JP6427837B2 - Seismic device - Google Patents
Seismic device Download PDFInfo
- Publication number
- JP6427837B2 JP6427837B2 JP2014120630A JP2014120630A JP6427837B2 JP 6427837 B2 JP6427837 B2 JP 6427837B2 JP 2014120630 A JP2014120630 A JP 2014120630A JP 2014120630 A JP2014120630 A JP 2014120630A JP 6427837 B2 JP6427837 B2 JP 6427837B2
- Authority
- JP
- Japan
- Prior art keywords
- absorber
- cylindrical
- power device
- support member
- earthquake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Housings And Mounting Of Transformers (AREA)
Description
本発明は、電力機器を地震動から保護する耐震装置に関する。 The present invention relates to an earthquake-resistant device that protects electric power equipment from earthquake motion.
従来、地震等の振動(以下、「地震動」という)により、電力機器(例えば、変圧器等)が転倒することを抑制する装置として、耐震装置が用いられている(例えば、特許文献1参照。)。
特許文献1には、1つの変圧器の4つの角部近傍にそれぞれ配置され、下端が固定された筒状の支柱と、各支柱に一方の端部が固定され、弾性材を介して、変圧器の角部を支持するアブソーバ部と、を有する変圧器用減震装置(耐震装置)が開示されている。
Conventionally, an earthquake-resistant device is used as a device that suppresses a power device (for example, a transformer or the like) from being overturned by vibrations such as an earthquake (hereinafter referred to as “earthquake motion”) (see, for example, Patent Document 1). ).
In Patent Document 1, a cylindrical column having lower ends fixed to each of the four corners of one transformer and one end fixed to each column, an elastic material is used for voltage transformation. A transformer seismic reduction device (seismic device) having an absorber portion for supporting a corner portion of the vessel is disclosed.
ところで、電力機器は、所定の方向に対して複数配置された状態で使用される場合がある。
図36は、所定の方向に対して2つの電力機器を配置させた状態で、特許文献1に開示された減震装置(変圧器用減震装置)を適用した場合の問題点を説明するための模式的な平面図である。図36では、電力機器305,306の一例として、変圧器を図示する。
また、図36では、一例として、電力機器305,306の長手方向がX方向(言い換えれば、所定の方向)と一致するように、所定の間隔(後述する「スペース」)を空けて、電力機器305,306を配置させた場合を例に挙げて図示する。
Incidentally, there are cases where a plurality of power devices are used in a state where a plurality of power devices are arranged in a predetermined direction.
FIG. 36 is a diagram for explaining problems in the case where the seismic reduction device (transformer seismic reduction device) disclosed in Patent Document 1 is applied in a state where two power devices are arranged in a predetermined direction. It is a typical top view. FIG. 36 illustrates a transformer as an example of the
In FIG. 36, as an example, the
ここで、図36を参照して、特許文献1に開示された減震装置301,302(変圧器用減震装置)の問題点を説明する前に、減震装置301,302の構成について説明する。
減震装置301は、電力機器305の4つの角部の近傍に配置された筒状の支柱308と、一端が電力機器305の1つの角部を支持し、他端側に配置された弾性材が支柱308内に配置されることで、他端側が支柱308に支持された4つのアブソーバ部311と、を有する。
Here, with reference to FIG. 36, the configuration of the
The
減震装置302は、電力機器306の4つの角部の近傍に配置された筒状の支柱313と、一端が電力機器306の1つの角部を支持し、他端側に配置された弾性材が支柱313内に配置されることで、他端側が支柱313に支持された4つのアブソーバ部315と、を有する。
The
図36に示すように、X方向に電力機器305,306を配置させた場合、X方向において、電力機器305と電力機器306との間のスペースに、離間させた状態で2本の支柱308,313を配置する必要がある。
As shown in FIG. 36, when the
このため、電力機器305,306として、例えば、500kVAの容量の変圧器を用い、かつ該変圧器に対して、特許文献1に開示された減震装置301,302を用いると、電力機器305,306の配置方向(この場合、X方向)における電力機器305,306間のスペースの幅Wを600mmよりも狭くすることが困難になってしまうという問題があった。
For this reason, when using, for example, a transformer having a capacity of 500 kVA as the
つまり、所定の方向に配置された複数の電力機器に対して、特許文献1に開示された減震装置301,302(変圧器用減震装置)を適用すると、減震装置301,302の設置エリアが大きくなってしまうという問題があった。
このように、減震装置301,302の設置エリアが大きくなると、設置エリア(この場合、電力機器305,306の設置エリア、及び減震装置301,302の設置エリアを合計したエリア)が狭い場合には、減震装置301,302を設置することができない。
That is, when the
As described above, when the installation area of the
なお、図36では、電力機器305,306の配置方向の一例として、電力機器305,306の長手方向に電力機器305,306を配置させた場合を例に挙げて説明したが、電力機器305,306の短手方向に電力機器305,306を配置させた場合にも上記問題は発生する。
36, as an example of the arrangement direction of the
そこで、本発明は、所定の方向に配置された複数の電力機器に適用した場合において、耐震装置の設置エリアを狭くすることの可能な耐震装置を提供することを目的とする。 Then, when this invention is applied to the some electric power apparatus arrange | positioned in the predetermined | prescribed direction, it aims at providing the earthquake resistant apparatus which can narrow the installation area of an earthquake resistant apparatus.
上記課題を解決するため、本発明の一観点によれば、所定の間隔を空けて第1の方向に配置された第1及び第2の電力機器の上部のうち、前記第2の電力機器と対向する前記第1の電力機器の第1の端部と、前記第1の電力機器と対向する前記第2の電力機器の第2の端部と、を支持する耐震装置であって、平面視した状態で、前記第1の電力機器の中心位置と前記第2の電力機器の中心位置とを結ぶ第1の直線の中間位置を通過し、かつ前記第1の方向と直交する第2の直線上において、前記中間位置を介して対向配置され、鉛直方向に延在すると共に、下端が固定された第1及び第2の筒状支柱部材と、一方の端部が前記第1の筒状支柱部材の近傍に位置する前記第1の端部の一方の角部を支持すると共に、他方の端部が前記第1の筒状支柱部材に支持された第1のアブソーバ部と、一方の端部が前記第1の筒状支柱部材の近傍に位置する前記第2の端部の一方の角部を支持すると共に、他方の端部が前記第1の筒状支柱部材に支持された第2のアブソーバ部と、一方の端部が前記第2の筒状支柱部材の近傍に位置する前記第1の端部の他方の角部を支持すると共に、他方の端部が前記第2の筒状支柱部材に支持された第3のアブソーバ部と、一方の端部が前記第2の筒状支柱部材の近傍に位置する前記第2の端部の他方の角部を支持すると共に、他方の端部が前記第2の筒状支柱部材に支持された第4のアブソーバ部と、を含み、前記第1及び第2の筒状支柱部材は、それぞれ前記鉛直方向に延在する筒状支柱部材本体を有しており、前記筒状支柱部材本体は、前記第1の電力機器と前記第2の電力機器との間に配置された空間の外側に配置することを特徴とする耐震装置が提供される。 In order to solve the above problem, according to one aspect of the present invention, of the upper part of the first and second power devices arranged in the first direction with a predetermined interval, the second power device and An anti-seismic device that supports a first end of the first power device facing and a second end of the second power device facing the first power device, in plan view In this state, the second straight line that passes through the intermediate position of the first straight line connecting the center position of the first power device and the center position of the second power device and is orthogonal to the first direction. On the top, the first and second cylindrical strut members arranged opposite to each other through the intermediate position and extending in the vertical direction and having a fixed lower end, and one end portion of the first cylindrical strut While supporting one corner of the first end located in the vicinity of the member, the other end is the first cylindrical shape. The first absorber portion supported by the column member, and one end portion supports one corner portion of the second end portion located in the vicinity of the first cylindrical column member, and the other end portion A second absorber portion supported by the first cylindrical strut member, and a corner portion of the other end of the first end portion, which is located near the second cylindrical strut member. And the second end of which is positioned in the vicinity of the second cylindrical strut member and the other end portion of which is supported by the second cylindrical strut member. And a fourth absorber portion that is supported by the second cylindrical column member, and that supports the other corner portion of the first cylindrical column member, and the first and second cylindrical columns. Each of the members has a cylindrical support member main body extending in the vertical direction, and the cylindrical support member main body includes the first electric power supply. Seismic apparatus is provided, characterized in that arranged outside the arrangement spaces between the device and the second power apparatus.
本発明によれば、第1の端部(言い換えれば、第1の電力機器の端部)の一方の角部を支持する第1のアブソーバ部の他方の端部、及び第2の端部(言い換えれば、第2の電力機器の端部)の一方の角部を支持する第2のアブソーバ部の他方の端部を第1の筒状支柱部材で支持し、第1の端部の他方の角部を支持する第3のアブソーバ部の他方の端部、及び第2の端部の他方の角部を支持する第4のアブソーバ部の他方の端部を第2の筒状支柱部材で支持するため、従来、第1及び第2の電力機器間に必要であった4本の筒状支柱部材を2本に削減することが可能となる。
これにより、従来の4本の筒状支柱部材を配置する場合と比較して、第1及び第2の筒状支柱部材が配置されるエリアを狭くすることができる。
According to the present invention, the other end of the first absorber portion that supports one corner of the first end (in other words, the end of the first power device), and the second end ( In other words, the other end portion of the second absorber portion supporting one corner portion of the second electric power device) is supported by the first cylindrical support member, and the other end portion of the first end portion is supported. The other end of the third absorber supporting the corner and the other end of the fourth absorber supporting the other corner of the second end are supported by the second cylindrical column member. Therefore, it is possible to reduce the number of the four cylindrical support members conventionally required between the first and second power devices to two.
Thereby, compared with the case where the four conventional cylindrical support | pillar members are arrange | positioned, the area where the 1st and 2nd cylindrical support | pillar members are arrange | positioned can be narrowed.
また、第1及び第2の筒状支柱部材を構成する筒状支柱部材本体を、第1の電力機器と第2の電力機器との間に配置された空間の外側に配置することで、例えば、第1ないし第4のアブソーバ部が一方向に延在する部材である場合、第1の電力機器と第2の電力機器との間に位置する空間に、第1及び第2の筒状支柱部材を配置させると、第2の方向に対して第1及び第2の筒状支柱部材を離間させて配置することが困難になると共に、第1ないし第4のアブソーバ部の延在方向と第2の直線とが成す角度が90度或いは90度に近い鋭角となるため、第1の電力機器と第2の電力機器との間隔が広くなってしまう。 In addition, by arranging the cylindrical column member main body constituting the first and second cylindrical column members outside the space arranged between the first power device and the second power device, for example, In the case where the first to fourth absorber portions are members extending in one direction, the first and second cylindrical support columns are disposed in a space located between the first power device and the second power device. When the members are disposed, it is difficult to dispose the first and second cylindrical support members apart from each other in the second direction, and the extending directions of the first to fourth absorber portions and the first direction are the same. Since the angle formed by the second straight line is 90 degrees or an acute angle close to 90 degrees, the distance between the first power device and the second power device is widened.
一方、第1ないし第4のアブソーバ部が一方向に延在する部材である場合において、第1の電力機器と第2の電力機器との間に配置された空間の外側に、第1及び第2の筒状支柱部材を配置させると、第2の方向において第1及び第2の筒状支柱部材を十分に離間させて配置することが可能になると共に、第1ないし第4のアブソーバ部の延在方向と第2の直線とが成す角度を、該空間に第1及び第2の筒状支柱部材を配置させた場合よりも小さくすることが可能(第1の電力機器と第2の電力機器との間隔が狭くても第1ないし第4のアブソーバ部を配置させることが可能)となるので、第1の電力機器と第2の電力機器との間隔(所定の間隔)を狭くすることができる。
つまり、所定の方向に配置された複数の電力機器に適用した場合において、耐震装置の設置エリアを狭くすることができる。
On the other hand, in the case where the first to fourth absorber portions are members extending in one direction, the first and second absorbers are disposed outside the space disposed between the first power device and the second power device. When the two cylindrical strut members are arranged, the first and second cylindrical strut members can be arranged sufficiently separated in the second direction, and the first to fourth absorber portions are arranged. The angle formed by the extending direction and the second straight line can be made smaller than when the first and second cylindrical support members are arranged in the space (the first power device and the second power). Since the first to fourth absorber portions can be arranged even if the interval between the devices is narrow), the interval (predetermined interval) between the first power device and the second power device is reduced. Can do.
That is, when it is applied to a plurality of electric power devices arranged in a predetermined direction, the installation area of the seismic device can be narrowed.
また、上記耐震装置において、前記第1ないし第4のアブソーバ部は、前記鉛直方向と直交する水平面方向に延在しており、前記第1のアブソーバ部の延在方向と前記第1の方向と直交する第2の方向とが成す第1の角度と、前記第3のアブソーバ部の延在方向と前記第2の方向とが成す第3の角度と、が等しく、前記第2のアブソーバ部の延在方向と前記第2の方向とが成す第2の角度と、前記第4のアブソーバ部の延在方向と前記第2の方向とが成す第4の角度と、を等しくしてもよい。 In the earthquake-proof device, the first to fourth absorber portions extend in a horizontal plane direction orthogonal to the vertical direction, and the extending direction of the first absorber portion and the first direction are The first angle formed by the second direction orthogonal to each other is equal to the third angle formed by the extending direction of the third absorber portion and the second direction, and the second absorber portion A second angle formed by the extending direction and the second direction may be equal to a fourth angle formed by the extending direction of the fourth absorber portion and the second direction.
このように、第1ないし第4の角度を等しくすることで、地震により、第1及び第2の電力機器が揺れた際、第1及び第2の筒状支柱部材が受ける負荷を第1及び第2の方向に分散させることが可能となる。
これにより、第1及び第2の筒状支柱部材が破損しにくくなるため、第1及び第2の筒状支柱部材の長寿命化を図ることができる。
In this way, by making the first to fourth angles equal, when the first and second power devices are shaken due to an earthquake, the loads received by the first and second cylindrical support members are first and It is possible to disperse in the second direction.
Thereby, since it becomes difficult to damage the 1st and 2nd cylindrical support | pillar member, the lifetime improvement of the 1st and 2nd cylindrical support | pillar member can be achieved.
また、上記耐震装置において、前記第1の電力機器の前記第1の端部上に固定される第1の板状部材、該第1の板状部材の上方に突出し、前記第1のアブソーバ部の一方の端部が接続される第1の突出部、及び前記第1の板状部材の上方に突出し、前記第3のアブソーバ部の一方の端部が接続される第2の突出部を含む第1のアブソーバ取り付け部と、前記第2の電力機器の前記第2の端部上に固定される第2の板状部材、該第2の板状部材の上方に突出し、前記第2のアブソーバ部の一方の端部が接続される第3の突出部、及び前記第2の板状部材の上方に突出し、前記第4のアブソーバ部の一方の端部が接続される第4の突出部を含む第2のアブソーバ取り付け部と、を有し、前記第1の板状部材の厚さと前記第2の板状部材の厚さとを異ならせてもよい。 Moreover, in the said earthquake-proof device, the 1st plate-shaped member fixed on the said 1st edge part of the said 1st electric power apparatus, it protrudes above this 1st plate-shaped member, and the said 1st absorber part A first protrusion connected to one end of the first protrusion, and a second protrusion protruding above the first plate member and connected to one end of the third absorber. A first absorber mounting portion; a second plate-like member fixed on the second end portion of the second power device; the second absorber protruding above the second plate-like member; A third projecting portion to which one end of the portion is connected, and a fourth projecting portion to project above the second plate-like member and to which one end of the fourth absorber portion is connected. A second absorber mounting portion including a thickness of the first plate-like member and a thickness of the second plate-like member. It may be not.
このように、第1の電力機器上に固定される第1のアブソーバ取り付け部を構成する第1の板状部材と、第2の電力機器上に固定される第2のアブソーバ取り付け部を構成する第2の板状部材と、の厚さを異ならせることで、例えば、第1及び第2の電力機器の高さが同じ場合、高さ方向(鉛直方向)における第1の筒状支柱部材への第1のアブソーバ部の取り付け位置と第2のアブソーバ部の取り付け位置とを異ならせることが可能になると共に、高さ方向(鉛直方向)における第2の筒状支柱部材への第3のアブソーバ部の取り付け位置と第4のアブソーバ部の取り付け位置とを異ならせることが可能となる。
これにより、第1及び第2の筒状支柱部材の外形サイズを大きくすることなく、第1の筒状支柱部材に第1及び第2のアブソーバ部を取り付けることができると共に、第2の筒状支柱部材に第3及び第4のアブソーバ部を取り付けることができる。
Thus, the 1st plate-shaped member which comprises the 1st absorber attachment part fixed on the 1st electric power equipment, and the 2nd absorber attachment part fixed on the 2nd electric power equipment are constituted. By making the thickness of the second plate-like member different, for example, when the heights of the first and second power devices are the same, to the first cylindrical support member in the height direction (vertical direction) It is possible to make the mounting position of the first absorber portion different from the mounting position of the second absorber portion, and the third absorber to the second cylindrical support member in the height direction (vertical direction) The attachment position of the part and the attachment position of the fourth absorber part can be made different.
Thus, the first and second absorber portions can be attached to the first cylindrical column member without increasing the external size of the first and second cylindrical column members, and the second cylindrical shape The third and fourth absorber portions can be attached to the support member.
また、上記耐震装置において、前記第1及び第2の筒状支柱部材を構成する前記筒状支柱部材本体は、平面視した形状が菱形とされており、前記第1及び第2の筒状支柱部材を構成する前記筒状支柱部材本体は、前記菱形の一方の対角線が前記第1の方向に対して直交するように配置されており、前記第1のアブソーバ部は、一方の端部が前記第1の端部の一方の角部を支持する第1の棒状支持部材と、該第1の棒状支持部材に固定され、前記第1の筒状支柱部材の第1の面に押圧されることで所定量圧縮される第1の弾性部材と、を有し、前記第2のアブソーバ部は、一方の端部が前記第2の端部の一方の角部を支持する第2の棒状支持部材と、該第2の棒状支持部材に固定され、前記第1の面に隣接する該第1の筒状支柱部材の第2の面に押圧されることで所定量圧縮される第2の弾性部材と、を有し、前記第3のアブソーバ部は、一方の端部が前記第1の端部の他方の角部を支持する第3の棒状支持部材と、該第3の棒状支持部材に固定され、前記第2の筒状支柱部材の第3の面に押圧されることで所定量圧縮される第3の弾性部材と、を有し、前記第4のアブソーバ部は、一方の端部が前記第2の端部の他方の角部を支持する第4の棒状支持部材と、該第4の棒状支持部材に固定され、前記第3の面に隣接する前記第2の筒状支柱部材の第4の面に押圧されることで所定量圧縮される第4の弾性部材と、を有し、前記第1及び第2の弾性部材は、前記第1の筒状支柱部材の外側に配置されており、前記第1及び第2の面は、前記第1の筒状支柱部材の外面であり、前記第3及び第4の弾性部材は、前記第2の筒状支柱部材の外側に配置されており、前記第3及び第4の面は、前記第2の筒状支柱部材の外面を有してもよい。
Further, in the above earthquake-resistant device, the cylindrical strut member body constituting the first and second cylindrical strut members has a rhombus shape in plan view, and the first and second cylindrical strut members The cylindrical strut member body constituting the member is arranged so that one diagonal line of the rhombus is orthogonal to the first direction, and the first absorber portion has one end portion of the cylindrical strut member body. A first rod-like support member that supports one corner of the first end, and is fixed to the first rod-like support member and pressed against the first surface of the first cylindrical column member. A first elastic member that is compressed by a predetermined amount, and the second absorber portion has a second rod-like support member in which one end portion supports one corner portion of the second end portion. And a second surface of the first cylindrical support member fixed to the second rod-shaped support member and adjacent to the first surface. A second elastic member that is compressed by a predetermined amount by being pressed, and the third absorber portion has a third end portion supporting the other corner portion of the first end portion. And a third elastic member fixed to the third rod-like support member and compressed by a predetermined amount by being pressed against the third surface of the second cylindrical support member. The fourth absorber portion is fixed to the fourth rod-shaped support member, one end portion supporting the other corner portion of the second end portion, and the fourth rod-shaped support member, A fourth elastic member that is compressed by a predetermined amount by being pressed against the fourth surface of the second cylindrical support member adjacent to the third surface, and the first and second elastic members Is arranged outside the first cylindrical column member, and the first and second surfaces are outer surfaces of the first cylindrical column member, and the third And the fourth elastic member may be disposed outside the second cylindrical column member, and the third and fourth surfaces may have an outer surface of the second cylindrical column member. .
このように、第1の筒状支柱部材の第1の面に第1の弾性部材を押圧させ、第1の筒状支柱部材の第2の面に第2の弾性部材を押圧させることで、別途、第1及び第2の弾性部材を押圧する板材を設ける必要がなくなるため、耐震装置の構成を簡略化することができる。
また、第2の筒状支柱部材の第3の面に第3の弾性部材を押圧させ、第2の筒状支柱部材の第4の面に第4の弾性部材を押圧させることで、別途、第3及び第4の弾性部材を押圧する板材を設ける必要がなくなるため、耐震装置の構成を簡略化することができる。
In this way, by pressing the first elastic member on the first surface of the first cylindrical column member and pressing the second elastic member on the second surface of the first cylindrical column member, Separately, since it is not necessary to provide a plate material that presses the first and second elastic members, the structure of the earthquake-resistant device can be simplified.
In addition, by pressing the third elastic member against the third surface of the second cylindrical column member and pressing the fourth elastic member against the fourth surface of the second cylindrical column member, separately, Since it is not necessary to provide a plate material that presses the third and fourth elastic members, the structure of the seismic device can be simplified.
また、第1及び第2の弾性部材を第1の筒状支柱部材の外側に配置すると共に、第1及び第2の面として第1の筒状支柱部材の外面を用いることで、第1の筒状支柱部材内に第1及び第2の弾性部材を配置させる場合と比較して、第1の筒状支柱部材の小型化を図ることができる。
また、第1の筒状支柱部材内に第1及び第2の弾性部材を配置させる場合と比較して、第1の筒状支柱部材に対して、第1及び第2のアブソーバ部を容易に取り付けることができると共に、耐震装置のメンテナンス性を向上させることができる。
In addition, the first and second elastic members are arranged outside the first cylindrical support member, and the outer surface of the first cylindrical support member is used as the first and second surfaces. Compared to the case where the first and second elastic members are arranged in the cylindrical support member, the first cylindrical support member can be downsized.
Moreover, compared with the case where the 1st and 2nd elastic member is arrange | positioned in a 1st cylindrical support | pillar member, a 1st and 2nd absorber part is easily with respect to a 1st cylindrical support | pillar member. While being able to attach, the maintainability of a seismic apparatus can be improved.
また、第3及び第4の弾性部材を第2の筒状支柱部材の外側に配置すると共に、第3及び第4の面として第2の筒状支柱部材の外面を用いることで、第2の筒状支柱部材内に第3及び第4の弾性部材を配置させる場合と比較して、第2の筒状支柱部材の小型化を図ることができる。
また、第2の筒状支柱部材内に第3及び第4の弾性部材を配置させる場合と比較して、第2の筒状支柱部材に対して、第3及び第4のアブソーバ部を容易に取り付けることができると共に、耐震装置のメンテナンス性を向上させることができる。
In addition, the third and fourth elastic members are arranged outside the second cylindrical support member, and the outer surface of the second cylindrical support member is used as the third and fourth surfaces. Compared with the case where the third and fourth elastic members are arranged in the cylindrical support member, the second cylindrical support member can be downsized.
Moreover, compared with the case where the 3rd and 4th elastic member is arrange | positioned in a 2nd cylindrical support | pillar member, a 3rd and 4th absorber part is easily with respect to a 2nd cylindrical support | pillar member. While being able to attach, the maintainability of a seismic apparatus can be improved.
また、上記耐震装置において、前記第1の方向に対して直交する第2の方向に延在し、前記第1の筒状支柱部材と前記第2の筒状支柱部材とを連結する第1の連結部材を有してもよい。 Moreover, in the said earthquake-proof device, it extends in the 2nd direction orthogonal to the said 1st direction, and connects the said 1st cylindrical support | pillar member and the said 2nd cylindrical support | pillar member. You may have a connection member.
このように、第2の方向に延在し、第1の筒状支柱部材と第2の筒状支柱部材とを連結する第1の連結部材を有することで、地震動により第1及び第2の電力機器が振動した際、第1及び第2の筒状支柱部材が第2の方向に変位することを抑制できる。 Thus, by having the 1st connection member which extends in the 2nd direction and connects the 1st cylindrical support member and the 2nd cylindrical support member, the 1st and 2nd by earthquake motion When the power device vibrates, the first and second cylindrical support members can be prevented from being displaced in the second direction.
上記耐震装置において、前記第1の筒状支柱部材、前記第1のアブソーバ部、及び前記第2のアブソーバ部を含む第1の耐震機構と、前記第2の筒状支柱部材、前記第3のアブソーバ部、及び前記第4のアブソーバ部を含む第2の耐震機構と、が対向しながら前記第1の方向に対して複数配置されており、前記第1の方向に配置された前記第1の筒状支柱部材間を連結する第2の連結部材と、前記第1の方向に配置された前記第2の筒状支柱部材間を連結する第3の連結部材と、を有してもよい。
In the seismic device, before Symbol first cylindrical post member, said first absorber portion, and the first seismic mechanism including a second absorber portion, said second cylindrical post member, the third And a plurality of second seismic mechanisms including the fourth absorber portion , the plurality of them being arranged with respect to the first direction while facing each other, and the first arranged in the first direction. There may be provided a second connecting member that connects the cylindrical columnar members and a third connecting member that connects the second cylindrical columnar members arranged in the first direction. .
このように、第1の方向に配置された第1の筒状支柱部材間を連結する第2の連結部材と、第1の方向に配置された第2の筒状支柱部材間を連結する第3の連結部材と、を有することで、地震動により第1及び第2の電力機器が振動した際、第1及び第2の筒状支柱部材が第1の方向に変位することを抑制できる。 Thus, the 2nd connection member which connects between the 1st cylindrical support | pillar members arrange | positioned in a 1st direction, and the 2nd connection member between the 2nd cylindrical support | pillar members arrange | positioned in a 1st direction are connected. When the first and second power devices vibrate due to earthquake motion, the first and second cylindrical support members can be prevented from being displaced in the first direction.
本発明の耐震装置によれば、所定の方向に配置された複数の電力機器に適用した場合において、耐震装置の設置エリアを狭くすることができる。 According to the seismic device of the present invention, when applied to a plurality of electric power devices arranged in a predetermined direction, the installation area of the seismic device can be narrowed.
以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の耐震機能付き電力機器群、及び耐震装置の寸法関係とは異なる場合がある。 Embodiments to which the present invention is applied will be described below in detail with reference to the drawings. The drawings used in the following description are for explaining the configuration of the embodiment of the present invention, and the size, thickness, dimensions, etc. of the respective parts shown in the drawings are the actual power equipment group with seismic function and the seismic resistance. It may be different from the dimensions of the device.
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る複数の耐震装置と、複数の電力機器よりなる電力機器群と、を有する耐震機能付き電力機器群の平面図である。
図1において、X方向は、第1及び第2の電力機器11,12が配置される第1の方向(第1の実施の形態の場合、第1及び第2の電力機器11,12の長手方向)を示しており、Y方向は、X方向に対して直交する方向(第1の実施の形態の場合、第1及び第2の電力機器11,12の短手方向)を示している。また、X方向及びY方向を通過する水平面方向(図示せず)は、後述する図2に示す鉛直方向(Z方向)と直交している。
また、図1では、同じ大きさとされた第1及び第2の電力機器11,12を用いた場合を例に挙げて図示する。
(First embodiment)
FIG. 1 is a plan view of a power device group with a seismic function having a plurality of seismic devices according to the first embodiment of the present invention and a power device group composed of a plurality of power devices.
In FIG. 1, the X direction is a first direction in which the first and
FIG. 1 shows an example in which the first and
図2は、図1に示す耐震機能付き電力機器群をA1視した側面図である。図2において、図1に示す構造体と同一構成部分には、同一符号を付す。
図2において、Z方向は、鉛直方向(言い換えれば、第1及び第2の電力機器11,12の高さ方向)を示している。
Figure 2 is a side view A 1 viewed seismic function power device group shown in FIG. 2, the same components as those in the structure shown in FIG.
In FIG. 2, the Z direction indicates the vertical direction (in other words, the height direction of the first and
図1及び図2を参照するに、第1の実施の形態の耐震機能付き電力機器群10は、第1の電力機器11と、第2の電力機器12と、第1の端部用耐震装置15と、第2の端部用耐震装置16と、耐震装置21(第1の実施の形態の耐震装置)と、を有する。
Referring to FIG. 1 and FIG. 2, a
第1及び第2の電力機器11,12は、電力機器群を構成している。第1及び第2の電力機器11,12は、第1及び第2の電力機器11,12の長手方向とX方向とが一致するように、所定の間隔を空けて、第1の電力機器11、第2の電力機器12の順番でX方向に配置されている。
これにより、X方向において、第1の電力機器11の端部11A(第1の端部)は、第2の電力機器12の端部12A(第2の端部)と対向配置されている。
第1の電力機器11は、端部11Aの反対側に配置され、第1の端部用耐震装置15により支持される端部11Bを有する。また、第2の電力機器12は、端部12Aの反対側に配置され、第2の端部用耐震装置16により支持される端部12Bを有する。
The first and
Thus, in the X direction, the
The 1st
なお、本発明において、「電力機器」とは、他のエネルギーから電気エネルギー(電力)への変換、電気エネルギーから他のエネルギーへの変換、電気エネルギーの他のエネルギーでの蓄積、電力の電圧変換・力率調整、電力の接続・遮断等を行う機器のことをいう。
電力機器の具体例としては、例えば、変圧器、空調機、コンデンサ、リアクトル、遮断器等を例示することができる。
In the present invention, “electric power equipment” refers to conversion from other energy to electric energy (electric power), conversion from electric energy to other energy, accumulation of electric energy with other energy, and voltage conversion of electric power. -A device that adjusts the power factor and connects / disconnects power.
Specific examples of the power equipment include a transformer, an air conditioner, a capacitor, a reactor, a circuit breaker, and the like.
図3は、図1に示す第1の電力機器をA1視した正面図である。図3において、図1及び図2に示す構造体と同一構成部分には、同一符号を付す。図3では、第1の電力機器11の一例として、変圧器を図示する。
なお、変圧器は、トランスや変成器とも呼ばれ、電磁誘導により、電力会社から供給される6600V等の高電圧を100Vや200Vの電圧に降下させる電力機器である。
3 is a front view of the first power device and A 1 view shown in FIG. 3, the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals. In FIG. 3, a transformer is illustrated as an example of the
The transformer is also called a transformer or a transformer, and is a power device that drops a high voltage such as 6600V supplied from a power company to a voltage of 100V or 200V by electromagnetic induction.
図3を参照するに、第1の電力機器11は、電力機器本体31と、本体支持部32と、複数の脚部34と、矩形部材35と、を有する。
電力機器本体31は、本体支持部32上に固定されている。第1の電力機器11として変圧器を用いる場合、電力機器本体31は、例えば、鉄心に巻回されたコイルで構成することができる。
Referring to FIG. 3, the
The power device
本体支持部32は、電力機器本体31の直下に配置されており、電力機器本体31を支持している。複数の脚部34は、本体支持部32の下面側に固定されている。複数の脚部34は、アンカーボルト(図示せず)により、床13に固定されている。
The main
図4は、図3に示す矩形部材の平面図である。図4において、図1〜3に示す構造体と同一構成部分には、同一符号を付す。図4に示すC1は、図3に示す第1の電力機器11の中心位置(以下、「中心位置C1」という)を示している。
FIG. 4 is a plan view of the rectangular member shown in FIG. In FIG. 4, the same components as those shown in FIGS. C 1 shown in FIG. 4 indicates the center position of the
図3及び図4を参照するに、矩形部材35は、電力機器本体31上に固定されている。矩形部材35は、矩形部材本体37と、ねじ穴43,44,47,48と、を有する。
Referring to FIGS. 3 and 4, the
矩形部材本体37は、平面視した形状が矩形とされた部材である。矩形部材本体37は、平坦な上面37aを有する。
矩形部材本体37の上面37aは、一方の端部側に配置された第1の領域B1と、他方の端部側に配置された第2の領域B2と、を有する。第1の電力機器11を構成する矩形部材本体37の第1及び第2の領域B1,B2には、それぞれ第1のアブソーバ取り付け部15−1(図1、図5、及び図6参照)が取り付けられる。
The
ねじ穴43,44は、第1の領域B1に対応する矩形部材本体37に設けられている。ねじ穴43,44は、第1のアブソーバ取り付け部15−1(図1、図5、及び図6参照)を固定するためのねじ穴である。
ねじ穴47,48は、第2の領域B2に対応する矩形部材本体37に設けられている。ねじ穴47,48は、第1のアブソーバ取り付け部15−1(図1、図5、及び図6参照)を固定するためのねじ穴である。
ねじ穴43,44,47,48は、第1及び第2の領域B1,B2のうち、中心位置C1に近い位置に配置されている。
Screw holes 43 and 44 are provided in a
Screw holes 47 and 48 are provided in a
The screw holes 43, 44, 47, 48 are arranged at positions close to the center position C 1 in the first and second regions B 1 , B 2 .
図1〜図4を参照するに、第2の電力機器12は、第1の電力機器11と同様な構成とされている。第2の電力機器12を構成する矩形部材本体37の第1及び第2の領域B1,B2には、それぞれ第2のアブソーバ取り付け部材15−5(図1、図11、及び図12参照)が取り付けられる。
床面13aを基準としたときの第2の電力機器12の高さH2は、第1の電力機器11の高さH1と同じ高さとされている。
With reference to FIGS. 1 to 4, the
The height H 2 of the
図1を参照するに、第1の端部用耐震装置15は、第1の電力機器11の端部11B側に配置されている。第1の端部用耐震装置15は、第1のアブソーバ取り付け部15−1と、耐震機構15−2,15−3と、連結部材15−4と、を有する。
Referring to FIG. 1, the first end
図5は、図1に示す第1のアブソーバ取り付け部を拡大した平面図である。図5では、図1に示す第1のアブソーバ取り付け部15−1を左に90度回転させた状態で図示する。図5において、図1に示す構造体と同一構成部分には、同一符号を付す。
図6は、図5に示す第1のアブソーバ取り付け部をD1視した正面図である。図6において、図1及び図5に示す構造体と同一構成部分には、同一符号を付す。
FIG. 5 is an enlarged plan view of the first absorber mounting portion shown in FIG. In FIG. 5, the first absorber mounting portion 15-1 shown in FIG. 1 is illustrated rotated 90 degrees counterclockwise. In FIG. 5, the same components as those in the structure shown in FIG.
Figure 6 is a front view 1 view D the first absorber mounting portion shown in FIG. In FIG. 6, the same components as those shown in FIGS. 1 and 5 are denoted by the same reference numerals.
図4〜図6を参照するに、第1のアブソーバ取り付け部15−1は、矩形部材本体37の第1及び第2の領域B1,B2に固定される部材であり、第1の板状部材51と、ボルト53,55と、ワッシャー54,56と、第1の突出部61と、第2の突出部62と、を有する。
4 to 6, the first absorber mounting portion 15-1 is a member that is fixed to the first and second regions B 1 and B 2 of the rectangular member
第1の板状部材51は、板状の部材であり、平坦な表面51a、平坦な裏面51b、及びねじ穴51A〜51Dを有する。
第1の板状部材51の裏面51bは、矩形部材本体37の上面37aと接触する面である。ねじ穴51A〜51Dは、第1の板状部材51を貫通するように設けられている。
ねじ穴51Aは、矩形部材本体37に設けられたねじ穴44(或いは、ねじ穴47)と対向するように配置されている。ねじ穴51Bは、矩形部材本体37に設けられたねじ穴43(或いは、ねじ穴48)と対向するように配置されている。
ねじ穴51C,51Dは、Y方向において対向するように第1の板状部材51の角部に配置されている。
ねじ穴51A〜51Dの側面には、めねじ(図示せず)が設けられている。
The first plate-
The
The
The screw holes 51C and 51D are arranged at the corners of the
Female screws (not shown) are provided on the side surfaces of the screw holes 51A to 51D.
ボルト53は、第1の板状部材51に装着された状態で、第1の板状部材51の裏面51bから突出する長さとされている。ボルト53は、ワッシャー54を介して、矩形部材本体41に設けられたねじ穴44(或いは、ねじ穴47)に螺合される。
ボルト55は、第1の板状部材51に装着された状態で、第1の板状部材51の裏面51bから突出する長さとされている。ボルト55は、ワッシャー54を介して、矩形部材本体41に設けられたねじ穴43(或いは、ねじ穴48)に螺合される。
The
The
第1の突出部61は、軸部64と、台座部65と、ワッシャー66と、ナット67と、を有する。
軸部64は、その外周部全体におねじが切られた部材であり、Z方向に延在している。軸部64は、台座部65が第1の板状部材51の表面51aと接触した状態で、台座部65の上方に突出し、かつ裏面51bの下方に突出しない長さとされている。
台座部65の上方に位置する軸部64は、後述するアブソーバ部75の取り付け部81−2の開口部81−2B(図8参照)に挿入される。
The first projecting
The
The
台座部65は、軸部64の中間付近に設けられている。台座部65の上面は、ボルト53,55の上面よりも上方に配置されている。
台座部65は、軸部64と一体とされている。アブソーバ部75の取り付け部81−2の開口部81−2B(図8参照)に軸部64が挿入された状態において、台座部65上には、取り付け部81−2が載置される。
ナット67は、ワッシャー66を介して、軸部64に螺合されることで、台座部65上に配置された後述するアブソーバ部75の取り付け部81−2(図示せず)が軸部64に対して僅かに変位可能な状態で、第1のアブソーバ取り付け部15−1に取り付け部81−2を接続させている。
The
The
The
図7は、図1に示す一方の耐震機構を拡大した平面図である。図7では、説明の便宜上、耐震機構15−2以外の構成も図示する。図7において、図1〜図6に示す構造体と同一構成部分には、同一符号を付す。 FIG. 7 is an enlarged plan view of one seismic mechanism shown in FIG. In FIG. 7, for the convenience of explanation, configurations other than the earthquake resistant mechanism 15-2 are also illustrated. In FIG. 7, the same components as those shown in FIGS.
図7を参照するに、耐震機構15−2は、筒状支柱部材71と、複数のボルト72と、アブソーバ部75と、を有する。
筒状支柱部材71は、第2の電力機器12と対向しない第1の電力機器11の端部11B側に配置されている。筒状支柱部材71は、固定部71−1と、筒状支柱部材本体71−2と、連結部材取り付け板71−3と、上部取り付け部71−4(後述する図10参照)と、下部取り付け部71−5(後述する図10参照)と、を有する。
筒状支柱部材71は、筒状支柱部材本体71−2と端部11Bの一方の角部とが対向するように、第1の電力機器11から離間した位置に配置されている。
Referring to FIG. 7, the earthquake resistant mechanism 15-2 includes a
The
The
固定部71−1は、筒状支柱部材本体71−2の下端と一体に構成されており、X方向及びY方向を通過する水平面方向に延在している。固定部71−1は、複数のねじ穴71−1Aを有する。筒状支柱部材71は、複数のねじ穴71−1Aに挿入された複数のボルト72により床に固定されている。
The fixing portion 71-1 is configured integrally with the lower end of the cylindrical column member body 71-2, and extends in the horizontal plane direction passing through the X direction and the Y direction. The fixing portion 71-1 has a plurality of screw holes 71-1A. The cylindrical support |
筒状支柱部材本体71−2は、平面視した形状が菱形(正方形も含む)とされている。筒状支柱部材本体71−2は、上記菱形の一方の対角線71AがX方向(第1の方向)に対して直交するように配置されている。
筒状支柱部材本体71−2は、アブソーバ部75を構成する弾性部材83が押圧される平坦な外面71−2aを有する。外面71−2aは、アブソーバ部75の延在方向に対して直交する面であり、かつ第1の電力機器11の端部11B(図1参照)の一方の角部から最も離間した位置に配置された面である。
また、筒状支柱部材本体71−2は、アブソーバ部75を構成する棒状部材本体81−1が挿入される2つの貫通孔(図示せず)を有する。
The cylindrical strut member main body 71-2 has a rhombus shape (including a square shape) in plan view. The cylindrical strut member main body 71-2 is arranged so that one
The cylindrical column member body 71-2 has a flat outer surface 71-2a against which the
Moreover, the cylindrical support | pillar member main body 71-2 has two through-holes (not shown) in which the rod-shaped member main body 81-1 which comprises the
連結部材取り付け板71−3は、筒状支柱部材本体71−2の上端に固定されている。連結部材取り付け板71−3は、開放端とされた筒状支柱部材本体71−2の上端を略塞ぐような形状とされた板材である。連結部材取り付け板71−3は、Y方向に配置されたねじ穴71−3Aを有する。 The connecting member mounting plate 71-3 is fixed to the upper end of the cylindrical column member body 71-2. The connection member attachment plate 71-3 is a plate material that is shaped to substantially close the upper end of the cylindrical column member body 71-2 that is an open end. The connecting member mounting plate 71-3 has a screw hole 71-3A arranged in the Y direction.
後述する図10を参照するに、上部取り付け部71−4は、筒状支柱部材本体71−2の上部に設けられており、筒状支柱部材本体71−2からY方向に突出している。Y方向に対向配置された筒状支柱部材本体71−2に設けられた2つの上部取り付け部71−4は、対向するように配置されている。
下部取り付け部71−5は、筒状支柱部材本体71−2の下部に設けられており、筒状支柱部材本体71−2からY方向に突出している。Y方向に対向配置された筒状支柱部材本体71−2に設けられた下部取り付け部71−5は、対向するように配置されている。
Referring to FIG. 10 to be described later, the upper mounting portion 71-4 is provided on the upper portion of the cylindrical column member body 71-2 and protrudes from the cylindrical column member body 71-2 in the Y direction. The two upper mounting portions 71-4 provided on the cylindrical columnar member main body 71-2 arranged to face each other in the Y direction are arranged so as to face each other.
The lower attachment portion 71-5 is provided at the lower portion of the cylindrical column member body 71-2 and protrudes from the cylindrical column member body 71-2 in the Y direction. The lower attachment portions 71-5 provided on the cylindrical columnar member main body 71-2 arranged to face each other in the Y direction are arranged to face each other.
図8は、図7に示すアブソーバ部の平面図である。図8において、図7に示す構造体と同一構成部分には、同一符号を付す。 FIG. 8 is a plan view of the absorber portion shown in FIG. In FIG. 8, the same components as those in the structure shown in FIG.
図7及び図8を参照するに、アブソーバ部75は、棒状支持部材81と、弾性部材83と、押さえプレート85と、特殊ワッシャー86と、ワッシャー88と、1種ナット89と、3種ナット91と、を有する。
Referring to FIGS. 7 and 8, the
図7に示す状態(具体的には、アブソーバ部75が筒状支柱部材71に装着され、かつアブソーバ部75が第1のアブソーバ取り付け部15−1に固定された状態)において、棒状支持部材81は、鉛直方向と直交する水平面方向に延在している。棒状支持部材81は、X方向及びY方向と交差する方向に延在している。つまり、アブソーバ部75は、鉛直方向と直交する水平面方向のうち、X方向及びY方向と交差する方向に延在している。
棒状支持部材81とY方向(第2の方向)とが成す角度θ1(言い換えれば、アブソーバ部75の延在方向とY方向とが成す角度)は、例えば、45度とすることができるが、これに限定されない。
In the state shown in FIG. 7 (specifically, the
The angle θ 1 formed by the rod-shaped
棒状支持部材81は、棒状部材本体81−1と、取り付け部81−2と、を有する。棒状部材本体81−1は、その延在方向の外周部全体におねじ(図示せず)が切られた棒状の部材である。
取り付け部81−2は、めねじ(図示せず)が切られた筒状とされた筒状部分81−2Aと、円形の開口部81−2Bと、を有する。
筒状部分81−2Aは、棒状部材本体81−1の一方の端部に設けられたおねじ(図示せず)と螺合されている。開口部81−2Bは、筒状部分81−2Aの端部に設けられている。
The rod-shaped
The attachment portion 81-2 includes a cylindrical portion 81-2A having a cylindrical shape in which a female screw (not shown) is cut, and a circular opening portion 81-2B.
The cylindrical portion 81-2A is screwed with a male screw (not shown) provided at one end of the rod-shaped member main body 81-1. The opening 81-2B is provided at the end of the cylindrical portion 81-2A.
図7に示す状態において、開口部81−2Bには、第2の突出部62を構成する軸部64(図6参照)が挿入されており、ワッシャー66を介して、軸部64にナット67を締結することで、アブソーバ部75の一方の端部(言い換えれば、取り付け部81−2)が、軸部64に対して僅かに変位可能な状態で、第1のアブソーバ取り付け部15−1に接続されている。
これにより、アブソーバ部75は、軸部64に対して僅かに変位可能な状態で、第1の電力機器11の端部11B(図1参照)の一方の角部を支持している。
In the state shown in FIG. 7, a shaft portion 64 (see FIG. 6) constituting the second projecting
Thereby, the
弾性部材83は、柱状(例えば、円柱形状)とされた部材であり、棒状部材本体81−1が挿入される貫通孔(図示せず)と、棒状部材本体81−1と直交する平坦面83a,83bと、を有する。
弾性部材83は、取り付け部81−2が配置された側とは反対側に位置する棒状部材本体81−1の端部側に配置されている。
The
The
図7に示す状態において、弾性部材83は、筒状支柱部材本体71−2の外側に配置されている。弾性部材83は、平坦面83aが筒状支柱部材本体71−2の外面71−2aに接触した状態で、所定量圧縮されている。これにより、アブソーバ部75は、引っ張り力により、第1の電力機器11の端部11B(図1参照)の一方の角部を支持している。平坦面83bは、押さえプレート85と接触している。
弾性部材83の材料としては、例えば、ゴムを用いることができる。この場合、弾性部材83の所定の圧縮量としては、例えば、2mmを用いることができる。
In the state shown in FIG. 7, the
As a material of the
押さえプレート85は、弾性部材83の平坦面83aと同じ大きさの円盤形状とされた部材である。押さえプレート85は、棒状部材本体81−1が挿入される貫通孔(図示せず)を有する。
押さえプレート85は、棒状部材本体81−1が挿入された状態で、筒状支柱部材本体71−2の外面71−2a側に弾性部材83を押圧している。
特殊ワッシャー86は、棒状部材本体81−1の他方の端部側に配置されており、押さえプレート85と接触している。
The holding
The
The
ワッシャー88は、1種ナット89と特殊ワッシャー86との間に位置する棒状部材本体81−1に配置されている。
図7に示す状態において、1種ナット89は、棒状部材本体81−1に螺合されると共に、ワッシャー88、特殊ワッシャー86、及び押さえプレート85を介して、弾性部材83を圧縮する方向に締め込まれている。
3種ナット91は、1種ナット89と接触するように、棒状部材本体81−1の他端側に螺合されている。
The
In the state shown in FIG. 7, the type 1
The type 3
図9は、図1に示す他方の耐震機構を拡大した平面図である。図9では、説明の便宜上、耐震機構15−3以外の構成も図示する。図9において、図1〜図8に示す構造体と同一構成部分には、同一符号を付す。 FIG. 9 is an enlarged plan view of the other seismic mechanism shown in FIG. In FIG. 9, for the sake of convenience of explanation, configurations other than the earthquake resistant mechanism 15-3 are also illustrated. 9, the same components as those shown in FIGS. 1 to 8 are denoted by the same reference numerals.
図1及び図9を参照するに、耐震機構15−3は、図7に示す耐震機構15−2を左に90度回転させた状態で、取り付け部81−2の開口部81−2Bに第1の突出部61の軸部64(図6参照)を挿入させ、ワッシャー66を介して、ナット67を軸部64に締結させたこと以外は、耐震機構15−2と同様に構成される。
これにより、耐震機構15−3を構成するアブソーバ部75は、引っ張り力により、第1の電力機器11の端部11B(図1参照)の他方の角部を支持している。
Referring to FIG. 1 and FIG. 9, the seismic mechanism 15-3 is moved to the opening 81-2B of the mounting part 81-2 with the seismic mechanism 15-2 shown in FIG. The structure is the same as that of the earthquake-resistant mechanism 15-2 except that the shaft portion 64 (see FIG. 6) of the one projecting
Thereby, the
耐震機構15−3を構成する棒状支持部材81とY方向(第2の方向)とが成す角度θ2(言い換えれば、アブソーバ部75とY方向とが成す角度)は、例えば、45度とすることができるが、これに限定されない。
図1に示すように、耐震機構15−2を構成する筒状支柱部材本体71−2と耐震機構15−3を構成する筒状支柱部材本体71−2とは、Y方向において、対向するように配置されている。
The angle θ 2 (in other words, the angle formed between the
As shown in FIG. 1, the cylindrical support member main body 71-2 constituting the earthquake resistance mechanism 15-2 and the cylindrical support member main body 71-2 constituting the earthquake resistance mechanism 15-3 are opposed to each other in the Y direction. Is arranged.
図10は、図1に示す耐震機能付き電力機器群をA2視した側面図であり、図1に示す第1の電力機器の図示を省略した図である。図10において、図1〜図9に示す構造体と同一構成部分には、同一符号を付す。 Figure 10 is a side view A 2 view of the seismic function power device group shown in FIG. 1, a diagram is not shown of the first power device illustrated in FIG. 10, the same components as those shown in FIGS. 1 to 9 are denoted by the same reference numerals.
図1及び図10を参照するに、連結部材15−4は、ビーム95と、2つのブレース96,97と、を有する。
ビーム95は、Y方向に配置された2つの筒状支柱部材71を構成する連結部材取り付け板71−3上に固定されている。
ブレース96は、その一方の端部が耐震機構15−2を構成する上部取り付け部71−4に固定されており、他方の端部が耐震機構15−3を構成する下部取り付け部71−5に固定されている。
Referring to FIGS. 1 and 10, the connecting member 15-4 has a
The
One end of the
ブレース97は、その一方の端部が耐震機構15−3を構成する上部取り付け部71−4に固定されており、他方の端部が耐震機構15−2を構成する下部取り付け部71−5に固定されている。
上記構成とされた連結部材15−4を有することで、Y方向に配置された2つの筒状支柱部材71が一体的に構成されるため、地震が発生した際、2つの筒状支柱部材71がY方向に変位することを抑制できる。
One end of the
Since the two
図1を参照するに、第2の端部用耐震装置16は、第2の電力機器12の端部12B側に配置されている。第2の端部用耐震装置16は、第2のアブソーバ取り付け部15−5と、耐震機構15−6,15−7と、連結部材15−4と、を有する。
Referring to FIG. 1, the second end
図11は、図1に示す第2のアブソーバ取り付け部を拡大した平面図である。図11では、図1に示す第2のアブソーバ取り付け部15−5を右に90度回転させた状態で図示する。図11において、図1及び図5に示す構造体と同一構成部分には、同一符号を付す。
図12は、図11に示す第2のアブソーバ取り付け部をD2視した正面図である。図12において、図1、図6、及び図11に示す構造体と同一構成部分には、同一符号を付す。
FIG. 11 is an enlarged plan view of the second absorber mounting portion shown in FIG. In FIG. 11, the second absorber mounting portion 15-5 shown in FIG. 1 is shown rotated 90 degrees to the right. In FIG. 11, the same components as those shown in FIGS. 1 and 5 are denoted by the same reference numerals.
Figure 12 is a front view of two viewing D a second absorber mounting portion shown in FIG. 11. 12, the same components as those shown in FIGS. 1, 6, and 11 are denoted by the same reference numerals.
図11及び図12を参照するに、第2のアブソーバ取り付け部15−5は、図5及び図6に示す第1のアブソーバ取り付け部15−1を構成する第1の板状部材51の厚さよりも厚さの厚い第2の板状部材101を有し、かつ第1のアブソーバ取り付け部15−1を構成する第1及び第2の突出部61,62に替えて、第3及び第4の突出部102,103を有すること以外は、第1のアブソーバ取り付け部15−1と同様に構成される。
Referring to FIGS. 11 and 12, the second absorber mounting portion 15-5 is based on the thickness of the
第2の板状部材101は、平坦な表面101aと、平坦な裏面101bと、を有する。
図2に示す第1及び第2の電力機器の高さH1,H2が等しく、かつ第1の板状部材51の厚さを6mmとした場合、第2の板状部材101の厚さは、例えば、40mmとすることができる。
第3の突出部102は、第1のアブソーバ取り付け部15−1を構成する第1の突出部61と同様な構成とされている。第4の突出部103は、第1のアブソーバ取り付け部15−1を構成する第2の突出部62と同様な構成とされている。
The
When the heights H 1 and H 2 of the first and second electric power devices shown in FIG. 2 are equal and the thickness of the
The
図1を参照するに、耐震機構15−6は、図7に示す耐震機構15−2の状態から右に90度回転させて、取り付け部81−2の開口部81−2Bに第4の突出部103の軸部64(図12参照)を挿入させ、ワッシャー66を介して、ナット67を軸部64に締結させたこと以外は、耐震機構15−2と同様に構成される。
Referring to FIG. 1, the seismic mechanism 15-6 is rotated 90 degrees to the right from the state of the seismic mechanism 15-2 shown in FIG. 7, and the fourth protrusion projects into the opening 81-2B of the mounting portion 81-2. Except that the shaft portion 64 (see FIG. 12) of the
これにより、耐震機構15−6を構成するアブソーバ部75は、第2のアブソーバ取り付け部15−5を介して、引っ張り力により、第2の電力機器11の端部12Bの一方の角部を支持している。
耐震機構15−6を構成する棒状支持部材81とY方向(第2の方向)とが成す角度(図示せず)は、例えば、45度とすることができるが、これに限定されない。
Thereby, the
An angle (not shown) formed by the rod-
耐震機構15−7は、図7に示す耐震機構15−2の状態から右に180度回転させて、取り付け部81−2の開口部81−2Bに第3の突出部102の軸部64(図12参照)を挿入させ、ワッシャー66を介して、ナット67を軸部64に締結させたこと以外は、耐震機構15−2と同様に構成される。
The seismic mechanism 15-7 is rotated 180 degrees to the right from the state of the seismic mechanism 15-2 shown in FIG. 7, and the shaft portion 64 ( 12) is inserted, and the
これにより、耐震機構15−7を構成するアブソーバ部75は、第2のアブソーバ取り付け部15−5を介して、引っ張り力により、第2の電力機器12の端部12Bの他方の角部を支持している。
耐震機構15−7を構成する棒状支持部材81とY方向(第2の方向)とが成す角度(図示せず)は、例えば、45度とすることができるが、これに限定されない。
Thereby, the
An angle (not shown) formed by the rod-shaped
図1を参照するに、耐震装置21は、所定の間隔を空けてX方向(第1の方向)に配置された第1及び第2の電力機器11,12の上部のうち、第2の電力機器12と対向する第1の電力機器11の端部11A(第1の端部)と、第1の電力機器11と対向する第2の電力機器12の端部12A(第2の端部)と、を支持する装置である。
耐震装置21は、端部11Aに配置された第1のアブソーバ取り付け部15−1と、端部12Aに配置された第2のアブソーバ取り付け部15−5と、第1の耐震機構111と、第2の耐震機構112と、第1の連結部材113と、第2の連結部材114と、第3の連結部材115と、を有する。
Referring to FIG. 1, the
The
図13は、図1に示す第1の耐震機構を拡大した平面図である。図13では、説明の便宜上、第1の耐震機構111以外の構成も図示する。図13において、図1〜図12に示す構造体と同一構成部分には、同一符号を付す。
FIG. 13 is an enlarged plan view of the first earthquake-resistant mechanism shown in FIG. In FIG. 13, for the sake of convenience of explanation, configurations other than the first earthquake-
図13を参照するに、第1の耐震機構111は、第1の筒状支柱部材121と、第1のアブソーバ部75−1と、第2のアブソーバ部75−2と、を有する。
図13を参照するに第1の筒状支柱部材121は、厚さが厚いこと以外は図7に示す筒状支柱部材71と同様な構成とされており、その下端が床に固定されている。
Referring to FIG. 13, the first earthquake-
Referring to FIG. 13, the first
図14は、第1の耐震機構を構成する第1の筒状支柱部材、及び第2の耐震機構を構成する第2の筒状支柱部材の配設位置を説明するための平面図である。図14において、図1に示す構造体と同一構成部分には同一符号を付す。
図14において、C1は第1の電力機器11の中心位置(以下、「中心位置C1」という)、C2は第2の電力機器12の中心位置(以下、「中心位置C2」という)、L1はX方向に延在し、かつ中心位置C1,C2を結ぶ直線(以下、「直線L1」という)、L2はY方向に延在し、かつ直線L1の中間位置C3を通過する直線(以下、「直線L2」という)をそれぞれ示している。
FIG. 14 is a plan view for explaining the arrangement positions of the first cylindrical column member constituting the first earthquake-resistant mechanism and the second cylindrical column member constituting the second earthquake-resistant mechanism. In FIG. 14, the same components as those of the structure shown in FIG.
In FIG. 14, C 1 is the center position of the first power device 11 (hereinafter referred to as “center position C 1 ”), and C 2 is the center position of the second power device 12 (hereinafter referred to as “center position C 2 ”). ), L 1 extends in the X direction and connects the center positions C 1 and C 2 (hereinafter referred to as “straight line L 1 ”), L 2 extends in the Y direction, and is an intermediate position of the straight line L 1. Each straight line passing through C 3 (hereinafter referred to as “straight line L 2 ”) is shown.
図14を参照するに、第1の筒状支柱部材121は、平面視した状態で、第1の電力機器11の中心位置C1と第2の電力機器12の中心位置C2とを結ぶ第1の直線L1の中間位置C3を通過し、かつX方向と直交する第2の直線L2上において、中間位置C3を介して、第2の耐震機構112を構成する後述する第2の筒状支柱部材122と対向するように配置されている。
Referring to FIG. 14, the first
具体的には、第1及び第2の筒状支柱部材121,122は、第1及び第2の筒状支柱部材121,122を構成する筒状支柱部材本体71−2の対角線71A(図13及び図15参照)が直線L2と重なるように配置されている。
言い換えれば、第1及び第2の筒状支柱部材121,122を構成し、かつ平面視した形状が菱形とされた筒状支柱部材本体71−2は、一方の対角線71AがX方向に対して直交するように配置されている。
Specifically, the first and second
In other words, the cylindrical strut member main body 71-2 that constitutes the first and second
また、第1の筒状支柱部材121を構成する筒状支柱部材本体71−2、及び第2の筒状支柱部材122を構成する筒状支柱部材本体71−2は、例えば、第1の電力機器11と第2の電力機器12との間に配置された空間の外側に配置させるとよい。
Moreover, the cylindrical support | pillar member main body 71-2 which comprises the 1st cylindrical support |
このように、第1及び第2の筒状支柱部材121,122を構成する筒状支柱部材本体71−2を、第1の電力機器11と第2の電力機器12との間に配置された空間の外側に配置させることで、Y方向において第1及び第2の筒状支柱部材121,122を十分に離間させた状態で、第1の筒状支柱部材121が支持する第1及び第2のアブソーバ部75−1,75−2、及び第2の筒状支柱部材122が支持する第3及び第4のアブソーバ部75−3,75−4をX方向及びY方向に対して交差する方向に延在させて配置することが可能となる。
これにより、第1の電力機器11と第2の電力機器12との間に配置された空間内に、第1の筒状支柱部材121,122を構成する筒状支柱部材71を配置させた場合と比較して、第1の電力機器11と第2の電力機器12との間の間隔を狭くすることができる。
In this way, the cylindrical column member body 71-2 that constitutes the first and second
Thereby, the cylindrical support |
なお、第1の電力機器11と第2の電力機器12との間に位置する空間に、第1及び第2の筒状支柱部材121,122を構成する筒状支柱部材本体71−2を配置させると、Y方向に対して第1及び第2の筒状支柱部材121,122を離間させて配置することが困難になると共に、第1ないし第4のアブソーバ部75−1〜75−2の延在方向とY方向とが成す角度が90度或いは90度に近い鋭角となるため、第1の電力機器11と第2の電力機器12との間隔が広くなってしまう。
In addition, the cylindrical support | pillar member main body 71-2 which comprises the 1st and 2nd cylindrical support |
図13を参照するに、第1の筒状支柱部材121を構成する筒状支柱部材本体71−2は、外面71−2a(第1の面)と、外面71−2aに隣接して配置された外面71−2b(第2の面)と、を有する。外面71−2a,71−2bは、平坦な面とされている。
第1の筒状支柱部材121を構成する筒状支柱部材71は、第1のアブソーバ部75−1を構成する棒状部材本体81−1が挿入される2つの貫通孔(図示せず)と、第3のアブソーバ部75−3を構成する棒状部材本体81−1が挿入される2つの他の貫通孔(図示せず)と、を有する。
上記2つの貫通孔は、鉛直方向において、上記2つの他の貫通孔よりも低い位置に設けられている。
Referring to FIG. 13, the cylindrical columnar member main body 71-2 constituting the first
The
The two through holes are provided at a position lower than the two other through holes in the vertical direction.
第1のアブソーバ部75−1は、図8に示すアブソーバ部75と同様な構成とされている。
図13に示す状態(具体的には、第1のアブソーバ部75−1が第1の筒状支柱部材121に装着され、かつ第1のアブソーバ部75−1が第1のアブソーバ取り付け部15−1に固定された状態)において、第1のアブソーバ部75−1を構成する棒状支持部材81は、該筒状支柱部材71に設けられた2つの貫通孔(図示せず)に挿入されている。
第1のアブソーバ部75−1を構成する棒状支持部材81は、鉛直方向と直交する水平面内であって、X方向及びY方向と交差する方向に延在している。
The first absorber portion 75-1 has the same configuration as the
The state shown in FIG. 13 (specifically, the first absorber portion 75-1 is mounted on the first
The rod-
つまり、第1のアブソーバ部75−1は、鉛直方向と直交する水平面方向のうち、X方向及びY方向と交差する方向に延在している。
第1のアブソーバ部75−1を構成する棒状支持部材81とY方向とが成す第1の角度θ3(言い換えれば、第1のアブソーバ部75−1の延在方向とY方向とが成す角度)は、例えば、45度とすることができるが、これに限定されない。
That is, the 1st absorber part 75-1 is extended in the direction which cross | intersects X direction and Y direction among the horizontal surface directions orthogonal to a perpendicular direction.
First angle θ 3 formed by the rod-shaped
第1のアブソーバ部75−1は、先に説明した弾性部材83(図8参照)と同様な構成とされた第1の弾性部材83−1を有する。第1の弾性部材83−1は、筒状支柱部材本体71−2の外面71−2b(第1の面)と接触する平坦面83−1aを有する。
第1の弾性部材83−1は、筒状支柱部材本体71−2の外面71−2bと接触すると共に、所定量圧縮された状態(押圧された状態)で、筒状支柱部材本体71−2の外側に配置されている。これにより、第1のアブソーバ部75−1の他方の端部は、第1の筒状支柱部材121に支持されている。
The first absorber portion 75-1 includes a first elastic member 83-1, which has the same configuration as the elastic member 83 (see FIG. 8) described above. The first elastic member 83-1 has a flat surface 83-1a that contacts the outer surface 71-2b (first surface) of the cylindrical support member body 71-2.
The first elastic member 83-1 is in contact with the outer surface 71-2b of the cylindrical column member main body 71-2 and is compressed (predetermined) by a predetermined amount in the cylindrical column member main body 71-2. It is arranged outside. As a result, the other end of the first absorber portion 75-1 is supported by the first
第1のアブソーバ部75−1を構成する取り付け部81−2の開口部81−2Bは、第1の突出部61を構成する軸部64に挿入された状態で、かつ軸部64に対して僅かに変位可能な状態で、ワッシャー66及びナット67により、軸部64と接続されている。
これにより、第1のアブソーバ部75−1の一方の端部は、第1のアブソーバ取り付け部15−1を介して、第1の筒状支柱部材121の近傍に位置する端部11A(図1参照)の一方の角部を支持している。
The opening 81-2B of the mounting portion 81-2 that constitutes the first absorber portion 75-1 is inserted into the
Accordingly, one end of the first absorber portion 75-1 is connected to the
第2のアブソーバ部75−2は、図8に示すアブソーバ部75と同様な構成とされている。
図13に示す状態(具体的には、第2のアブソーバ部75−2が第1の筒状支柱部材121に装着され、かつ第2のアブソーバ部75−2が第2のアブソーバ取り付け部15−5に固定された状態)において、第2のアブソーバ部75−2を構成する棒状支持部材81は、該筒状支柱部材71に設けられた2つの他の貫通孔(図示せず)に挿入されている。
第2のアブソーバ部75−2を構成する棒状支持部材81は、鉛直方向と直交する水平面内であって、X方向及びY方向と交差する方向に延在している。
The second absorber portion 75-2 has the same configuration as the
The state shown in FIG. 13 (specifically, the second absorber portion 75-2 is mounted on the first
The rod-
つまり、第2のアブソーバ部75−2は、鉛直方向と直交する水平面方向のうち、X方向及びY方向と交差する方向に延在している。
第2のアブソーバ部75−2を構成する棒状支持部材81とY方向とが成す第2の角度θ4(言い換えれば、第2のアブソーバ部75−2の延在方向とY方向とが成す角度)は、例えば、45度とすることができるが、これに限定されない。
例えば、第1及び第2の角度θ3,θ4を45度にする場合、第2のアブソーバ部75−2を構成する棒状支持部材81は、第1のアブソーバ部75−1を構成する棒状支持部材81と直交する。
That is, the 2nd absorber part 75-2 is extended in the direction which cross | intersects X direction and Y direction among the horizontal surface directions orthogonal to a perpendicular direction.
Second angle θ 4 formed by the rod-shaped
For example, when the first and second angles θ 3 and θ 4 are set to 45 degrees, the rod-
第2のアブソーバ部75−2は、先に説明した弾性部材83(図8参照)と同様な構成とされた第2の弾性部材83−2を有する。第2の弾性部材83−2は、筒状支柱部材本体71−2の外面71−2a(第2の面)と接触する平坦面83−2aを有する。
第2の弾性部材83−2は、筒状支柱部材本体71−2の外面71−2aと接触すると共に、所定量圧縮された状態(押圧された状態)で、筒状支柱部材本体71−2の外側に配置されている。これにより、第2のアブソーバ部75−2の他方の端部は、第1の筒状支柱部材121に支持されている。
The second absorber portion 75-2 includes a second elastic member 83-2 having the same configuration as the elastic member 83 (see FIG. 8) described above. The 2nd elastic member 83-2 has the flat surface 83-2a which contacts the outer surface 71-2a (2nd surface) of the cylindrical support | pillar member main body 71-2.
The second elastic member 83-2 is in contact with the outer surface 71-2a of the cylindrical strut member main body 71-2 and is compressed (predetermined) by a predetermined amount, and the cylindrical strut member main body 71-2. It is arranged outside. Thereby, the other end portion of the second absorber portion 75-2 is supported by the first
第2のアブソーバ部75−2を構成する取り付け部81−2の開口部81−2Bは、第3の突出部102を構成する軸部64(図12参照)に挿入された状態で、かつ該軸部64に対して僅かに変位可能な状態で、ワッシャー66及びナット67により、該軸部64と接続されている。
これにより、第2のアブソーバ部75−2の一方の端部は、第2のアブソーバ取り付け部15−2を介して、第1の筒状支柱部材121の近傍に位置する端部12A(図1参照)の一方の角部を支持している。
The opening 81-2B of the mounting portion 81-2 constituting the second absorber portion 75-2 is inserted into the shaft portion 64 (see FIG. 12) constituting the third projecting
As a result, one end of the second absorber portion 75-2 is connected to the
図15は、図1に示す第2の耐震機構を拡大した平面図である。図15では、説明の便宜上、第2の耐震機構112以外の構成も図示する。図15において、図1〜図14に示す構造体と同一構成部分には、同一符号を付す。
FIG. 15 is an enlarged plan view of the second earthquake-resistant mechanism shown in FIG. In FIG. 15, for the convenience of explanation, the configuration other than the second earthquake-
図15を参照するに、第2の耐震機構112は、第2の筒状支柱部材122と、第3のアブソーバ部75−3と、第4のアブソーバ部75−4と、を有する。
第2の筒状支柱部材122は、図13に示す第1の筒状支柱部材121と同様な構成とされており、その下端が床に固定されている。
第2の筒状支柱部材122を構成する筒状支柱部材71は、外面71−2a(この場合、第3の面)と、外面71−2aに隣接して配置された外面71−2b(この場合、第4の面)と、を有する。外面71−2a,71−2bは、平坦な面とされている。
Referring to FIG. 15, the second earthquake-
The second
The
第2の筒状支柱部材122を構成する筒状支柱部材本体71−2は、第3のアブソーバ部75−3を構成する棒状部材本体81−1が挿入される2つの貫通孔(図示せず)と、第4のアブソーバ部75−4を構成する棒状部材本体81−1が挿入される2つの他の貫通孔(図示せず)と、を有する。
上記2つの貫通孔は、鉛直方向において、上記2つの他の貫通孔よりも低い位置に設けられている。
The cylindrical columnar member main body 71-2 constituting the second
The two through holes are provided at a position lower than the two other through holes in the vertical direction.
第3のアブソーバ部75−3は、図13に示す第1及び第2のアブソーバ部75−1,75−2と同様な構成とされている。
図15に示す状態(具体的には、第3のアブソーバ部75−3が第2の筒状支柱部材122に装着され、かつ第3のアブソーバ部75−3が第1のアブソーバ取り付け部15−1に固定された状態)において、第3のアブソーバ部75−3を構成する棒状支持部材81は、該筒状支柱部材71に設けられた2つの貫通孔(図示せず)に挿入されている。
第3のアブソーバ部75−3を構成する棒状支持部材81は、鉛直方向と直交する水平面内であって、X方向及びY方向と交差する方向に延在している。
The third absorber portion 75-3 has the same configuration as the first and second absorber portions 75-1 and 75-2 shown in FIG.
The state shown in FIG. 15 (specifically, the third absorber portion 75-3 is mounted on the second
The rod-
つまり、第3のアブソーバ部75−3は、鉛直方向と直交する水平面方向のうち、X方向及びY方向と交差する方向に延在している。
第3のアブソーバ部75−3を構成する棒状支持部材81とY方向とが成す第3の角度θ5(言い換えれば、第3のアブソーバ部75−3の延在方向とY方向とが成す角度)は、例えば、45度とすることができるが、これに限定されない。
That is, the 3rd absorber part 75-3 is extended in the direction which cross | intersects X direction and Y direction among the horizontal surface directions orthogonal to a perpendicular direction.
Third angle θ 5 formed by the rod-shaped
第3のアブソーバ部75−3は、先に説明した第1及び第2の弾性部材83−1,83−2(図13参照)と同様な構成とされた第3の弾性部材83−3を有する。第3の弾性部材83−3は、筒状支柱部材本体71−2の外面71−2a(この場合、第3の面)と接触する平坦面83−3aを有する。
第3の弾性部材83−3は、筒状支柱部材本体71−2の外面71−2aと接触すると共に、所定量圧縮された状態(押圧された状態)で、筒状支柱部材本体71−2の外側に配置されている。これにより、第3のアブソーバ部75−3の他方の端部は、第2の筒状支柱部材122に支持されている。
The third absorber portion 75-3 includes a third elastic member 83-3 having the same configuration as the first and second elastic members 83-1 and 83-2 (see FIG. 13) described above. Have. The 3rd elastic member 83-3 has the flat surface 83-3a which contacts the outer surface 71-2a (in this case, 3rd surface) of the cylindrical support | pillar member main body 71-2.
The third elastic member 83-3 is in contact with the outer surface 71-2a of the cylindrical strut member main body 71-2 and is compressed (predetermined) by a predetermined amount in the cylindrical strut member main body 71-2. It is arranged outside. Thereby, the other end of the third absorber portion 75-3 is supported by the second
第3のアブソーバ部75−3を構成する取り付け部81−2の開口部81−2Bは、第2の突出部62を構成する軸部64(図6参照)に挿入された状態で、かつ該軸部64に対して僅かに変位可能な状態で、ワッシャー66及びナット67により、該軸部64と接続されている。
これにより、第3のアブソーバ部75−3の一方の端部は、第1のアブソーバ取り付け部15−1を介して、第2の筒状支柱部材122の近傍に位置する端部11A(図1参照)の他方の角部を支持している。
The opening 81-2B of the attachment portion 81-2 constituting the third absorber portion 75-3 is inserted into the shaft portion 64 (see FIG. 6) constituting the
Thereby, one end of the third absorber portion 75-3 is connected to the
第4のアブソーバ部75−4は、図13に示す第1及び第2のアブソーバ部75−1,75−2と同様な構成とされている。
図15に示す状態(具体的には、第4のアブソーバ部75−4が第2の筒状支柱部材122に装着され、かつ第4のアブソーバ部75−4が第2のアブソーバ取り付け部15−5に固定された状態)において、第4のアブソーバ部75−4を構成する棒状支持部材81は、筒状支柱部材71に設けられた2つの他の貫通孔(図示せず)に挿入されている。
第4のアブソーバ部75−4を構成する棒状支持部材81は、鉛直方向と直交する水平面内であって、X方向及びY方向と交差する方向に延在している。
The fourth absorber portion 75-4 has the same configuration as the first and second absorber portions 75-1 and 75-2 shown in FIG.
The state shown in FIG. 15 (specifically, the fourth absorber portion 75-4 is attached to the second
The rod-
つまり、第4のアブソーバ部75−4は、鉛直方向と直交する水平面方向のうち、X方向及びY方向と交差する方向に延在している。
第4のアブソーバ部75−4を構成する棒状支持部材81とY方向とが成す第4の角度θ6(言い換えれば、第4のアブソーバ部75−4の延在方向とY方向とが成す角度)は、例えば、45度とすることができるが、これに限定されない。
例えば、第3及び第4の角度θ5,θ6を45度にする場合、第4のアブソーバ部75−4を構成する棒状支持部材81は、第3のアブソーバ部75−3を構成する棒状支持部材81と直交する。
That is, the 4th absorber part 75-4 is extended in the direction which cross | intersects X direction and Y direction among the horizontal surface directions orthogonal to a perpendicular direction.
A fourth angle θ 6 formed by the rod-shaped
For example, when the third and fourth angles θ 5 and θ 6 are set to 45 degrees, the rod-
第4のアブソーバ部75−4は、先に説明した第1ないし第3の弾性部材83−1〜83−3(図13及び図15参照)と同様な構成とされた第4の弾性部材83−4を有する。
第4の弾性部材83−4は、筒状支柱部材本体71−2の外面71−2b(この場合、第3の面)と接触する平坦面83−4aを有する。
第4の弾性部材83−4は、筒状支柱部材本体71−2の外面71−2bと接触すると共に、所定量圧縮された状態(押圧された状態)で、筒状支柱部材本体71−2の外側に配置されている。これにより、第4のアブソーバ部75−4の他方の端部は、第2の筒状支柱部材122に支持されている。
The fourth absorber portion 75-4 is a fourth
The 4th elastic member 83-4 has the flat surface 83-4a which contacts the outer surface 71-2b (in this case, 3rd surface) of the cylindrical support | pillar member main body 71-2.
The fourth elastic member 83-4 is in contact with the outer surface 71-2b of the cylindrical column member main body 71-2, and is compressed (predetermined) by a predetermined amount, and the cylindrical column member main body 71-2. It is arranged outside. As a result, the other end of the fourth absorber portion 75-4 is supported by the second
第4のアブソーバ部75−4を構成する取り付け部81−2の開口部81−2Bは、第4の突出部103を構成する軸部64(図12参照)に挿入された状態で、かつ該軸部64に対して僅かに変位可能な状態で、ワッシャー66及びナット67により、該軸部64と接続されている。
これにより、第4のアブソーバ部75−4の一方の端部は、第2のアブソーバ取り付け部15−5を介して、第2の筒状支柱部材122の近傍に位置する端部12A(図1参照)の他方の角部を支持している。
The opening 81-2B of the mounting portion 81-2 constituting the fourth absorber portion 75-4 is inserted into the shaft portion 64 (see FIG. 12) constituting the fourth projecting
Thereby, one end of the fourth absorber portion 75-4 is connected to the
図16は、図1に示す第1の電力機器と第2の電力機器との間に配置された耐震装置をA2視した側面図である。図16では、耐震装置21を構成する第1及び第3のアブソーバ部75−1,75−3、及び第1のアブソーバ取り付け部15−1の図示を省略する。図16において、図1、図10、図13、及び図15に示す構造体と同一構成部分には、同一符号を付す。
Figure 16 is a side view A 2 view the placed seismic device between a first power device and the second power device shown in FIG. In FIG. 16, illustration of the 1st and 3rd absorber parts 75-1 and 75-3 and the 1st absorber attachment part 15-1 which comprise the earthquake-
図16を参照するに、第1の連結部材113は、Y方向に延在しており、第1の筒状支柱部材121を構成する筒状支柱部材本体71−2と第2の筒状支柱部材122を構成する筒状支柱部材本体71−2とを連結している。
第1の連結部材113は、図10に示す連結部材15−4と同様な構成(具体的には、ビーム95及びブレース96,97を有する構成)とされている。ビーム95は、圧縮方向の力を低減するための部材である。ブレース96,97は、引っ張り方向の力を低減するための部材である。
Referring to FIG. 16, the first connecting
The first connecting
このように、Y方向に配置された第1の筒状支柱部材121を構成する筒状支柱部材本体71−2と第2の筒状支柱部材122を構成する筒状支柱部材本体71−2とを連結する第1の連結部材113を有することで、2つの筒状支柱部材本体71−2が一体的に構成されるため、地震が発生した際、該筒状支柱部材本体71−2がY方向に変位することを抑制できる。
Thus, the cylindrical support member main body 71-2 constituting the first
なお、第1の実施の形態では、一例として、第1の連結部材113を、ビーム95と、ブレース96,97と、で構成した場合を例に挙げて説明したが、目的によっては、ビーム95のみで第1の連結部材113を構成してもよい。
In the first embodiment, as an example, the case where the first connecting
図17は、図1に示す耐震装置をA3視した側面図である。図1、図2、図7、図9、図13、及び図15に示す構造体と同一構成部分には、同一符号を付す。 Figure 17 is a side view A 3 view of the seismic device shown in FIG. The same components as those shown in FIGS. 1, 2, 7, 9, 13, and 15 are denoted by the same reference numerals.
図17を参照するに、第2の連結部材114は、X方向に延在するように配置されており、2つのビーム126と、2つのブレース127,128と、を有する。
一方のビーム126は、その一端が耐震機構15−2を構成する筒状支柱部材本体71−2の上部に固定されており、他端が第1の筒状支柱部材121を構成する筒状支柱部材本体71−2の上部に固定されている。一方のビーム126は、X方向に延在するように配置されている。
他方のビーム126は、その一端が第1の筒状支柱部材121を構成する筒状支柱部材本体71−2の上部に固定されており、他端が耐震機構15−6を構成する筒状支柱部材本体71−2の上部に固定されている。
他方のビーム126は、一方のビーム126と同じ高さにおいて、X方向に延在するように配置されている。
Referring to FIG. 17, the second connecting
One
One end of the
The
一方のブレース127は、その一端が一方のビーム126の一端と重なるように、耐震機構15−2を構成する筒状支柱部材本体71−2の上部に固定されており、他端が第1の筒状支柱部材121の筒状支柱部材本体71−2の下部に固定されている。
一方のブレース128は、その一端が耐震機構15−2を構成する筒状支柱部材本体71−2の下部に固定されており、他端が一方のビーム126の他端と重なるように、第1の筒状支柱部材121の筒状支柱部材本体71−2の上部に固定されている。これにより、一方のブレース127,128は、交差するように配置されている。
One
One
他方のブレース127は、その一端が他方のビーム126の一端と重なるように、第1の筒状支柱部材121の筒状支柱部材本体71−2の上部に固定されており、他端が耐震機構15−6を構成する筒状支柱部材本体71−2の下部部に固定されている。
他方のブレース128は、その一端が第1の筒状支柱部材121の筒状支柱部材本体71−2の下部に固定されており、他端が他方のビーム126の他端と重なるように、耐震機構15−6を構成する筒状支柱部材本体71−2の下部に固定されている。これにより、他方のブレース127,128は、交差するように配置されている。
The
The
このような構成とされた第2の連結部材114を有することで、X方向に配置された耐震機構15−2、第1の耐震機構111、及び耐震機構15−6を構成する筒状支柱部材本体71−2が一体的に構成されるため、地震が発生した際、該筒状支柱部材本体71−2がX方向に変位することを抑制できる。
By including the second connecting
なお、図17では、一例として、2つのビーム126を用いて、X方向に配置された3つの筒状支柱部材本体71−2を連結する場合を例に挙げて説明したが、X方向に配置する第1及び第2の電力機器11,12の台数が少ない場合には、1つのビームを用いて、X方向に配置された3つの筒状支柱部材本体71−2を連結させてもよい。この場合も2つのビームを用いた場合と同様な効果を得ることができる。
また、第1の実施の形態では、一例として、第2の連結部材113を、2つのビーム126と、2つのブレース127,128と、で構成した場合を例に挙げて説明したが、目的によっては、2つのビーム126のみで第2の連結部材114を構成してもよい。
In FIG. 17, as an example, the case where the three cylindrical support member bodies 71-2 arranged in the X direction are connected using the two
In the first embodiment, as an example, the case where the second connecting
図2を参照するに、第3の連結部材115は、X方向に延在するように配置されており、2つのビーム131と、2つのブレース132,133と、を有する。
一方のビーム131は、その一端が耐震機構15−3を構成する筒状支柱部材本体71−2の上部に固定されており、他端が第1の筒状支柱部材121の筒状支柱部材本体71−2の上部に固定されている。一方のビーム131は、X方向に延在するように配置されている。
他方のビーム131は、その一端が第1の筒状支柱部材121の筒状支柱部材本体71−2の上部に固定されており、他端が耐震機構15−7を構成する筒状支柱部材本体71−2の上部に固定されている。
他方のビーム131は、一方のビーム131と同じ高さにおいて、X方向に延在するように配置されている。
Referring to FIG. 2, the third connecting
One
One end of the
The
一方のブレース132は、その一端が一方のビーム131の一端と重なるように、耐震機構15−3を構成する筒状支柱部材本体71−2の上部に固定されており、他端が第1の筒状支柱部材121の筒状支柱部材本体71−2の下部に固定されている。
一方のブレース133は、その一端が耐震機構15−3を構成する筒状支柱部材本体71−2の下部に固定されており、他端が一方のビーム131の他端と重なるように、第1の筒状支柱部材121の筒状支柱部材本体71−2の上部に固定されている。これにより、一方のブレース132,133は、交差するように配置されている。
One
One
他方のブレース132は、その一端が他方のビーム131の一端と重なるように、第1の筒状支柱部材121の筒状支柱部材本体71−2の上部に固定されており、他端が耐震機構15−7を構成する筒状支柱部材本体71−2の下部部に固定されている。
他方のブレース133は、その一端が第1の筒状支柱部材121の筒状支柱部材本体71−2の下部に固定されており、他端が他方のビーム131の他端と重なるように、耐震機構15−7を構成する筒状支柱部材本体71−2の下部に固定されている。これにより、他方のブレース132,133は、交差するように配置されている。
The
The
このような構成とされた第3の連結部材115を有することで、X方向に配置された耐震機構15−3、第2の耐震機構112、及び耐震機構15−7を構成する筒状支柱部材本体71−2が一体的に構成されるため、地震が発生した際、該筒状支柱部材本体71−2がX方向に変位することを抑制できる。
By having the third connecting
上記説明したように、第1の実施の形態の耐震機能付き電力機器群10を構成する第1の端部用耐震装置15、第2の端部用耐震装置16、及び耐震装置21では、アブソーバ部75及び第1ないし第4のアブソーバ部75−1〜75−4を構成する取り付け部81−2を第1のアブソーバ取り付け部15−1または第2のアブソーバ取り付け部15−5に接続し、アブソーバ部75及び第1ないし第4のアブソーバ部75−1〜75−4を構成する弾性部材83及び第1ないし第4の弾性部材83−1〜83−4を筒状支柱部材本体の外面(具体的には、外面71−2aまたは外面71−2b)に対して押圧した状態で、地震動による第1及び第2の電力機器11,12の変位を抑制可能に支持している。
As described above, in the first end
つまり、第1及び第2の電力機器11,12に対して弾性部材83及び第1ないし第4の弾性部材83−1〜83−4を押し当てて、地震動による第1及び第2の電力機器11,12の変位を抑制する構造でなく、引っ張り力により、地震動による第1及び第2の電力機器11,12の変位を抑制可能に支持している。
このため、電力機器に対して弾性部材を押し当てて、地震動による第1及び第2の電力機器11,12の変位を抑制する構造を適用した場合に発生するアブソーバ部の固定するためのボルト部分の座屈を低減することが可能となるので、アブソーバ部75及び第1ないし第4のアブソーバ部75−1〜75−4の長寿命化を図ることができる。
That is, the
For this reason, the bolt part for fixing the absorber part generated when the structure which suppresses the displacement of the 1st and 2nd
また、上記耐震装置21において、耐震機構15−2,15−3,15−6,15−7を構成するアブソーバ部75の延在方向とY方向とが成す角度、第1のアブソーバ部75−1の延在方向とY方向(言い換えれば、第2の直線L2)とが成す第1の角度θ3、第2のアブソーバ部75−2の延在方向とY方向とが成す第2の角度θ4、第3のアブソーバ部75−3の延在方向とY方向とが成す第3の角度θ5、第4のアブソーバ部75−4の延在方向とY方向とが成す第4の角度θ6は、等しい角度(言い換えれば、同じ角度)にすることが好ましい(図7、図9、図13、及び図15参照。)。
Moreover, in the said earthquake-
このように、耐震機構15−2,15−3,15−6,15−7を構成するアブソーバ部75の延在方向とY方向とが成す角度、及び第1ないし第4の角度θ3〜θ6が等しくなるように構成することで、地震により、第1及び第2の電力機器11,12が揺れた際、第1及び第2の筒状支柱部材121,122が受ける負荷をX方向及びY方向に分散させることが可能となる。
これにより、第1及び第2の筒状支柱部材121,122が破損しにくくなるため、第1及び第2の筒状支柱部材121,122の長寿命化を図ることができる。
As described above, the angle formed by the extending direction of the
Thereby, since it becomes difficult to damage the 1st and 2nd cylindrical support |
具体的には、耐震機構15−2,15−3,15−6,15−7を構成するアブソーバ部75の延在方向とY方向とが成す角度、及び第1ないし第4の角度θ3〜θ6は、例えば、45度にするとよい。
このように、耐震機構15−2,15−3,15−6,15−7を構成するアブソーバ部75の延在方向とY方向とが成す角度、及び第1ないし第4の角度θ3〜θ6を45度にすることにより、地震動が発生した際、X方向及びY方向において均等に荷重を受けることが可能となるので、X方向及びY方向において均等に荷重を分散させることができる。
Specifically, the angle formed between the extending direction of the
As described above, the angle formed by the extending direction of the
また、第1の電力機器11の端部11A上に固定される第1の板状部材51、第1の板状部材51の上方に突出し、第1のアブソーバ部75−1の一方の端部が接続される第1の突出部61、及び第1の板状部材51の上方に突出し、第3のアブソーバ部75−3の一方の端部が接続される第2の突出部62を含む第1のアブソーバ取り付け部15−1と、第2の電力機器12の端部12A上に固定され、第1の板状部材51の厚さよりも厚く構成された第2の板状部材101、第2の板状部材101の上方に突出し、第2のアブソーバ部75−2の一方の端部が接続される第3の突出部102、及び第2の板状部材101の上方に突出し、第4のアブソーバ部75−4の一方の端部が接続される第4の突出部103を含む第2のアブソーバ取り付け部15−5と、を有することで、隣り合うように配置された第1及び第2の電力機器の高さH1,H2が同じ場合でも、第1及び第2の筒状支柱部材121,122を構成する筒状支柱部材本体71−2を大型化させることなく、耐震装置21により、地震動による第1及び第2の電力機器11,12の変位を抑制可能な状態で、第1及び第2の電力機器11,12の端部11A,12Aを支持することができる(図1ないし図17参照。)。
Also, the first plate-
なお、第1の実施の形態では、一例として、第2の板状部材101の厚さを、第1の板状部材51の厚さよりも厚くした場合を例に挙げて説明したが、第1及び第2の電力機器11,12の高さH1,H2が同じ場合、第1の板状部材51の厚さと第2の板状部材101の厚さとが異なっておればよく、図6及び図12に示す第1及び第2の板状部材51,101の厚さの関係に限定されない。
例えば、第1の板状部材51の厚さを第2の板状部材101の厚さを厚くしてもよい。この場合も、第2の板状部材101の厚さを第1の板状部材51の厚さよりも厚くした場合と同様な効果を得ることができる。
In the first embodiment, as an example, the case where the thickness of the second plate-
For example, the thickness of the
また、第1の筒状支柱部材121を構成する筒状支柱部材本体71−2の外面71−2aと接触するように、筒状支柱部材本体71−2の外側に第1の弾性部材83−1を配置し、第1の筒状支柱部材121を構成する筒状支柱部材本体71−2の外面71−2bと接触するように、筒状支柱部材本体71−2の外側に第2の弾性部材83−2を配置し、第2の筒状支柱部材122を構成する筒状支柱部材本体71−2の外面71−2aと接触するように、筒状支柱部材本体71−2の外側に第3の弾性部材83−3を配置し、第2の筒状支柱部材122を構成する筒状支柱部材本体71−2の外面71−2bと接触するように、筒状支柱部材本体71−2の外側に第4の弾性部材83−4を配置することで、第1ないし第4の弾性部材83−1〜83−4を筒状支柱部材本体71−2内に配置させた場合と比較して、耐震装置21の施工及びメンテナンスを容易に行うことができると共に、第1及び第2の筒状支柱部材121,122を構成する筒状支柱部材本体71−2の小型化を図ることができる。
In addition, the first elastic member 83-is arranged outside the cylindrical column member body 71-2 so as to be in contact with the outer surface 71-2a of the cylindrical column member body 71-2 constituting the first
図18は、第1の電力機器の4つの角部に図1に示す耐震機構を配置させた構造体が一方向に荷重F(荷重の最大値)を受けた状態を模式的に示す平面図である。図18では、図1に示す構造体と同一構成部分には、同一符号を付す。図18に示す白抜きの矢印は、第1の電力機器11が受ける荷重F(荷重の最大値)の方向を示している。
図19は、図18に示す構造体を構成する各アブソーバ部が受ける反作用の大きさを説明するための平面図である。図19において、図18に示す構造体と同一構成部分には、同一符号を付す。図19において、点線の矢印は、耐震機構15−2,15−3を構成するアブソーバ部75の延在方向を示しており、実線の矢印は、耐震機構15−6,15−7を構成するアブソーバ部が受ける反作用の方向(言い換えれば、耐震機構15−6,15−7を構成するアブソーバ部75の延在方向)を示している。
FIG. 18 is a plan view schematically showing a state in which the structure in which the earthquake-resistant mechanism shown in FIG. 1 is arranged at the four corners of the first power device receives a load F (maximum load value) in one direction. It is. In FIG. 18, the same components as those of the structure shown in FIG. The white arrow shown in FIG. 18 indicates the direction of the load F (the maximum value of the load) received by the
FIG. 19 is a plan view for explaining the magnitude of the reaction received by each absorber section constituting the structure shown in FIG. 19, the same components as those in the structure shown in FIG. In FIG. 19, dotted arrows indicate the extending directions of the
ここで、図18及び図19を参照して、第1の電力機器11の4つの角部に配置された耐震機構15−2,15−3,15−6,15−7を構成するアブソーバ部75の延在方向とY方向とが成す角度が45度で、かつ第1の電力機器11が白抜きの矢印方向に荷重F(荷重の最大値)を受けた際の耐震機構15−2,15−3,15−6,15−7を構成する各アブソーバ部75が受ける反作用の大きさについて説明する。
Here, with reference to FIG.18 and FIG.19, the absorber part which comprises the earthquake-resistant mechanism 15-2, 15-3, 15-6, 15-7 arrange | positioned at four corner | angular parts of the 1st
図18及び図19に示す方向に、第1の電力機器11が荷重Fを受けると、荷重Fが印加された方向とは逆の方向(図19に示す内側に斜線がハッチングされた矢印の方向)に、荷重Fと同じ大きさの反作用Fが発生する。
このとき、耐震機構15−2,15−3を構成するアブソーバ部75には、反作用は発生しない。一方、耐震機構15−6,15−7を構成するアブソーバ部75には、それぞれF/√2の反作用が発生する。
When the
At this time, no reaction occurs in the
図20は、第1の実施の形態の耐震機能付き電力機器群を構成する第1及び第2の電力機器が離間するX方向に荷重F(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図21は、第1の実施の形態の耐震機能付き電力機器群を構成する第1及び第2の電力機器が平面視した状態で図21の紙面の右方向(X方向)に荷重F(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図22は、第1の実施の形態の耐震機能付き電力機器群を構成する第1及び第2の電力機器が近づくX方向に荷重F(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図23は、第1の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図23の紙面の下方向(Y方向)に荷重F(最大荷重)を生じ、第1の実施の形態の耐震機能付き電力機器群を構成する第2の電力機器が平面視した状態で図23の紙面の上方向(Y方向)に荷重F(最大荷重)を生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図24は、第1の実施の形態の耐震機能付き電力機器群を構成する第1及び第2の電力機器が平面視した状態で図24の紙面の上方向(Y方向)に荷重F(最大荷重)を生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図25は、第1の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図25の紙面の左方向(X方向)に荷重F(最大荷重)を生じ、第1の実施の形態の耐震機能付き電力機器群を構成する第2の電力機器が平面視した状態で図25の紙面の上方向(Y方向)に荷重F(最大荷重)を生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図26は、第1の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図26の紙面の右方向(X方向)に荷重F(最大荷重)を生じ、第1の実施の形態の耐震機能付き電力機器群を構成する第2の電力機器が平面視した状態で図26の紙面の上方向(Y方向)に荷重F(最大荷重)を生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
FIG. 20 shows six cylinders when a load F (maximum load) is generated in the X direction in which the first and second power devices constituting the power device group with the earthquake resistance function of the first embodiment are separated. It is a top view which shows typically the force which a cylindrical support | pillar member main body receives.
FIG. 21 shows a load F (maximum) in the right direction (X direction) on the paper surface of FIG. 21 in a state where the first and second power devices constituting the group of power devices with earthquake-resistant function according to the first embodiment are viewed in plan. It is a top view which shows typically the force which six cylindrical support | pillar member main bodies receive when load occurs.
FIG. 22 shows six cylindrical shapes when a load F (maximum load) is generated in the X direction approaching the first and second power devices that constitute the group of power devices with seismic functions of the first embodiment. It is a top view which shows typically the force which a support | pillar member main body receives.
FIG. 23 shows a load F (maximum load) in the downward direction (Y direction) of FIG. 23 in a state where the first power device constituting the power device group with the earthquake resistance function of the first embodiment is viewed in plan. The load F (maximum load) was generated in the upward direction (Y direction) on the paper surface of FIG. 23 in a state where the second power device constituting the power device group with the earthquake resistance function of the first embodiment was viewed in plan. It is a top view which shows typically the force which six cylindrical support | pillar member main bodies receive in the case.
FIG. 24 shows a load F (maximum) in the upward direction (Y direction) on the paper of FIG. 24 in a state where the first and second power devices constituting the group of power devices with an earthquake resistance function of the first embodiment are viewed in plan. It is a top view which shows typically the force which six cylindrical support | pillar member main bodies receive when producing (load).
FIG. 25 shows a load F (maximum load) in the left direction (X direction) of FIG. 25 in a state where the first power device constituting the power device group with the earthquake resistance function of the first embodiment is viewed in plan. The load F (maximum load) was generated in the upward direction (Y direction) on the paper surface of FIG. 25 in a state where the second power device constituting the power device group with the earthquake resistance function of the first embodiment was viewed in plan. It is a top view which shows typically the force which six cylindrical support | pillar member main bodies receive in the case.
FIG. 26 shows the load F (maximum load) in the right direction (X direction) on the paper of FIG. 26 in a state where the first power device constituting the power device group with earthquake-resistant function according to the first embodiment is viewed in plan. The load F (maximum load) was generated in the upward direction (Y direction) on the paper of FIG. 26 in a state where the second power device constituting the power device group with the earthquake resistance function of the first embodiment was viewed in plan. It is a top view which shows typically the force which six cylindrical support | pillar member main bodies receive in the case.
図20〜図26において、図1〜図17に示す構造体と同一構成部分には同一符号を付す。
また、図20〜図26では、第1の電力機器11に生じる荷重Fの向きを濃い梨地を付した矢印で示し、濃い梨地で示す荷重Fに起因する筒状支柱部材本体71−2が受ける力を濃い梨地の矢印(該矢印内に力の大きさを記載)で示し、第2の電力機器12に生じる荷重Fの向きを薄い梨地を付した矢印で示し、薄い梨地で示す荷重Fに起因する筒状支柱部材本体71−2が受ける力を薄い梨地の矢印(該矢印内に力の大きさを記載)で示す。
20 to 26, the same components as those shown in FIGS. 1 to 17 are denoted by the same reference numerals.
20 to 26, the direction of the load F generated in the first
次に、図20〜図26を参照して、第1及び第2の電力機器11,12が受ける荷重Fの方向の違いにより、6本の筒状支柱部材本体71−2が受ける力の大きさ及び方向について説明する。
図20を参照するに、第1及び第2の電力機器11,12が離間するX方向に荷重F(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられ、各筒状支柱部材本体71−2がX方向及びY方向から受ける力は全てキャンセルされる。この場合、6本の筒状支柱部材本体71−2は、力を受けない。
Next, referring to FIG. 20 to FIG. 26, the magnitude of the force received by the six cylindrical support member main bodies 71-2 due to the difference in the direction of the load F received by the first and
Referring to FIG. 20, when a load F (maximum load) is generated in the X direction in which the first and
図21を参照するに、第1及び第2の電力機器11,12が平面視した状態で図21の紙面の右方向(X方向)に荷重F(最大荷重)が生じると、各筒状支柱部材本体71−2がY方向から受ける力はキャンセルされるが、X方向に受ける力が合成されて大きくなる。
このため、各筒状支柱部材本体71−2は、図21の紙面の右方向(X方向)に最大F/3の大きさの力を受ける。
Referring to FIG. 21, when a load F (maximum load) is generated in the right direction (X direction) of the sheet of FIG. 21 in a state where the first and
For this reason, each cylindrical support | pillar member main body 71-2 receives the force of the magnitude | size of the maximum F / 3 in the right direction (X direction) of the paper surface of FIG.
図22を参照するに、第1及び第2の電力機器11,12が近づくX方向に荷重F(最大荷重)が生じると、各筒状支柱部材本体71−2がX方向及びY方向から受ける力は全てキャンセルされる。この場合、6本の筒状支柱部材本体71−2は、力を受けない。
Referring to FIG. 22, when a load F (maximum load) is generated in the X direction in which the first and
図23を参照するに、第1の電力機器11が平面視した状態で図23の紙面の下方向(Y方向)に荷重F(最大荷重)を生じ、第2の電力機器12が平面視した状態で図23の紙面の上方向(Y方向)に荷重F(最大荷重)を生じると、各筒状支柱部材本体71−2がX方向及びY方向から受ける力は全てキャンセルされる。この場合、6本の筒状支柱部材本体71−2は、力を受けない。
Referring to FIG. 23, a load F (maximum load) is generated in a downward direction (Y direction) on the paper surface of FIG. 23 in a state where the
図24を参照するに、第1及び第2の電力機器11,12が平面視した状態で図24の紙面の上方向(Y方向)に荷重F(最大荷重)を生じると、各筒状支柱部材本体71−2がX方向から受ける力はキャンセルされるが、Y方向に受ける力が合成されて大きくなる。
このため、各筒状支柱部材本体71−2は、図24の紙面の上方向(Y方向)に最大F/3の大きさの力を受ける。
Referring to FIG. 24, when a load F (maximum load) is generated in the upward direction (Y direction) of the sheet of FIG. 24 in a state where the first and
For this reason, each cylindrical support | pillar member main body 71-2 receives the force of the magnitude | size of the maximum F / 3 to the upper direction (Y direction) of the paper surface of FIG.
図25を参照するに、第1の電力機器11が平面視した状態で図25の紙面の左方向(X方向)に荷重F(最大荷重)を生じ、第2の電力機器12が平面視した状態で図25の紙面の上方向(Y方向)に荷重F(最大荷重)を生じると、上方向(Y方向)及び左方向(X方向)にそれぞれF/6の力が各筒状支柱部材本体71−2に印加される。
この結果、筒状支柱部材本体71−2には、左斜め上45度の方向に(F*√2)/6の力が印加される。
Referring to FIG. 25, a load F (maximum load) is generated in the left direction (X direction) of the paper surface of FIG. 25 in a state where the
As a result, a force of (F * √2) / 6 is applied to the cylindrical column member body 71-2 in the direction of 45 degrees obliquely upward to the left.
図26を参照するに、第1の電力機器11が平面視した状態で図26の紙面の右方向(X方向)に荷重F(最大荷重)を生じ、第2の電力機器12が平面視した状態で図26の紙面の上方向(Y方向)に荷重F(最大荷重)を生じると、上方向(Y方向)及び右方向(X方向)にそれぞれF/6の力が各筒状支柱部材本体71−2に印加される。
この結果、筒状支柱部材本体71−2には、右斜め上45度(X方向と成す角度)の方向に(F*√2)/6の力が印加される。
Referring to FIG. 26, a load F (maximum load) is generated in the right direction (X direction) on the paper surface of FIG. 26 in a state where the
As a result, a force of (F * √2) / 6 is applied to the cylindrical column member body 71-2 in the direction of 45 degrees obliquely upward to the right (an angle formed with the X direction).
上記説明した結果(図20〜図26に示す結果)から、6本の筒状支柱部材本体71−2を連結する連結部材、15−4、第1の連結部材113、第2の連結部材114、及び第3の連結部材115を有することで、第1及び第2の電力機器11,12がX方向及びY方向に荷重Fを受けた場合でも各筒状支柱部材本体71−2が受ける力(荷重Fに起因する力)を低減できる。
また、図20〜図26に示す結果から、第1及び第2の電力機器11,12に同じ方向に荷重Fが生じると、筒状支柱部材本体71−2が受ける力が最も大きくなる(具体的には、F/3となる)ことが分かる。
From the above-described results (results shown in FIGS. 20 to 26), the connecting members 15-6, the first connecting
Further, from the results shown in FIGS. 20 to 26, when the load F is generated in the same direction in the first and
なお、図18に示す構造体と、連結部材15−4と、第2の連結部材114と、第3の連結部材115と、を有する耐震機能付き電力機器(以下、「耐震機能付き電力機器S」という)において、第1の電力機器11の一方向に荷重Fが生じると、各筒状支柱部材本体71−2に加わる力は、最大でF/4となる。
In addition, the electric power apparatus with an earthquake resistance function (henceforth "the electric power apparatus S with an earthquake resistance function" which has the structure shown in FIG. 18, the connection member 15-4, the
ここで、図1に示す第1及び第2の電力機器11,12と同じ構成とされた電力機器(以下、「電力機器T」という)をX方向と電力機器Tの長手方向とを一致させた状態で、所定の間隔を空けた状態でX方向に電力機器Tを、3台、4台、5台、6台、7台、8台、9台、10台、及び20台配列させ、複数の電力機器Tよりなる電力機器群に、図1に示す第1の端部用耐震装置15、第2の端部用耐震装置16、及び耐震装置21を適用することで構成される9つの耐震機能付き電力機器群に対して、該耐震機能付き電力機器群を構成する複数の電力機器Tが同一方向に荷重Fを受けた際の筒状支柱部材本体71−2が受ける最大負荷を算出した。
このとき、荷重Fを100とし、下記(1)式により、最大荷重を求めた。
最大荷重=(50×電力機器Tの台数)/(筒状支柱部材本体の数/2)・・・(1)
この結果を表1に示す。
Here, in the power device (hereinafter referred to as “power device T”) having the same configuration as the first and
At this time, the load F was set to 100 and the maximum load was calculated | required by the following (1) formula.
Maximum load = (50 × number of power devices T) / (number of cylindrical support member bodies / 2) (1)
The results are shown in Table 1.
また、表1に、荷重Fを100としたときの耐震機能付き電力機器Sを構成する筒状支柱部材本体71−2の最大負荷である25(=100/4)を用いて、表1に示す最大負荷を割った値を、3台、4台、5台、6台、7台、8台、9台、10台、及び20台の電力機器Tを配列させた場合の筒状支柱部材本体71−2に必要な強度(具体的には、耐震機構15−2,15−3,15−6,15−7を構成する筒状支柱部材本体71−2の強度を1としたときに何倍の強度が必要かを示す値のこと)として示す。
なお、通常、7台の電力機器Tを連結することはほとんどなく、8台よりも多くの電力機器Tを配列させた例は確認されていない。一般的には、3台か4台の電力機器Tを配列させる場合が多い。
Further, in Table 1, using 25 (= 100/4) which is the maximum load of the cylindrical column member main body 71-2 constituting the power device S with an earthquake resistance function when the load F is set to 100, Table 1 is used. The cylindrical strut member in the case of arranging three, four, five, six, seven, eight, nine, ten, and twenty power devices T by dividing the maximum load shown Strength required for the main body 71-2 (specifically, when the strength of the cylindrical strut member main body 71-2 constituting the earthquake-resistant mechanism 15-2, 15-3, 15-6, 15-7 is 1) It is shown as a value indicating how much strength is required).
Normally, seven power devices T are rarely connected, and an example in which more than eight power devices T are arranged has not been confirmed. In general, three or four power devices T are often arranged.
表1を参照するに、20台の電力機器Tを配列させたときの筒状支柱部材本体71−2に必要な強度は、耐震機能付き電力機器Sを構成する筒状支柱部材本体71−2に必要な強度の2.0倍よりも小さいことが分かる。
よって、図1に示す耐震装置21を構成する筒状支柱部材本体71−2(図13及び図15参照)の強度は、耐震機能付き電力機器Sを構成する筒状支柱部材本体71−2の強度の2倍程度でよいことがわかる。
なお、実際には、2〜4台くらいの電力機器Tを配列することが多く、5台以上の配列は希である。
例えば、4台の電力機器Tを連結させた場合、耐震機能付き電力機器Sを構成する筒状支柱部材本体71−2の強度の1.6倍程度でよいため、ある程度の台数を配列させる場合に、特に有効である。
また、耐震装置21を構成する筒状支柱部材本体71−2の強度の向上は、例えば、該筒状支柱部材本体71−2の厚さを厚くしたり、強度の高い材料を用いたりすることで実現できる。
Referring to Table 1, the strength required for the cylindrical strut member main body 71-2 when 20 power devices T are arranged is the cylindrical strut member main body 71-2 constituting the power device S with an earthquake resistance function. It can be seen that it is smaller than 2.0 times the required strength.
Therefore, the strength of the cylindrical support member main body 71-2 (see FIGS. 13 and 15) constituting the
In practice, about 2 to 4 power devices T are often arranged, and the arrangement of 5 or more devices is rare.
For example, when four power devices T are connected, it may be about 1.6 times the strength of the cylindrical support member main body 71-2 constituting the power device S with an earthquake resistance function. It is particularly effective.
Moreover, the improvement of the intensity | strength of the cylindrical support | pillar member main body 71-2 which comprises the
第1の実施の形態の耐震装置によれば、所定の間隔を空けてX方向に配置された第1及び第2の電力機器11,12の上部のうち、第2の電力機器12と対向する第1の電力機器11の端部11Aと、第1の電力機器11と対向する第2の電力機器12の端部12Aと、を支持する耐震装置21であって、平面視した状態で、第1の電力機器11の中心位置C1と第2の電力機器12の中心位置C2とを結ぶ第1の直線L1の中間位置C3を通過し、かつX方向と直交する第2の直線L2上において、前記中間位置C3を介して対向配置され、鉛直方向に延在すると共に、下端が固定された第1及び第2の筒状支柱部材121,122と、一方の端部が第1の筒状支柱部材121の近傍に位置する端部11Aの一方の角部を支持すると共に、他方の端部が第1の筒状支柱部材121に支持された第1のアブソーバ部75−1と、一方の端部が第1の筒状支柱部材121の近傍に位置する端部12Aの一方の角部を支持すると共に、他方の端部が第1の筒状支柱部材121に支持された第2のアブソーバ部75−2と、一方の端部が第2の筒状支柱部材122の近傍に位置する端部11Aの他方の角部を支持すると共に、他方の端部が第2の筒状支柱部材122に支持された第3のアブソーバ部75−3と、一方の端部が第2の筒状支柱部材122の近傍に位置する端部12Aの他方の角部を支持すると共に、他方の端部が第2の筒状支柱部材122に支持された第4のアブソーバ部75−4と、を含み、第1及び第2の筒状支柱部材121,122は、それぞれ鉛直方向に延在する筒状支柱部材本体71−2を有しており、筒状支柱部材本体71−2は、第1の電力機器11と前記第2の電力機器12との間に配置された空間の外側に配置することを特徴とする耐震装置が提供される。
According to the earthquake-proof device of the first embodiment, the
上記構成とすることで、端部11A(言い換えれば、第1の電力機器11の端部)の一方の角部を支持する第1のアブソーバ部75−1の他方の端部、及び端部12A(言い換えれば、第2の電力機器12の端部)の一方の角部を支持する第2のアブソーバ部の他方の端部を第1の筒状支柱部材121で支持し、端部11Aの他方の角部を支持する第3のアブソーバ部75−3の他方の端部、及び端部12Aの他方の角部を支持する第4のアブソーバ部75−4の他方の端部を第2の筒状支柱部材122で支持するため、従来、第1及び第2の電力機器間11,12に必要であった4本の筒状支柱部材を2本に削減することが可能となる。
By setting it as the said structure, the other edge part of the 1st absorber part 75-1 which supports one corner | angular part of the
これにより、従来の4本の筒状支柱部材を配置する場合と比較して、第1及び第2の筒状支柱部材121,122が配置されるエリアを狭くすることができる。
Thereby, compared with the case where the four conventional cylindrical support | pillar members are arrange | positioned, the area where the 1st and 2nd cylindrical support |
また、第1ないし第4のアブソーバ部75−1〜75−4が一方向に延在する部材である場合において、第1の電力機器11と第2の電力機器12との間に配置された空間の外側に、第1及び第2の筒状支柱部材121,122を配置させることで、X方向において第1及び第2の筒状支柱部材121,122を十分に離間させて配置することが可能になると共に、第1ないし第4のアブソーバ部75−1〜75−4の延在方向と第2の直線L2とが成す角度θ3〜θ6を、該空間に第1及び第2の筒状支柱部材121,122を配置させた場合よりも小さくすることが可能(つまり、第1の電力機器11と第2の電力機器12との間隔が狭くても第1ないし第4のアブソーバ部75−1〜75−4を配置させることが可能)となるので、第1の電力機器11と第2の電力機器12との間隔(所定の間隔)を狭くすることができる。
つまり、所定の方向に配置された複数の電力機器(第1の実施の形態の場合、第1及び第2の電力機器11,12)に適用した場合において、耐震装置21の設置エリアを狭くすることができる。
具体的には、第1の電力機器11と第2の電力機器12との間隔が300mmの場合でも、耐震装置21を配置させることができる。
Moreover, when the 1st thru | or 4th absorber parts 75-1 to 75-4 are the members extended in one direction, it was arrange | positioned between the 1st
That is, when the present invention is applied to a plurality of power devices arranged in a predetermined direction (first and
Specifically, even when the distance between the
なお、第1の実施の形態では、一例として、電力機器(具体的には、第1の電力機器11、第2の電力機器12、電力機器T)の長手方向と該電力機器の配列方向とを一致させてた場合を例に挙げて説明したが、電力機器の配列方法は、これに限定されない。
例えば、複数の電力機器の短手方向と該電力機器の配列方向とが一致するように、複数の電力機器を配列させてもよく、この場合も第1の実施の形態と同様な効果を得ることができる。
In the first embodiment, as an example, the longitudinal direction of the power devices (specifically, the
For example, a plurality of power devices may be arranged so that the short direction of the plurality of power devices coincides with the arrangement direction of the power devices. In this case, the same effect as that of the first embodiment is obtained. be able to.
また、第1の実施の形態では、第1ないし第4の角度θ3〜θ6の角度を等しくさせた場合を例に挙げて説明したが、第1ないし第4のアブソーバ部75−1〜75−4は、第1の角度θ3と第3の角度θ5とが等しく、かつ第2の角度θ4と第4の角度θ6とが等しくなるように配置させてもよい。 In the first embodiment, the case where the angles of the first to fourth angles θ 3 to θ 6 are made equal is described as an example, but the first to fourth absorber portions 75-1 to 75-1 are used. 75-4 may be arranged such that the first angle θ 3 and the third angle θ 5 are equal, and the second angle θ 4 and the fourth angle θ 6 are equal.
(第2の実施の形態)
図27は、本発明の第2の実施の形態に係る耐震装置と、異なる高さとされた第1及び第2の電力機器と、を有する耐震機能付き電力機器群の平面図である。図27において、図1〜図17に示す構造体と同一構成部分には、同一符号を付す。
図28は、図27に示す耐震機能付き電力機器群をA1視した側面図である。図28において、図1〜図17、及び図27に示す構造体と同一構成部分には、同一符号を付す。
なお、図27及び図28では、第1の電力機器11とは高さが異なり、かつX方向の幅及びY方向の幅が第1の電力機器11と等しい第2の電力機器131を用いた場合を例に挙げて図示する。
(Second Embodiment)
FIG. 27 is a plan view of a group of power devices with a seismic function having the seismic device according to the second embodiment of the present invention and the first and second power devices having different heights. In FIG. 27, the same components as those shown in FIGS.
Figure 28 is a side view A 1 viewed seismic function power device group shown in FIG. 27. 28, the same components as those shown in FIGS. 1 to 17 and FIG. 27 are denoted by the same reference numerals.
27 and 28, the
図27及び図28を参照するに、第2の実施の形態の耐震機能付き電力機器群130は、第1の実施の形態で説明した耐震機能付き電力機器群10を構成する第2の電力機器12、第2の端部用耐震装置16、及び耐震装置21に替えて、第2の電力機器131、第2の端部用耐震装置132、及び耐震装置134を有すること以外は、耐震機能付き電力機器群10と同様に構成される。
Referring to FIGS. 27 and 28, the
第2の電力機器131は、第1の実施の形態で説明した第2の電力機器12(図2参照)を構成する電力機器本体31よりも高さの低い電力機器本体136を有すること以外は、第2の電力機器12と同様に構成される。
つまり、第2の電力機器131の高さH3は、第1の電力機器11の高さH1よりも低くなるように構成されている。
第1の電力機器11として変圧器を用いる場合、第2の電力機器131としては、例えば、変圧器を用いることができる。
The
That is, the height H 3 of the
When a transformer is used as the
第2の端部用耐震装置132は、第1の実施の形態で説明した第2の端部用耐震装置16(図1参照)を構成する第2のアブソーバ取り付け部15−5に替えて、第1のアブソーバ取り付け部15−1を有すること以外は、第2の端部用耐震装置16と同様に構成されている。
耐震装置134は、第1の実施の形態で説明した耐震装置12を構成する第2のアブソーバ取り付け部15−5に替えて、第1のアブソーバ取り付け部15−1を有すること以外は、第2の端部用耐震装置16と同様に構成されている。
The second end
The
上記説明したように、耐震機能付き電力機器群130を構成する第1及び第2の電力機器11,131の高さが異なる場合(言い換えれば、隣り合うように配置された2つの電力機器11,131の高さが異なる場合)、第2のアブソーバ取り付け部15−5を用いることなく、第1のアブソーバ取り付け部15−1のみを用いることで、第1ないし第4のアブソーバ部75−1〜75−4、及びアブソーバ部75を接続させることが可能となる。
As described above, when the heights of the first and
上記構成とされた第2の実施の形態の耐震装置134は、第1の実施の形態の耐震装置21と同様な効果(具体的には、所定の方向に配置された複数の電力機器に適用した場合において、耐震装134置の設置エリアを狭くすることができるという効果)を得ることができる。
The
なお、第2の実施の形態では、一例として、高さの異なる第1及び第2の電力機器11,131の長手方向と配列方向(この場合、X方向)とが一致するように、第1及び第2の電力機器11,131を配列させた場合を例に挙げて説明したが、第1及び第2の電力機器11,131の配列方向は、これに限定されない。
例えば、高さの異なる第1及び第2の電力機器11,131の短手方向と配列方向とが一致するように、第1及び第2の電力機器11,131を配列させてもよい。この場合、第2の実施の形態と同様な効果を得ることができる。
In the second embodiment, as an example, the first direction and the arrangement direction (in this case, the X direction) of the first and
For example, the first and
さらに、第2の実施の形態では、一例として、高さの異なる第1及び第2の電力機器11,131をそれぞれ1台ずつ配列させた場合を例に挙げて説明したが、高さの異なる電力機器を3台以上配列させてもよい。この場合、第2の実施の形態の耐震装置134と同様な効果を得ることができる。
Furthermore, in the second embodiment, as an example, the case where the first and
なお、第2の実施の形態では、第1の電力機器11とは高さが異なり、かつX方向の幅及びY方向の幅が第1の電力機器11と等しい第2の電力機器131を用いた場合を例に挙げて説明したが、第2の電力機器131に替えて、第1の電力機器11とは高さが異なり、かつX方向の幅及びY方向の幅が第1の電力機器11とは異なる第2の電力機器(図示せず)を用いてもよい。
この場合、第1ないし第4のアブソーバ部75−1〜75−4は、例えば、第1の角度θ3と第3の角度θ5とが等しく、かつ第2の角度θ4と第4の角度θ6とが等しくなるように配置させるとよい。
また、第2の実施の形態では、一例として、第2の電力機器131の高さが、第1の電力機器11の高さよりも低い場合を例に挙げて説明したが、第1の電力機器11の高さよりも第2の電力機器131の高さを高くしてもよい。
In the second embodiment, the
In this case, the first to fourth absorber portions 75-1 to 75-4 have, for example, the first angle θ 3 and the third angle θ 5 equal, and the second angle θ 4 and the fourth angle It may be arranged so that the angle θ 6 is equal.
In the second embodiment, as an example, the case where the height of the
図29は、第2の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器に第2の電力機器から離間する方向に荷重F(最大荷重)が生じ、かつ第2の電力機器に第1の電力機器から離間する方向に荷重F/2(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図30は、第2の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図30の紙面の右方向(X方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器が平面視した状態で図30の紙面の右方向(X方向)に荷重F/2(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図31は、第2の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器に第2の電力機器に向かう方向に荷重F(最大荷重)が生じ、かつ第2の電力機器に第1の電力機器に向かう方向に荷重F/2(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図32は、第2の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図32の紙面の下方向(Y方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器が平面視した状態で図32の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図33は、第2の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図33の紙面の上方向(Y方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器が平面視した状態で図33の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図34は、第2の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図34の紙面の左方向(X方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器が平面視した状態で図34の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
図35は、第2の実施の形態の耐震機能付き電力機器群を構成する第1の電力機器が平面視した状態で図35の紙面の右方向(X方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器が平面視した状態で図35の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じた際に、6本の筒状支柱部材本体が受ける力を模式的に示す平面図である。
FIG. 29 shows that a load F (maximum load) is generated in a direction away from the second power device in the first power device that constitutes the seismic function-equipped power device group of the second embodiment, and the second power It is a top view which shows typically the force which six cylindrical support | pillar member main bodies receive when load F / 2 (maximum load) arises in the direction away from a 1st electric power apparatus at an apparatus.
FIG. 30 shows a load F (maximum load) in the right direction (X direction) of FIG. 30 in a state where the first power device constituting the power device group with an earthquake resistance function of the second embodiment is viewed in plan. When the load F / 2 (maximum load) is generated in the right direction (X direction) of the sheet of FIG. 30 with the second power device viewed in plan, the six cylindrical support member bodies receive It is a top view which shows a force typically.
FIG. 31 shows that a load F (maximum load) is generated in a direction toward the second power device in the first power device that constitutes the seismic function-equipped power device group of the second embodiment, and the second power device. It is a top view which shows typically the force which six cylindrical support | pillar member main bodies receive when load F / 2 (maximum load) arises in the direction which goes to 1st electric power equipment.
FIG. 32 shows a load F (maximum load) in the downward direction (Y direction) of FIG. 32 in a state where the first power device constituting the group of seismic power devices of the second embodiment is viewed in plan. When the load F / 2 (maximum load) is generated in the upward direction (Y direction) in FIG. 32 in a state where the second power device is viewed in plan, the six cylindrical strut member main bodies receive it. It is a top view which shows a force typically.
FIG. 33 shows a load F (maximum load) in the upward direction (Y direction) of FIG. 33 in a state where the first power device constituting the power device group with earthquake-resistant function of the second embodiment is viewed in plan. When the load F / 2 (maximum load) is generated in the upward direction (Y direction) in FIG. 33 with the second power device in plan view, the six cylindrical support member bodies receive It is a top view which shows a force typically.
FIG. 34 shows a load F (maximum load) in the left direction (X direction) of FIG. 34 in a state where the first power device constituting the power device group with earthquake-resistant function of the second embodiment is viewed in plan. When the load F / 2 (maximum load) is generated in the upward direction (Y direction) in FIG. 34 with the second power device in plan view, the six cylindrical strut member bodies receive It is a top view which shows a force typically.
FIG. 35 shows a load F (maximum load) in the right direction (X direction) of FIG. 35 in a state where the first power device constituting the power device group with earthquake-resistant function according to the second embodiment is viewed in plan. When the load F / 2 (maximum load) is generated in the upward direction (Y direction) in FIG. 35 with the second power device in plan view, the six cylindrical strut member bodies receive It is a top view which shows a force typically.
図29〜図35において、図27及び図28に示す構造体と同一構成部分には同一符号を付す。
また、図29〜図35では、第1の電力機器11に生じる荷重Fの向きを濃い梨地を付した矢印で示し、濃い梨地で示す荷重Fに起因する筒状支柱部材本体71−2が受ける力を濃い梨地の矢印(該矢印内に力の大きさを記載)で示し、第2の電力機器131に生じる荷重F/2の向きを薄い梨地を付した矢印で示し、薄い梨地で示す荷重F/2に起因する筒状支柱部材本体71−2が受ける力を薄い梨地の矢印(該矢印内に力の大きさを記載)で示す。
29 to 35, the same components as those shown in FIGS. 27 and 28 are denoted by the same reference numerals.
29 to 35, the direction of the load F generated in the first
次に、図29〜図35を参照して、第1及び第2の電力機器11,131が受ける荷重の大きさ及び荷重が働く方向の違いにより、6本の筒状支柱部材本体71−2が受ける力の大きさ及び方向について説明する。
図29を参照するに、第1の電力機器11に第2の電力機器131から離間する方向に荷重F(最大荷重)が生じ、かつ第2の電力機器131に第1の電力機器11から離間する方向に荷重F/2(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられる。
この場合、各筒状支柱部材本体71−2には、図29の紙面の左方向(X方向)に、F/12の力を受ける。
Next, referring to FIG. 29 to FIG. 35, six cylindrical strut member main bodies 71-2 depending on the magnitude of the load received by the first and
Referring to FIG. 29, a load F (maximum load) is generated in the
In this case, each cylindrical support member main body 71-2 receives a force of F / 12 in the left direction (X direction) of the paper surface of FIG.
図30を参照するに、第1の電力機器11が平面視した状態で図27の紙面の右方向(X方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器131が平面視した状態で図27の紙面の右方向(X方向)に荷重F/2(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられる。
この場合、各筒状支柱部材本体71−2には、図30の紙面の右方向(X方向)に、F/4の力を受ける。
Referring to FIG. 30, a load F (maximum load) is generated in the right direction (X direction) on the paper surface of FIG. 27 in a state where the
In this case, each cylindrical support member main body 71-2 receives a force of F / 4 in the right direction (X direction) of the paper surface of FIG.
図31を参照するに、第1の電力機器11に第2の電力機器131に向かう方向に荷重F(最大荷重)が生じ、かつ第2の電力機器131に第1の電力機器11に向かう方向に荷重F/2(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられる。
この場合、各筒状支柱部材本体71−2には、図31の紙面の右方向(X方向)に、F/12の力を受ける。
Referring to FIG. 31, a load F (maximum load) is generated in the
In this case, each cylindrical support member main body 71-2 receives a force of F / 12 in the right direction (X direction) of the paper surface of FIG.
図32を参照するに、第1の電力機器11が平面視した状態で図32の紙面の下方向(Y方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器131が平面視した状態で図32の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられる。
この場合、各筒状支柱部材本体71−2には、図32の紙面の下方向(Y方向)に、F/12の力を受ける。
Referring to FIG. 32, a load F (maximum load) is generated in the downward direction (Y direction) of the sheet of FIG. 32 in a state where the
In this case, each cylindrical support member main body 71-2 receives a force of F / 12 in the downward direction (Y direction) in FIG.
図33を参照するに、第1の電力機器11が平面視した状態で図33の紙面の上方向(Y方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器131が平面視した状態で図33の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられる。
この場合、各筒状支柱部材本体71−2には、図33の紙面の上方向(Y方向)に、F/4の力を受ける。
Referring to FIG. 33, a load F (maximum load) is generated in the upward direction (Y direction) of the sheet of FIG. 33 in a state where the
In this case, each cylindrical support member main body 71-2 receives a force of F / 4 in the upward direction (Y direction) in FIG.
図34を参照するに、第1の電力機器11が平面視した状態で図34の紙面の左方向(X方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器131が平面視した状態で図27の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられる。
この場合、各筒状支柱部材本体71−2は、図34の紙面の上方向(Y方向)にF/12の力を受けると共に、図34の紙面の左方向に(X方向)にF/6の力を受ける。
つまり、例えば、Fが100の場合、各筒状支柱部材本体71−2は、図34の紙面の左上方向(X方向と成す角度が26.57度の方向)に、18.63の力を受ける。
Referring to FIG. 34, a load F (maximum load) is generated in the left direction (X direction) of the paper surface of FIG. 34 in a state where the
In this case, each cylindrical column member body 71-2 receives a force of F / 12 in the upward direction (Y direction) of the paper surface of FIG. 34, and F / in the left direction of the paper surface of FIG. 34 (X direction). Receive 6 powers.
That is, for example, when F is 100, each cylindrical strut member main body 71-2 applies a force of 18.63 in the upper left direction of the paper of FIG. 34 (the angle formed with the X direction is 26.57 degrees). receive.
図35を参照するに、第1の電力機器11が平面視した状態で図35の紙面の右方向(X方向)に荷重F(最大荷重)が生じ、かつ第2の電力機器131に平面視した状態で図27の紙面の上方向(Y方向)に荷重F/2(最大荷重)が生じると、矢印で示す方向に、該矢印内に記載した大きさの力が加えられる。
この場合、各筒状支柱部材本体71−2は、図35の紙面の上方向(Y方向)にF/12の力を受けると共に、図34の紙面の右方向に(X方向)にF/6の力を受ける。
つまり、例えば、Fが100の場合、各筒状支柱部材本体71−2は、図35の紙面の右上方向(X方向と成す角度が26.57度の方向)に、18.63の力を受ける。
Referring to FIG. 35, a load F (maximum load) is generated in the right direction (X direction) of the paper surface of FIG. 35 in a state where the
In this case, each cylindrical column member main body 71-2 receives a force of F / 12 in the upward direction (Y direction) in FIG. 35, and F / F in the right direction (X direction) in FIG. Receive 6 powers.
That is, for example, when F is 100, each cylindrical support member main body 71-2 exerts a force of 18.63 in the upper right direction of the paper surface of FIG. 35 (the direction formed by the X direction is 26.57 degrees). receive.
上記説明した結果(図29〜図35に示す結果)から、6本の筒状支柱部材本体71−2を連結する連結部材15−4、第1の連結部材113、第2の連結部材114、及び第3の連結部材115を有することで、第1及び第2の電力機器11,131がX方向及びY方向に荷重を受けた場合でも各筒状支柱部材本体71−2が受ける力(荷重に起因する力)を低減できることが分かる。
また、図29〜図35に示す結果から、第1及び第2の電力機器11,131に同じ方向に荷重が生じると、筒状支柱部材本体71−2が受ける力が最も大きくなる(具体的には、F/4となる)ことが分かる。
From the above-described results (results shown in FIGS. 29 to 35), the connecting member 15-4, the first connecting
Further, from the results shown in FIG. 29 to FIG. 35, when a load is generated in the same direction on the first and second
以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and within the scope of the present invention described in the claims, Various modifications and changes are possible.
例えば、本発明は、特開2013−211510号公報(特許文献1)に開示された変圧器用減震装置にも適用可能である。
また、第1及び第2の実施の形態では、筒状支柱部材本体71−2の外側に、第1ないし第4の弾性部材83−1〜83−4を配置させた場合(図13、図15及び、図27参照(但し、図27には、第1ないし第4の弾性部材に符号83−1〜83−4を付していない。))を例に挙げて説明したが、筒状支柱部材本体71−2の内側に、該筒状支柱部材本体71−2の内面と2つの弾性部材(具体的には、第1及び第2の弾性部材83−1,83−2、または第3及び第4の弾性部材83−3,83−4)が接触するように構成してもよい。
For example, the present invention can also be applied to a transformer vibration damping device disclosed in Japanese Patent Laying-Open No. 2013-211510 (Patent Document 1).
In the first and second embodiments, the first to fourth elastic members 83-1 to 83-4 are arranged outside the cylindrical support member main body 71-2 (FIGS. 13 and 13). 15 and FIG. 27 (however, in FIG. 27, reference numerals 83-1 to 83-4 are not attached to the first to fourth elastic members). On the inner side of the column member body 71-2, the inner surface of the cylindrical column member body 71-2 and two elastic members (specifically, the first and second elastic members 83-1, 83-2, or The third and fourth elastic members 83-3 and 83-4) may be in contact with each other.
本発明は、所定の方向に複数の電力機器を配置した際に使用される耐震装置に適用できる。 The present invention can be applied to a seismic device used when a plurality of power devices are arranged in a predetermined direction.
10,130…耐震機能付き電力機器群、11…第1の電力機器、11A,11B,12A,12B…端部、12…第2の電力機器、13…床、13a…床面、15…第1の端部用耐震装置、15−1…第1のアブソーバ取り付け部、15−2,15−3,15−6,15−7…耐震機構、15−4…連結部材、15−5…第2のアブソーバ取り付け部、16…第2の端部用耐震装置、21,134…耐震装置、31,136…電力機器本体、32…本体支持部、34…脚部、35…矩形部材、37…矩形部材本体、37a…上面、41〜48,51A〜51D,71−1A,71−3A…ねじ穴、51…第1の板状部材、51a,101a…表面、51b,101b…裏面、53,55,72…ボルト、54,56,66…ワッシャー、61…第1の突出部、62…第2の突出部、64…軸部、65…台座部、67…ナット、71…筒状支柱部材、71A…対角線、71−1…固定部、71−2a,71−2b…外面、71−2…筒状支柱部材本体、71−3…連結部材取り付け板、71−4…上部取り付け部、71−5…下部取り付け部、75…アブソーバ部、75−1…第1のアブソーバ部、75−2…第2のアブソーバ部、75−3…第3のアブソーバ部、75−4…第4のアブソーバ部、81…棒状支持部材、81−1…棒状部材本体、81−2…取り付け部、81−2A…筒状部分、81−2B…開口部、83…弾性部材、83−1…第1の弾性部材、83−2…第2の弾性部材、83−3…第3の弾性部材、83−4…第4の弾性部材、83a,83−1a,83−2a,83−3a,83−4a,83b…平坦面、85…押さえプレート、86…特殊ワッシャー、88…ワッシャー、89…1種ナット、91…3種ナット、95,126…ビーム、96,97,127,128…ブレース、101…第2の板状部材、102…第3の突出部、104…第4の突出部、111…第1の耐震機構、112…第2の耐震機構、113…第1の連結部材、114…第2の連結部材、115…第3の連結部材、121…第1の筒状支柱部材、122…第2の筒状支柱部材、131…第2の電力機器、132…第2の端部用耐震装置、B1…第1の領域、B2…第2の領域、C1,C2…中心位置、C3…中間位置、H1〜H3…高さ、L1…第1の直線、L2…第2の直線、θ1,θ2…角度、θ3…第1の角度、θ4…第2の角度、θ5…第3の角度、θ6…第4の角度 DESCRIPTION OF SYMBOLS 10,130 ... Power equipment group with an earthquake-resistant function, 11 ... 1st power equipment, 11A, 11B, 12A, 12B ... End part, 12 ... 2nd power equipment, 13 ... Floor, 13a ... Floor surface, 15 ... First 1 end seismic resistance device, 15-1 ... first absorber mounting portion, 15-2, 15-3, 15-6, 15-7 ... earthquake resistance mechanism, 15-4 ... connecting member, 15-5 ... first 2 absorber mounting parts, 16 ... second end seismic resistance device, 21, 134 ... seismic resistance device, 31, 136 ... power equipment main body, 32 ... main body support part, 34 ... leg part, 35 ... rectangular member, 37 ... Rectangular member main body, 37a ... upper surface, 41 to 48, 51A to 51D, 71-1A, 71-3A ... screw hole, 51 ... first plate member, 51a, 101a ... front surface, 51b, 101b ... back surface, 53, 55, 72 ... bolts, 54, 56, 66 ... washers, 6 ... 1st protrusion part, 62 ... 2nd protrusion part, 64 ... Shaft part, 65 ... Base part, 67 ... Nut, 71 ... Cylindrical support | pillar member, 71A ... Diagonal line, 71-1 ... Fixed part, 71-2a , 71-2b ... outer surface, 71-2 ... cylindrical column member body, 71-3 ... connecting member mounting plate, 71-4 ... upper mounting portion, 71-5 ... lower mounting portion, 75 ... absorber portion, 75-1 ... 1st absorber part, 75-2 ... 2nd absorber part, 75-3 ... 3rd absorber part, 75-4 ... 4th absorber part, 81 ... Rod-shaped support member, 81-1 ... Rod-shaped member main body , 81-2 ... mounting portion, 81-2A ... cylindrical portion, 81-2B ... opening, 83 ... elastic member, 83-1 ... first elastic member, 83-2 ... second elastic member, 83- 3 ... 3rd elastic member, 83-4 ... 4th elastic member, 83a, 83-1a, 83- a, 83-3a, 83-4a, 83b ... flat surface, 85 ... presser plate, 86 ... special washer, 88 ... washer, 89 ... type 1 nut, 91 ... type 3 nut, 95, 126 ... beam, 96, 97 , 127, 128 ... braces, 101 ... second plate-like member, 102 ... third protrusion, 104 ... fourth protrusion, 111 ... first earthquake resistant mechanism, 112 ... second earthquake resistant mechanism, 113 ... 1st connection member, 114 ... 2nd connection member, 115 ... 3rd connection member, 121 ... 1st cylindrical support member, 122 ... 2nd cylindrical support member, 131 ... 2nd electric power equipment, 132 ... second end seismic device, B 1 ... first area, B 2 ... second area, C 1 , C 2 ... center position, C 3 ... intermediate position, H 1 to H 3 ... height , L 1 ... first line, L 2 ... second line, θ 1 , θ 2 ... angle, θ 3 ... First angle, θ 4 ... Second angle, θ 5 ... Third angle, θ 6 ... Fourth angle
Claims (6)
平面視した状態で、前記第1の電力機器の中心位置と前記第2の電力機器の中心位置とを結ぶ第1の直線の中間位置を通過し、かつ前記第1の方向と直交する第2の直線上において、前記中間位置を介して対向配置され、鉛直方向に延在すると共に、下端が固定された第1及び第2の筒状支柱部材と、
一方の端部が前記第1の筒状支柱部材の近傍に位置する前記第1の端部の一方の角部を支持すると共に、他方の端部が前記第1の筒状支柱部材に支持された第1のアブソーバ部と、 一方の端部が前記第1の筒状支柱部材の近傍に位置する前記第2の端部の一方の角部を支持すると共に、他方の端部が前記第1の筒状支柱部材に支持された第2のアブソーバ部と、 一方の端部が前記第2の筒状支柱部材の近傍に位置する前記第1の端部の他方の角部を支持すると共に、他方の端部が前記第2の筒状支柱部材に支持された第3のアブソーバ部と、 一方の端部が前記第2の筒状支柱部材の近傍に位置する前記第2の端部の他方の角部を支持すると共に、他方の端部が前記第2の筒状支柱部材に支持された第4のアブソーバ部と、 を含み、
前記第1及び第2の筒状支柱部材は、それぞれ前記鉛直方向に延在する筒状支柱部材本体を有しており、
前記筒状支柱部材本体は、前記第1の電力機器と前記第2の電力機器との間に配置された空間の外側に配置することを特徴とする耐震装置。 A first end of the first power device facing the second power device among upper portions of the first and second power devices arranged in the first direction with a predetermined interval; A seismic device that supports the second end of the second power device facing the first power device;
In a state viewed from above, a second position that passes through an intermediate position of a first straight line connecting the center position of the first power device and the center position of the second power device and is orthogonal to the first direction. First and second cylindrical strut members disposed opposite to each other via the intermediate position, extending in the vertical direction, and having a lower end fixed thereto,
One end supports one corner of the first end located in the vicinity of the first cylindrical support member, and the other end is supported by the first cylindrical support member. The first absorber portion and one end portion supporting one corner portion of the second end portion located in the vicinity of the first cylindrical support member, and the other end portion being the first end portion. A second absorber portion supported by the cylindrical column member, and one end portion supporting the other corner portion of the first end portion located in the vicinity of the second cylindrical column member; A third absorber portion supported by the second cylindrical column member on the other end, and the other end of the second end portion located in the vicinity of the second cylindrical column member on the other side. And a fourth absorber portion, the other end portion of which is supported by the second cylindrical strut member.
The first and second cylindrical column members each have a cylindrical column member body extending in the vertical direction,
The said cylindrical support | pillar member main body is arrange | positioned on the outer side of the space arrange | positioned between the said 1st electric power apparatus and the said 2nd electric power apparatus, The earthquake-resistant apparatus characterized by the above-mentioned.
前記第1のアブソーバ部の延在方向と前記第1の方向と直交する第2の方向とが成す第1の角度と、前記第3のアブソーバ部の延在方向と前記第2の方向とが成す第3の角度と、が等しく、
前記第2のアブソーバ部の延在方向と前記第2の方向とが成す第2の角度と、前記第4のアブソーバ部の延在方向と前記第2の方向とが成す第4の角度と、が等しいことを特徴とする請求項1記載の耐震装置。 The first to fourth absorber portions extend in a horizontal plane direction orthogonal to the vertical direction,
The first angle formed by the extending direction of the first absorber part and the second direction orthogonal to the first direction, and the extending direction of the third absorber part and the second direction are The third angle formed is equal,
A second angle formed by the extending direction of the second absorber portion and the second direction, a fourth angle formed by the extending direction of the fourth absorber portion and the second direction; The seismic device according to claim 1, wherein
前記第2の電力機器の前記第2の端部上に固定される第2の板状部材、該第2の板状部材の上方に突出し、前記第2のアブソーバ部の一方の端部が接続される第3の突出部、及び前記第2の板状部材の上方に突出し、前記第4のアブソーバ部の一方の端部が接続される第4の突出部を含む第2のアブソーバ取り付け部と、
を有し、
前記第1の板状部材の厚さと前記第2の板状部材の厚さとを異ならせたことを特徴とする請求項1または2記載の耐震装置。 A first plate-like member fixed on the first end of the first power device, protrudes above the first plate-like member, and one end of the first absorber is connected And a first absorber mounting portion including a second protrusion that protrudes above the first plate-like member and is connected to one end of the third absorber. ,
A second plate-like member fixed on the second end of the second electric power device, protruding above the second plate-like member, and one end of the second absorber is connected And a second absorber mounting portion including a fourth protrusion that protrudes above the second plate-like member and is connected to one end of the fourth absorber portion. ,
Have
The earthquake-resistant device according to claim 1 or 2, wherein a thickness of the first plate-like member is different from a thickness of the second plate-like member.
前記第1及び第2の筒状支柱部材を構成する前記筒状支柱部材本体は、前記菱形の一方の対角線が前記第1の方向に対して直交するように配置されており、
前記第1のアブソーバ部は、一方の端部が前記第1の端部の一方の角部を支持する第1の棒状支持部材と、該第1の棒状支持部材に固定され、前記第1の筒状支柱部材の第1の面に押圧されることで所定量圧縮される第1の弾性部材と、
を有し、
前記第2のアブソーバ部は、一方の端部が前記第2の端部の一方の角部を支持する第2の棒状支持部材と、該第2の棒状支持部材に固定され、前記第1の面に隣接する該第1の筒状支柱部材の第2の面に押圧されることで所定量圧縮される第2の弾性部材と、
を有し、
前記第3のアブソーバ部は、一方の端部が前記第1の端部の他方の角部を支持する第3の棒状支持部材と、該第3の棒状支持部材に固定され、前記第2の筒状支柱部材の第3の面に押圧されることで所定量圧縮される第3の弾性部材と、
を有し、
前記第4のアブソーバ部は、一方の端部が前記第2の端部の他方の角部を支持する第4の棒状支持部材と、該第4の棒状支持部材に固定され、前記第3の面に隣接する前記第2の筒状支柱部材の第4の面に押圧されることで所定量圧縮される第4の弾性部材と、
を有し、
前記第1及び第2の弾性部材は、前記第1の筒状支柱部材の外側に配置されており、
前記第1及び第2の面は、前記第1の筒状支柱部材の外面であり、
前記第3及び第4の弾性部材は、前記第2の筒状支柱部材の外側に配置されており、
前記第3及び第4の面は、前記第2の筒状支柱部材の外面であることを特徴とする請求項1ないし3のうち、いずれか1項記載の耐震装置。 The tubular strut member body constituting the first and second tubular strut members has a rhombus shape in plan view,
The cylindrical strut member main body constituting the first and second cylindrical strut members is arranged so that one diagonal line of the rhombus is orthogonal to the first direction,
The first absorber portion is fixed to the first rod-shaped support member, one end portion of which supports one corner portion of the first end portion, and the first rod-shaped support member. A first elastic member compressed by a predetermined amount by being pressed against the first surface of the cylindrical support member;
Have
The second absorber portion is fixed to the second rod-like support member with one end portion supporting one corner portion of the second end portion, and the second rod-like support member, A second elastic member compressed by a predetermined amount by being pressed against the second surface of the first cylindrical support member adjacent to the surface;
Have
Wherein the third absorber unit includes a third bar-shaped support member having one end portion for supporting the other corner portion of the first end, it is fixed to the rod-like support member of the third, the second A third elastic member compressed by a predetermined amount by being pressed against the third surface of the cylindrical support member;
Have
The fourth absorber portion is fixed to the fourth rod-like support member, one end portion supporting the other corner portion of the second end portion, and the fourth rod-like support member, A fourth elastic member compressed by a predetermined amount by being pressed against the fourth surface of the second cylindrical support member adjacent to the surface;
Have
The first and second elastic members are disposed outside the first cylindrical support member,
The first and second surfaces are outer surfaces of the first cylindrical support member,
The third and fourth elastic members are disposed outside the second cylindrical support member,
The earthquake-resistant device according to any one of claims 1 to 3, wherein the third and fourth surfaces are outer surfaces of the second cylindrical support member.
前記第1の方向に配置された前記第1の筒状支柱部材間を連結する第2の連結部材と、 前記第1の方向に配置された前記第2の筒状支柱部材間を連結する第3の連結部材と、を有することを特徴とする請求項4または5記載の耐震装置。 Before SL first cylindrical post member, said first absorber portion, and the first seismic mechanism including a second absorber portion, said second cylindrical post member, said third absorber unit, and A plurality of second seismic mechanisms including the fourth absorber portion and being arranged with respect to the first direction while facing each other,
A second connecting member that connects the first cylindrical support members disposed in the first direction, and a second connecting member that connects the second cylindrical support members disposed in the first direction. 6. The earthquake-resistant device according to claim 4, wherein the connection member has three connecting members.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014120630A JP6427837B2 (en) | 2014-06-11 | 2014-06-11 | Seismic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014120630A JP6427837B2 (en) | 2014-06-11 | 2014-06-11 | Seismic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016001656A JP2016001656A (en) | 2016-01-07 |
JP6427837B2 true JP6427837B2 (en) | 2018-11-28 |
Family
ID=55077127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014120630A Active JP6427837B2 (en) | 2014-06-11 | 2014-06-11 | Seismic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6427837B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6997538B2 (en) * | 2017-05-16 | 2022-01-17 | 特許機器株式会社 | Seismic damping device for electric power equipment |
JP6774914B2 (en) * | 2017-07-27 | 2020-10-28 | 株式会社日立産機システム | Transformer |
JP6952537B2 (en) * | 2017-08-30 | 2021-10-20 | 特許機器株式会社 | Seismic damping device for electric power equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS603568Y2 (en) * | 1980-12-02 | 1985-01-31 | 内田鍛工株式会社 | Floor transformer fixing device |
-
2014
- 2014-06-11 JP JP2014120630A patent/JP6427837B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016001656A (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10410785B2 (en) | Cast resin transformer | |
KR101482082B1 (en) | Water tank support structure for height adjust and seismic performance reinforce | |
JP5128145B2 (en) | Height adjustment leg bracket | |
JP6427837B2 (en) | Seismic device | |
KR101757664B1 (en) | Switchboard equipped with earthquake-resistance frame and the method of earthquake-resistance switchboard | |
JP2008194406A5 (en) | ||
JP6506354B2 (en) | Reactor having a pedestal provided with a plurality of fixing notches | |
KR20210026806A (en) | the seismic isolation function double floor adding and subtract the seismic isolation driving part | |
TWI565862B (en) | Base isolation floor structure | |
JP3204299U (en) | Battery mount | |
JP2008174900A (en) | Aseismic fastener for leg fitting for adjusting height | |
JP2008174900A5 (en) | ||
JP2007239990A (en) | Seismic isolation device | |
JP2015094426A (en) | Base isolation stand and base isolation device using the same | |
JP5279798B2 (en) | Base-isolated floor structure | |
JP6101616B2 (en) | Transformer | |
JP5705183B2 (en) | Base-isolated floor structure | |
JP6211432B2 (en) | Storage rack | |
JP2018080804A (en) | Vibration control mechanism and ceiling structure | |
JP2023061794A (en) | Leg frame structure of table and table | |
JP4327521B2 (en) | Seismic structure transformer | |
JP6666675B2 (en) | Column base structure of structure | |
JP5574505B2 (en) | Base-isolated floor structure | |
JP5675736B2 (en) | Base-isolated floor structure | |
KR200468857Y1 (en) | The stand with anti-earthquake structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180529 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180629 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6427837 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |