[go: up one dir, main page]

JP6422148B2 - manipulator - Google Patents

manipulator Download PDF

Info

Publication number
JP6422148B2
JP6422148B2 JP2014104266A JP2014104266A JP6422148B2 JP 6422148 B2 JP6422148 B2 JP 6422148B2 JP 2014104266 A JP2014104266 A JP 2014104266A JP 2014104266 A JP2014104266 A JP 2014104266A JP 6422148 B2 JP6422148 B2 JP 6422148B2
Authority
JP
Japan
Prior art keywords
coil spring
deformed wire
wire coil
section
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014104266A
Other languages
Japanese (ja)
Other versions
JP2015218849A (en
Inventor
孝 久保木
孝 久保木
和仁 ▲高▼橋
和仁 ▲高▼橋
翼 坪内
翼 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2014104266A priority Critical patent/JP6422148B2/en
Publication of JP2015218849A publication Critical patent/JP2015218849A/en
Application granted granted Critical
Publication of JP6422148B2 publication Critical patent/JP6422148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Springs (AREA)

Description

本発明は、ロボットの関節部等に用いられる異形線コイルばねを用いたマニピュレータに関する。 The present invention relates to a manipulator using a deformed wire coil spring used for a joint portion or the like of a robot.

近年、ロボットやマニピュレータの医療分野への適用拡大が進みつつある。例えば、既に実用化されている腹腔鏡手術に用いられる医療用ロボットの代表例として、米国インテュイティヴ・サージカル社が開発したda Vinci Surgical Systemが知られている(非特許文献1参照)。医療用ロボットによる手術は、外科医がカメラを用いて患部を見ながらマニピュレータを操作することで行われる。このような医療用ロボットによる手術では、腹腔部を切り裂く必要がなく、カメラやマニピュレータなどを通すための5点程度の穴を腹腔部に開けるだけですむため、患者への負担を低減できる。   In recent years, application of robots and manipulators to the medical field has been expanding. For example, as a representative example of a medical robot used for laparoscopic surgery that has already been put into practical use, a da Vinci Surgical System developed by Intuitive Surgical Inc. in the United States is known (see Non-Patent Document 1). Surgery with a medical robot is performed by a surgeon operating a manipulator while looking at an affected area using a camera. In such a surgical operation with a medical robot, it is not necessary to cut the abdominal cavity, and it is only necessary to open about 5 holes in the abdominal cavity for passing a camera, a manipulator, and the like, so the burden on the patient can be reduced.

このようなロボットやマニピュレータには、関節が不可避的に存在する。例えば、特許文献1には、可撓性コイルを関節部として用いた外科用器具が記載されている。一方、関節部分の小型化ができれば、腹腔部に開ける穴を小さくすることができ、患者の精神的、肉体的な負担を軽減できるため、関節部の小型化が望まれている。これに対し、近年、マニピュレータの関節部のコンパクト化、多自由度化を目的とした空気圧駆動による手術ロボット(鉗子マニピュレータ)の開発がなされている(非特許文献2参照)。   Such robots and manipulators inevitably have joints. For example, Patent Literature 1 describes a surgical instrument using a flexible coil as a joint. On the other hand, if the joint part can be miniaturized, the hole opened in the abdominal cavity can be reduced, and the mental and physical burden on the patient can be reduced. Therefore, the joint part is desired to be miniaturized. On the other hand, in recent years, surgical robots (forceps manipulators) driven by air pressure have been developed for the purpose of downsizing the joints of the manipulator and increasing the degree of freedom (see Non-Patent Document 2).

非特許文献2で提案されている鉗子マニピュレータは、切削加工によって得られた特殊なバネ部材に、空気圧シリンダに接続されたワイヤが挿通されており、空気圧駆動でバネ部材を屈曲させる。この切削加工によって得られた特殊なバネ部材は、ねじりに強く曲げやすいという性質を有するため、このバネ部材を鉗子マニピュレータに用いることにより、バネ部材の部分がコンパクトで自由度が高い関節部として動作する。   In the forceps manipulator proposed in Non-Patent Document 2, a wire connected to a pneumatic cylinder is inserted into a special spring member obtained by cutting, and the spring member is bent by pneumatic driving. The special spring member obtained by this cutting process has the property of being strong against torsion and easy to bend, so by using this spring member for a forceps manipulator, the spring member part is compact and operates as a highly flexible joint. To do.

特表2008−536540号公報Special table 2008-536540 gazette

東京医科大学病院、“手術支援ロボット「ダヴィンチ」徹底解剖”、[online]、平成26年5月5日検索、インターネット(URL:http://hospinfo.tokyo-med.ac.jp/davinci/top)Tokyo Medical University Hospital, “Surgery robot“ Da Vinci ”thorough dissection”, [online], May 5, 2014 search, Internet (URL: http://hospinfo.tokyo-med.ac.jp/davinci/ top) 原口大輔:日本フルードパワーシステム学会誌 第44巻第E1号、E45-E48Daisuke Haraguchi: Journal of Japan Fluid Power System Vol. 44, No. E1, E45-E48

ところで、ねじりに強く曲げやすいという性質は、バネ部材の巻線の断面形状を工夫した、いわゆる異形線コイルばねによって実現できる。非特許文献2で用いられる異形線コイルばねは、巻線の断面形状を矩形状にすることで、ねじりに強く曲げやすい性質を得ている。巻線の断面形状を矩形状とする場合、巻線の断面形状の矩形比とその曲げ方向によっては、曲げ剛性が高くなり、通常のコイリング加工ではコイル状に巻くことができない。   By the way, the property of being strong against bending and being easily bent can be realized by a so-called deformed wire coil spring in which the cross-sectional shape of the winding of the spring member is devised. The deformed wire coil spring used in Non-Patent Document 2 has a property that it is strong to be twisted and easily bent by making the cross-sectional shape of the windings rectangular. When the cross-sectional shape of the winding is rectangular, the bending rigidity increases depending on the rectangular ratio of the cross-sectional shape of the winding and the bending direction thereof, and the coil cannot be wound in a normal coiling process.

これに対し、非特許文献2で用いられる異形線コイルばねは切削加工によって形成されており、加工費が高いため、この異形線コイルばねの加工費がロボット全体の製造コストを圧迫してしまうという問題がある。また、上記の医療用ロボットに限らず、コンパクトで多自由度な関節を有するロボットを低コストで実用化することが望まれている。   On the other hand, the deformed wire coil spring used in Non-Patent Document 2 is formed by cutting, and the processing cost is high. Therefore, the processing cost of the deformed wire coil spring presses the manufacturing cost of the entire robot. There's a problem. In addition to the above-described medical robots, it is desired to put into practical use a robot having a compact and multi-degree-of-freedom joint at low cost.

そこで、本発明は、ねじりに強く曲げやすい異形線コイルばねを用いたマニピュレータを得ることを目的とする。 Therefore, an object of the present invention is to obtain a manipulator using a deformed wire coil spring that is strong against torsion and is easily bent.

上記課題を解決し、本発明の目的を達成するため、本発明のマニピュレータは、所定の断面形状を有する金属線材を円筒状に巻回して形成されたコイルばねを、コイルばねの軸方向に所定の圧力で押圧することで、コイルばねの巻線の断面形状がコイルばねの半径方向に長い横長形状となるように塑性加工された異形線コイルばねによって構成された関節部と、関節部の先端側に設けられ、把持動作を行うグリッパーとを備える。 In order to solve the above-described problems and achieve the object of the present invention, a manipulator of the present invention has a coil spring formed by winding a metal wire having a predetermined cross-sectional shape in a cylindrical shape in the axial direction of the coil spring. The joint portion is formed by a deformed wire coil spring plastically processed so that the cross-sectional shape of the winding of the coil spring becomes a horizontally long shape in the radial direction of the coil spring by pressing with the pressure of Provided with a gripper for gripping operation.

本発明では、塑性加工により所望の異形線コイルばねを作製できるため、コストの低減を図ることができる。また、異形線コイルばねは、巻線断面が円形のコイルばねに比較してねじり剛性が大きく、曲げモーメントが小さい。さらに、塑性加工によって得られた異形線コイルばねは、塑性加工されていないコイルばねに比較して弾性変形領域の拡大を図ることができる。   In the present invention, since a desired deformed wire coil spring can be produced by plastic working, the cost can be reduced. The deformed wire coil spring has a large torsional rigidity and a small bending moment as compared with a coil spring having a circular winding cross section. Further, the deformed wire coil spring obtained by plastic working can expand the elastic deformation region as compared with a coil spring not subjected to plastic working.

本発明によれば、マニピュレータの低コスト化及び小型化を図ることができる。

According to the present invention, the cost and size of the manipulator can be reduced.

本発明の第1の実施形態に係る異形線コイルばねの概略構成図(一部断面図で示す)である。It is a schematic block diagram (partially shown with sectional drawing) of the deformed wire coil spring which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る異形線コイルばねの製造治具の概略構成図である。It is a schematic block diagram of the manufacturing jig | tool of the deformed wire coil spring which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る異形線コイルばねの製造に用いられる巻線断面が円形のコイルばねの概略構成図である。It is a schematic block diagram of the coil spring with a circular coil | winding cross section used for manufacture of the deformed wire coil spring which concerns on the 1st Embodiment of this invention. 実施例、比較例1及び比較例2におけるコイルばねのねじり剛性の比較結果である。It is a comparison result of the torsional rigidity of the coil spring in an Example, the comparative example 1, and the comparative example 2. FIG. 実際に作製した第1の実施形態の異形線コイルばねにねじり負荷を与えた様子を示す概略図である。It is the schematic which shows a mode that the torsional load was given to the deformed wire coil spring of 1st Embodiment actually produced. 図3に示したFEMの結果と、実際に作製された第1の実施形態に係る異形線コイルばねのねじり剛性の実験結果を比較した図である。It is the figure which compared the result of FEM shown in FIG. 3, and the experimental result of the torsional rigidity of the deformed wire coil spring which concerns on 1st Embodiment actually produced. 実施例、比較例1及び比較例2におけるコイルばねの曲げ特性に関する比較結果である。It is a comparison result regarding the bending characteristic of the coil spring in an Example, the comparative example 1, and the comparative example 2. FIG. 実際に作製した第1の実施形態の異形線コイルばねの曲げ半径を測定した様子を示す概略図である。It is the schematic which shows a mode that the bending radius of the deformed wire coil spring of 1st Embodiment actually produced was measured. 図7に示したFEMの結果と、実際に作製された第1の実施形態に係る異形線コイルばねの曲げ特性の実験結果を比較した図である。It is the figure which compared the result of FEM shown in FIG. 7, and the experimental result of the bending characteristic of the deformed wire coil spring which concerns on the 1st Embodiment actually produced. 図10Aはアルミニウムを使用した場合において所定のばね定数を得るための異形線コイルばねの巻線断面の縦幅bを示した図であり、図10Bはアルミニウムを使用した場合の異形線コイルばねの巻線断面の横縦比a/bを示した図である(ばね定数k=2.5[N/mm])。FIG. 10A is a diagram showing a longitudinal width b of a winding cross section of a deformed wire coil spring for obtaining a predetermined spring constant when aluminum is used, and FIG. 10B is a diagram of the deformed wire coil spring when aluminum is used. It is the figure which showed the aspect ratio a / b of the coil | winding cross section (spring constant k = 2.5 [N / mm]). 図11AはSUS304を使用した場合において所定のばね定数を得るための異形線コイルばねの巻線断面の縦幅bを示した図であり、図11BはSUS304を使用した場合の異形線コイルばねの巻線断面の横縦比a/bを示した図である(ばね定数k=2.5[N/mm])。FIG. 11A is a diagram showing a longitudinal width b of a winding cross section of a deformed wire coil spring for obtaining a predetermined spring constant when SUS304 is used, and FIG. 11B is a diagram of the deformed wire coil spring when SUS304 is used. It is the figure which showed the aspect ratio a / b of the coil | winding cross section (spring constant k = 2.5 [N / mm]). 図12Aはアルミニウムを使用した場合において所定値以上のねじりトルク強度を得るための異形線コイルばねの巻線断面の縦幅bを示した図であり、図12Bはアルミニウムを使用した場合の異形線コイルばねの巻線断面の横縦比a/bを示した図である(ねじりトルク強度T≧1.0[N・m])。FIG. 12A is a view showing a longitudinal width b of a winding cross section of a deformed wire coil spring for obtaining a torsion torque strength of a predetermined value or more when aluminum is used, and FIG. 12B is a deformed wire when aluminum is used. It is the figure which showed the aspect ratio a / b of the coil | winding cross section of a coil spring (torsion torque strength T> = 1.0 [N * m]). 図13AはSUS304を使用した場合において所定値以上のねじりトルク強度を得るための異形線コイルばねの巻線断面の縦幅bを示した図であり、図13Bは、SUS304を使用した場合の異形線コイルばねの巻線断面の横縦比a/bを示した図である(ねじりトルク強度T≧1.0[N・m])。FIG. 13A is a diagram showing a longitudinal width b of a winding cross section of a deformed wire coil spring for obtaining a torsion torque strength of a predetermined value or more when SUS304 is used, and FIG. 13B is a variant when SUS304 is used. It is the figure which showed the aspect ratio a / b of the coil | winding cross section of a wire coil spring (torsion torque strength T> = 1.0 [N * m]). 図10B及び図12Bを合成して示した図である。It is the figure which synthesize | combined and showed FIG. 10B and FIG. 12B. 図11B及び図13Bを合成して示した図である。It is the figure which synthesize | combined and showed FIG. 11B and FIG. 13B. 図16Aは第1の実施形態における塑性加工前のコイルばねの巻線断面図であり、図16Bはそのコイルばねを塑性加工することで得られる異形線コイルばねの巻線断面図である。FIG. 16A is a winding sectional view of a coil spring before plastic working in the first embodiment, and FIG. 16B is a winding sectional view of a deformed wire coil spring obtained by plastic processing of the coil spring. 図17A,Bは、変形例1に係る塑性加工前のコイルばね及び塑性加工後の異形線コイルばねのそれぞれの巻線断面を示す図である。FIGS. 17A and 17B are views showing winding cross sections of a coil spring before plastic working and a deformed wire coil spring after plastic working according to Modification 1. FIG. 図18A,Bは、変形例2に係る塑性加工前のコイルばね及び塑性加工後の異形線コイルばねのそれぞれの巻線断面を示す図である。FIGS. 18A and 18B are views showing winding cross sections of a coil spring before plastic working and a deformed wire coil spring after plastic working according to the second modification. 図19A,Bは、変形例3に係る塑性加工前のコイルばね及び塑性加工後の異形線コイルばねのそれぞれの巻線断面を示す図である。19A and 19B are diagrams showing winding cross sections of a coil spring before plastic working and a deformed wire coil spring after plastic working according to Modification 3. FIG. 図20Aは本発明の第2の実施形態に係るマニピュレータの全体構成を示す概略図であり、図20B及び図20Cはそれぞれ、その要部を拡大して示した図である。FIG. 20A is a schematic diagram illustrating the overall configuration of a manipulator according to a second embodiment of the present invention, and FIGS. 20B and 20C are diagrams illustrating an enlarged main part thereof.

以下、本発明の実施形態に係る異形線コイルばね、異形線コイルばねの製造方法、並びに、マニピュレータの一例を、図面を参照しながら説明する。なお、本発明は以下の例に限定されるものではない。   Hereinafter, an example of a deformed wire coil spring, a method of manufacturing a deformed wire coil spring, and a manipulator according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following examples.

〈1.第1の実施形態:異形線コイルばね〉
[1−1.異形線コイルばね、及び、異形線コイルばねの製造方法]
図1は、本実施形態の異形線コイルばねの概略構成図(一部断面図で示す)である。本実施形態の異形線コイルばね1は、後述する医療用ロボットにおけるマニピュレータ(図20A参照)の関節部に好適に適用されるコイルばねである。
<1. First Embodiment: Deformed Wire Coil Spring>
[1-1. Modified wire coil spring and method of manufacturing deformed wire coil spring]
FIG. 1 is a schematic configuration diagram (partially shown in a sectional view) of a deformed wire coil spring of the present embodiment. The deformed wire coil spring 1 of the present embodiment is a coil spring that is suitably applied to a joint portion of a manipulator (see FIG. 20A) in a medical robot described later.

図1に示すように、本実施形態の異形線コイルばね1は、金属線材を円筒状に巻回して形成された巻線で構成され、巻線の断面形状はその異形線コイルばね1の半径方向に長い横長形状(本実施形態では矩形状)である。すなわち、図1に示すように、本実施形態1の異形線コイルばね1の巻線断面は、その横幅aが縦幅bよりも大きい。なお、本実施形態では、異形線コイルばね1の半径方向(以下、コイル半径方向)における巻線断面の幅を「横幅」、異形線コイルばね1の軸方向(以下、コイル軸方向)における巻線断面の幅を「縦幅」と記す。また、後述するが、本実施形態の異形線コイルばね1は、所定の断面形状を有する金属線材を円筒状に巻回して形成されたコイルばねを、コイル軸方向に所定の圧力で押圧することで塑性加工されている。   As shown in FIG. 1, the deformed wire coil spring 1 of the present embodiment is constituted by a winding formed by winding a metal wire in a cylindrical shape, and the cross-sectional shape of the winding is a radius of the deformed wire coil spring 1. It is a horizontally long shape (rectangular shape in this embodiment) long in the direction. That is, as shown in FIG. 1, in the winding cross section of the deformed wire coil spring 1 according to the first embodiment, the horizontal width a is larger than the vertical width b. In the present embodiment, the width of the winding cross section in the radial direction of the deformed wire coil spring 1 (hereinafter referred to as the coil radial direction) is “lateral width”, and the winding in the axial direction of the deformed wire coil spring 1 (hereinafter referred to as the coil axial direction). The width of the line section is described as “vertical width”. As will be described later, the deformed wire coil spring 1 of the present embodiment presses a coil spring formed by winding a metal wire having a predetermined cross-sectional shape into a cylindrical shape with a predetermined pressure in the coil axis direction. In plastic processing.

本実施形態の異形線コイルばね1を医療用ロボットのマニピュレータに適用する場合には、異形線コイルばね1の材料として、生体内で安全に使用ができる材料を用いるのが好ましい。生体内で安全に使用ができる材料としては、ステンレス綱、チタン又はチタン合金を用いることができる。その他、本実施形態の異形線コイルばね1の材料としては、アルミニウムやアルミニウム合金などの軽金属を用いることができる。これらの軽金属で形成された異形線コイルばね1を医療用ロボットのマニピュレータに適用する場合においては、異形線コイルばね1を樹脂で覆って用いることで、生体内で安全に使用が可能である。   When the deformed wire coil spring 1 of the present embodiment is applied to a manipulator of a medical robot, it is preferable to use a material that can be safely used in the living body as the material of the deformed wire coil spring 1. As a material that can be safely used in vivo, stainless steel, titanium, or a titanium alloy can be used. In addition, as a material of the deformed wire coil spring 1 of the present embodiment, a light metal such as aluminum or an aluminum alloy can be used. When the deformed wire coil spring 1 formed of these light metals is applied to a manipulator of a medical robot, the deformed wire coil spring 1 can be used safely in vivo by covering it with a resin.

また、本実施形態の異形線コイルばね1を医療用ロボットのマニピュレータに用いる場合、生体内で用いられるため、異形線コイルばね1の外径は小さければ小さいほど生体への影響を低減できるというメリットがある。しかしながら、後述するマニピュレータの関節部として本実施形態の異形線コイルばね1を用いた場合、関節部の屈曲可動域を確保しつつ、先端に設けられたグリッパーを支持して動作させることができる強度(剛性)が必要である。すなわち、医療用ロボットのマニピュレータの関節部として異形線コイルばね1を用いる場合には、外径が小さく、かつ、ねじりに強く曲げやすいという特性が必要である。   Further, when the deformed wire coil spring 1 of the present embodiment is used in a manipulator of a medical robot, it is used in a living body. Therefore, the smaller the outer diameter of the deformed wire coil spring 1 is, the smaller the merit that the influence on the living body can be reduced. There is. However, when the deformed wire coil spring 1 of the present embodiment is used as a joint part of a manipulator described later, the strength capable of supporting and operating the gripper provided at the tip while ensuring the bending movable range of the joint part. (Rigidity) is required. That is, when the deformed wire coil spring 1 is used as a joint part of a manipulator of a medical robot, it is necessary to have a characteristic that the outer diameter is small and the bending is strong against bending.

コイル半径方向に長い横長形状の巻線断面を有する異形線コイルばねを通常のコイリング加工で作製する場合、その曲げ剛性が大きく、外径の小型化が難しい。すなわち、通常のコイリング加工では、外径がより小さく、かつ、ねじりに強く曲げやすい特性を有する巻線断面が横長形状(矩形状)の異形線コイルばねを作製するのは難しい。   When a deformed wire coil spring having a horizontally long winding cross section that is long in the coil radial direction is manufactured by a normal coiling process, its bending rigidity is large and it is difficult to reduce the outer diameter. In other words, in ordinary coiling processing, it is difficult to produce a deformed wire coil spring having a laterally long (rectangular) winding cross section having a smaller outer diameter and a characteristic that is strong against torsion and is easily bent.

一方、巻線断面がコイル半径方向に長い横長形状の異形線コイルばねを作製する方法として切削加工が上げられるが、切削加工はコストが高い。これに対し、本実施形態の異形線コイルばね1は、所定の断面形状の巻線で構成されたコイルばねを、そのコイル軸方向に圧縮することで作製することができる。以下、本実施形態の異形線コイルばね1の製造方法について説明する。   On the other hand, cutting can be raised as a method of producing a horizontally long deformed wire coil spring whose winding cross section is long in the radial direction of the coil, but cutting is expensive. On the other hand, the deformed wire coil spring 1 of the present embodiment can be manufactured by compressing a coil spring formed of a winding having a predetermined cross-sectional shape in the coil axis direction. Hereinafter, the manufacturing method of the deformed wire coil spring 1 of this embodiment is demonstrated.

図2に、本実施形態の異形線コイルばねの製造治具の概略構成を示す(一部断面図で示す)。本実施形態の異形線コイルの製造治具10は、図2に示すように、内部に所望のコイルばね20が設置される容器13を固定する台11と、コイルばね20に当接してコイルばね20をそのコイル軸方向に押圧する押圧部12とで構成されている。   FIG. 2 shows a schematic configuration of a manufacturing jig for a deformed wire coil spring of the present embodiment (partially shown in a sectional view). As shown in FIG. 2, the deformed wire coil manufacturing jig 10 of the present embodiment is in contact with the base 11 on which a container 13 in which a desired coil spring 20 is installed and the coil spring 20 are in contact with the coil spring 20. It is comprised with the press part 12 which presses 20 to the coil axial direction.

台11は、耐摩耗性と強度に優れた合金で形成され、本実施形態では、SKD11(JIS規格)を用いて形成されている。台11は、容器13が載置される側の面に水平面を有する平板状の部材で構成されている。   The table 11 is formed of an alloy having excellent wear resistance and strength. In the present embodiment, the table 11 is formed using SKD11 (JIS standard). The base 11 is composed of a flat plate-like member having a horizontal surface on the surface on which the container 13 is placed.

容器13は、炭素鋼鋼材で形成され、本実施形態では、S45C(JIS規格)を用いて形成されている。容器13は、コイルばね20が設置される孔13aを有する円筒形状の部材で構成されており、コイル軸方向の一方の端面は事前に研削加工により平坦化され台11の上に置かれている。この容器13の内径(すなわち、孔13aの直径)は、異形線コイルばね1のもとになるコイルばね20の外径よりも大きく形成されており、最終的に得られる異形線コイルばね1の外径とほぼ同じに形成されている。   The container 13 is formed of a carbon steel material, and is formed using S45C (JIS standard) in the present embodiment. The container 13 is composed of a cylindrical member having a hole 13a in which the coil spring 20 is installed, and one end face in the coil axial direction is flattened by grinding in advance and placed on the table 11. . The inner diameter of the container 13 (that is, the diameter of the hole 13a) is formed to be larger than the outer diameter of the coil spring 20 that is the basis of the deformed wire coil spring 1, and the deformed wire coil spring 1 finally obtained is formed. It is formed approximately the same as the outer diameter.

押圧部12は、押圧軸12aと、押圧部本体12bとで構成されている。押圧軸12aは、容器13の孔13aに挿入されながら、容器13の孔13aに設置されたコイルばね20を押圧する棒状の部材である。押圧軸12aは、耐摩耗性と強度に優れた超硬合金で形成されている。また、押圧軸12aは容器13の孔13aに挿入可能な円柱状の部材で構成されている。押圧部本体12bは、押圧軸12aの上部に設けられ、外部からの押圧力を受けると共に押圧軸12aにその押圧力を伝達する。押圧部本体12bは、台11と同様、耐摩耗性と強度に優れた合金で形成され、本実施形態では、SKD11(JIS規格)を用いて形成されている。また、押圧部本体12bは、押圧軸12aの外径よりも十分に大きい外径を有する円板状の部材で構成され、押圧軸12a側の面が押圧軸12aに接合されている。   The pressing portion 12 includes a pressing shaft 12a and a pressing portion main body 12b. The pressing shaft 12 a is a rod-shaped member that presses the coil spring 20 installed in the hole 13 a of the container 13 while being inserted into the hole 13 a of the container 13. The pressing shaft 12a is formed of a cemented carbide excellent in wear resistance and strength. Further, the pressing shaft 12 a is formed of a columnar member that can be inserted into the hole 13 a of the container 13. The pressing portion main body 12b is provided on the upper portion of the pressing shaft 12a, receives a pressing force from the outside, and transmits the pressing force to the pressing shaft 12a. The pressing portion main body 12b is formed of an alloy having excellent wear resistance and strength, like the base 11, and is formed using SKD11 (JIS standard) in this embodiment. Moreover, the pressing part main body 12b is comprised with the disk-shaped member which has an outer diameter sufficiently larger than the outer diameter of the pressing shaft 12a, and the surface at the side of the pressing shaft 12a is joined to the pressing shaft 12a.

以上の構成を有する製造治具10において、容器13の孔13a内にコイルばね20をそのコイル軸方向が容器13の軸方向と平行になるように挿入する。そして、押圧部12の押圧軸12aを孔13aに挿入し、外部から押圧部本体12bに圧縮加重を印加することで容器13の孔13a内に設置されたコイルばね20をコイル軸方向に圧縮し、巻線断面の形状がコイル半径方向に長い横長形状になるように塑性加工する。これにより本実施形態の異形線コイルばね1を形成することができる。   In the manufacturing jig 10 having the above configuration, the coil spring 20 is inserted into the hole 13 a of the container 13 so that the coil axial direction is parallel to the axial direction of the container 13. Then, the pressing shaft 12a of the pressing portion 12 is inserted into the hole 13a, and a compression load is applied to the pressing portion main body 12b from the outside to compress the coil spring 20 installed in the hole 13a of the container 13 in the coil axis direction. Then, plastic working is performed so that the winding cross-sectional shape is a horizontally long shape in the coil radial direction. Thereby, the deformed wire coil spring 1 of this embodiment can be formed.

以下に、上述した製造治具10を用いた本実施形態の異形線コイルばね1の製造方法について、より詳細に説明する。まず、通常のコイリング加工によって作製された巻線断面が円形のコイルばね20を準備する。図3に、本実施形態の異形線コイルばね1の製造に用いられる巻線断面が円形のコイルばね20の概略構成を示す。本実施形態では、人体への影響が少ないステンレス綱(SUS304)を用い、外径が12.5mm、巻線断面の直径が2.0mm、コイル軸方向の長さが40mmのコイルばね20を準備した。このコイルばね20は、通常のコイリング加工によって容易に形成可能な形状である。   Below, the manufacturing method of the deformed wire coil spring 1 of this embodiment using the manufacturing jig 10 mentioned above is demonstrated in detail. First, a coil spring 20 having a circular winding cross section manufactured by a normal coiling process is prepared. FIG. 3 shows a schematic configuration of a coil spring 20 having a circular winding cross section used for manufacturing the deformed wire coil spring 1 of the present embodiment. In this embodiment, a stainless steel rope (SUS304) that has little influence on the human body is used, and a coil spring 20 having an outer diameter of 12.5 mm, a winding cross-sectional diameter of 2.0 mm, and a coil axial length of 40 mm is prepared. did. The coil spring 20 has a shape that can be easily formed by a normal coiling process.

次に、このコイルばね20の巻き始めと巻き終わりの巻線を研磨(いわゆる座面研磨)し、コイルばね20の両端部が面一状になるように平坦化処理をする。コイルばね20の巻き始め及び巻き終わりの端部を先端に行くにしたがって徐々に薄くなるように研磨することで、コイルばね20の両端部を面一状にすることができる。   Next, the winding at the beginning and end of winding of the coil spring 20 is polished (so-called seating surface polishing), and flattened so that both ends of the coil spring 20 are flush with each other. The both ends of the coil spring 20 can be made flush with each other by polishing the winding spring 20 so that the winding ends gradually become thinner toward the tip.

次に、両端部に平坦化処理が施されたコイルばね20をそのコイル軸方向が製造治具10の台11の表面に対して垂直になるように容器13の孔13a内に設置する。このとき、コイルばね20の両端部には平坦化処理が施されているため、コイルばね20は、容器13の孔13a内に安定して載置することができる。   Next, the coil spring 20 having both ends flattened is placed in the hole 13 a of the container 13 so that the coil axis direction is perpendicular to the surface of the base 11 of the manufacturing jig 10. At this time, since both ends of the coil spring 20 are flattened, the coil spring 20 can be stably placed in the hole 13 a of the container 13.

次に、押圧軸12aをコイルばね20が設置された孔13a内に挿入し、押圧部本体12bが台11と平行になるように配置する。そして、図示を省略する圧力印加装置によって、約20tの圧力で押圧部本体12bを押圧し、コイルばね20をコイル軸方向に圧縮した。なお、本実施形態では、圧力印加装置としてアムスラー型油圧万能試験機UH−100kNAを用いた。本実施形態では、コイルばね20の押圧軸12aに当接する側の端部が平坦化処理されているので、安定してコイル軸方向に圧力を印加することができる。   Next, the pressing shaft 12 a is inserted into the hole 13 a where the coil spring 20 is installed, and the pressing portion main body 12 b is arranged so as to be parallel to the base 11. And with the pressure application apparatus which abbreviate | omits illustration, the press part main body 12b was pressed with the pressure of about 20 t, and the coil spring 20 was compressed to the coil axial direction. In the present embodiment, an Amsler type hydraulic universal testing machine UH-100 kNA is used as the pressure application device. In the present embodiment, since the end of the coil spring 20 on the side in contact with the pressing shaft 12a is flattened, pressure can be stably applied in the coil axis direction.

なお、押圧部12に印加する圧力は、形成したい異形線コイルばね1の巻線断面の縦幅bを決定し、その縦幅bから異形線コイルばね1のコイル軸方向の長さを算出し、その算出された長さになるようにコイルばね20を圧縮できる圧力とする。このとき、算出される異形線コイルばね1のコイル軸方向の長さは、隣接する巻線と巻線との間に隙間がないものとして計算する。   The pressure applied to the pressing portion 12 determines the longitudinal width b of the winding cross section of the deformed wire coil spring 1 to be formed, and calculates the length of the deformed wire coil spring 1 in the coil axis direction from the longitudinal width b. The pressure is such that the coil spring 20 can be compressed so as to have the calculated length. At this time, the calculated length of the deformed wire coil spring 1 in the coil axis direction is calculated assuming that there is no gap between adjacent windings.

そして、押圧部12によってコイルばね20に所定の圧力を印加し、コイルばね20を圧縮した後、コイルばね20を容器内から取り出す。圧縮後、取り出したコイルばね20は、隣接する巻線と巻線とが互いに圧着した状態である。このため、巻線のコイル軸方向の縦幅bと、隣接する巻線と巻線との隙間が1:1になるように、コイルばね20を軸方向に引張する。これにより、外径Doが13.5mm、軸方向の長さwが19mm、巻線断面の縦幅bが1.05mm、その短辺に直交する方向の巻線断面の横幅aが3.1mmである異形線コイルばね1が完成された。   Then, a predetermined pressure is applied to the coil spring 20 by the pressing portion 12 to compress the coil spring 20, and then the coil spring 20 is taken out from the container. After compression, the coil spring 20 that has been taken out is in a state where adjacent windings and windings are pressure-bonded to each other. For this reason, the coil spring 20 is pulled in the axial direction so that the longitudinal width b of the winding in the coil axial direction and the gap between the adjacent windings become 1: 1. As a result, the outer diameter Do is 13.5 mm, the axial length w is 19 mm, the longitudinal width b of the winding cross section is 1.05 mm, and the lateral width a of the winding cross section in the direction perpendicular to the short side is 3.1 mm. The deformed wire coil spring 1 is completed.

本実施形態の異形線コイルばね1は、図1に示すように、巻線断面はコイル半径方向に長い横長形状(矩形状)であり、巻線断面の横幅aと縦幅bとの比がおよそ2.95:1である。このように、巻線断面が異形線コイルばね1の半径方向に横長の形状であり、横縦比a/bが高いと、線材の巻き方向に対する曲げ剛度が高くなる。この結果、その横縦比a/bが高く、かつ、巻線断面の横幅aに対して製造したい異形線コイルばね1の外径Doが小さい場合には、異形線コイルばね1を通常のコイリング加工で製造することができない。本実施形態では、通常のコイリング加工で形成できる断面形状が円形のコイルばね20をコイル軸方向に圧縮加工(塑性加工)することで、横縦比a/bの高い巻線断面を有する異形線コイルばね1を製造することができる。   As shown in FIG. 1, the deformed wire coil spring 1 of the present embodiment has a transverse cross section that is long in the coil radial direction (rectangular shape), and the ratio between the lateral width a and the longitudinal width b of the winding section is as follows. It is approximately 2.95: 1. Thus, when the winding cross section is horizontally long in the radial direction of the deformed wire coil spring 1 and the aspect ratio a / b is high, the bending stiffness in the winding direction of the wire is increased. As a result, when the aspect ratio a / b is high and the outer diameter Do of the deformed wire coil spring 1 to be manufactured with respect to the width a of the winding cross section is small, the deformed wire coil spring 1 is subjected to normal coiling. It cannot be manufactured by processing. In the present embodiment, a deformed wire having a winding cross section with a high aspect ratio a / b is obtained by compressing (plastic working) a coil spring 20 having a circular cross-sectional shape that can be formed by a normal coiling process in the coil axis direction. The coil spring 1 can be manufactured.

本実施形態の異形線コイルばね1をマニピュレータの関節部に用いる場合には、必要に応じて、関節部を屈曲駆動するための駆動ワイヤを挿通する貫通孔であって、巻線をコイル軸方向に貫通する貫通孔を放電加工により形成する。巻線の断面形状が円形のコイルばねの場合には、そのコイル軸方向に平行な貫通孔を巻線に形成することが難しい。一方、本実施形態の異形線コイルばね1は、所定のコイルばね20をコイル軸方向に所定の圧力で圧縮加工(塑性加工)することにより形成されるため、異形線コイルばね1において、隣接する巻線と接する面は平坦になる。これにより、本実施形態の異形線コイルばね1では、巻線をコイル軸方向に貫通する貫通孔を容易に形成することができる。   When the deformed wire coil spring 1 of the present embodiment is used for a joint part of a manipulator, it is a through-hole through which a drive wire for bending the joint part is inserted as necessary, and the winding is in the coil axial direction. A through-hole penetrating through is formed by electric discharge machining. In the case of a coil spring having a circular cross-sectional shape of the winding, it is difficult to form a through hole parallel to the coil axis direction in the winding. On the other hand, the deformed wire coil spring 1 of the present embodiment is formed by compressing (plastic working) a predetermined coil spring 20 with a predetermined pressure in the coil axis direction. The surface in contact with the winding is flat. Thereby, in the deformed wire coil spring 1 of this embodiment, the through-hole which penetrates a coil | winding to a coil axial direction can be formed easily.

[1−2.異形線コイルばねの特性]
以下、本実施形態で製造される異形線コイルばね1の特性について説明する。まず、本実施形態の製造方法である塑性加工による加工硬化の影響を見積もるため、巻線断面が円形であるコイルばねを簡略化したモデルとして2次元y軸対称のドーナツ型のモデルを作製し、このモデルによって塑性加工を再現した。このモデルに塑性加工を施した場合の解析結果により、塑性加工されたモデルでは、最大で相当塑性ひずみεp=1.0が生じていることがわかった。そこで、塑性加工を考慮するモデルでは、相当塑性ひずみεp=1.0が生じているとして解析を行った。
[1-2. Characteristics of deformed wire coil spring]
Hereinafter, the characteristic of the deformed wire coil spring 1 manufactured by this embodiment is demonstrated. First, in order to estimate the effect of work hardening by plastic working, which is the manufacturing method of the present embodiment, a two-dimensional y-axis symmetrical donut-shaped model is produced as a simplified model of a coil spring having a circular winding cross section, This model reproduced plastic working. From the analysis result when plastic working was performed on this model, it was found that the equivalent plastic strain εp = 1.0 occurred at the maximum in the plastic worked model. Therefore, in the model considering plastic processing, the analysis was performed assuming that the equivalent plastic strain εp = 1.0 occurs.

本実施形態の異形線コイルばねの製造方法で製造した異形線コイルばね1の特性を有限要素法(Finite Element Method:FEM)及び実験により調査した。FEMによる解析では、実施例、比較例1、比較例2のコイルばねを用いて解析した。実施例のコイルばねは、本実施形態の製造方法で形成される(すなわち、塑性加工で得られる)巻線断面が矩形状の異形線コイルばねである。比較例1のコイルばねは、例えば、切削加工などによって形成される(すなわち、塑性加工することなく得られる)巻線断面が矩形状の異形線コイルばねである。比較例2のコイルばねは、巻線断面が円形(中実円)のコイルばねである。実施例及び比較例1の異形線コイルばねの巻線断面は、コイル軸方向の辺が短辺である矩形状し、その巻線断面の横幅と縦幅との比を2.95:1とした。なお、実施例、比較例1及び比較例2におけるそれぞれのコイルばねの寸法は以下の通りである。
実施例:外径Do=13.2mm、巻線断面の横幅a=2.95mm、巻線断面の縦幅b=1mm
比較例1:外径Do=13.2mm、巻線断面の横幅a=2.95mm、巻線断面の縦幅b=1mm
比較例2:外径Do=13.2mm、巻線断面の直径d=2mm
The characteristics of the deformed wire coil spring 1 manufactured by the manufacturing method of the deformed wire coil spring of this embodiment were investigated by a finite element method (FEM) and experiments. In the analysis by FEM, it analyzed using the coil spring of an Example, the comparative example 1, and the comparative example 2. FIG. The coil spring of the example is a deformed wire coil spring having a rectangular winding cross-section formed by the manufacturing method of the present embodiment (that is, obtained by plastic working). The coil spring of Comparative Example 1 is a deformed wire coil spring having a rectangular winding cross-section formed by cutting or the like (that is, obtained without plastic working), for example. The coil spring of Comparative Example 2 is a coil spring whose winding cross section is circular (solid circle). The winding cross section of the deformed wire coil spring of the example and the comparative example 1 has a rectangular shape in which the side in the coil axis direction is a short side, and the ratio of the horizontal width and the vertical width of the winding cross section is 2.95: 1. did. In addition, the dimension of each coil spring in an Example, the comparative example 1, and the comparative example 2 is as follows.
Example: Outer diameter Do = 13.2 mm, winding cross section width a = 2.95 mm, winding cross section length b = 1 mm
Comparative Example 1: Outer diameter Do = 13.2 mm, winding cross-section width a = 2.95 mm, winding cross-section length b = 1 mm
Comparative Example 2: Outer diameter Do = 13.2 mm, winding cross section diameter d = 2 mm

また、FEMでは、モデルとしてそれぞれ3巻き分のコイルばねを作製したが、以下で示す比較結果は固定部を考慮して有効巻数9巻き分に換算したものである。   Moreover, in FEM, the coil spring for 3 turns was produced as a model, respectively, However, The comparison result shown below is converted into 9 effective turns considering the fixed part.

まず、コイルばねのねじり剛性について調査した。ねじり剛性の解析では、実施例、比較例1、比較例2のそれぞれのコイルばねに、コイル軸を軸中心としたねじり負荷を与え、ねじり角度とトルクの関係を求めた。   First, the torsional rigidity of the coil spring was investigated. In the analysis of torsional rigidity, a torsional load about the coil axis was applied to each of the coil springs of Example, Comparative Example 1, and Comparative Example 2, and the relationship between the torsion angle and torque was obtained.

図4は、実施例、比較例1及び比較例2におけるコイルばねのねじり剛性の比較結果である。図4の横軸はねじり角度の角度変位であり、縦軸は、そのねじり角度において発生するトルクである。図4では、傾きが大きいほどねじり剛性が大きいことを示す。実施例や比較例1のように巻線断面が高矩形の矩形状である場合、巻線断面が円形の比較例2に比べてねじり剛性が大きい。また、塑性加工によって加工硬化した実施例の異形線コイルばねは、加工硬化していない比較例1の異形線コイルばねに比べて、弾性限界が角度変位において2倍以上に増加している。   FIG. 4 is a comparison result of the torsional rigidity of the coil spring in the example, comparative example 1 and comparative example 2. The horizontal axis in FIG. 4 is the angular displacement of the twist angle, and the vertical axis is the torque generated at the twist angle. FIG. 4 shows that the torsional rigidity increases as the inclination increases. When the winding cross section is a rectangular shape having a high rectangular shape as in the example and the comparative example 1, the torsional rigidity is larger than that of the comparative example 2 in which the winding cross section is circular. In addition, the deformed wire coil spring of the example that has been work hardened by plastic working has an elastic limit that is more than twice as large in angular displacement as the deformed wire coil spring of Comparative Example 1 that is not work hardened.

図5は、実際に作製した本実施形態の異形線コイルばね1にねじり負荷を与えた様子を示す概略図である。実験では、異形線コイルばね1のねじり試験治具を作製し、実際に得られた異形線コイルばね1にねじり負荷を与えてねじり剛性を調べた。図6は、図3におけるFEMの結果と、実際に作製された本実施形態の異形線コイルばね1のねじり剛性の実験結果を比較した図である。図6に示すように、実験結果も、FEMの解析で得られた結果(実施例)と同等の性能を得ていることが確認できた。   FIG. 5 is a schematic view showing a state in which a torsional load is applied to the deformed wire coil spring 1 of the present embodiment actually produced. In the experiment, a torsion test jig for the deformed wire coil spring 1 was produced, and the torsional rigidity was examined by applying a torsional load to the deformed wire coil spring 1 actually obtained. FIG. 6 is a diagram comparing the result of FEM in FIG. 3 and the experimental result of the torsional rigidity of the deformed wire coil spring 1 of the present embodiment actually produced. As shown in FIG. 6, it was confirmed that the experimental results also obtained the same performance as the results (examples) obtained by the FEM analysis.

次に、コイルばねの曲げ特性について調査した。曲げ特性の解析では、実施例、比較例1及び比較例2のそれぞれのコイルばねの巻線端部において、コイル軸方向に荷重を与え、コイル軸の描く円弧の半径を曲げ半径として、荷重と曲げ半径の関係を求めた。   Next, the bending characteristics of the coil spring were investigated. In the analysis of the bending characteristics, a load is applied in the coil axis direction at the winding end of each of the coil springs of Example, Comparative Example 1 and Comparative Example 2, and the radius of the arc drawn by the coil axis is set as the bending radius. The relationship of the bending radius was obtained.

図7は、実施例、比較例1及び比較例2におけるコイルばねの曲げ半径[mm]と荷重[N]の関係を示す図である。図7の横軸は曲げ半径[mm]であり、縦軸は荷重[N]である。実施例及び比較例1の異形線コイルばねは、比較例2のコイルばねに比べて荷重に対する曲げ半径が小さく、曲げモーメントが小さいことがわかる。また、塑性加工によって加工硬化した実施例の異形線コイルばねは、加工硬化していない比較例1の異形線コイルばねに比較して弾性限界が生じる曲げ半径が1/2以下となり、弾性変形領域が拡大している。これにより、実施例におけるコイルばねは、比較例1及び比較例2のコイルばねに比較して「曲げやすくしなやか」であることが確認できる。   FIG. 7 is a diagram showing the relationship between the bending radius [mm] and the load [N] of the coil spring in the example, comparative example 1 and comparative example 2. The horizontal axis in FIG. 7 is the bending radius [mm], and the vertical axis is the load [N]. It can be seen that the deformed wire coil spring of Example and Comparative Example 1 has a smaller bending radius with respect to the load and a smaller bending moment than the coil spring of Comparative Example 2. Further, the deformed wire coil spring of the example work-hardened by plastic working has a bending radius that causes an elastic limit to be ½ or less as compared with the deformed wire coil spring of Comparative Example 1 that is not work hardened, and the elastic deformation region Is expanding. Thereby, it can confirm that the coil spring in an Example is "easy to bend and is flexible" compared with the coil spring of the comparative example 1 and the comparative example 2. FIG.

図8に、実際に作製した本実施形態の異形線コイルばね1の曲げ半径を測定した様子を示す。実験では、実際に得られた本実施形態の異形線コイルばね1をコイル軸方向に垂直に立て先端の一点におもりを吊し、コイル軸の描く円弧R(曲げ半径)を記録して荷重と曲げ半径の関係を求めた。図9は、図7におけるFEMの結果と、実際に作製された本実施形態の異形線コイルばね1の曲げ特性の実験結果を比較した図である。図9に示すように、実験結果も、FEMの解析で得られた結果(実施例)と同等の性能を得ていることが確認できた。   FIG. 8 shows a state in which the bending radius of the deformed wire coil spring 1 of the present embodiment actually produced is measured. In the experiment, the deformed wire coil spring 1 of the present embodiment actually obtained was set up perpendicular to the coil axis direction, the weight was suspended at one point, and the arc R (bending radius) drawn by the coil axis was recorded and the load was recorded. The relationship of the bending radius was obtained. FIG. 9 is a diagram comparing the FEM results in FIG. 7 and the experimental results of the bending characteristics of the deformed wire coil spring 1 of the present embodiment actually produced. As shown in FIG. 9, it was confirmed that the experimental results also obtained the same performance as the results (examples) obtained by the FEM analysis.

以上のように、本実施形態の異形線コイルばね1は、曲げ変形における弾性変形領域が拡大するため、90度曲げるのに必要なバネの最小長が小さくなる。実施例、比較例1及び比較例2におけるコイルばねにおいて90度曲げるのに必要な最小長は、以下の通りである。
実施例(塑性加工による巻線断面矩形状の異形線コイルばね):29mm
比較例1(塑性加工によらない巻線断面矩形状の異形線コイルばね):65mm
比較例2(巻線断面円形状のコイルばね):129mm
As described above, the deformed wire coil spring 1 of the present embodiment has an expanded elastic deformation region in bending deformation, so that the minimum length of the spring necessary for bending by 90 degrees is reduced. The minimum length required to bend 90 degrees in the coil springs in the example, comparative example 1 and comparative example 2 is as follows.
Example (a deformed wire coil spring having a rectangular winding cross section by plastic working): 29 mm
Comparative example 1 (irregular wire coil spring having a rectangular winding cross section without plastic working): 65 mm
Comparative Example 2 (coil spring having a circular winding cross section): 129 mm

したがって、本実施形態の異形線コイルばね1をマニピュレータの関節部に用いた場合には、異形線コイルばね1の全長を短くすることができ、関節部のコンパクト化を図ることができる。   Therefore, when the deformed wire coil spring 1 of the present embodiment is used for the joint portion of the manipulator, the total length of the deformed wire coil spring 1 can be shortened, and the joint portion can be made compact.

ところで、前述したように、本実施形態の異形線コイルばね1を医療用ロボットのマニピュレータに用いる場合、異形線コイルばね1の小型化が望まれる一方、屈曲可動域を確保しつつ、グリッパーを支持して動作させることが可能な強度が必要である。   By the way, as described above, when the deformed wire coil spring 1 of this embodiment is used for a manipulator of a medical robot, it is desired to reduce the size of the deformed wire coil spring 1, while supporting the gripper while ensuring a bending movable range. The strength that can be operated is required.

これらを考慮し、関節部の屈曲可動域を確保しつつ、グリッパーを支持して動作させることができる異形線コイルばね1を構成する巻線の断面形状の好ましい寸法範囲について検討した。以下では、関節部の屈曲可動域を確保しつつ、グリッパーを支持して動作させることが可能な条件として、ばね定数k=2.5[N/mm]、ねじりトルク強度T=1.0[N・m]を設定した。   Considering these, the preferred dimension range of the cross-sectional shape of the winding wire constituting the deformed wire coil spring 1 capable of supporting and operating the gripper while securing the bending movable range of the joint portion was examined. In the following, as a condition capable of supporting and operating the gripper while securing the bending movable range of the joint portion, the spring constant k = 2.5 [N / mm] and the torsion torque strength T = 1.0 [ N · m] was set.

まず、図1に示す巻線断面が矩形状の異形線コイルばね1について、ばね定数2.5[N/mm]を一定にした場合の巻線断面の縦幅bを求めた。巻線断面の縦幅bを求めるために、以下の表1に示す条件を使用したモデルを作製した。   First, for the deformed wire coil spring 1 having a rectangular winding cross section shown in FIG. 1, the longitudinal width b of the winding cross section when the spring constant of 2.5 [N / mm] is constant was obtained. In order to obtain the longitudinal width b of the winding cross section, a model using the conditions shown in Table 1 below was produced.

Figure 0006422148
Figure 0006422148

表1の異形線コイルばねは、いずれも、図1に示すように巻線の断面形状がコイル半径方向に横長の矩形状(横長形状)であるものとする。また、ここでは、巻線断面の横幅aと外径Doの比a/Do=0.25(一定)と仮定して理論計算を行った(参考文献 ばね 第4版:日本ばね学会 編)。   As shown in FIG. 1, each of the deformed wire coil springs in Table 1 has a winding cross-sectional shape that is horizontally long in the coil radial direction (horizontally long shape). Further, here, theoretical calculation was performed assuming that the ratio of the transverse width a of the winding cross section to the outer diameter Do a / Do = 0.25 (constant) (reference spring 4th edition: edited by the Japanese Society of Spring Science).

図10Aはアルミニウムを使用した場合において所定のばね定数を得るための異形線コイルばねの巻線断面の縦幅bを示した図であり、図10Bはアルミニウムを使用した場合の異形線コイルばねの巻線断面の横縦比a/bを示した図である(ばね定数k=2.5[N/mm])。また、図11AはSUS304を使用した場合において所定のばね定数を得るための異形線コイルばねの巻線断面の縦幅bを示した図であり、図11BはSUS304を使用した場合の異形線コイルばねの巻線断面の横縦比a/bを示した図である(ばね定数k=2.5[N/mm])。図10A,B及び図11A,Bにおいて破線はそれぞれ縦幅b又は横縦比a/bに対する上下各10%のずれを示している。ばね定数を一定とした場合、巻線断面の横縦比a/bの適正値は図10B及び図11Bに示す破線間である。   FIG. 10A is a diagram showing a longitudinal width b of a winding cross section of a deformed wire coil spring for obtaining a predetermined spring constant when aluminum is used, and FIG. 10B is a diagram of the deformed wire coil spring when aluminum is used. It is the figure which showed the aspect ratio a / b of the coil | winding cross section (spring constant k = 2.5 [N / mm]). FIG. 11A is a diagram showing a longitudinal width b of a winding cross section of a deformed wire coil spring for obtaining a predetermined spring constant when SUS304 is used, and FIG. 11B is a deformed wire coil when SUS304 is used. It is the figure which showed the aspect ratio a / b of the coil | winding cross section of a spring (spring constant k = 2.5 [N / mm]). In FIGS. 10A and 10B and FIGS. 11A and 11B, broken lines indicate 10% deviations in the vertical direction with respect to the vertical width b or the aspect ratio a / b. When the spring constant is constant, the appropriate value of the aspect ratio a / b of the winding cross section is between the broken lines shown in FIGS. 10B and 11B.

図10A,図10B,図11A,図11Bに示すように、ばね定数k=2.5[N/mm]を維持するには、外径Doの減少に伴い、縦幅b及び横縦比a/bも減少させる必要がある。しかし、後述する「ねじれにくい特性」を維持するためには縦幅bの減少は好ましくない。   As shown in FIG. 10A, FIG. 10B, FIG. 11A, and FIG. 11B, in order to maintain the spring constant k = 2.5 [N / mm], as the outer diameter Do decreases, the vertical width b and aspect ratio a It is also necessary to reduce / b. However, in order to maintain the “characteristic that is difficult to twist”, which will be described later, it is not preferable to reduce the vertical width b.

次に、図1に示す巻線断面が矩形状の異形線コイルばね1について、ねじりトルク強度T=1.0[N・m]を一定にした場合の巻線断面の縦幅bを求めた。巻線断面の縦幅bを求めるために、以下の表2に示す条件を使用したモデルを作製した。   Next, for the deformed wire coil spring 1 having a rectangular winding cross section shown in FIG. 1, the longitudinal width b of the winding cross section when the torsion torque strength T = 1.0 [N · m] is constant was obtained. . In order to obtain the longitudinal width b of the winding cross section, a model using the conditions shown in Table 2 below was produced.

Figure 0006422148
Figure 0006422148

表2における「塑性加工」を用いたモデルは本実施形態の異形線コイルばねのモデルであり、「機械加工」を用いたモデルは、実際に得るのは難しいが従来のコイリング加工や切削加工によって得られる異形線コイルばねのモデルである。表2の異形線コイルばねは、いずれも、図1に示すように、巻線の断面形状がコイル半径方向に横長の矩形状(横長形状)であるものとする。また、ここでは、巻線断面の横幅aと外径Doの比a/Do=0.25(一定)と仮定して理論計算を行った。   The model using “plastic processing” in Table 2 is a model of the deformed wire coil spring of this embodiment, and the model using “machining” is difficult to obtain in practice, but by conventional coiling processing or cutting processing. It is a model of the deformed wire coil spring obtained. As shown in FIG. 1, each of the deformed wire coil springs in Table 2 has a winding cross-sectional shape that is a horizontally long rectangular shape (a horizontally long shape) in the coil radial direction. Here, theoretical calculation was performed on the assumption that the ratio a / Do = 0.25 (constant) between the width a of the winding cross section and the outer diameter Do.

図12Aはアルミニウムを使用した場合において所定値以上のねじりトルク強度を得るための異形線コイルばねの巻線断面の縦幅bの範囲を示した図であり、図12Bはアルミニウムを使用した場合の異形線コイルばねの巻線断面の横縦比a/bの範囲を示した図である(ねじりトルク強度T≧1.0[N・m])。また、図13AはSUS304を使用した場合において所定値以上のねじりトルク強度を得るための異形線コイルばねの巻線断面の縦幅bを示した図であり、図13Bは、SUS304を使用した場合の異形線コイルばねの巻線断面の横縦比a/bを示した図である(ねじりトルク強度T≧1.0[N・m])。図12A,B及び図13A,Bにおいて、実線はねじりトルク強度T=1.0[N・m]を得るための縦幅b及び横縦比a/bであり、斜線で示す範囲が、ねじりトルク強度T≧1.0[N・m]を得るための縦幅b及び横縦比a/bの範囲である。   FIG. 12A is a diagram showing a range of the longitudinal width b of the winding cross section of the deformed wire coil spring for obtaining a torsion torque strength of a predetermined value or more when aluminum is used, and FIG. 12B is a diagram when aluminum is used. It is the figure which showed the range of the aspect ratio a / b of the coil | winding cross section of a deformed wire coil spring (torsion torque intensity T> = 1.0 [N * m]). FIG. 13A is a view showing the longitudinal width b of the winding cross section of the deformed wire coil spring for obtaining a torsion torque strength of a predetermined value or more when SUS304 is used, and FIG. 13B is a case where SUS304 is used. FIG. 6 is a diagram showing an aspect ratio a / b of a winding cross section of the deformed wire coil spring (torsion torque strength T ≧ 1.0 [N · m]). In FIGS. 12A and 12B and FIGS. 13A and 13B, the solid lines are the vertical width b and aspect ratio a / b for obtaining the torsion torque strength T = 1.0 [N · m], and the range shown by the oblique lines is the torsion torque strength T = 1.0 [N · m]. This is the range of the longitudinal width b and the aspect ratio a / b for obtaining the torque intensity T ≧ 1.0 [N · m].

図12A,図12B,図13A,図13Bに示すように、異形線コイルばねがねじりトルク強度T=1.0[N・m]に耐えるには、外径Doが小さくなると、縦幅bが大きくならなければならない。図12A及び図13Aでは実線よりも上側が使用可能な範囲であり、図12B及び図13Bでは実線よりも下側が使用可能な範囲である。すなわち、図12A,図12B,図13A,図13Bにおいて斜線で示す範囲内の寸法の条件がねじりトルク強度T=1.0[N・m]に耐えられる異形線コイルばねであることを示している。   As shown in FIG. 12A, FIG. 12B, FIG. 13A, and FIG. 13B, in order for the deformed wire coil spring to withstand the torsion torque strength T = 1.0 [N · m], when the outer diameter Do decreases, the vertical width b decreases. It must grow. 12A and 13A, the upper side of the solid line is a usable range, and in FIGS. 12B and 13B, the lower side of the solid line is a usable range. 12A, 12B, 13A, and 13B, the dimension within the hatched range is a deformed wire coil spring that can withstand torsional torque strength T = 1.0 [N · m]. Yes.

また、図12A,図12B,図13A,図13Bからわかるように、本実施形態の塑性加工によって異形線コイルばねを作製することによって、従来の機械加工によって異形線コイルばねを作製する場合に比較して、巻線断面の横縦比の適用範囲が拡大する。すなわち、本実施形態の塑性加工は、従来の機械加工に比較して、更に厳しい条件に耐えうる異形線コイルばねを製造できる点で優位であると考えられる。   Further, as can be seen from FIGS. 12A, 12B, 13A, and 13B, the deformed wire coil spring is manufactured by plastic working according to the present embodiment, compared with the case of manufacturing the deformed wire coil spring by conventional machining. Thus, the applicable range of the aspect ratio of the winding cross section is expanded. That is, it is considered that the plastic working of the present embodiment is superior in that a deformed wire coil spring that can withstand more severe conditions can be manufactured as compared with conventional machining.

図14は、図10B及び図12Bを合成して示した図である。図14の斜線部分がアルミニウムで異形線コイルばねを作製する場合に、ばね定数k=2.5[N/mm]及びねじりトルク強度T≧1.0[N・m]を満たすことのできる範囲である。アルミニウムを使用する場合には、切削加工でばね定数k=2.5[N/mm]及びねじりトルク強度T≧1.0[N・m]を満たすことのできる異形線コイルばねを作製することはできない。つまり、アルミニウムを使用すると、塑性加工によってのみ、図14に示す斜線の寸法範囲でばね定数k=2.5[N/mm]及びねじりトルク強度T≧1.0[N・m]を満たすことのできる異形線コイルばねを作製することができる。   FIG. 14 is a view obtained by combining FIGS. 10B and 12B. The range in which the spring constant k = 2.5 [N / mm] and the torsion torque strength T ≧ 1.0 [N · m] can be satisfied when the deformed wire coil spring is made of aluminum with the hatched portion in FIG. It is. When aluminum is used, a deformed wire coil spring that can satisfy the spring constant k = 2.5 [N / mm] and the torsion torque strength T ≧ 1.0 [N · m] by cutting is manufactured. I can't. In other words, when aluminum is used, the spring constant k = 2.5 [N / mm] and the torsion torque strength T ≧ 1.0 [N · m] are satisfied only by plastic working within the hatched dimension range shown in FIG. A deformed wire coil spring can be manufactured.

また、図15は、図11B及び図13Bを合成して示した図である。図15の斜線部分がSUS304で異形線コイルばねを作製する場合に、ばね定数k=2.5[N/mm]及びねじりトルク強度T≧1.0[N・m]を満たすことのできる範囲である。図15に示すように、SUS304を使用する場合には、機械加工においても斜線S1で示す寸法範囲でばね定数k=2.5[N/mm]及びねじりトルク強度T≧1.0[N・m]を満たすことのできる異形線コイルばねを作製することはできる。また、SUS304を使用し塑性加工によって異形線コイルばねを作製する場合には、斜線S1よりも拡大した斜線S2で示す寸法範囲でばね定数k=2.5[N/mm]及びねじりトルク強度T≧1.0[N・m]を満たすことのできる異形線コイルばねを作製することができる。   FIG. 15 is a view obtained by combining FIGS. 11B and 13B. The range in which the hatched portion in FIG. 15 can satisfy the spring constant k = 2.5 [N / mm] and the torsion torque strength T ≧ 1.0 [N · m] when the deformed wire coil spring is made of SUS304. It is. As shown in FIG. 15, when SUS304 is used, the spring constant k = 2.5 [N / mm] and the torsion torque strength T ≧ 1.0 [N · m] can be produced. When a deformed wire coil spring is produced by plastic working using SUS304, the spring constant k = 2.5 [N / mm] and the torsion torque strength T within the dimension range indicated by the oblique line S2 larger than the oblique line S1. A deformed wire coil spring that can satisfy ≧ 1.0 [N · m] can be produced.

図14及び図15のそれぞれの右側に示した材料形態(中空線材又は中実線材)は、塑性加工する前のコイルばねの巻線断面の形状を示したものである。塑性加工によって形成する異形線コイルばねの横縦比を大きくしていくと、図13に示した断面が中実円である巻線からなるコイルばねではなく、後述する断面が中空円である巻線からなるコイルばね(図18A,B参照)を使用する必要がある。   The material form (hollow wire or solid wire) shown on the right side of each of FIG. 14 and FIG. 15 shows the shape of the winding cross section of the coil spring before plastic working. When the aspect ratio of the deformed wire coil spring formed by plastic working is increased, the coil spring having a cross section shown in FIG. It is necessary to use a coil spring made of wire (see FIGS. 18A and B).

以上の結果をまとめると、横幅aと外径Doとの比a/Do=0.25(一定)とした条件では、材料にアルミニウムを用いる場合には、塑性加工で作製される異形線コイルばねの巻線断面は横縦比a/bが3.5以上4以下の矩形状とするのが好ましい。また、材料にSUS304を用いる場合には、塑性加工で作製される異形線コイルばねの巻線断面は横縦比a/bが3.5以上5.7以下の矩形状とするのが好ましい。さらに、図15から、横幅aと外径Doとの比a/Do=0.25(一定)とした条件では塑性加工における異形線コイルばねの外径Doは、Do=5mmまで作製可能であることがわかる。また、従来マニピュレータに用いられている異形線コイルばねの外径はおよそ10mmであることから、本実施形態の異形線コイルばねの外径の好ましい範囲は5mm以上10mm以下である。   To summarize the above results, under the condition that the ratio of the lateral width a to the outer diameter Do is a / Do = 0.25 (constant), when using aluminum as the material, the deformed wire coil spring produced by plastic working It is preferable that the winding cross section has a rectangular shape with an aspect ratio a / b of 3.5 or more and 4 or less. Further, when SUS304 is used as the material, the winding cross section of the deformed wire coil spring produced by plastic working is preferably rectangular with an aspect ratio a / b of 3.5 or more and 5.7 or less. Further, from FIG. 15, the outer diameter Do of the deformed wire coil spring in plastic processing can be produced up to Do = 5 mm under the condition that the ratio of the lateral width a to the outer diameter Do is a / Do = 0.25 (constant). I understand that. Moreover, since the outer diameter of the deformed wire coil spring conventionally used for the manipulator is about 10 mm, the preferable range of the outer diameter of the deformed wire coil spring of this embodiment is 5 mm or more and 10 mm or less.

なお、図10〜図15に示した異形線コイルばねの特性は、巻線断面の横幅aと外径Doとの比a/Do=0.25(一定)と仮定して行った。これに対し、巻線断面の横幅aと外径Doとの比を、例えば比a/Do=0.30に変更すると、傾向は同じであるが、図10Bや図11Bの破線領域は下側に移動する(すなわち、横縦比a/bは小さくなる)。したがって、本実施形態の異形線コイルばね1における巻線断面の横縦比a/bの好ましい範囲は、上述した限りではない。   Note that the characteristics of the deformed wire coil spring shown in FIGS. 10 to 15 were performed on the assumption that the ratio of the lateral width a of the winding cross section to the outer diameter Do was a / Do = 0.25 (constant). On the other hand, if the ratio between the width a of the winding cross section and the outer diameter Do is changed to, for example, the ratio a / Do = 0.30, the tendency is the same, but the broken line regions in FIG. 10B and FIG. (That is, the aspect ratio a / b becomes smaller). Therefore, the preferable range of the aspect ratio a / b of the winding cross section in the deformed wire coil spring 1 of the present embodiment is not limited to the above.

[1−3.変形例]
上述した本実施形態では、巻線断面が中実円のコイルばね20を塑性加工することで巻線断面が矩形状の異形線コイルばね1を形成する例を説明したが、塑性加工前のコイルばねの巻線断面を変えることで、塑性加工によって得られる異形線コイルばねの更なる特性の改善が可能になる。以下の変形例において、塑性加工前のコイルばねの形状を本実施形態とは異ならせる例を説明する。
[1-3. Modified example]
In the present embodiment described above, an example in which the deformed wire coil spring 1 having a rectangular winding cross section is formed by plastic processing the coil spring 20 having a solid winding cross section is described. By changing the winding cross section of the spring, it is possible to further improve the characteristics of the deformed wire coil spring obtained by plastic working. In the following modifications, an example in which the shape of the coil spring before plastic working is different from that of the present embodiment will be described.

図16Aは上述した本実施形態における塑性加工前のコイルばね20の巻線断面図であり、図16Bはそのコイルばねを塑性加工することで得られる異形線コイルばね1の巻線断面図である。図16A,図16Bに示すように、巻線断面が中実円のコイルばね20の場合、隣接する巻線同士の接触面積は小さいため、コイルばね20をコイル軸方向に押圧した場合、押圧力の伝達方向が不安定になりやすく、図16Bに示すように、上下の巻線間に中心軸からの位置ずれが生じる場合がある。   FIG. 16A is a winding cross-sectional view of the coil spring 20 before the plastic working in the above-described embodiment, and FIG. 16B is a winding cross-sectional view of the deformed wire coil spring 1 obtained by plastic working the coil spring. . As shown in FIGS. 16A and 16B, in the case of the coil spring 20 having a solid winding cross section, since the contact area between adjacent windings is small, the pressing force when the coil spring 20 is pressed in the coil axial direction The transmission direction is likely to be unstable, and as shown in FIG. 16B, a positional deviation from the central axis may occur between the upper and lower windings.

図17A,Bは、変形例1に係る塑性加工前のコイルばね40及び塑性加工後の異形線コイルばね41のそれぞれの巻線断面を示す図である。図17Aに示すように、塑性加工前のコイルばねとして、巻線断面が矩形状のコイルばね40を用いると、隣接する巻線同士の接触面積が大きいため、コイルばね40をコイル軸方向に押圧した場合、押圧力の伝達方向が安定する。このため、コイルばね40を圧縮する工程で生じる巻線間のずれを低減することができる。これにより、図17Bに示すように塑性加工後の異形線コイルばね41は上下の巻線間の中心軸に対する位置ずれを低減することができる。なお、図17Aに示す塑性加工前の巻線断面が矩形状のコイルばね40は、その巻線断面の横縦比がそれほど高くなく、通常のコイリング加工によって作製可能なコイルばねであるものとする。   17A and 17B are diagrams showing winding cross sections of the coil spring 40 before plastic working and the deformed wire coil spring 41 after plastic working according to the first modification. As shown in FIG. 17A, when a coil spring 40 having a rectangular winding cross section is used as a coil spring before plastic working, the contact area between adjacent windings is large, so the coil spring 40 is pressed in the coil axial direction. In this case, the transmission direction of the pressing force is stabilized. For this reason, the shift | offset | difference between the windings which arises in the process of compressing the coil spring 40 can be reduced. Thereby, as shown in FIG. 17B, the deformed wire coil spring 41 after plastic working can reduce the positional deviation with respect to the central axis between the upper and lower windings. Note that the coil spring 40 having a rectangular winding cross section before plastic processing shown in FIG. 17A is a coil spring that is not so high in aspect ratio of the winding cross section and can be manufactured by ordinary coiling. .

図18A,Bは、変形例2に係る塑性加工前のコイルばね42及び塑性加工後の異形線コイルばね43のそれぞれの巻線断面を示す図である。変形例2は、図18Aに示すように、巻線断面が中空円のコイルばね42をコイル軸方向に圧縮して、巻線の断面形状がコイル半径方向に長い横長形状である異形線コイルばね43を形成する例である。図18Aに示すように、塑性加工前のコイルばねとして巻線断面が中空円のコイルばね42を用いることによって、図18Bに示すように、より高い横縦比を有する異形線コイルばね43を得ることができる。また、変形例2のように、塑性加工前のコイルばね42を中空円とすることで、図18Bに示すように塑性加工するために必要な軸方向からの圧縮力が低減するので、図16A,Bに示す例に比較して上下の巻線間のコイル軸に対する位置ずれを低減できる。   18A and 18B are views showing cross sections of windings of the coil spring 42 before plastic working and the deformed wire coil spring 43 after plastic working according to the second modification. As shown in FIG. 18A, the modified example 2 is a deformed wire coil spring in which the coil spring 42 having a hollow winding cross section is compressed in the coil axial direction and the winding cross section is a horizontally long shape extending in the coil radial direction. 43 is an example. As shown in FIG. 18A, by using a coil spring 42 having a hollow cross section as a coil spring before plastic working, a deformed wire coil spring 43 having a higher aspect ratio is obtained as shown in FIG. 18B. be able to. Further, as in Modification 2, by making the coil spring 42 before plastic working into a hollow circle, the compressive force from the axial direction necessary for plastic working as shown in FIG. 18B is reduced. Compared with the example shown in FIGS. 1 and 2, the positional deviation with respect to the coil axis between the upper and lower windings can be reduced.

図19A,Bは、変形例3に係る塑性加工前のコイルばね44及び塑性加工後の異形線コイルばね45のそれぞれの巻線断面を示す図である。変形例3は、図19Aに示すように、巻線断面が中空の矩形状のコイルばね44をコイル軸方向に圧縮して、コイル軸方向の巻線断面の形状が横長形状である異形線コイルばね45を形成する例である。図19Aに示すように、塑性加工前のコイルばねとして、巻線断面が中空の矩形状のコイルばね44を用いることによって、図19Bに示すように、塑性加工時における巻線間のずれを低減すると共に、より高い横縦比を有する異形線コイルばね45を得ることができる。   19A and 19B are diagrams showing winding cross sections of the coil spring 44 before plastic working and the deformed wire coil spring 45 after plastic working according to Modification 3. FIG. As shown in FIG. 19A, modified example 3 is a deformed wire coil in which a rectangular coil spring 44 having a hollow winding cross section is compressed in the coil axial direction, and the shape of the winding cross section in the coil axial direction is a horizontally long shape. This is an example of forming a spring 45. As shown in FIG. 19A, by using a rectangular coil spring 44 having a hollow winding cross section as a coil spring before plastic working, as shown in FIG. 19B, deviation between windings during plastic working is reduced. In addition, the deformed wire coil spring 45 having a higher aspect ratio can be obtained.

〈2.第2の実施形態:マニピュレータ〉
次に、本発明の第2の実施形態として、上述した第1の実施形態における異形線コイルばねを用いたマニピュレータについて説明する。図20は、本発明の第2の実施形態に係るマニピュレータの概略構成図である。
<2. Second Embodiment: Manipulator>
Next, as a second embodiment of the present invention, a manipulator using the deformed wire coil spring in the above-described first embodiment will be described. FIG. 20 is a schematic configuration diagram of a manipulator according to the second embodiment of the present invention.

本実施形態のマニピュレータ30は、腹腔鏡手術を行う医療用ロボットに用いられるものである。図20に示すように、本実施形態のマニピュレータ30は、関節部31と、グリッパー32と、アーム部33と、駆動部34とを備える。   The manipulator 30 of this embodiment is used for a medical robot that performs laparoscopic surgery. As shown in FIG. 20, the manipulator 30 according to this embodiment includes a joint portion 31, a gripper 32, an arm portion 33, and a drive portion 34.

関節部31は、上述した第1の実施形態で示した図1の異形線コイルばね1で構成されており、その異形線コイルばね1に設けられた4つの貫通孔31aに駆動ワイヤ35が挿通されている。貫通孔31aは、異形線コイルばね1の巻線をコイル軸方向に貫通する孔であり、異形線コイルばね1のコイル軸方向と直交する面において等間隔に4つの貫通孔31aが設けられている。そして、関節部31では、異形線コイルばね1の貫通孔31aに挿通された駆動ワイヤ35は後述する駆動部34に設けられた空気圧シリンダ(図示を省略する)に接続されている。本実施形態では、4つの空気圧シリンダによる拮抗駆動により関節部31の曲げ伸ばしを行うことができる。そして、本実施形態の関節部31では、4つの空気シリンダによる拮抗駆動により2自由度の屈曲が可能である。   The joint portion 31 is configured by the deformed wire coil spring 1 of FIG. 1 shown in the first embodiment described above, and the drive wire 35 is inserted into the four through holes 31 a provided in the deformed wire coil spring 1. Has been. The through hole 31a is a hole that penetrates the winding of the deformed wire coil spring 1 in the coil axis direction, and four through holes 31a are provided at equal intervals on the surface orthogonal to the coil axis direction of the deformed wire coil spring 1. Yes. And in the joint part 31, the drive wire 35 penetrated by the through-hole 31a of the deformed wire coil spring 1 is connected to the pneumatic cylinder (illustration omitted) provided in the drive part 34 mentioned later. In the present embodiment, the joint portion 31 can be bent and stretched by antagonistic driving using four pneumatic cylinders. And in the joint part 31 of this embodiment, bending | flexion of 2 degrees of freedom is possible by the antagonistic drive by four air cylinders.

グリッパー32は、対象物を把持したり抑えたりすることが可能な鉗子であり、関節部31を構成する異形線コイルばね1の一端側に取り付けられている。グリッパー32は、関節部31を構成する異形線コイルばね1の軸孔31b及びアーム部33を通って駆動部34に接続されるエアチューブ36に接続されておりエアチューブ36を介して駆動部34により把持動作が成される。   The gripper 32 is a forceps capable of gripping and suppressing an object, and is attached to one end side of the deformed wire coil spring 1 constituting the joint portion 31. The gripper 32 is connected to the air tube 36 connected to the drive unit 34 through the shaft hole 31 b and the arm unit 33 of the deformed wire coil spring 1 constituting the joint portion 31, and the drive unit 34 via the air tube 36. The gripping operation is performed by.

アーム部33は、関節部31の外径とほぼ同程度の外径の円柱部材で構成されており、先端に関節部31が接続され、後端に駆動部34が接続されている。関節部31を駆動する駆動ワイヤ35やグリッパー32に接続されるエアチューブ36は、円柱部材で構成されるアーム部33の内部を通って駆動部34に接続されている。   The arm portion 33 is formed of a cylindrical member having an outer diameter substantially the same as the outer diameter of the joint portion 31, and the joint portion 31 is connected to the front end and the drive portion 34 is connected to the rear end. An air tube 36 connected to the drive wire 35 and the gripper 32 that drives the joint portion 31 is connected to the drive portion 34 through the inside of an arm portion 33 formed of a cylindrical member.

駆動部34は、関節部31を駆動する4つの空気圧シリンダとグリッパー32を駆動する空気圧シリンダとを備える。駆動部34では、4つの空気圧シリンダによって各駆動ワイヤの張力を制御することで関節部31を屈曲動作させる。また、本実施形態では、関節部31の屈曲とグリッパー32の把持動作とは個別に駆動されるので、関節部31の動作とグリッパー32の動作とは互いに干渉することはない。   The drive unit 34 includes four pneumatic cylinders that drive the joint portion 31 and a pneumatic cylinder that drives the gripper 32. In the drive part 34, the joint part 31 is bent by controlling the tension of each drive wire by four pneumatic cylinders. Further, in the present embodiment, the bending of the joint portion 31 and the gripping operation of the gripper 32 are driven separately, so that the operation of the joint portion 31 and the operation of the gripper 32 do not interfere with each other.

本実施形態では、関節部31に塑性加工により加工硬化された異形線コイルばね1を用いることによって関節部31の小型化が可能になるため、マニピュレータ30全体の小型化が可能になる。さらに、関節部31に用いられる異形線コイルばね1は、通常のコイリング加工よって形成可能なコイルばねを塑性加工することによって作製することができるため、コストの低減を図ることができる。   In the present embodiment, the joint portion 31 can be downsized by using the deformed wire coil spring 1 that is work-hardened by plastic working for the joint portion 31, so that the entire manipulator 30 can be downsized. Furthermore, the deformed wire coil spring 1 used for the joint portion 31 can be manufactured by plastic processing a coil spring that can be formed by a normal coiling process, so that the cost can be reduced.

以上、本発明の実施の形態について説明したが、本発明は、上述した実施の形態に限られるものではなく、本発明の趣旨を逸脱しない範囲内において種々の変更が可能である。また、上述の実施の形態では、異形線コイルばねをマニピュレータの関節部として用いる例を説明したが、その他、小型化が要求されるロボットの関節部として使用することも可能である。本実施形態の異形線コイルばねは、例えば、小型のユニバーサルジョイント、先端が曲がるドライバー、回転曲げ加工機の変形可能なマンドレル等に適用できる。また、本実施形態の異形線コイルばねは小型化が可能であるため、小型ダンバーや、短尺なバネしか用いることのできない場所への適用が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. In the above-described embodiment, the example in which the deformed wire coil spring is used as the joint portion of the manipulator has been described. However, it is also possible to use the deformed wire coil spring as a joint portion of a robot that is required to be downsized. The deformed wire coil spring of this embodiment can be applied to, for example, a small universal joint, a screwdriver with a bent tip, a deformable mandrel of a rotary bending machine, and the like. Moreover, since the deformed wire coil spring of this embodiment can be reduced in size, it can be applied to a place where only a small damper or a short spring can be used.

1・・・異形線コイルばね、10・・・製造治具、11・・・台、12・・・押圧部、12a・・・押圧軸、12b・・・押圧部本体、13・・・容器、13a・・・孔、13b・・・押圧部本体、30・・・マニピュレータ、31・・・関節部、31a・・・貫通孔、31b・・・軸孔、32・・・グリッパー、33・・・アーム部、34・・・駆動部、35・・・駆動ワイヤ、36・・・エアチューブ   DESCRIPTION OF SYMBOLS 1 ... Modified wire coil spring, 10 ... Manufacturing jig, 11 ... Stand, 12 ... Pressing part, 12a ... Pressing shaft, 12b ... Pressing part main body, 13 ... Container , 13a ... hole, 13b ... pressing part body, 30 ... manipulator, 31 ... joint part, 31a ... through hole, 31b ... shaft hole, 32 ... gripper, 33 ..Arm part 34 ... Drive part 35 ... Drive wire 36 ... Air tube

Claims (1)

所定の断面形状を有する金属線材を円筒状に巻回して形成されたコイルばねを、前記コイルばねの軸方向に所定の圧力で押圧することで、前記コイルばねの巻線の断面形状が前記コイルばねの半径方向に長い横長形状となるように塑性加工された異形線コイルばねによって構成された関節部と、
前記関節部の先端側に設けられ、把持動作を行うグリッパーと
を備えるマニピュレータ。
A coil spring formed by winding a metal wire having a predetermined cross-sectional shape into a cylindrical shape is pressed in the axial direction of the coil spring with a predetermined pressure, so that the cross-sectional shape of the coil spring winding is changed to the coil. A joint part constituted by a deformed wire coil spring plastically processed so as to have a horizontally long shape in the radial direction of the spring;
A manipulator comprising: a gripper that is provided on a distal end side of the joint portion and performs a gripping operation.
JP2014104266A 2014-05-20 2014-05-20 manipulator Active JP6422148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014104266A JP6422148B2 (en) 2014-05-20 2014-05-20 manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104266A JP6422148B2 (en) 2014-05-20 2014-05-20 manipulator

Publications (2)

Publication Number Publication Date
JP2015218849A JP2015218849A (en) 2015-12-07
JP6422148B2 true JP6422148B2 (en) 2018-11-14

Family

ID=54778389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104266A Active JP6422148B2 (en) 2014-05-20 2014-05-20 manipulator

Country Status (1)

Country Link
JP (1) JP6422148B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491503B2 (en) * 2018-08-14 2024-05-28 日本発條株式会社 Robotic surgical instruments
WO2020036081A1 (en) * 2018-08-14 2020-02-20 日本発條株式会社 Instrument for surgical assistance robot

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9403008D0 (en) * 1993-03-05 1994-04-06 Luk Lamellen & Kupplungsbau Helical spring
JPH10311357A (en) * 1997-05-13 1998-11-24 Chuo Hatsujo Kogyo Kk Spring assembly
JP2000337415A (en) * 1999-05-24 2000-12-05 Tama Spring:Kk Nonlinear deformed coil spring and manufacture thereof
JP3438867B2 (en) * 1999-09-03 2003-08-18 株式会社東京マルイ Manufacturing method of elliptic coil spring used for toy gun
JP2001240986A (en) * 1999-12-21 2001-09-04 Kobe Steel Ltd Rust preventive having excellent rust resistance and bundling property and iron and steel wire coil coated with this rust preventive
JP2003252546A (en) * 2002-03-01 2003-09-10 Mitsubishi Electric Corp Shock absorber for elevator
JP2005186092A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Method for manufacturing irregular cross-section coil and method for incorporating irregular cross-section coil
JP2012119452A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Manufacturing method for reactor coil
JP6159075B2 (en) * 2012-11-01 2017-07-05 国立大学法人東京工業大学 Forceps manipulator and forceps system including forceps manipulator

Also Published As

Publication number Publication date
JP2015218849A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP5246884B2 (en) Guide wire
KR102122822B1 (en) Medical instrument with flexible jaw and/or flexible wrist mechanisms
JP4497379B2 (en) Medical treatment tool
US8888690B2 (en) Curved cannula
US8333417B2 (en) Manipulator tool and holding and/or expanding tool with at least one manipulator tool
RU2506883C2 (en) Control device
US8394116B2 (en) Surgical tools and components thereof
JP2016513500A (en) Method, apparatus and system for facilitating instrument bending in a surgical environment
JP2016512075A (en) Ultrasonic surgical drill and related surgical methods
JP6422148B2 (en) manipulator
JP2015139575A (en) medical wire and medical equipment
JP2013119151A (en) Finger joint structure
CN107847228A (en) Double hook ultrasonic surgical blade head
JP2013119151A5 (en)
JPWO2013038813A1 (en) MEDICAL COIL, MANUFACTURING METHOD THEREOF, AND MEDICAL DEVICE
WO2011152113A1 (en) Driving force transmitting mechanism and manipulator system
KR101836301B1 (en) Surgical clamping instrument
US20100331879A1 (en) Articulating Surgical Hand Tool
US9687302B2 (en) Surgical instruments having improved wear resistance, and methods of making the same
WO2020105616A1 (en) Bending mechanism and medical device
JP2006334268A (en) An ultrasonically driven scalpel that actively curves and extends a superelastic alloy vibration transmitter using a link mechanism.
Tsubouchi et al. Development of coiled springs with high rectangular ratio in cross-section
CN107530076A (en) Flexible staple guiding piece
WO2013073675A1 (en) Ultrasonic vibration probe, method for manufacturing ultrasonic vibration probe and ultrasonic therapeutic device
JP2005013296A (en) Medical treatment instrument using wire rope for operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181012

R150 Certificate of patent or registration of utility model

Ref document number: 6422148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150