[go: up one dir, main page]

JP6443292B2 - Driving support device and driving support method - Google Patents

Driving support device and driving support method Download PDF

Info

Publication number
JP6443292B2
JP6443292B2 JP2015203111A JP2015203111A JP6443292B2 JP 6443292 B2 JP6443292 B2 JP 6443292B2 JP 2015203111 A JP2015203111 A JP 2015203111A JP 2015203111 A JP2015203111 A JP 2015203111A JP 6443292 B2 JP6443292 B2 JP 6443292B2
Authority
JP
Japan
Prior art keywords
vehicle
locus
preceding vehicle
host vehicle
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015203111A
Other languages
Japanese (ja)
Other versions
JP2017076234A (en
Inventor
文彦 谷森
文彦 谷森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015203111A priority Critical patent/JP6443292B2/en
Publication of JP2017076234A publication Critical patent/JP2017076234A/en
Application granted granted Critical
Publication of JP6443292B2 publication Critical patent/JP6443292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、自車両の運転を支援する運転支援装置、及び運転支援方法に関する。   The present invention relates to a driving support device and a driving support method that support driving of a host vehicle.

運転支援装置として、自車両が追従して走行する目標走行経路を設定するものが知られている。特許文献1には、前回の検出サイクルまでに蓄積された先行車の検出位置と、現検出サイクルで検出された先行車の検出位置とを用いて先行車の走行軌跡を生成する。そして、先行車の走行軌跡を用いて自車両が追従走行する目標走行経路を設定し、自車両が目標走行経路に沿って走行するように自車両の操舵制御を行っている。   As a driving support device, there is known a device that sets a target travel route on which the host vehicle follows and travels. In Patent Document 1, a travel locus of a preceding vehicle is generated using the detection position of the preceding vehicle accumulated up to the previous detection cycle and the detection position of the preceding vehicle detected in the current detection cycle. Then, a target travel route on which the host vehicle travels is set using the travel locus of the preceding vehicle, and steering control of the host vehicle is performed so that the host vehicle travels along the target travel route.

特開2014−123283号公報JP 2014-123283 A

しかし、先行車の検出が開始されて間もなくは、先行車の走行軌跡が短いため、目標走行経路を設定できず、自車両の運転支援を実施できない課題があった。   However, shortly after the detection of the preceding vehicle is started, the traveling locus of the preceding vehicle is short, so that there is a problem that the target traveling route cannot be set and driving support of the host vehicle cannot be performed.

本発明は上記に鑑みてなされたものであり、自車両の運転支援をより適切に実施できる運転支援装置、及び運転支援方法を提供することを主たる目的とするものである。   The present invention has been made in view of the above, and a main object of the present invention is to provide a driving support device and a driving support method that can more appropriately perform driving support of the host vehicle.

本発明は、自車両前方の先行車の検出位置を所定周期で取得する先行車検出部と、前記先行車検出部で検出された前記先行車の検出位置を用いて前記先行車の走行軌跡である先行車軌跡を生成する先行車軌跡生成部と、自車両の検出位置を所定周期で取得する自車両検出部と、前記自車両検出部で検出された前記自車両の検出位置を用いて自車両の走行軌跡である自車両軌跡を生成する自車両軌跡生成部と、前記先行車軌跡を前記自車両軌跡で補完することにより自車両が追従走行する目標走行経路を設定する目標経路設定部と、を備えることを特徴とする。   The present invention uses a preceding vehicle detection unit that acquires a detection position of a preceding vehicle ahead of the host vehicle at a predetermined cycle, and a travel locus of the preceding vehicle using the detection position of the preceding vehicle detected by the preceding vehicle detection unit. Using the preceding vehicle trajectory generating unit that generates a certain preceding vehicle trajectory, the own vehicle detecting unit that acquires the detection position of the own vehicle at a predetermined period, and the detected position of the own vehicle detected by the own vehicle detecting unit A host vehicle trajectory generating unit that generates a host vehicle trajectory that is a travel trajectory of the vehicle; a target route setting unit that sets a target travel path along which the host vehicle travels by complementing the preceding vehicle trajectory with the host vehicle trajectory; It is characterized by providing.

本発明によれば、先行車の走行軌跡を自車両の走行軌跡で補完することにより目標走行経路を生成することとしたため、先行車が検出された直後であって先行車軌跡が短い状況においても、目標走行経路を設定することができる。   According to the present invention, since the target travel route is generated by complementing the travel locus of the preceding vehicle with the travel locus of the host vehicle, even in a situation immediately after the preceding vehicle is detected and the preceding vehicle locus is short. A target travel route can be set.

運転支援装置の概略構成図。The schematic block diagram of a driving assistance device. 目標走行経路の設定の例を示す図。The figure which shows the example of the setting of a target driving | running route. 進入車がある場合の自車両軌跡との関係を示す図。The figure which shows the relationship with the own vehicle locus | trajectory when there exists an approaching vehicle. 目標走行経路の算出処理のフローチャート。The flowchart of the calculation process of a target driving | running route. 変容例の目標走行経路の算出処理のフローチャート。The flowchart of the calculation process of the target driving | running route of the example of a change.

以下、各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。なお、本実施形態の運転支援装置100は、自車両を走行レーンから逸脱させることなく走行させるレーンキープアシスト(Lane Keep Assist)や、先行車に自車両を追従走行させるアダプティブクルーズコントロール(Adaptive Cruise Control)等の運転支援を実施する。   Hereinafter, each embodiment will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the description of the same reference numerals is used. The driving support device 100 according to the present embodiment includes a lane keep assist that allows the host vehicle to travel without departing from the travel lane, and an adaptive cruise control that allows the host vehicle to travel following the preceding vehicle. ) And other driving assistance.

図1において、運転支援装置100は車両(自車両)に搭載され、検出部10、ECU20、操舵制御装置30を備えて構成されている。検出部10は、画像センサ11、レーダセンサ12、ヨーレートセンサ13、車速センサ14を備えている。   In FIG. 1, the driving support device 100 is mounted on a vehicle (own vehicle), and includes a detection unit 10, an ECU 20, and a steering control device 30. The detection unit 10 includes an image sensor 11, a radar sensor 12, a yaw rate sensor 13, and a vehicle speed sensor 14.

画像センサ11は、CCDカメラ、単眼カメラ、ステレオカメラ等であり、自車両のフロントガラスの上端付近等に設置される。画像センサ11は、所定時間毎に自車両の前方に向かって所定範囲で広がる領域を撮影して撮影画像を取得する。そして、撮影画像を画像処理することで、自車両前方の物体との距離、相対速度、物体の車幅方向の位置である横位置、物体の横幅等を物標情報(画像物標GT)として取得し、ECU20に出力する。   The image sensor 11 is a CCD camera, monocular camera, stereo camera, or the like, and is installed near the upper end of the windshield of the host vehicle. The image sensor 11 captures a region that expands in a predetermined range toward the front of the host vehicle every predetermined time and acquires a captured image. Then, by processing the captured image, the distance to the object ahead of the host vehicle, the relative speed, the horizontal position of the object in the vehicle width direction, the horizontal width of the object, and the like as target information (image target GT). Obtained and output to the ECU 20.

レーダセンサ12は、ミリ波やレーザ等の指向性のある電磁波を利用して自車両前方の物体を検出するものであり、自車両の前部においてその光軸が車両前方を向くように取り付けられている。レーダセンサ12は、所定時間ごとに車両前方に向かって所定範囲で広がる領域をレーダ信号で走査するとともに、車外の物体の表面で反射された電磁波を受信することで物体との距離、相対速度等を物標情報(レーダ物標LT)として取得し、ECU20に出力する。   The radar sensor 12 detects an object in front of the host vehicle using a directional electromagnetic wave such as a millimeter wave or a laser, and is attached so that its optical axis faces the front of the vehicle at the front of the host vehicle. ing. The radar sensor 12 scans a region extending in a predetermined range toward the front of the vehicle every predetermined time with a radar signal, and receives an electromagnetic wave reflected from the surface of the object outside the vehicle, thereby receiving a distance from the object, a relative speed, and the like. Is acquired as target information (radar target LT) and output to the ECU 20.

ヨーレートセンサ13は、自車両の旋回角速度(ヨーレート)を検出する。車速センサ14は、車輪の回転速度に基づき自車両の走行速度を検出する。これらの各種センサによる検出結果は、ECU20に入力される。   The yaw rate sensor 13 detects the turning angular velocity (yaw rate) of the host vehicle. The vehicle speed sensor 14 detects the traveling speed of the host vehicle based on the rotational speed of the wheels. The detection results obtained by these various sensors are input to the ECU 20.

ECU20は、運転支援装置100全体の制御を行う電子制御ユニットであり、CPUを主体として構成され、ROM,RAM等を備えて構成されている。ECU20は、画像物標GT及びレーダ物標LTを融合(フュージョン)してフュージョン物標を生成し、フュージョン物標によって、自車両の周囲の物体を検出する。   The ECU 20 is an electronic control unit that controls the entire driving support apparatus 100, and is configured mainly with a CPU, and includes a ROM, a RAM, and the like. The ECU 20 fuses the image target GT and the radar target LT to generate a fusion target, and detects an object around the host vehicle using the fusion target.

フュージョン物標を用いる場合、レーダセンサ12と画像センサ11とが取得した情報のうち、精度が高い方の情報を用いて物体の位置を特定できる。例えば、レーダ物標LTの距離や相対速度により自車両に対する物体の進行方向の位置が特定され、画像物標GTの横幅や横位置により自車両に対する物体の車幅方向の位置が特定される。そのため、物体の位置の認識精度を向上できる。   When the fusion target is used, the position of the object can be specified using information with higher accuracy among the information acquired by the radar sensor 12 and the image sensor 11. For example, the position of the object in the traveling direction with respect to the host vehicle is specified by the distance and relative speed of the radar target LT, and the position of the object in the vehicle width direction with respect to the host vehicle is specified by the lateral width and lateral position of the image target GT. Therefore, the recognition accuracy of the object position can be improved.

また、ECU20は、画像センサ11から取得した撮影画像に対して、テンプレートマッチング等の周知の画像処理を行うことで、フュージョン物標として検出された物体の種類を特定する。例えば物体の種類として、自車両の周辺を走行する歩行者、路上障害物、他車両などを検出する。ここで他車両とは、自車両と先行車との間に進入して(割り込んで)くる車両(いわゆる進入車)、自車両の進行方向の前方を走行する先行車等である。   Moreover, ECU20 specifies the kind of object detected as a fusion target by performing well-known image processings, such as template matching, with respect to the picked-up image acquired from the image sensor 11. FIG. For example, pedestrians, road obstacles, and other vehicles that travel around the host vehicle are detected as the types of objects. Here, the other vehicle is a vehicle that enters (interrupts) between the own vehicle and a preceding vehicle (a so-called approach vehicle), a preceding vehicle that travels ahead in the traveling direction of the own vehicle, or the like.

さらには、ECU20は、自車両を目標走行経路に沿って走行させる運転支援を行う。詳しくは、ECU20は、先行車検出部21、先行車軌跡生成部22、自車両検出部23、自車両軌跡生成部24、目標経路設定部25、進入車検出部26、進入車軌跡生成部27、切替部28を備えて構成されており、検出部10と操舵制御装置30と通信可能に接続されている。   Furthermore, the ECU 20 performs driving support for causing the host vehicle to travel along the target travel route. Specifically, the ECU 20 includes a preceding vehicle detection unit 21, a preceding vehicle locus generation unit 22, an own vehicle detection unit 23, an own vehicle locus generation unit 24, a target route setting unit 25, an approaching vehicle detection unit 26, and an approaching vehicle locus generation unit 27. The switching unit 28 is configured to be communicably connected to the detection unit 10 and the steering control device 30.

先行車検出部21は、フュージョン物標として特定された物体のうち、自車両の走行レーン上を走行する車両を先行車として検出する。そして、画像処理によって先行車の後端部を検出し、例えばその中心位置を、先行車の検出位置として認識する。先行車の検出位置には、自車両の進行方向(縦方向)における自車両との隔たりを示す相対距離、自車両の車幅方向(横方向)における自車両との隔たりを示す相対横位置等が含まれている。そして、先行車検出部21は、所定の周期で先行車の検出位置を検出して、記憶部(RAM)に記憶する。   The preceding vehicle detection unit 21 detects a vehicle traveling on the traveling lane of the host vehicle as the preceding vehicle among the objects specified as the fusion target. Then, the rear end portion of the preceding vehicle is detected by image processing, and for example, the center position thereof is recognized as the detection position of the preceding vehicle. The detection position of the preceding vehicle includes a relative distance indicating a distance from the own vehicle in the traveling direction (vertical direction) of the own vehicle, a relative lateral position indicating a distance from the own vehicle in the vehicle width direction (lateral direction), etc. It is included. And the preceding vehicle detection part 21 detects the detection position of a preceding vehicle with a predetermined period, and memorize | stores it in a memory | storage part (RAM).

先行車軌跡生成部22は、先行車検出部21によって取得された先行車の検出位置の履歴を用いて、先行車の走行軌跡(以下、先行車軌跡L2)を算出する。詳しくは、前回の検出サイクルまでに検出された先行車の検出位置と、現検出サイクルで検出された先行車の検出位置とを結ぶ線分により、先行車軌跡L2を生成する。例えば、各検出サイクルでの先行車の検出位置を近似円等でつなぐことで先行車軌跡L2を生成する。   The preceding vehicle locus generation unit 22 calculates the traveling locus of the preceding vehicle (hereinafter, the preceding vehicle locus L2) using the history of the detection position of the preceding vehicle acquired by the preceding vehicle detection unit 21. Specifically, the preceding vehicle locus L2 is generated by a line segment connecting the detection position of the preceding vehicle detected up to the previous detection cycle and the detection position of the preceding vehicle detected in the current detection cycle. For example, the preceding vehicle locus L2 is generated by connecting the detection positions of the preceding vehicle in each detection cycle with an approximate circle or the like.

自車両検出部23は、自車両M1の車速及びヨーレート等の自車両M1の状態量の検出結果から自車両M1の検出位置を求める。   The own vehicle detection unit 23 obtains the detection position of the own vehicle M1 from the detection result of the state quantity of the own vehicle M1 such as the vehicle speed and the yaw rate of the own vehicle M1.

自車両軌跡生成部24は、自車両検出部23で検出された自車両M1の検出位置の履歴を用いて、自車両M1の走行軌跡(以下、自車両軌跡L1)を生成する。なお、自車両M1の検出位置は、自車両M1の走行中に継続して取得されるが、過去に取得された自車両M1の検出位置の精度は次第に低くなる。そこで、自車両軌跡生成部24は、現サイクルでの検出位置と、所定サイクル前までに取得した自車両の検出位置とを用いて、自車両軌跡L1を生成する。例えば、各検出サイクルでの自車両の検出位置を近似円等で繋ぐことにより自車両軌跡L1を生成する。   The own vehicle trajectory generation unit 24 generates a travel trajectory of the own vehicle M1 (hereinafter, the own vehicle trajectory L1) using the history of the detection position of the own vehicle M1 detected by the own vehicle detection unit 23. The detection position of the host vehicle M1 is continuously acquired while the host vehicle M1 is traveling, but the accuracy of the detection position of the host vehicle M1 acquired in the past gradually decreases. Therefore, the host vehicle track generation unit 24 generates the host vehicle track L1 using the detection position in the current cycle and the detection position of the host vehicle acquired before the predetermined cycle. For example, the host vehicle locus L1 is generated by connecting the detected positions of the host vehicle in each detection cycle with an approximate circle or the like.

目標経路設定部25は、先行車軌跡生成部22で生成された先行車軌跡L2と、自車両軌跡生成部24で生成された自車両軌跡L1とを用いて、自車両M1を追従走行させる走行経路を目標走行経路L0として設定する。   The target route setting unit 25 uses the preceding vehicle trajectory L2 generated by the preceding vehicle trajectory generating unit 22 and the own vehicle trajectory L1 generated by the own vehicle trajectory generating unit 24 to travel following the host vehicle M1. The route is set as the target travel route L0.

すなわち、図2に示すように、自車両M1の前方を走行する先行車M2の検出が開始されると、先行車の現在位置が所定周期で繰り返し検出されることで、先行車の検出位置がA1,A0の順番で取得されている。しかし先行車の検出位置として蓄積されたデータ量が少ないと先行車軌跡L2が短くなる。そのため、先行車軌跡L2のみを用いて目標走行経路L0を設定することができず、自車両M1の運転支援を実施できないことが生じうる。   That is, as shown in FIG. 2, when the detection of the preceding vehicle M2 traveling ahead of the host vehicle M1 is started, the current position of the preceding vehicle is repeatedly detected at a predetermined cycle, so that the detection position of the preceding vehicle is determined. They are acquired in the order of A1 and A0. However, if the amount of data accumulated as the detection position of the preceding vehicle is small, the preceding vehicle locus L2 is shortened. Therefore, the target travel route L0 cannot be set using only the preceding vehicle locus L2, and driving assistance for the host vehicle M1 may not be performed.

一方、自車両の検出位置の履歴は自車両の走行中に継続して取得されている。すなわち図2に示すように、自車両の現在位置が所定周期で繰り返し検出されることで、自車両の検出位置がB2,B1,B0の順番に取得されている。そこで、本実施形態では、先行車軌跡L2が短い場合には、先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0を設定する。詳しくは、自車両軌跡L1を前方に延長することで、自車両軌跡L1と先行車軌跡L2との間の離間部分(軌跡が算出されていない範囲)を補う自車予測軌跡L12を生成する。そして先行車軌跡L2を、自車両軌跡L1およびその延長部分である自車予測軌跡L12により補完して、目標走行経路L0を設定する。   On the other hand, the history of the detection position of the host vehicle is continuously acquired while the host vehicle is traveling. That is, as shown in FIG. 2, the detection position of the own vehicle is acquired in order of B2, B1, and B0 by repeatedly detecting the current position of the own vehicle at a predetermined cycle. Therefore, in the present embodiment, when the preceding vehicle locus L2 is short, the preceding vehicle locus L2 is complemented by the own vehicle locus L1 to set the target travel route L0. Specifically, by extending the host vehicle track L1 forward, a host vehicle predicted track L12 that compensates for a separated portion (range in which no track is calculated) between the host vehicle track L1 and the preceding vehicle track L2 is generated. Then, the preceding vehicle locus L2 is complemented by the own vehicle locus L1 and the own vehicle predicted locus L12 that is an extension thereof, and the target traveling route L0 is set.

なお、先行車軌跡L2と、自車両軌跡L1(自車予測軌跡L12)との重複部分は、例えば、その中間位置を目標走行経路L0の設定に使用する。この場合、自車両軌跡L1と先行車軌跡L2との離間部分を自車予測軌跡L12を用いて補完できるとともに、先行車軌跡L2と自車予測軌跡L12との重複部分を、先行車軌跡L2と自車予測軌跡L12の両方を考慮して設定できる。   In addition, the overlapping position of the preceding vehicle locus L2 and the own vehicle locus L1 (the own vehicle predicted locus L12) uses, for example, the intermediate position for setting the target travel route L0. In this case, the separated portion between the own vehicle locus L1 and the preceding vehicle locus L2 can be complemented by using the own vehicle predicted locus L12, and the overlapping portion between the preceding vehicle locus L2 and the own vehicle estimated locus L12 is replaced with the preceding vehicle locus L2. It can be set in consideration of both the own vehicle predicted locus L12.

これ以外にも、先行車軌跡L2と、自車両軌跡L1(自車予測軌跡L12)との重複部分は、先行車軌跡L2をそのまま使用してもよい。または、先行車軌跡L2と自車予測軌跡L12のうち信頼度の高いほうを優先的に使用するようにしてもよい。   In addition to this, the preceding vehicle locus L2 may be used as it is for the overlapping portion of the preceding vehicle locus L2 and the own vehicle locus L1 (the own vehicle predicted locus L12). Alternatively, the higher reliability of the preceding vehicle locus L2 and the own vehicle predicted locus L12 may be preferentially used.

以上により、先行車M2の検出が開始された直後であって、先行車軌跡L2が短い状況においても、目標走行経路L0を設定することができる。そのため、先行車の検出が開始された直後から自車両M1の運転支援を行うことが可能となる。   As described above, the target travel route L0 can be set even immediately after the detection of the preceding vehicle M2 is started and the preceding vehicle locus L2 is short. Therefore, it becomes possible to perform driving support for the host vehicle M1 immediately after the detection of the preceding vehicle is started.

図1の説明に戻り、進入車検出部26は、フュージョン物標として特定された物体(自車両M1の周囲の他車両)のうち、先行車M2と自車両M1との間に進入してくる可能性のある他車両を進入車の候補車両(以下、候補車両)として検出する。例えば、自車両M1の隣接車線において、自車両M1の側方から先行車M2までの間を走行している他車両や、自車両M1の後方を走行している他車両のうち、進入車となる可能性のある他車両を候補車両として検出する。そして、各候補車両の検出位置(後端部の中心位置)を所定周期で取得して記憶部に記憶する。また、自車両M1と候補車両との車幅方向の間隔が所定間隔以下に接近したことが検出された際等に、その候補車両を進入車M3として特定する。   Returning to the description of FIG. 1, the approaching vehicle detection unit 26 enters between the preceding vehicle M2 and the host vehicle M1 among the objects identified as fusion targets (other vehicles around the host vehicle M1). Other possible vehicles are detected as candidate vehicles (hereinafter referred to as candidate vehicles) for the approaching vehicle. For example, in an adjacent lane of the host vehicle M1, an other vehicle that travels from the side of the host vehicle M1 to the preceding vehicle M2 or another vehicle that travels behind the host vehicle M1 The other vehicle which may become is detected as a candidate vehicle. And the detection position (center position of a rear-end part) of each candidate vehicle is acquired with a predetermined period, and is memorize | stored in a memory | storage part. Further, when it is detected that the distance in the vehicle width direction between the host vehicle M1 and the candidate vehicle approaches a predetermined distance or less, the candidate vehicle is specified as the approaching vehicle M3.

進入車軌跡生成部27は、候補車両の検出位置を用いて候補車両の走行軌跡(以下、進入車軌跡L3)を生成する。候補車両が複数台ある場合には、候補車両ごとに進入車軌跡L3を個別に生成する。なお、進入車軌跡生成部27は、候補車両が検出された時点から、その候補車両の走行軌跡の取得を開始する。   The approach vehicle trajectory generation unit 27 generates a travel trajectory of the candidate vehicle (hereinafter referred to as an approach vehicle trajectory L3) using the detection position of the candidate vehicle. When there are a plurality of candidate vehicles, the approach vehicle locus L3 is individually generated for each candidate vehicle. Note that the approaching vehicle trajectory generation unit 27 starts acquiring the travel trajectory of the candidate vehicle from the time when the candidate vehicle is detected.

切替部28は、進入車検出部26によって自車両前方に割り込む進入車M3が特定された場合に、その進入車M3を先行車M2に切り替えるとともに、進入車軌跡L3を先行車軌跡L2に切り替える。   The switching unit 28 switches the approaching vehicle M3 to the preceding vehicle M2 and switches the approaching vehicle locus L3 to the preceding vehicle locus L2 when the approaching vehicle M3 that interrupts ahead of the host vehicle is specified by the approaching vehicle detection unit 26.

ところで、切替部28によって進入車M3が先行車M2に切り替えられる以前、すなわち進入車M3が候補車両の時点では、図3に示すように、自車両前方に進入車M3が進入する以前は、進入車軌跡L3と自車両軌跡L1との間にオフセットΔWが生じている。   By the way, before the approach vehicle M3 is switched to the preceding vehicle M2 by the switching unit 28, that is, when the approach vehicle M3 is a candidate vehicle, as shown in FIG. 3, before the approach vehicle M3 enters the front of the host vehicle, An offset ΔW is generated between the vehicle locus L3 and the host vehicle locus L1.

そのため、自車両前方に進入した進入車M3が先行車M2に切り替えられた時点で、これまでに取得した進入車軌跡L3を先行車軌跡L2に切り替えて使用すると、目標走行経路L0が正しく設定されないことが生じうる。   Therefore, when the approach vehicle M3 that has entered the front of the host vehicle is switched to the preceding vehicle M2, the target travel route L0 is not set correctly if the approach vehicle track L3 acquired so far is switched to the preceding vehicle track L2. Can happen.

この点、本実施形態では、自車両前方に進入車が進入する以前に取得した進入車軌跡L3は先行車軌跡L2として使用しないようにする。しかしこの場合には、進入車M3が先行車M2に切り替えられた直後は、先行車軌跡L2が短くなる。そのため、先行車軌跡L2のみを用いて、目標走行経路L0を設定することができなくなる。   In this regard, in this embodiment, the approach vehicle locus L3 acquired before the approach vehicle enters the front of the host vehicle is not used as the preceding vehicle locus L2. However, in this case, immediately after the approach vehicle M3 is switched to the preceding vehicle M2, the preceding vehicle locus L2 becomes shorter. For this reason, the target travel route L0 cannot be set using only the preceding vehicle locus L2.

そこで進入車M3が先行車M2に切り替えられてから、所定時間が経過するまでは、進入車M3が先行車M2に切り替えられた以降に生成した先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0を設定する。または、進入車M3が先行車M2に切り替えられた後に取得した先行車軌跡L2の長さが所定未満となることを条件に、先行車軌跡L2を自車両軌跡L1で補完してもよい。以上により、先行車M2の切り替わり時点から目標走行経路L0を適切に設定することができる。   Therefore, until the predetermined time elapses after the approaching vehicle M3 is switched to the preceding vehicle M2, the preceding vehicle locus L2 generated after the approaching vehicle M3 is switched to the preceding vehicle M2 is complemented by the own vehicle locus L1. A target travel route L0 is set. Alternatively, the preceding vehicle locus L2 may be supplemented with the own vehicle locus L1 on the condition that the length of the preceding vehicle locus L2 acquired after the approaching vehicle M3 is switched to the preceding vehicle M2 is less than a predetermined length. As described above, the target travel route L0 can be appropriately set from the time when the preceding vehicle M2 is switched.

図1の説明に戻り、操舵制御装置30は、自車両M1の走行軌跡が目標走行経路L0に沿うように、すなわち自車両M1が目標走行経路L0を辿って走行するように、自車両M1の操舵量を調整する。例えば、操舵制御装置30は、自車両M1の車幅方向の中央位置が目標走行経路L0上に沿うように、自車両M1の操舵量を調整する。また、操舵制御装置30は、自車両M1の走行位置と目標走行経路L0との間の誤差に基づいて、自車両M1の走行軌跡支援に必要とされる操舵量に関する情報をユーザに伝達したり、図示を略すステアリング装置に伝達したりする。なお、ステアリング装置に操舵量に関する情報が伝達されることで、操舵量が調整されることとなる。   Returning to the description of FIG. 1, the steering control device 30 causes the host vehicle M1 to travel along the target travel route L0 so that the travel locus of the host vehicle M1 follows the target travel route L0. Adjust the steering amount. For example, the steering control device 30 adjusts the steering amount of the host vehicle M1 so that the center position in the vehicle width direction of the host vehicle M1 is along the target travel route L0. Further, the steering control device 30 transmits to the user information related to the steering amount necessary for assisting the travel locus of the host vehicle M1, based on the error between the travel position of the host vehicle M1 and the target travel route L0. Or to a steering device (not shown). Note that the steering amount is adjusted by transmitting information on the steering amount to the steering device.

次に運転支援装置100による運転支援処理の手順を図4のフローチャートを用いて説明する。以下の処理は、自車両M1の走行状態でECU20により所定の周期で繰り返し実施する。   Next, the procedure of the driving support process by the driving support apparatus 100 will be described using the flowchart of FIG. The following processing is repeatedly performed at a predetermined cycle by the ECU 20 in the traveling state of the host vehicle M1.

まず、ECU20は、運転支援の実行を指示する指令信号があるか否かを判定する(S11)。本処理は、図示を略す運転支援の指示スイッチがオンの際に肯定する。   First, the ECU 20 determines whether there is a command signal instructing execution of driving assistance (S11). This process is affirmed when a driving assistance instruction switch (not shown) is turned on.

S11を肯定した場合には、先行車M2があるか否かを判定する(S12)。本処理は、先行車検出部21により先行車M2が検出されている際に肯定する。S12を肯定した場合には、先行車M2の検出が開始されてからの経過時間Tが閾値Th1以上であるか否かを判定する(S13)。S13を肯定した場合には、先行車軌跡L2のみを使用して目標走行経路L0を設定する(S16)。一方、S13を否定した場合には、先行車軌跡L2の長さが閾値Th2以上であるか否かを判定する(S14)。S14を肯定した場合には、S16に進み、先行車軌跡L2のみを使用して目標走行経路L0を設定する。一方、S14を否定した場合には、先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0を設定する(S15)。   When S11 is affirmed, it is determined whether or not there is a preceding vehicle M2 (S12). This process is affirmed when the preceding vehicle detection unit 21 detects the preceding vehicle M2. When S12 is affirmed, it is determined whether or not the elapsed time T from the detection of the preceding vehicle M2 is equal to or greater than the threshold Th1 (S13). When S13 is affirmed, the target travel route L0 is set using only the preceding vehicle locus L2 (S16). On the other hand, when S13 is denied, it is determined whether the length of the preceding vehicle locus L2 is greater than or equal to the threshold Th2 (S14). When S14 is affirmed, it progresses to S16 and sets the target travel route L0 using only the preceding vehicle locus L2. On the other hand, when S14 is denied, the preceding vehicle locus L2 is complemented by the own vehicle locus L1, and the target travel route L0 is set (S15).

上記によれば以下の優れた効果を奏することができる。   According to the above, the following excellent effects can be achieved.

・先行車の走行軌跡を自車両の走行軌跡で補完することにより目標走行経路L0を生成することとしたため、先行車が検出された直後であって先行車軌跡L2が短い状況においても、目標走行経路L0を設定することができる。   Since the target travel route L0 is generated by complementing the travel locus of the preceding vehicle with the travel locus of the host vehicle, the target travel is performed even in a situation immediately after the preceding vehicle is detected and the preceding vehicle locus L2 is short. The route L0 can be set.

・先行車の検出が開始されて間もなくは、先行車軌跡L2が短くなるため、先行車軌跡L2のみを用いて目標走行経路L0を設定することが困難となる。そこで、先行車軌跡L2が所定未満に短いことを条件に、先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0を設定することで、先行車の検出が開始された直後から目標走行経路L0を設定することができる。   -Soon after the detection of the preceding vehicle is started, the preceding vehicle locus L2 becomes short, and it becomes difficult to set the target travel route L0 using only the preceding vehicle locus L2. Therefore, on the condition that the preceding vehicle locus L2 is shorter than a predetermined value, the target vehicle route L0 is set by complementing the preceding vehicle locus L2 with the own vehicle locus L1, so that the target vehicle immediately after the detection of the preceding vehicle is started. A travel route L0 can be set.

・自車両軌跡L1を自車両の前方に延長して、自車両軌跡L1と先行車軌跡L2との間の離間部分を繋ぐことで、先行車軌跡L2が短い状況においても、目標走行経路L0を設定することができる。   -Extending the own vehicle locus L1 to the front of the own vehicle and connecting the separated portion between the own vehicle locus L1 and the preceding vehicle locus L2, so that the target traveling route L0 can be obtained even in a situation where the preceding vehicle locus L2 is short. Can be set.

・先行車が検出された後に取得した先行車軌跡L2を使用することで、目標走行経路L0を適切に設定することができる。   The target travel route L0 can be appropriately set by using the preceding vehicle locus L2 acquired after the preceding vehicle is detected.

・先行車軌跡L2のうち、自車両軌跡L1との車幅方向のずれ量(誤差)が所定未満となる範囲を、目標走行経路L0の設定に使用することとしたため、先行車軌跡L2を用いて目標走行経路L0を適切に設定することができる。   In the preceding vehicle locus L2, since the range in which the deviation (error) in the vehicle width direction from the own vehicle locus L1 is less than a predetermined value is used for setting the target travel route L0, the preceding vehicle locus L2 is used. Thus, the target travel route L0 can be set appropriately.

本発明は上記に限定されず次のように実施してもよい。なお以下の説明において上記と同様の構成については同じ図番号を付し詳述を省略する。   The present invention is not limited to the above, and may be implemented as follows. In the following description, the same components as those described above are denoted by the same reference numerals, and detailed description thereof is omitted.

・上記の図4のフローチャートは、S13,S14の処理が共にNOの場合に、S15を実施することに代えて、S13,S14の少なくともいずれかがNOの場合に、S15を実施するものであってもよい。   In the flowchart of FIG. 4 described above, S15 is executed when at least one of S13 and S14 is NO instead of executing S15 when the processes of S13 and S14 are both NO. May be.

・上記において、先行車軌跡L2と自車両の現在位置との位置関係を考慮して、先行車軌跡L2を自車両軌跡L1で補完するか否かを判定してもよい。図2を用いて詳しく説明すると、先行車軌跡L2の生成に用いた先行車の検出位置A0,A1のうち、最も過去に取得した先行車の検出位置A1(先行車軌跡L2の後端位置に相当)が、自車両の検出位置B0(自車両の現在位置に相当)よりも自車両の後方にあれば、先行車軌跡L2のみを用いて目標走行経路L0を設定することが可能となる。   In the above description, it may be determined whether or not the preceding vehicle locus L2 is complemented by the own vehicle locus L1 in consideration of the positional relationship between the preceding vehicle locus L2 and the current position of the own vehicle. Describing in detail with reference to FIG. 2, of the preceding vehicle detection positions A0 and A1 used to generate the preceding vehicle locus L2, the most recently acquired preceding vehicle detection position A1 (at the rear end position of the preceding vehicle locus L2). Is equivalent to the detected position B0 of the own vehicle (corresponding to the current position of the own vehicle), the target travel route L0 can be set using only the preceding vehicle locus L2.

一方、先行車の検出位置A1が自車両の検出位置B0よりも前方にある場合には、検出位置A1と検出位置B0との距離が大きければ、先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0を設定することが必要となる。これに対して、検出位置A1と検出位置B0との距離が短ければ、先行車軌跡L2のみを用いて目標走行経路L0を設定することが可能となる。このことを考慮して、先行車軌跡L2を自車両軌跡L1で補完するか否かを判定してもよい。   On the other hand, when the detection position A1 of the preceding vehicle is ahead of the detection position B0 of the own vehicle, the preceding vehicle locus L2 is complemented by the own vehicle locus L1 if the distance between the detection position A1 and the detection position B0 is large. Therefore, it is necessary to set the target travel route L0. On the other hand, if the distance between the detection position A1 and the detection position B0 is short, it is possible to set the target travel route L0 using only the preceding vehicle locus L2. Considering this, it may be determined whether or not the preceding vehicle locus L2 is complemented by the own vehicle locus L1.

すなわち、図5のフローチャートにおいて、S12で先行車が検出された際に、先行車軌跡L2の後端位置を求める(S21)。例えば先行車の後端位置は、先行車検出部21が検出した先行車の検出位置のうち、最も過去に取得した先行車の検出位置に基づき求められる。次に、先行車軌跡L2の後端位置が自車両の現在位置よりも前方にあるか否かを判定する(S22)。先行車軌跡L2の後端位置が自車両の現在位置よりも前方にあると判定した場合には、先行車軌跡L2の後端位置と自車両の現在位置との距離が閾値Th3よりも小さいか否かを判定する(S23)。自車両の現在位置と先行車軌跡L2との距離が閾値Th3よりも小さければ、先行車軌跡L2のみを用いて目標走行経路L0を設定する(S24)。自車両の現在位置と先行車軌跡L2との距離が閾値Th3よりも大きければ、先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0を設定する(S25)。以上により、自車両軌跡L1による先行車軌跡L2の補完をより適切な状況で実施することができる。   That is, in the flowchart of FIG. 5, when the preceding vehicle is detected in S12, the rear end position of the preceding vehicle locus L2 is obtained (S21). For example, the rear end position of the preceding vehicle is obtained based on the detection position of the preceding vehicle acquired the most in the past among the detection positions of the preceding vehicle detected by the preceding vehicle detection unit 21. Next, it is determined whether or not the rear end position of the preceding vehicle locus L2 is ahead of the current position of the host vehicle (S22). If it is determined that the rear end position of the preceding vehicle locus L2 is ahead of the current position of the host vehicle, is the distance between the rear end position of the preceding vehicle locus L2 and the current position of the host vehicle smaller than the threshold Th3? It is determined whether or not (S23). If the distance between the current position of the host vehicle and the preceding vehicle locus L2 is smaller than the threshold Th3, the target travel route L0 is set using only the preceding vehicle locus L2 (S24). If the distance between the current position of the host vehicle and the preceding vehicle locus L2 is greater than the threshold Th3, the target vehicle route L0 is set by complementing the preceding vehicle locus L2 with the own vehicle locus L1 (S25). As described above, the preceding vehicle locus L2 can be complemented by the host vehicle locus L1 in a more appropriate situation.

・上記の図4のフローチャートにおいて、自車両と先行車との車間距離に応じて、閾値Th2が可変設定されてもよい。すなわち、自車両と先行車との車間距離が大きくなる程、閾値Th2を大きめの値に設定してもよい。この場合、自車両と先行車との車間距離が比較的に短ければ、先行車軌跡L2が比較的に短くても、先行車軌跡L2のみを用いて目標走行経路L0を設定することができる。一方、自車両と先行車との車間距離が比較的に長ければ、先行車軌跡L2が比較的に短い場合には、先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0が設定されることとなる。以上により、自車両と先行車との車間距離に応じて、目標走行経路L0を適切に設定することができる。   In the flowchart of FIG. 4 described above, the threshold value Th2 may be variably set according to the inter-vehicle distance between the host vehicle and the preceding vehicle. That is, the threshold value Th2 may be set to a larger value as the distance between the host vehicle and the preceding vehicle increases. In this case, if the inter-vehicle distance between the host vehicle and the preceding vehicle is relatively short, the target travel route L0 can be set using only the preceding vehicle locus L2 even if the preceding vehicle locus L2 is relatively short. On the other hand, if the inter-vehicle distance between the host vehicle and the preceding vehicle is relatively long, if the preceding vehicle locus L2 is relatively short, the preceding vehicle locus L2 is complemented by the own vehicle locus L1 to set the target travel route L0. Will be. As described above, the target travel route L0 can be appropriately set according to the inter-vehicle distance between the host vehicle and the preceding vehicle.

・上記の図4のフローチャートにおいて、先行車軌跡L2の長さに関わらず先行車軌跡L2を自車両軌跡L1で補完して目標走行経路L0を設定してもよい。すなわち、図4のS14の処理を省略する。これにより、S13で先行車が検出されてからの経過時間に応じて、先行車軌跡L2を自車両軌跡L1で補完するかが判定されるようになる。または、S13,S14の両方の処理を省略して、先行車が検出されている場合には、常に先行車軌跡L2が自車両軌跡L1で補完されるようにしてもよい。   In the flowchart of FIG. 4 described above, the target travel route L0 may be set by complementing the preceding vehicle locus L2 with the own vehicle locus L1 regardless of the length of the preceding vehicle locus L2. That is, the process of S14 in FIG. 4 is omitted. Thus, it is determined whether or not the preceding vehicle locus L2 is complemented by the own vehicle locus L1 according to the elapsed time since the preceding vehicle was detected in S13. Alternatively, both the processes of S13 and S14 may be omitted, and when the preceding vehicle is detected, the preceding vehicle locus L2 may always be complemented by the own vehicle locus L1.

・上記の図4のフローチャートにおいて、S13の経過時間Tの閾値Th1は、車速に応じて可変設定されてもよい。すなわち、自車両M1の車速が大きくなる程、閾値Th1が長めに設定されるようにする。この場合、車速に応じて先行車軌跡L2を自車両軌跡L1で補完する処理をより適切に実施することができる。   In the flowchart of FIG. 4 described above, the threshold value Th1 of the elapsed time T in S13 may be variably set according to the vehicle speed. That is, the threshold value Th1 is set longer as the vehicle speed of the host vehicle M1 increases. In this case, the process of complementing the preceding vehicle locus L2 with the own vehicle locus L1 according to the vehicle speed can be more appropriately performed.

・上記の図4のフローチャートにおいて、自車両M1がレーンチェンジをしてから所定の経過時間が経過する前は、目標走行経路L0の算出に自車両軌跡L1を使用しないことを判定条件に加えてもよい。またこの際、自車両M1がレーンチェンジをしてからの経過時間の判定基準は、自車両M1の車速に応じて可変設定されるとよい。すなわち自車両M1の車速が大きいほど、経過時間の判定基準が長めに設定されるとよい。   In the flowchart of FIG. 4 described above, in addition to the determination condition, the host vehicle track L1 is not used for calculating the target travel route L0 before the predetermined elapsed time has elapsed since the host vehicle M1 changed the lane. Also good. At this time, the criterion for determining the elapsed time after the host vehicle M1 has changed lanes may be variably set according to the vehicle speed of the host vehicle M1. That is, as the vehicle speed of the host vehicle M1 increases, the determination criterion for the elapsed time may be set longer.

・上記において、進入車M3が先行車M2に切り替えられる以前に取得された進入車軌跡L3のうち、自車両軌跡L1との車幅方向の差が所定未満に小さくなる範囲を、先行車軌跡L2として使用してもよい。すなわち、進入車M3が先行車M2に切り替えられる以前に取得した進入車軌跡L3のうち、自車両軌跡L1とのオフセットΔWが所定未満となる範囲を、先行車軌跡L2として使用してもよい。   In the above, a range in which the difference in the vehicle width direction from the own vehicle locus L1 becomes smaller than a predetermined value in the approaching vehicle locus L3 acquired before the approaching vehicle M3 is switched to the preceding vehicle M2 is determined as the preceding vehicle locus L2. May be used as That is, a range in which the offset ΔW with respect to the own vehicle locus L1 among the approaching vehicle locus L3 acquired before the approaching vehicle M3 is switched to the preceding vehicle M2 is less than a predetermined value may be used as the preceding vehicle locus L2.

・上記において、先行車軌跡L2を自車両軌跡L1で補完する際に、自車両の検出位置の履歴の各点と、先行車の検出位置の履歴の各点とを近似円等でつなぐことにより目標走行経路L0を設定してもよい。   In the above, when complementing the preceding vehicle locus L2 with the own vehicle locus L1, by connecting each point of the history of the detection position of the own vehicle and each point of the history of the detection position of the preceding vehicle by an approximate circle or the like A target travel route L0 may be set.

・上記では、画像センサ11で検出した画像物標GTとレーダセンサ12で検出したレーダ物標LTとをフュージョンすることで先行車M2等の物体を検出しているが、これに限定されない。例えば、先行車M2等の物体を検出するセンサとして、画像センサ11のみを設け、画像センサ11で検出した撮影画像から先行車M2等の物体が直接検出されるものであってもよい。   In the above description, an object such as the preceding vehicle M2 is detected by fusing the image target GT detected by the image sensor 11 and the radar target LT detected by the radar sensor 12, but the present invention is not limited to this. For example, only the image sensor 11 may be provided as a sensor for detecting an object such as the preceding vehicle M2, and an object such as the preceding vehicle M2 may be directly detected from a captured image detected by the image sensor 11.

20…ECU、21…先行車検出部、22…先行車軌跡生成部、23…自車両検出部、24…自車両軌跡生成部、25…目標経路設定部。   DESCRIPTION OF SYMBOLS 20 ... ECU, 21 ... A preceding vehicle detection part, 22 ... A preceding vehicle locus | trajectory production | generation part, 23 ... Own vehicle detection part, 24 ... Own vehicle locus generation part, 25 ... Target route setting part.

Claims (9)

自車両前方の先行車の検出位置を所定周期で取得する先行車検出部と、
前記先行車検出部で検出された前記先行車の検出位置を用いて前記先行車の走行軌跡である先行車軌跡を生成する先行車軌跡生成部と、
自車両の現在位置を自車両の検出位置として所定周期で取得する自車両検出部と、
前記自車両検出部で検出された前記自車両の検出位置を用いて自車両の走行軌跡である自車両軌跡を生成する自車両軌跡生成部と、
前記先行車軌跡を前記自車両軌跡で補完することにより自車両が追従走行する目標走行経路を設定する目標経路設定部と、
を備えることを特徴とする運転支援装置。
A preceding vehicle detection unit that acquires a detection position of a preceding vehicle ahead of the host vehicle at a predetermined period;
A preceding vehicle locus generating unit that generates a preceding vehicle locus that is a traveling locus of the preceding vehicle using the detection position of the preceding vehicle detected by the preceding vehicle detecting unit;
A host vehicle detection unit that acquires a current position of the host vehicle as a detection position of the host vehicle at a predetermined period;
A host vehicle trajectory generation unit that generates a host vehicle trajectory that is a travel trajectory of the host vehicle using the detection position of the host vehicle detected by the host vehicle detection unit;
A target route setting unit that sets a target travel route along which the host vehicle follows by complementing the preceding vehicle track with the host vehicle track;
A driving support apparatus comprising:
前記目標経路設定部は、前記先行車軌跡が所定未満に短いことを条件に、前記先行車軌跡を前記自車両軌跡で補完して前記目標走行経路を設定する請求項1に記載の運転支援装置。   2. The driving support device according to claim 1, wherein the target route setting unit sets the target travel route by complementing the preceding vehicle locus with the own vehicle locus on condition that the preceding vehicle locus is shorter than a predetermined value. . 前記目標経路設定部は、前記先行車軌跡の自車両側の端部である後端位置が前記自車両の現在位置よりも前方にあり、且つ、前記自車両の現在位置と前記後端位置との距離が所定距離よりも大きいことを条件に、前記先行車軌跡を前記自車両軌跡で補完して前記目標走行経路を設定する請求項1または2に記載の運転支援装置。   The target route setting unit includes a rear end position that is an end portion of the preceding vehicle locus on the own vehicle side in front of the current position of the own vehicle, and the current position of the own vehicle and the rear end position. The driving support device according to claim 1, wherein the target travel route is set by complementing the preceding vehicle locus with the own vehicle locus on condition that the distance of the vehicle is greater than a predetermined distance. 前記目標経路設定部は、前記先行車が検出されてから所定時間が経過するまでは、前記先行車軌跡を前記自車両軌跡で補完して前記目標走行経路を設定する請求項1乃至3のいずれか1項に記載の運転支援装置。   The target route setting unit sets the target travel route by complementing the preceding vehicle locus with the own vehicle locus until a predetermined time elapses after the preceding vehicle is detected. The driving support device according to claim 1. 前記目標経路設定部は、前記自車両軌跡を自車両の前方に延長して予測軌跡を生成し、前記予測軌跡により前記先行車軌跡を補完する請求項1乃至4のいずれか1項に記載の運転支援装置。   5. The target path setting unit according to claim 1, wherein the target route setting unit generates a predicted track by extending the host vehicle track in front of the host vehicle, and supplements the preceding vehicle track with the predicted track. 6. Driving assistance device. 前記目標経路設定部は、前記先行車が検出された後に取得した前記先行車軌跡を用いて前記目標走行経路を設定する請求項1乃至5のいずれか1項に記載の運転支援装置。   The driving support device according to any one of claims 1 to 5, wherein the target route setting unit sets the target travel route using the preceding vehicle locus acquired after the preceding vehicle is detected. 前記先行車軌跡のうち前記自車両軌跡との車幅方向のずれ量が所定未満となる範囲を前記目標走行経路の設定に使用する請求項1乃至6のいずれか1項に記載の運転支援装置。   The driving assistance device according to any one of claims 1 to 6, wherein a range in which a deviation amount in a vehicle width direction from the vehicle trajectory of the preceding vehicle trajectory is less than a predetermined amount is used for setting the target travel route. . 前記目標経路設定部で設定された前記目標走行経路に沿って自車両の走行を制御する走行制御手段を備える請求項1乃至7のいずれか1項に記載の運転支援装置。   The driving support device according to any one of claims 1 to 7, further comprising travel control means for controlling travel of the host vehicle along the target travel route set by the target route setting unit. 自車両前方の先行車の検出位置を所定周期で取得するステップと、
前記先行車検出部で検出された前記先行車の検出位置を用いて前記先行車の走行軌跡である先行車軌跡を生成するステップと、
自車両の検出位置を所定周期で取得するステップと、
前記自車両検出部で検出された前記自車両の検出位置を用いて自車両の走行軌跡である自車両軌跡を生成するステップと、
前記先行車軌跡を前記自車両軌跡で補完することにより自車両が追従走行する目標走行経路を設定するステップと、を備えることを特徴とする運転支援方法。
Obtaining a detection position of a preceding vehicle ahead of the host vehicle at a predetermined period;
Generating a preceding vehicle locus that is a traveling locus of the preceding vehicle using the detection position of the preceding vehicle detected by the preceding vehicle detection unit;
Obtaining a detection position of the host vehicle at a predetermined period;
Generating a host vehicle trajectory that is a travel trajectory of the host vehicle using the detection position of the host vehicle detected by the host vehicle detection unit;
And a step of setting a target travel route along which the host vehicle travels by complementing the preceding vehicle track with the host vehicle track.
JP2015203111A 2015-10-14 2015-10-14 Driving support device and driving support method Active JP6443292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203111A JP6443292B2 (en) 2015-10-14 2015-10-14 Driving support device and driving support method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203111A JP6443292B2 (en) 2015-10-14 2015-10-14 Driving support device and driving support method

Publications (2)

Publication Number Publication Date
JP2017076234A JP2017076234A (en) 2017-04-20
JP6443292B2 true JP6443292B2 (en) 2018-12-26

Family

ID=58551346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203111A Active JP6443292B2 (en) 2015-10-14 2015-10-14 Driving support device and driving support method

Country Status (1)

Country Link
JP (1) JP6443292B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199433A (en) * 2017-05-29 2018-12-20 三菱電機株式会社 Automatic steering control device and steering control method
JP6813433B2 (en) * 2017-06-13 2021-01-13 日立オートモティブシステムズ株式会社 Vehicle motion control device, vehicle motion control method and vehicle motion control system
JP2019060616A (en) * 2017-09-25 2019-04-18 アイシン精機株式会社 Driving assistance device
JP7006093B2 (en) * 2017-09-28 2022-02-10 トヨタ自動車株式会社 Driving support device
JP6795792B2 (en) 2017-09-28 2020-12-02 トヨタ自動車株式会社 Driving support device
CN108162967B (en) * 2017-12-29 2019-09-06 北京航空航天大学 Vehicle autonomous tracking method, device and system based on driving psychological field theory
JP6910973B2 (en) * 2018-02-02 2021-07-28 日立Astemo株式会社 Vehicle control device, its control method, and vehicle control system
JP6739881B2 (en) * 2018-05-16 2020-08-12 三菱電機株式会社 Travel locus recognition device, travel locus recognition method, vehicle control device, and vehicle control method
RU2710202C1 (en) * 2019-04-30 2019-12-25 Иван Васильевич Колбаско Method for radar detection of a trajectory of a target
JP2021111121A (en) * 2020-01-10 2021-08-02 いすゞ自動車株式会社 Travel control device and travel control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622453B2 (en) * 2004-10-27 2011-02-02 日産自動車株式会社 Self-steering vehicle
JP5981332B2 (en) * 2012-12-21 2016-08-31 株式会社日本自動車部品総合研究所 Travel route generator
JP5821917B2 (en) * 2013-09-20 2015-11-24 トヨタ自動車株式会社 Driving assistance device

Also Published As

Publication number Publication date
JP2017076234A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6443292B2 (en) Driving support device and driving support method
JP6507839B2 (en) Vehicle travel control device
JP6123812B2 (en) Lane tracking control device
CN108541325B (en) Driving assistance device and driving assistance method
JP6363517B2 (en) Vehicle travel control device
JP6363516B2 (en) Vehicle travel control device
JP6747597B2 (en) Driving control method and driving control device for driving assistance vehicle
JP6561704B2 (en) Driving support device and driving support method
US10345443B2 (en) Vehicle cruise control apparatus and vehicle cruise control method
JP4647201B2 (en) Vehicle travel control device
JP5862785B2 (en) Collision determination device and collision determination method
KR20190113918A (en) Driving assistance method and driving assistance device
JP6430799B2 (en) Vehicle travel control device
JP2017052413A (en) Vehicle control device
JP6311625B2 (en) Lane tracking control device
JP2018067102A (en) Vehicle control device
JP2007269312A (en) Driving operation auxiliary device for vehicle
JP6451565B2 (en) Driving support device and driving support method
JP2019217846A (en) Vehicle control device, vehicle control method, and program
JP5147511B2 (en) Vehicle contact avoidance support device
JP6477377B2 (en) Vehicle control apparatus and vehicle control method
JP6733616B2 (en) Vehicle control device
JP7158183B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD AND PROGRAM
WO2021153563A1 (en) Object detecting device
JP6525404B1 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6443292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250