to 11 to produce a coprecipitation intermediate.
Next, filtration is performed to obtain a precursor. At this time, washing was performed so that S / (Ni + Co + Mn + M) of the entire particle was 0.001 to 0.005 in molar ratio.
Next, a precursor in which S / (Ni + Co + Mn + M) of the whole particle is 0.001 to 0.005 in molar ratio is baked at 700 ° C. for 1 hour in an O 2 flow rotary furnace, and then Li / (Ni + Co + Mn + M) is mixing the inter Li 2 CO 3 and coprecipitation body so as to be 1.01 to 1.05 in molar ratio, calcining. As the firing, (1) firing at 660 to 680 ° C. for 2 to 4 hours, and (2) firing at 720 to 750 ° C. for 5 to 7 hours. Alternatively, (1 ′) baking at 690 to 710 ° C. for 2 to 4 hours, and (2 ′) baking at 720 to 900 ° C. for 3 to 5 hours.
その後、必要であれば、焼成体を、例えばパルベライザー等を用いて解砕することにより正極活物質の粉体を得る。 Thereafter, if necessary, the fired body is pulverized using, for example, a pulverizer to obtain a powder of the positive electrode active material.
以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。 Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.
(実施例1)
まず、硫酸ニッケル、硫酸コバルト、硫酸マンガンを、Ni:Co:Mn=8:1:1のモル比で含む水溶液を用意し、同時に14mol/Lのアンモニア水、18mol/Lの苛性ソーダ水を用意した。これらの溶液をpHが11〜12になるように一つの反応槽に投入して種晶を作製後、pH10〜11で粒子成長させて共沈中間体を作製した。この後、ろ過するが、洗浄量を調節してS/(Ni+Co+Mn+M)がモル比で0.001となるようにした。これをO2フロー回転炉で700℃で1時間焼成した後、Li/(Ni+Co+Mn)がモル比で1.01となるようにLi2CO3と共沈中間体とを混合した。これをO2雰囲気の焼成炉に入れ、660℃で3時間焼成後、750℃で5時間焼成して活物質を得た。
Example 1
First, an aqueous solution containing nickel sulfate, cobalt sulfate, and manganese sulfate at a molar ratio of Ni: Co: Mn = 8: 1: 1 was prepared, and at the same time, 14 mol / L ammonia water and 18 mol / L caustic soda water were prepared. . These solutions were put into one reaction vessel so that the pH was 11 to 12 to prepare seed crystals, and then particles were grown at pH 10 to 11 to prepare a coprecipitation intermediate. Thereafter, filtration was performed, but the washing amount was adjusted so that S / (Ni + Co + Mn + M) was 0.001 in molar ratio. This was calcined in an O 2 flow rotary furnace at 700 ° C. for 1 hour, and then Li 2 CO 3 and the coprecipitated intermediate were mixed so that Li / (Ni + Co + Mn) was 1.01 in molar ratio. This was placed in a firing furnace in an O 2 atmosphere, fired at 660 ° C. for 3 hours, and then fired at 750 ° C. for 5 hours to obtain an active material.
(実施例2)
O2雰囲気の焼成炉における焼成について、660℃で3時間焼成後、750℃で7時間焼成したこと以外は実施例1と同様に活物質を作製した。
(Example 2)
Firing in the firing furnace of the O 2 atmosphere, after 3 hours baking at 660 ° C., except that was calcined at 750 ° C. 7 hours to prepare an active material in the same manner as in Example 1.
(実施例3)
O2雰囲気の焼成炉における焼成について、700℃で3時間焼成後、750℃で5時間焼成したこと以外は実施例1と同様に活物質を作製した。
Example 3
Firing in the firing furnace of the O 2 atmosphere, after 3 hours baking at 700 ° C., except that calcined 5 hours at 750 ° C. to produce the active material in the same manner as in Example 1.
(実施例4〜11、14〜21、24〜31、34〜40)
ニッケル、コバルト及びマンガンの硫酸塩におけるNi:Co:Mnのモル比、及び、ろ過工程でのS/(Ni+Co+Mn+M)のモル比を変更した以外は、実施例1と同様にして活物質を作製した。
なお、実施例8、18、28、38について、ニッケル、コバルト、マンガンの硫酸塩と同時に、硫酸マグネシウムの形で投入することで正極活物質の組成においてM種の金属であるMgを加えた。
また、実施例9、19、29、39について、ニッケル、コバルト、マンガンの硫酸塩と同時に、硫酸アルミニウムの形で投入することで正極活物質の組成においてM種の金属であるAlを加えた。
また、実施例10、20、30、40について、ニッケル、コバルト、マンガンの硫酸塩と同時に、オキシ硫酸ジルコニウムの形で投入することで正極活物質の組成においてM種の金属であるZrを加えた。
(Examples 4-11, 14-21, 24-31, 34-40)
An active material was produced in the same manner as in Example 1 except that the molar ratio of Ni: Co: Mn in the sulfates of nickel, cobalt and manganese and the molar ratio of S / (Ni + Co + Mn + M) in the filtration step were changed. .
In Examples 8, 18, 28, and 38, Mg, which is an M type metal, was added in the composition of the positive electrode active material by adding nickel, cobalt, and manganese sulfates in the form of magnesium sulfate at the same time.
In Examples 9, 19, 29, and 39, Al, which is an M-type metal, was added in the composition of the positive electrode active material by adding nickel sulfate, cobalt sulfate, and manganese sulfate in the form of aluminum sulfate.
Further, in Examples 10, 20, 30, and 40, Zr, which is an M-type metal, was added in the composition of the positive electrode active material by adding nickel, cobalt, and manganese sulfates in the form of zirconium oxysulfate at the same time. .
(実施例12、22、32)
ニッケル、コバルト及びマンガンの硫酸塩におけるNi:Co:Mnのモル比、及び、ろ過工程でのS/(Ni+Co+Mn+M)のモル比を変更した以外は、実施例2と同様にして活物質を作製した。
(Examples 12, 22, and 32)
An active material was produced in the same manner as in Example 2 except that the molar ratio of Ni: Co: Mn in the sulfates of nickel, cobalt and manganese and the molar ratio of S / (Ni + Co + Mn + M) in the filtration step were changed. .
(実施例13、23、33)
ニッケル、コバルト及びマンガンの硫酸塩におけるNi:Co:Mnのモル比、及び、ろ過工程でのS/(Ni+Co+Mn+M)のモル比を変更した以外は、実施例3と同様にして活物質を作製した。
(Examples 13, 23, 33)
An active material was prepared in the same manner as in Example 3 except that the molar ratio of Ni: Co: Mn in the sulfates of nickel, cobalt and manganese and the molar ratio of S / (Ni + Co + Mn + M) in the filtration step were changed. .
(比較例1)
O2雰囲気の焼成炉における焼成について、690℃で3時間焼成後、750℃で7時間焼成したこと以外は実施例1と同様に活物質を作製した。
(Comparative Example 1)
Firing in the firing furnace of the O 2 atmosphere, after 3 hours baking at 690 ° C., except that was calcined at 750 ° C. 7 hours to prepare an active material in the same manner as in Example 1.
(比較例2)
O2雰囲気の焼成炉における焼成について、620℃で3時間焼成後、750℃で1時間焼成したこと以外は実施例1と同様に活物質を作製した。
(Comparative Example 2)
Firing in the firing furnace of the O 2 atmosphere, after 3 hours baking at 620 ° C., except that was calcined 1 hour at 750 ° C. to produce the active material in the same manner as in Example 1.
(比較例3〜6)
ニッケル、コバルト及びマンガンの硫酸塩におけるNi:Co:Mnのモル比、及び、ろ過工程でのS/(Ni+Co+Mn+M)のモル比を変更した以外は、実施例1と同様にして活物質を作製した。
なお、比較例4について、ニッケル、コバルト、マンガンの硫酸塩と同時に、硫酸チタニルの形で投入することで正極活物質の組成においてM種の金属であるTiを加えた。
(Comparative Examples 3-6)
An active material was produced in the same manner as in Example 1 except that the molar ratio of Ni: Co: Mn in the sulfates of nickel, cobalt and manganese and the molar ratio of S / (Ni + Co + Mn + M) in the filtration step were changed. .
In Comparative Example 4, Ti, which is an M-type metal, was added in the composition of the positive electrode active material by adding it in the form of titanyl sulfate simultaneously with the sulfates of nickel, cobalt, and manganese.
(比較例7)
まず、Li2CO3、NiO、Co3O4、MnO2を、Ni:Co:Mn=8:1:1、Li/(Ni+Co+Mn)が1.01のモル比となるように一つの反応槽に投入してスラリーを作製し、これを900℃で5時間焼成した。
次に、追加のLi2CO3、硫黄単体を、(追加で添加するLi2CO3のLi)/S=2、S/(Ni+Co+Mn)=0.001のモル比となるようにメカノケミカル装置にて混合後、毎分3℃の速度で昇温し、700℃で3時間保持した後、徐冷して活物質を作製した。
(Comparative Example 7)
First, Li 2 CO 3 , NiO, Co 3 O 4 , and MnO 2 are mixed into one reaction tank so that Ni: Co: Mn = 8: 1: 1 and Li / (Ni + Co + Mn) has a molar ratio of 1.01. To prepare a slurry, which was fired at 900 ° C. for 5 hours.
Next, additional Li 2 CO 3 and simple sulfur are added to the mechanochemical apparatus so as to have a molar ratio of (Li 2 CO 3 to be additionally added) / S = 2 and S / (Ni + Co + Mn) = 0.001. After mixing, the temperature was raised at a rate of 3 ° C. per minute, held at 700 ° C. for 3 hours, and then slowly cooled to produce an active material.
(評価)
−正極材組成の評価−
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出し、酸素含有量はLECO法で測定した。
(Evaluation)
-Evaluation of composition of positive electrode material-
The metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), the composition ratio (molar ratio) of each metal was calculated, and the oxygen content was measured by the LECO method.
−XPS測定−
以下の条件により活物質の断面SIMのXPS測定を行い、S2p結合のピークを得た。
・X線出力:15kV、25W
・測定面積:100μmφ
・取り出し角:45°
・結合エネルギー軸補正:C1sスペクトル上の炭酸由来ピークである284.6eV
-XPS measurement-
XPS measurement of the cross-section SIM of the active material was performed under the following conditions to obtain a peak of S2p bond.
・ X-ray output: 15kV, 25W
・ Measurement area: 100μmφ
・ Extraction angle: 45 °
Bond energy axis correction: 284.6 eV which is a carbonic acid-derived peak on the C1s spectrum
−電池特性の評価−
各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また、45〜55℃の範囲に保った恒温槽で10サイクル充放電を繰り返したときのサイクル特性を測定した。
これらの結果を表1及び表2に示す。なお、表1及び2のS/(Ni+Co+Mn+M)は活物質の粒子全体のモル比を示す。
-Evaluation of battery characteristics-
Each positive electrode material, conductive material, and binder are weighed in a ratio of 85: 8: 7, and the positive electrode material and the conductive material are mixed into a slurry in which the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the current density was 0.2C. The discharge capacity was measured. Moreover, the cycle characteristic when repeating 10 cycles charging / discharging with the thermostat kept in the range of 45-55 degreeC was measured.
These results are shown in Tables 1 and 2. In addition, S / (Ni + Co + Mn + M) in Tables 1 and 2 represents the molar ratio of the whole particles of the active material.
(評価結果)
実施例1〜40は、いずれも一次粒子の表面に硫黄含有化合物または硫黄含有イオンが付着しており、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.001〜0.005であり、活物質の断面SIMのXPSを測定したとき、S2p結合のピークが、165〜175eVに存在しており、放電容量及びサイクル特性がいずれも良好であった。
比較例1、2、7は、S2p結合のピークが、165〜175eVに存在しておらず、サイクル特性が不良であった。
比較例3は、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.005を超えていたため、サイクル特性が不良であった。
比較例4は、コアがTiを含有するため、構造安定化の効果が無くなり、サイクル特性が不良であった。
比較例5は、Niの組成が小さく、放電容量及びサイクル特性が不良であった。
比較例6は、正極活物質がゲル化したため電池作製ができなかった。
(Evaluation results)
In each of Examples 1 to 40, a sulfur-containing compound or a sulfur-containing ion is attached to the surface of the primary particle, and S / (Ni + Co + Mn + M) of the entire particle is 0.001 to 0.005 in terms of molar ratio. When XPS of the cross section SIM of the material was measured, a peak of S2p bond was present at 165 to 175 eV, and both the discharge capacity and the cycle characteristics were good.
In Comparative Examples 1, 2, and 7, the peak of S2p bond did not exist at 165 to 175 eV, and the cycle characteristics were poor.
In Comparative Example 3, since S / (Ni + Co + Mn + M) of the entire particle exceeded 0.005 in terms of molar ratio, the cycle characteristics were poor.
In Comparative Example 4, since the core contained Ti, the effect of stabilizing the structure was lost, and the cycle characteristics were poor.
In Comparative Example 5, the Ni composition was small, and the discharge capacity and cycle characteristics were poor.
In Comparative Example 6, the battery could not be produced because the positive electrode active material was gelled.
Claims (3)
(前記式において、1.0≦a≦1.05、0.5≦b≦0.9、0.1≦c≦0.3、0.1≦d≦0.3、0≦e≦0.005、b+c+d+e=1、MはMg、Al、Zrからなる群から選ばれる少なくとも1種である。)
で表され、
一次粒子の表面に硫黄含有化合物または硫黄含有イオンが付着しており、粒子全体のS/(Ni+Co+Mn+M)がモル比で0.001〜0.005であり、
活物質の断面SIMのXPSを測定したとき、S2p結合のピークが、165〜175eVに存在するリチウムイオン電池用正極活物質。 Composition formula: Li a Ni b Co c Mn d Me O 2
(In the above formula, 1.0 ≦ a ≦ 1.05, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.1 ≦ d ≦ 0.3, 0 ≦ e ≦ 0 .005, b + c + d + e = 1, and M is at least one selected from the group consisting of Mg, Al, and Zr.)
Represented by
A sulfur-containing compound or a sulfur-containing ion is attached to the surface of the primary particle, and S / (Ni + Co + Mn + M) of the whole particle is 0.001 to 0.005 in molar ratio,
A positive electrode active material for a lithium ion battery having an S2p bond peak at 165 to 175 eV when XPS of a cross section SIM of the active material is measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015063206A JP6448432B2 (en) | 2015-03-25 | 2015-03-25 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015063206A JP6448432B2 (en) | 2015-03-25 | 2015-03-25 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016184472A JP2016184472A (en) | 2016-10-20 |
JP6448432B2 true JP6448432B2 (en) | 2019-01-09 |
Family
ID=57242032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015063206A Active JP6448432B2 (en) | 2015-03-25 | 2015-03-25 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6448432B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7009016B2 (en) | 2017-10-20 | 2022-01-25 | エルジー・ケム・リミテッド | Positive electrode active material for lithium secondary battery, this manufacturing method, positive electrode for lithium secondary battery including this, and lithium secondary battery |
CN109994712B (en) * | 2017-12-29 | 2022-04-08 | 湖北九邦新能源科技有限公司 | Surface-modified high-nickel ternary cathode material, modification method thereof and lithium ion battery |
CN114068911B (en) | 2020-07-30 | 2023-06-20 | 巴斯夫杉杉电池材料有限公司 | Modified high-nickel positive electrode material and preparation method thereof |
JP7148685B1 (en) | 2021-08-03 | 2022-10-05 | 住友化学株式会社 | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250120A (en) * | 1995-03-08 | 1996-09-27 | Sanyo Electric Co Ltd | Lithium secondary battery |
JP2004014296A (en) * | 2002-06-06 | 2004-01-15 | Nichia Chem Ind Ltd | Positive electrode active material for lithium ion secondary battery |
JP5077131B2 (en) * | 2007-08-02 | 2012-11-21 | ソニー株式会社 | Positive electrode active material, positive electrode using the same, and nonaqueous electrolyte secondary battery |
TWI502793B (en) * | 2008-09-10 | 2015-10-01 | Toda Kogyo Corp | Lithium composite oxide particle powder for nonaqueous electrolyte storage battery, method for producing the same, and nonaqueous electrolyte storage battery |
JP5584456B2 (en) * | 2009-12-10 | 2014-09-03 | 日本化学工業株式会社 | Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery |
WO2011108596A1 (en) * | 2010-03-04 | 2011-09-09 | Jx日鉱日石金属株式会社 | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
CN102668218B (en) * | 2010-12-20 | 2015-06-17 | 日立麦克赛尔株式会社 | Non-aqueous secondary battery |
JP2013175412A (en) * | 2012-02-27 | 2013-09-05 | Sumitomo Electric Ind Ltd | Nonaqueous electrolyte battery |
US20140322576A1 (en) * | 2012-02-29 | 2014-10-30 | Shin-Kobe Electric Machinery Co., Ltd. | Lithium Ion Battery |
JP5843046B2 (en) * | 2013-07-17 | 2016-01-13 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing such positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using such positive electrode active material for non-aqueous electrolyte secondary battery |
-
2015
- 2015-03-25 JP JP2015063206A patent/JP6448432B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016184472A (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6440289B2 (en) | Positive electrode active material, method for producing the same, and lithium secondary battery including the same | |
KR102210892B1 (en) | Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same | |
KR101762980B1 (en) | Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery | |
TWI527298B (en) | A positive electrode active material particle powder, a method for producing the same, and a nonaqueous electrolyte battery | |
JP5467144B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP5916876B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP2019108264A (en) | Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY | |
TWI549343B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
TWI423507B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
WO2011108389A1 (en) | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery | |
WO2011108598A1 (en) | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery | |
JP5245210B2 (en) | Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same | |
KR20160006172A (en) | Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery | |
KR20180043403A (en) | Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery | |
JP2017084674A (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP2007265784A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it | |
TW201737543A (en) | Positive electrode active material particles for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery | |
JP6448432B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery | |
JP2015153551A (en) | Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery | |
WO2018096999A1 (en) | Lithium-manganese complex oxide and method for producing same | |
JP7211137B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing precursor used for producing positive electrode active material, method for producing positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
KR100872370B1 (en) | Spinel type positive electrode active material for lithium secondary battery and manufacturing method thereof | |
WO2021039120A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device | |
JP6619832B2 (en) | Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery | |
JP2011187419A (en) | Positive electrode for lithium ion battery, and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6448432 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |