[go: up one dir, main page]

JP6418226B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6418226B2
JP6418226B2 JP2016233030A JP2016233030A JP6418226B2 JP 6418226 B2 JP6418226 B2 JP 6418226B2 JP 2016233030 A JP2016233030 A JP 2016233030A JP 2016233030 A JP2016233030 A JP 2016233030A JP 6418226 B2 JP6418226 B2 JP 6418226B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
less
sheet
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016233030A
Other languages
Japanese (ja)
Other versions
JP2017106111A (en
Inventor
今村 猛
今村  猛
雅紀 竹中
雅紀 竹中
有衣子 江橋
有衣子 江橋
早川 康之
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017106111A publication Critical patent/JP2017106111A/en
Application granted granted Critical
Publication of JP6418226B2 publication Critical patent/JP6418226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、変圧器の鉄心材料に好適な方向性電磁鋼板の製造方法に関する。   The present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for a core material of a transformer.

方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にいわゆるゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。   Oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet. . Such a texture preferentially grows grains of the {110} <001> orientation called the Goss orientation during secondary recrystallization annealing during the production process of grain-oriented electrical steel sheets. Formed through secondary recrystallization.

この方向性電磁鋼板については、インヒビターと呼ばれる析出物を使用して仕上焼鈍中にGoss方位を有する粒を二次再結晶させることが一般的な技術として使用されている。例えば、特許文献1記載のAlN、MnSを使用する方法、特許文献2記載のMnS、MnSeを使用する方法などが開示され、工業的に実用化されている。これらのインヒビターを用いる方法は、1300℃超と高温でのスラブ加熱を必要とするが、安定して二次再結晶粒を発達させるのに極めて有用な方法であった。さらには、これらのインヒビターの働きを強化するために特許文献3にPb、Sb、Nb、Teを利用する方法が、特許文献4にZr、Ti、B、Nb、Ta、V、Cr、Moを利用する方法が開示されている。   For this grain-oriented electrical steel sheet, it is a common technique to use secondary precipitates called inhibitors to recrystallize grains having Goss orientation during finish annealing. For example, a method using AlN and MnS described in Patent Document 1 and a method using MnS and MnSe described in Patent Document 2 are disclosed and industrially put into practical use. Although the method using these inhibitors requires slab heating at a high temperature exceeding 1300 ° C., it is a very useful method for stably developing secondary recrystallized grains. Furthermore, in order to reinforce the action of these inhibitors, Patent Document 3 discloses a method using Pb, Sb, Nb and Te, and Patent Document 4 discloses Zr, Ti, B, Nb, Ta, V, Cr and Mo. A method of using is disclosed.

さらに、特許文献5には酸可溶性Al(sol.Al)を0.010〜0.060%含有させ、スラブ加熱を低温に抑え、脱炭焼鈍工程で適正な窒化雰囲気下で窒化を行うことにより、二次再結晶時に(Al,Si)Nを析出させてインヒビターとして用いる方法が提案されている。(Al,Si)Nは鋼中に微細分散して有効なインヒビターとして機能するが、Alの含有量によってインヒビター強度が決まるため、製鋼でのAl量の的中精度が十分ではない場合は、十分な粒成長抑制力が得られないことがあった。このような途中工程で窒化処理を行い、(Al,Si)NあるいはAlNをインヒビターとして利用する方法は数多く提案されている。   Furthermore, Patent Document 5 contains 0.010 to 0.060% of acid-soluble Al (sol. Al), suppresses slab heating to a low temperature, and performs nitriding in an appropriate nitriding atmosphere in a decarburization annealing process, thereby performing secondary re-treatment. A method has been proposed in which (Al, Si) N is precipitated during crystallization and used as an inhibitor. (Al, Si) N functions as an effective inhibitor by being finely dispersed in the steel, but since the inhibitor strength is determined by the Al content, it is sufficient if the accuracy of Al content in steelmaking is not sufficient. In some cases, it was impossible to obtain a sufficient grain growth inhibitory force. Numerous methods have been proposed in which nitriding is performed during such an intermediate step and (Al, Si) N or AlN is used as an inhibitor.

一方、インヒビター成分を含有しない素材において、ゴス方位結晶粒を二次再結晶により発達させる技術が特許文献6等で開示されている。これは、インヒビター成分のような不純物を極力排除する事で、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビターを用いずともGoss方位を有する粒を二次再結晶させる技術であり、その効果をテクスチャーインヒビション効果と呼んでいる。この方法では、インヒビターの鋼中微細分散が必要ではないため、これまで必須であった高温スラブ加熱も必要としないことなど、コスト面でもメンテナンス面でも大きなメリットを供する。   On the other hand, Patent Document 6 discloses a technique for developing Goss-oriented crystal grains by secondary recrystallization in a material that does not contain an inhibitor component. By eliminating impurities such as inhibitor components as much as possible, the grain boundary energy dependency of the grain boundary energy at the time of primary recrystallization becomes obvious, and the Goss orientation can be changed without using an inhibitor. This is a technique for secondarily recrystallizing grains, and this effect is called a texture inhibition effect. Since this method does not require fine dispersion of the inhibitor in steel, it does not require high-temperature slab heating, which has been essential so far.

特公昭40-15644号公報Japanese Patent Publication No.40-15644 特公昭51-13469号公報Japanese Patent Publication No.51-13469 特公昭38-8214号公報Japanese Patent Publication No.38-8214 特開昭52-24116号公報JP-A-52-24116 特許第2782086号公報Japanese Patent No. 2782086 特開2000-129356号公報JP 2000-129356 JP

しかしながら、インヒビターレス素材では一次再結晶焼鈍時に粒成長を抑制し、一定の粒径にそろえる機能を有するインヒビターが存在しないため、工程条件や素材成分が若干変わっただけで一次再結晶後の鋼板の結晶粒径の変動が大きかったり、不均一な粒径分布になることが多かった。このため、これまで提案されてきたインヒビターレス法を用いた方向性電磁鋼板の製造方法では、良好な磁気特性を安定的に実現することは必ずしも容易ではなかった。   However, with inhibitor-free materials, there is no inhibitor that suppresses grain growth during primary recrystallization annealing, and there is no inhibitor that has the function of aligning to a certain particle size. In many cases, the variation of the crystal grain size was large or the grain size distribution was uneven. For this reason, it has not always been easy to stably achieve good magnetic properties in the method of manufacturing grain-oriented electrical steel sheets using the inhibitorless method proposed so far.

例えば、スラブ加熱時には、炉の中でスキッドと呼ばれる複数の梁にスラブが置かれて焼鈍されることが一般的である。スラブ内において、このスキッドに乗っている位置では、そのスキッドからの抜熱の影響で、乗っていない位置よりも低温になる。すなわち、スラブ内で温度変動が不可避的に発生する。インヒビターレス素材では、この変動が上述の一次再結晶後の粒径のコイル内変動に直結し、磁気特性のばらつきとなることが頻発した。   For example, at the time of slab heating, the slab is generally placed in a plurality of beams called skids in a furnace and annealed. In the slab, the position on the skid is lower in temperature than the position on the skid due to the effect of heat removal from the skid. That is, temperature fluctuations inevitably occur in the slab. In the inhibitor-less material, this variation is often directly linked to the above-described variation in the grain size after the primary recrystallization, resulting in variations in magnetic properties.

本発明は、従来よりもさらに方向性電磁鋼板の磁気特性を安定化させ、かつ、磁気特性の劣化を効果的に防止することを目的とする。   An object of the present invention is to stabilize the magnetic properties of grain-oriented electrical steel sheets more than before and to effectively prevent deterioration of the magnetic properties.

以下、本発明を導くに至った実験結果について説明する。
(実験1)
質量比でC:0.035%、Si:3.33%、Mn:0.08%、N:25ppm、sol.Al:55ppm、S:12ppmを含んだ鋼スラブA、C:0.036%、Si:3.35%、Mn:0.08%、N:27ppm、sol.Al:52ppm、S:77ppmを含んだ鋼スラブB、C:0.035%、Si:3.32%、Mn:0.08%、N:27ppm、sol.Al:51ppm、S:75ppm、Sb:0.055%を含んだ鋼スラブCを各々連続鋳造にて製造し、1230℃で70分均熱するスラブ加熱を行った後、熱間圧延により2.0mmの厚さに仕上げた。このとき、熱間圧延の粗圧延後のシートバーの厚みは40mmであり、その粗圧延直後の幅方向中心部の表面温度を1本のシートバーにおける長手方向の最低温度を1010℃、最高温度を1060℃、すなわち変動代を50℃とした。その後、1000℃で30秒、乾燥窒素雰囲気の熱延板焼鈍を施した後、冷間圧延で0.23mmの板厚に仕上げた。
Hereinafter, experimental results that led to the present invention will be described.
(Experiment 1)
Steel slab A containing C: 0.035%, Si: 3.33%, Mn: 0.08%, N: 25ppm, sol.Al: 55ppm, S: 12ppm by mass ratio, C: 0.036%, Si: 3.35%, Mn: Steel slab B containing 0.08%, N: 27ppm, sol.Al:52ppm, S: 77ppm, C: 0.035%, Si: 3.32%, Mn: 0.08%, N: 27ppm, sol.Al:51ppm, S: Steel slabs C each containing 75 ppm and Sb: 0.055% were produced by continuous casting, slab heating was performed at 1230 ° C. for 70 minutes, and finished to a thickness of 2.0 mm by hot rolling. At this time, the thickness of the sheet bar after the hot rolling rough rolling is 40 mm, the surface temperature at the center in the width direction immediately after the rough rolling is 1010 ° C, the lowest temperature in the longitudinal direction of one sheet bar, the highest temperature Was set to 1060 ° C., that is, the fluctuation margin was set to 50 ° C. Then, after hot-rolled sheet annealing in a dry nitrogen atmosphere at 1000 ° C. for 30 seconds, the sheet thickness was finished by cold rolling to 0.23 mm.

さらに、830℃で80秒、50%H-50%N、露点50℃の湿潤雰囲気下での脱炭をともなう一次再結晶焼鈍を施した。さらにMgOを主体とする焼鈍分離剤を塗布し、1200℃で5時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。 Further, primary recrystallization annealing was performed with decarburization in a humid atmosphere of 830 ° C. for 80 seconds, 50% H 2 -50% N 2 and dew point of 50 ° C. Further, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1200 ° C. for 5 hours and maintained in a hydrogen atmosphere.

得られたサンプルの磁束密度B(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。本実験では、コイル内の磁性ばらつきを評価するため、粗圧延直後のシートバー表面温度の最低温度と最高温度の位置の両方で磁気特性を評価した。得られた結果を図1に示す。この結果から、インヒビターレス成分系である鋼スラブAは粗圧延直後のシートバー表面温度の最低温度部と最高温度部の磁性差(磁気特性の差)が大きく、Sを増加した鋼スラブBでは差が軽減されているが、絶対値が低下している。これらに対して、S増加に加えて、Sbを添加した鋼スラブCは磁性差も軽減されかつ磁気特性も良好であることがわかる。 The magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) of the obtained sample was measured by the method described in JIS C2550. In this experiment, in order to evaluate the magnetic variation in the coil, the magnetic characteristics were evaluated at both the lowest and highest temperature positions of the sheet bar surface temperature immediately after rough rolling. The obtained results are shown in FIG. From this result, the steel slab A, which is an inhibitorless component system, has a large magnetic difference (difference in magnetic properties) between the lowest temperature portion and the highest temperature portion of the sheet bar surface temperature immediately after rough rolling, and the steel slab B with increased S The difference has been reduced, but the absolute value has decreased. On the other hand, in addition to the increase in S, the steel slab C added with Sb has a reduced magnetic difference and good magnetic properties.

まず、素材S量を増加させることで、熱間圧延の粗圧延直後のシートバー表面温度の変動に起因した、磁性ばらつきが抑制される理由については明らかではないが、発明者らは次のように考えている。上述のとおり、インヒビターレス素材では一次再結晶焼鈍時に粒成長を抑制して一定の粒径にそろえる機能を有するインヒビター(析出物)がほとんど存在しないため、工程条件や素材成分が若干変わっただけで一次再結晶後の鋼板の結晶粒径の変動が大きくなったり、不均一な粒径分布になる。本実験の場合は、素材S量を増加させることで、MnSあるいはCuSといった析出物が形成され、さらに固溶S分による粒界偏析効果も発現し、シートバー温度が変動しても一次再結晶粒径を狭幅で均一化し、二次再結晶の発現を安定化する効果が発揮されたと考えられ、このため最終磁性のばらつきも減少したものと考えられる。 First, the reason why the variation in magnetism due to the fluctuation of the sheet bar surface temperature immediately after the rough rolling of the hot rolling is suppressed by increasing the amount of the raw material S is not clear, but the inventors are as follows. I am thinking. As mentioned above, since inhibitor-less materials have few inhibitors (precipitates) that have the function of suppressing grain growth and aligning to a certain particle size during primary recrystallization annealing, the process conditions and material components have changed slightly. The fluctuation of the crystal grain size of the steel sheet after the primary recrystallization becomes large, or the grain size distribution becomes uneven. In the case of this experiment, by increasing the amount of material S, precipitates such as MnS or Cu 2 S are formed, grain boundary segregation effect due to the solid solution S content is also exhibited, and the primary even if the sheet bar temperature fluctuates. It is thought that the effect of stabilizing the expression of secondary recrystallization by making the recrystallized grain size uniform in a narrow width is considered to have reduced the variation in final magnetism.

しかしながら、素材中のS量を増加させると、磁性差は抑えられるが磁気特性自体が劣化する問題も明らかとなった。これは、上述のとおり、インヒビターレス素材では、粒界に偏析や濃化する元素が少ないため、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性が顕在化し、その粒界方位差角依存性がGos方位を有する粒を二次再結晶させるテクスチャーインヒビション効果を発現させるが、その効果がSの粒界偏析や濃化で低減してしまうためと考えられる。   However, when the amount of S in the material is increased, the magnetic difference is suppressed, but the problem that the magnetic characteristics themselves deteriorate is also clarified. As described above, in the inhibitorless material, since there are few elements that segregate and concentrate at the grain boundary, the grain boundary energy dependency of the grain boundary energy of the grain boundary at the time of primary recrystallization becomes obvious, The grain boundary orientation difference dependency causes a texture inhibition effect to secondary recrystallize grains having Gos orientation, but this effect is thought to be reduced by segregation and concentration of S. .

そこで、Sb等の粒界偏析元素を利用することで、劣化した磁気特性を補う必要がある。もともと、S量を増加させて、テクスチャーインヒビション効果が薄れているので、新たな粒界偏析元素を加えても問題なく、むしろ一次再結晶集合組織を変化させて二次再結晶後のGoss方位先鋭性を高める効果があることから、磁気特性向上には必須といえる。   Therefore, it is necessary to compensate for deteriorated magnetic properties by using grain boundary segregation elements such as Sb. Originally, the texture inhibition effect is weakened by increasing the amount of S, so there is no problem even if a new grain boundary segregation element is added. Rather, the primary recrystallization texture is changed and the Goss after the secondary recrystallization is changed. Since it has the effect of improving the azimuth sharpness, it can be said that it is essential for improving the magnetic properties.

上述のメカニズムによれば、Sの代わりに同様の効果があるSeを用いてもよく、またSbの代わりに同様の効果があるSnを用いてもよい。   According to the above mechanism, Se having the same effect may be used instead of S, and Sn having the same effect may be used instead of Sb.

また、上述の粗圧延直後に幅方向中心部の表面温度のばらつきが発生する主因は、熱間圧延前のスラブ加熱時に使用される、スラブを支えるスキッドにあると考えられる。具体的には、スラブ加熱時にスキッドで支えられている位置は、そのスキッドが加熱中のスラブに接触しているために温度が上がりにくくなり、比較的低温となる。このように、加熱時にスラブをスキッドで支える構造に起因して、表面温度のばらつきが発生すると考えられる。   In addition, it is considered that the main cause of the variation in the surface temperature of the central portion in the width direction immediately after the rough rolling described above is the skid that supports the slab used during slab heating before hot rolling. Specifically, the temperature of the position supported by the skid during slab heating is less likely to increase because the skid is in contact with the slab being heated, and the temperature is relatively low. Thus, it is considered that the surface temperature varies due to the structure in which the slab is supported by the skid during heating.

(実験2)
実験1で使用した、鋼スラブAと鋼スラブCを1200℃でスラブ加熱した後、熱間圧延により2.2mmの厚さに仕上げた。このとき、熱間圧延の粗圧延後のシートバーの厚みは50mmとし、またスラブ加熱時間やスラブ加熱終了から粗圧延開始までの時間を変化させることで、その粗圧延直後の幅方向中心部の表面温度について、1本のシートバーにおける温度変動代を種々変化させた。その後、1075℃で60秒、乾燥窒素雰囲気の熱延板焼鈍を施した後、冷間圧延で0.27mmの板厚に仕上げた。さらに、850℃で80秒、60%H-40%N、露点60℃の湿潤雰囲気下での脱炭をともなう一次再結晶焼鈍を施した。さらにMgOを主体とする焼鈍分離剤を塗布し、1200℃で10時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。
(Experiment 2)
The steel slab A and steel slab C used in Experiment 1 were slab heated at 1200 ° C. and then finished to a thickness of 2.2 mm by hot rolling. At this time, the thickness of the sheet bar after hot rolling rough rolling is 50 mm, and by changing the slab heating time and the time from the end of slab heating to the start of rough rolling, Regarding the surface temperature, the temperature fluctuation margin in one sheet bar was variously changed. Thereafter, hot-rolled sheet annealing in a dry nitrogen atmosphere was performed at 1075 ° C. for 60 seconds, and then finished to a sheet thickness of 0.27 mm by cold rolling. Further, primary recrystallization annealing was performed with decarburization in a humid atmosphere of 850 ° C. for 80 seconds, 60% H 2 -40% N 2 and a dew point of 60 ° C. Further, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1200 ° C. for 10 hours under a hydrogen atmosphere.

得られたサンプルの磁束密度BをJIS C2550に記載の方法で測定した。本実験では、コイル内の磁性ばらつきを評価するため、粗圧延直後の表面温度の最低温度部と最高温度部の両方で磁気特性を調査し、その差でコイル内磁性ばらつきを評価した。 The magnetic flux density B 8 of samples obtained was measured by the method described in JIS C2550. In this experiment, in order to evaluate the magnetic variation in the coil, the magnetic characteristics were investigated at both the lowest temperature portion and the highest temperature portion of the surface temperature immediately after the rough rolling, and the magnetic variation in the coil was evaluated based on the difference.

得られた結果と粗圧延後の表面温度の変動代との関係を図2に示す。この結果から、インヒビターレス成分系である鋼スラブAは変動代が40℃を超えたあたりから磁束密度のばらつきが大きくなるが、S含有量を増加させ、かつSbを添加した鋼スラブCは変動代が100℃以下では磁束密度のばらつきが小さいことがわかる。   FIG. 2 shows the relationship between the obtained results and the fluctuation margin of the surface temperature after rough rolling. From this result, the steel slab A, which is an inhibitorless component system, has a large variation in magnetic flux density when the fluctuation margin exceeds 40 ° C, but the steel slab C to which S content is increased and Sb is added varies. It can be seen that the variation in magnetic flux density is small when the margin is 100 ° C. or less.

以上の通り、素材S量を増加させても粗圧延後の温度変動代が大きすぎると磁束密度の磁性差は大きくなることが確認された。特にS含有量を増加させ、かつSbを添加した鋼スラブは、この磁性差が大きくなる粗圧延後の温度変動代がインヒビターレス素材と比較して飛躍的に増大しており、ある程度の変動代が不可避的に発生する工業的な製造条件に対して、素材S含有量を増加させることは、安定した磁気特性を得るためにきわめて効果的であるといえる。   As described above, it was confirmed that even if the amount of the material S was increased, the magnetic difference in the magnetic flux density was increased if the temperature variation after rough rolling was too large. In particular, in steel slabs with increased S content and addition of Sb, the temperature fluctuation after rough rolling in which this magnetic difference is large has increased dramatically compared to the inhibitorless material, and some fluctuation allowance is required. It can be said that increasing the material S content is extremely effective for obtaining stable magnetic characteristics with respect to industrial production conditions where inevitably occurs.

以上のことから、インヒビターレス成分にSまたはSeを少量加え、かつ熱間圧延の粗圧延後のシートバーの幅方向中心部の表面温度の変動を規制することによって、その他の製造条件が変動しても安定した磁気特性を確保することができるといえる。また、Sおよび/またはSeの増加でテクスチャーインヒビション効果が弱まり磁気特性が劣化するのを、Sbおよび/またはSnを添加することにより効果的に防止することができる。   From the above, other manufacturing conditions fluctuate by adding a small amount of S or Se to the inhibitorless component and regulating the fluctuation of the surface temperature in the center of the width direction of the sheet bar after hot rolling. However, it can be said that stable magnetic characteristics can be secured. In addition, the increase in S and / or Se can effectively prevent the texture inhibition effect from being weakened and the magnetic properties from being deteriorated by adding Sb and / or Sn.

本発明は、上記した実験結果に基づいて完成されたものであり、その要旨構成は、以下のとおりである。
1.質量%で、
C:0.100%以下、
Si:2.00%以上8.00%以下、
Mn:0.02%以上1.00%以下、
Sおよび/またはSeを合計で0.0050%超0.0100%以下並びに
Snおよび/またはSbを合計で0.005%以上1.000%以下
を含有し、Nを70ppm未満および酸可溶性Alを150ppm未満に抑制し、残部はFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1300℃以下で加熱し、
該加熱後の鋼スラブに熱間圧延を施して熱延鋼板とし、
該熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
該冷延鋼板に一次再結晶焼鈍を施し、その後、二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
前記熱間圧延の粗圧延直後のシートバーの幅方向中心部における、表面温度の該シートバーの長手方向変動を100℃以内とする方向性電磁鋼板の製造方法。
The present invention has been completed based on the above experimental results, and the gist of the present invention is as follows.
1. % By mass
C: 0.100% or less,
Si: 2.00% to 8.00%,
Mn: 0.02% to 1.00%,
S and / or Se in total more than 0.0050% and less than 0.0100% and
A steel slab containing Sn and / or Sb in a total amount of 0.005% or more and 1.000% or less, suppressing N to less than 70 ppm and acid-soluble Al to less than 150 ppm, with the balance being 1300 steel slab having a composition composed of Fe and inevitable impurities Heating below ℃,
Hot-rolled steel sheet is subjected to hot rolling on the heated steel slab,
The hot-rolled steel sheet is subjected to cold rolling two or more times with one or more intermediate annealings to obtain a cold-rolled steel sheet having a final sheet thickness,
The cold rolled steel sheet is subjected to primary recrystallization annealing, and then subjected to secondary recrystallization annealing, a method for producing a grain-oriented electrical steel sheet,
A method for producing a grain-oriented electrical steel sheet, wherein the longitudinal variation of the sheet bar in the longitudinal direction of the sheet bar at the center in the width direction of the sheet bar immediately after the rough rolling of the hot rolling is within 100 ° C.

2.質量%で、Snおよび/またはSbを合計で0.020%以上0.300%以下を含有する、上記1に記載の方向性電磁鋼板の製造方法。 2. 2. The method for producing a grain-oriented electrical steel sheet according to 1 above, which contains 0.020% or more and 0.300% or less of Sn and / or Sb in total by mass%.

3.前記成分組成は、さらに、
質量%で、
Ni:0.005%以上1.5%以下、
Cu:0.005%以上1.5%以下、
Cr:0.005%以上0.1%以下、
P:0.005%以上0.5%以下、
Mo:0.005%以上0.5%以下、
Ti:0.0005%以上0.1%以下、
Nb:0.0005%以上0.1%以下、
V:0.0005%以上0.1%以下、
B:0.0002%以上0.0025%以下、
Bi:0.005%以上0.1%以下、
Te:0.0005%以上0.10%以下および
Ta:0.0005%以上0.01%以下
のうちから選ばれる1種または2種以上を含有する、上記1または2に記載の方向性電磁鋼板の製造方法。
3. The component composition further includes:
% By mass
Ni: 0.005% to 1.5%,
Cu: 0.005% to 1.5%,
Cr: 0.005% to 0.1%,
P: 0.005% to 0.5%,
Mo: 0.005% to 0.5%,
Ti: 0.0005% to 0.1%,
Nb: 0.0005% or more and 0.1% or less,
V: 0.0005% to 0.1%,
B: 0.0002% to 0.0025%,
Bi: 0.005% to 0.1%,
Te: 0.0005% to 0.10% and
Ta: The method for producing a grain-oriented electrical steel sheet according to 1 or 2 above, containing one or more selected from 0.0005% to 0.01%.

4.前記熱間圧延の粗圧延直後のシートバーの幅方向中心部における、表面温度の該シートバーの長手方向変動を70℃以内とする、上記1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。 4). The directional electromagnetic wave according to any one of 1 to 3 above, wherein the longitudinal variation of the sheet bar in the longitudinal direction of the sheet bar at the center in the width direction of the sheet bar immediately after the rough rolling of the hot rolling is within 70 ° C. A method of manufacturing a steel sheet.

5.前記冷延鋼板に磁区細分化処理を施す、上記1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。 5. The manufacturing method of the grain-oriented electrical steel sheet according to any one of the above 1 to 4, wherein the cold-rolled steel sheet is subjected to a magnetic domain refinement process.

6.前記磁区細分化処理が、前記二次再結晶焼鈍後の前記冷延鋼板への電子ビーム照射によるものである、上記5に記載の方向性電磁鋼板の製造方法。 6). 6. The method for producing a grain-oriented electrical steel sheet according to 5 above, wherein the magnetic domain refinement treatment is performed by electron beam irradiation on the cold-rolled steel sheet after the secondary recrystallization annealing.

7.前記磁区細分化処理が、前記二次再結晶焼鈍後の前記冷延鋼板へのレーザー照射によるものである、上記5に記載の方向性電磁鋼板の製造方法。 7). 6. The method for producing a grain-oriented electrical steel sheet according to 5 above, wherein the magnetic domain refinement treatment is performed by laser irradiation of the cold-rolled steel sheet after the secondary recrystallization annealing.

本発明によれば、従来よりもさらに方向性電磁鋼板の磁気特性を安定化させ、かつ、磁気特性の劣化を効果的に防止することができる。   According to the present invention, it is possible to further stabilize the magnetic characteristics of the grain-oriented electrical steel sheet and to effectively prevent the deterioration of the magnetic characteristics as compared with the prior art.

粗圧延後のシートバー表面の最低温度部分および最高温度部分の磁束密度B並びに、最低温度部と最高温度部との磁性差(B差)を示すグラフである。The magnetic flux density B 8 and the lowest temperature portion and the maximum temperature portion of the sheet bar surface after the rough rolling is a graph showing magnetic difference between the lowest temperature part and the highest temperature portion (B 8 difference). 粗圧延後のシートバー表面の最低温度部と最高温度部との差(変動代)と、最低温度部と最高温度部との磁性差(B差)を示すグラフである。The difference between the lowest temperature part and the highest temperature portion of the sheet bar surface after rough rolling (variation margin) is a graph showing magnetic difference between the lowest temperature part and the highest temperature portion (B 8 difference).

以下、本発明の一実施形態による方向性電磁鋼板の製造方法について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Hereinafter, the manufacturing method of the grain-oriented electrical steel sheet by one Embodiment of this invention is demonstrated. First, the reasons for limiting the component composition of steel will be described. In the present specification, “%” representing the content of each component element means “% by mass” unless otherwise specified.

C:0.100%以下
Cは0.100%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005%以下に低減することが困難となる。よって、Cは0.100%以下の範囲とするのが好ましい。より好ましくは0.020〜0.080%の範囲である。
C: 0.100% or less When C exceeds 0.100%, it is difficult to reduce to 0.005% or less where demagnetization annealing does not cause magnetic aging. Therefore, C is preferably in the range of 0.100% or less. More preferably, it is 0.020 to 0.080% of range.

Si:2.00%以上8.00%以下
Siは、鋼の比抵抗を高め、鉄損を低減すのに必要な元素である。上記効果は、2.00%未満では十分ではなく、一方、8.00%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.00〜8.00%の範囲とするのが好ましい。より好ましくは2.50〜4.50%の範囲である。
Si: 2.00% to 8.00%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.00%, it is not sufficient. On the other hand, if it exceeds 8.00%, the workability is lowered and it becomes difficult to roll and manufacture. Therefore, Si is preferably in the range of 2.00 to 8.00%. More preferably, it is 2.50 to 4.50% of range.

Mn:0.02%以上1.00%以下
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.02%未満では十分ではなく、一方、1.00%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.02〜1.00%の範囲とするのが好ましい。より好ましくは0.03〜0.20%の範囲である。
Mn: 0.02% to 1.00%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.02%, it is not sufficient. On the other hand, if it exceeds 1.00%, the magnetic flux density of the product plate decreases. Therefore, Mn is preferably in the range of 0.02 to 1.00%. More preferably, it is 0.03 to 0.20% of range.

N:70ppm未満およびsol.Al(酸可溶性Al):150ppm未満
Nを70ppm未満、かつsol.Alを150ppm未満に低減する必要がある。すなわち、両成分を極力低減することによって、AlN系析出物の生成を抑制することが、SやSeの効果を減じない点で有利である。上記の通り、Nおよびsol.Alは、極力低減することが好ましいが、その低減のためには多大なコストを要することから、N:70ppm未満およびsol.Al:150ppm未満の範囲での残存は許容される。Nはより好ましくは50ppm未満であり、sol.Alは好ましくは100ppm未満である。なお、sol.Alは、磁気特性の劣化を抑制することができるという観点から、30ppm以上で含有させてもよい。
N: less than 70 ppm and sol.Al (acid-soluble Al): less than 150 ppm It is necessary to reduce N to less than 70 ppm and sol.Al to less than 150 ppm. That is, by reducing both components as much as possible, it is advantageous from the viewpoint of not reducing the effects of S and Se to suppress the formation of AlN-based precipitates. As described above, N and sol.Al are preferably reduced as much as possible. However, since the reduction requires a great deal of cost, N: less than 70 ppm and sol.Al: less than 150 ppm remain. Permissible. N is more preferably less than 50 ppm and sol.Al is preferably less than 100 ppm. Note that sol.Al may be contained in an amount of 30 ppm or more from the viewpoint that the deterioration of magnetic properties can be suppressed.

Sおよび/またはSe:合計で0.0050%超0.0100%以下
Sおよび/またはSeを合計で0.0050%超0.0100%以下をさらに含有することが必須である。なぜなら、Sおよび/またはSeが合計で0.0050%以下では、上述の通り、磁性のコイル内ばらつきをまねく。一方、Sおよび/またはSeが合計で0.0100%を超えると、SやSeを鋼中に均一に分散させる目的で、介在物を一度固溶させるためにスラブ加熱を1300℃を超える高温で行う必要が生じ、コストの大幅な増加が問題となる。より好ましくは、0.0055%以上0.0080%未満である。
S and / or Se: more than 0.0050% in total and 0.0100% or less in total It is essential to further contain S and / or Se more than 0.0050% and 0.0100% or less in total. This is because, when S and / or Se is 0.0050% or less in total, as described above, the magnetic in-coil variation is caused. On the other hand, if S and / or Se exceeds 0.0100% in total, slab heating must be performed at a high temperature exceeding 1300 ° C in order to dissolve inclusions once in order to uniformly disperse S and Se in the steel. And a significant increase in cost becomes a problem. More preferably, it is 0.0055% or more and less than 0.0080%.

Sbおよび/またはSn:合計で0.005%以上1.000%以下
Sbおよび/またはSnを合計で0.005%以上1.000%以下含有することが必須である。なぜなら、Sbおよび/またはSnが合計で0.005%未満では、上述の通り、磁束密度低下をまねく。一方、Sbおよび/またはSnが合計で1.000%を超えると、一次再結晶集合組織の変化が大きく、このために二次再結晶が不安定となり、磁性劣化する点が問題となる。好ましくは、0.020%以上0.300%以下である。
Sb and / or Sn: 0.005% or more and 1.000% or less in total
It is essential to contain Sb and / or Sn in a total amount of 0.005% to 1.000%. This is because if Sb and / or Sn is less than 0.005% in total, the magnetic flux density is lowered as described above. On the other hand, if Sb and / or Sn exceeds 1.000% in total, the primary recrystallization texture is greatly changed, which makes the secondary recrystallization unstable and causes magnetic deterioration. Preferably, it is 0.020% or more and 0.300% or less.

本発明の方向性電磁鋼板における上記成分以外の残部は、Feおよび不可避的不純物であるが、その他にも以下に述べる元素を適宜含有させることができる。   The balance other than the above components in the grain-oriented electrical steel sheet of the present invention is Fe and inevitable impurities, but in addition, the following elements can be appropriately contained.

さらに、磁束密度を向上させる目的で、Ni:0.005〜1.5%、Cu:0.005〜1.5%、Cr:0.005〜0.1%、P:0.005〜0.5%、Mo:0.005〜0.5%、Ti:0.0005〜0.1%、Nb:0.0005〜0.1%、V:0.0005〜0.1%、B:0.0002〜0.0025%、Bi:0.005〜0.1%、Te:0.0005〜0.10%およびTa:0.0005〜0.01%のうちから選択される少なくとも1種を単独または複合して添加できる。それぞれ添加量が下限量より少ない場合には磁束密度向上効果に乏しく、上限量を超えると二次再結晶不良を招き、磁気特性が劣化する。   Furthermore, for the purpose of improving magnetic flux density, Ni: 0.005-1.5%, Cu: 0.005-1.5%, Cr: 0.005-0.1%, P: 0.005-0.5%, Mo: 0.005-0.5%, Ti: 0.0005-0.1 %, Nb: 0.0005-0.1%, V: 0.0005-0.1%, B: 0.0002-0.0025%, Bi: 0.005-0.1%, Te: 0.0005-0.10% and Ta: 0.0005-0.01% One kind can be added alone or in combination. When the addition amount is less than the lower limit amount, the effect of improving the magnetic flux density is poor. When the addition amount exceeds the upper limit amount, secondary recrystallization failure is caused and the magnetic properties are deteriorated.

次に、本発明の一実施形態による方向性電磁鋼板の製造方法について説明する。
[加熱]
所定の成分調整がなされた溶鋼を通常の造塊法もしくは、連続鋳造法でスラブを製造し、添加することが望ましい成分は、途中工程で加えることは困難であることから、溶鋼段階で添加する。スラブは1300℃以下に加熱し、好ましくは1270〜1100℃で均熱する。本成分系ではAlやNは低減されているため、これらを固溶させるための高温加熱を必要しない。1300℃以下の低温とすることでコストを低減することができる。
Next, the manufacturing method of the grain-oriented electrical steel sheet by one Embodiment of this invention is demonstrated.
[heating]
The slab is manufactured by the normal ingot casting method or the continuous casting method, and the components that are desirable to be added are added at the molten steel stage because it is difficult to add them in the middle of the process. . The slab is heated to 1300 ° C or lower, preferably soaked at 1270-1100 ° C. Since Al and N are reduced in this component system, high-temperature heating for dissolving them is not necessary. By reducing the temperature to 1300 ° C. or lower, the cost can be reduced.

[熱間圧延]
上記加熱後に、熱間圧延を行う。熱間圧延温度は、開始温度を1000℃以上、終了温度を750℃以上とすることが、磁気特性向上のため望ましい。ただし、終了温度は、形状を良好とするため、1000℃以下とすることが望ましい。
[Hot rolling]
After the heating, hot rolling is performed. As for the hot rolling temperature, it is desirable that the starting temperature is 1000 ° C. or higher and the end temperature is 750 ° C. or higher for improving magnetic properties. However, the end temperature is desirably 1000 ° C. or lower in order to improve the shape.

また、上述の理由により、熱間圧延の粗圧延直後のシートバーの幅方向中心部の表面温度において、そのシートバーの表面温度における変動を100℃以内に抑えることが必須である。また、実験2より、シートバーの表面温度における変動を70℃以下に抑えることが好ましい。ここで、粗圧延後のシートバーの表面温度は粗圧延機出側で放射温度計や熱電対を具備した接触式温度計にて測定される。なお、粗圧延直後とは、粗圧延が終了して5秒以内を意味する。   For the above-described reason, it is essential to suppress the variation in the surface temperature of the sheet bar within 100 ° C. at the surface temperature in the center portion in the width direction of the sheet bar immediately after the hot rolling. Further, from Experiment 2, it is preferable to suppress fluctuations in the surface temperature of the sheet bar to 70 ° C. or less. Here, the surface temperature of the sheet bar after rough rolling is measured by a contact-type thermometer equipped with a radiation thermometer and a thermocouple on the exit side of the rough rolling mill. The term “immediately after rough rolling” means within 5 seconds after the rough rolling is completed.

また、シートバー端部は過剰に温度が低下しているため、幅方向についてはその中央部を測定し、長手方向については端部から3mは考慮せず、それ以降で長手方向を連続的に測定し、その測定温度の最大値と最小値との差を温度変動代として採用する。この温度変動代を低減するためには、スラブ加熱での均熱時間を長くしてスキッドに乗っているスラブ位置部分の温度上昇を促したり、スラブ加熱後、粗圧延までに待機時間をとるなどして温度の均一化を計ることにより達成できる。ただし、待機時間をとる場合は、粗圧延温度自体が低下するため、スラブ加熱での均熱時間を長くするほうが望ましい。   In addition, since the temperature of the end portion of the sheet bar is excessively decreased, the central portion is measured in the width direction, and 3 m from the end portion is not considered in the longitudinal direction, and the longitudinal direction is continuously thereafter. The difference between the maximum value and the minimum value of the measured temperature is adopted as the temperature fluctuation allowance. In order to reduce this temperature fluctuation allowance, the soaking time in the slab heating is lengthened to promote the temperature rise in the slab position part on the skid, or after the slab heating, it takes a waiting time until rough rolling, etc. Thus, it can be achieved by measuring the temperature uniformity. However, when the waiting time is taken, since the rough rolling temperature itself is lowered, it is desirable to increase the soaking time in the slab heating.

[熱延板焼鈍]
熱間圧延後に、必要に応じて、熱延板焼鈍を施すことができる。その場合、熱延板焼鈍温度は800℃以上1100℃以下が望ましい。熱延板焼鈍温度が800℃未満では熱延板でのバンド状組織を再結晶させることができず、磁性が劣化することがある。また、1100℃超では二次再結晶が不安定となる虞がある。望ましくは950℃以上1075℃以下である。焼鈍時間は、2秒〜120秒の範囲とすることが望ましい。
[Hot rolled sheet annealing]
After hot rolling, hot-rolled sheet annealing can be performed as necessary. In that case, the hot-rolled sheet annealing temperature is desirably 800 ° C. or higher and 1100 ° C. or lower. If the hot-rolled sheet annealing temperature is less than 800 ° C., the band-like structure in the hot-rolled sheet cannot be recrystallized, and the magnetism may deteriorate. If it exceeds 1100 ° C., secondary recrystallization may become unstable. Desirably, the temperature is from 950 ° C to 1075 ° C. The annealing time is desirably in the range of 2 seconds to 120 seconds.

[冷間圧延]
熱間圧延後または熱延板焼鈍後、必要に応じて中間焼鈍を挟む1回以上の冷間圧延を施した後、一次再結晶焼鈍を行う。中間焼鈍温度は900℃以上1200℃以下が好適である。中間焼鈍温度が900℃未満であると再結晶粒が細かくなり、一次再結晶組織におけるGoss核が減少し磁性が劣化する。また1200℃を超えると、粒径が粗大化しすぎるために、整粒の一次再結晶組織を実現する上で極めて不利である。最終冷間圧延では、冷間圧延の温度を100℃〜300℃に上昇させて行うこと、および冷間圧延途中で100〜300℃の範囲での時効処理を1回または複数回行うことが、再結晶集合組織を変化させて磁気特性を向上させるために有効である。
[Cold rolling]
After hot rolling or after hot-rolled sheet annealing, primary recrystallization annealing is performed after performing at least one cold rolling with intermediate annealing as necessary. The intermediate annealing temperature is preferably 900 ° C. or higher and 1200 ° C. or lower. When the intermediate annealing temperature is less than 900 ° C, the recrystallized grains become finer, the Goss nuclei in the primary recrystallized structure decrease, and the magnetism deteriorates. On the other hand, when the temperature exceeds 1200 ° C., the particle size becomes too coarse, which is extremely disadvantageous in realizing a primary recrystallized structure of sized particles. In the final cold rolling, the temperature of the cold rolling is increased to 100 ° C to 300 ° C, and the aging treatment in the range of 100 to 300 ° C is performed once or a plurality of times during the cold rolling, This is effective for improving the magnetic properties by changing the recrystallization texture.

[一次再結晶焼鈍]
次の一次再結晶焼鈍では鋼板を脱炭させてもよい。焼鈍温度は、800℃以上900℃以下が脱炭性の観点から有効である。焼鈍時間は30〜240秒とすることが好ましい。さらに脱炭の観点からは、雰囲気は湿潤雰囲気とすることが望ましい。ただし、脱炭が不要なC:0.005%以下しか含有していない場合はこの限りではない。また、保定温度までの昇温速度は50℃/s以上400℃/s以下とすることが最終磁気特性が良好となり望ましい。
[Primary recrystallization annealing]
In the next primary recrystallization annealing, the steel plate may be decarburized. An annealing temperature of 800 ° C. or higher and 900 ° C. or lower is effective from the viewpoint of decarburization. The annealing time is preferably 30 to 240 seconds. Further, from the viewpoint of decarburization, it is desirable that the atmosphere is a humid atmosphere. However, this does not apply when the content of C: 0.005% or less is not required. Further, it is desirable that the rate of temperature rise to the holding temperature is 50 ° C./s or more and 400 ° C./s or less because the final magnetic properties are good.

[焼鈍分離剤の塗布]
上記一次再結晶焼鈍後の鋼板に、必要に応じて焼鈍分離剤を塗布する。ここで、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を適用することで、その後、純化焼鈍を兼ねて二次再結晶焼鈍を施すことにより二次再結晶組織を発達させると共にフォルステライト被膜を形成することができる。打ち抜き加工性を重視してフォルステライト被膜を必要としない場合には、焼鈍分離剤を適用しないか、適用する場合でもフォルステライト被膜を形成するMgOは使用せずに、シリカやアルミナ等を用いる。これらの焼鈍分離剤を塗布する際は、水分を持ち込まない静電塗布等を行うことが有効である。耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。
[Application of annealing separator]
An annealing separator is applied to the steel sheet after the primary recrystallization annealing as necessary. Here, when forming a forsterite film with an emphasis on iron loss, an annealing separation agent mainly composed of MgO is applied, and then secondary recrystallization annealing is performed by also performing purification annealing. The next recrystallized structure can be developed and a forsterite film can be formed. When the forsterite film is not required with emphasis on the punching processability, the annealing separator is not applied, or even when it is applied, MgO that forms the forsterite film is not used, but silica, alumina or the like is used. When these annealing separators are applied, it is effective to perform electrostatic application or the like that does not bring in moisture. A heat resistant inorganic material sheet (silica, alumina, mica) may be used.

[二次再結晶焼鈍]
次に、MgOを主体とする焼鈍分離剤を適用した後に二次再結晶焼鈍を施すことにより、Goss方位を有する二次粒を発達させると共にフォルステライト被膜を形成させることが可能である。二次再結晶焼鈍は二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるために800℃以上の温度で20時間以上保持させることが望ましい。フォルステライト被膜を形成させるためには1200℃程度まで昇温させることが望ましい。
[Secondary recrystallization annealing]
Next, by applying the secondary recrystallization annealing after applying the annealing separator mainly composed of MgO, it is possible to develop secondary grains having Goss orientation and to form a forsterite film. The secondary recrystallization annealing is desirably performed at 800 ° C. or higher for the secondary recrystallization. In order to complete the secondary recrystallization, it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. In order to form a forsterite film, it is desirable to raise the temperature to about 1200 ° C.

[平坦化焼鈍]
二次再結晶焼鈍後には、付着した焼鈍分離剤を除去するため,水洗やブラッシング、酸洗を行う事が有用である。その後、さらに平坦化焼鈍を行い形状を矯正することが鉄損低減のために有効である。平坦化焼鈍の焼鈍温度は750〜950℃が好ましく、焼鈍時間は、5秒以上120秒以下が好ましい。
[Flatening annealing]
After secondary recrystallization annealing, it is useful to perform water washing, brushing, and pickling to remove the attached annealing separator. Thereafter, it is effective to reduce the iron loss by further performing flattening annealing to correct the shape. The annealing temperature for planarization annealing is preferably 750 to 950 ° C., and the annealing time is preferably 5 seconds or more and 120 seconds or less.

[絶縁コーティング]
鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。鉄損低減のために鋼板に張力を付与できるコーティングが望ましい。バインダーを介した張力コーティング塗布方法や物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させコーティングとする方法を採用すると、コーティング密着性に優れ,かつ著しい鉄損低減効果があるため望ましい。
[Insulating coating]
In the case where the steel plates are laminated and used, in order to improve iron loss, it is effective to apply an insulating coating to the steel plate surface before or after the flattening annealing. A coating capable of imparting tension to the steel sheet to reduce iron loss is desirable. It is desirable to employ a coating method by depositing an inorganic material on the surface layer of a steel sheet by a tension coating application method through a binder, physical vapor deposition method or chemical vapor deposition method, because it has excellent coating adhesion and a significant iron loss reduction effect.

[磁区細分化処理]
さらなる鉄損低減のために、磁区細分化処理を行うことが望ましい。処理方法としては一般的に実施されているような、最終製品板に電子ビームやレーザー等により鉄の結晶格子に歪を加える方法が望ましい。また、最終製品板のみならず、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝をいれたりする方法でもよい。
その他の製造条件は、方向性電磁鋼板の一般的な製造方法に従えばよい。
[Magnetic domain subdivision processing]
In order to further reduce iron loss, it is desirable to perform magnetic domain fragmentation. As a processing method, a method of applying strain to an iron crystal lattice by an electron beam, a laser, or the like, which is generally performed, is desirable. Further, not only the final product plate, but also a method in which a groove is provided in advance in an intermediate product such as a cold-rolled plate that has reached the final finished thickness.
Other manufacturing conditions may follow the general manufacturing method of a grain-oriented electrical steel sheet.

本発明は、繊細(Subtle)抑制力(Inhibition)制御(Control)(SIC法)とも言うべき方法である。SIC法は、低温スラブ加熱とコイル内での鉄損変動の抑制を同時に達成することのできる、従来のインヒビターを使用する技術と、インヒビターレス技術よりも優れた方法である。   The present invention is a method that should also be referred to as Subtle Inhibition Control (SIC method). The SIC method is superior to the technique using the conventional inhibitor and the inhibitorless technique that can simultaneously achieve the low-temperature slab heating and the suppression of the iron loss fluctuation in the coil.

(実施例1)
質量比でC:0.062%、Si:3.16%、Mn:0.14%、sol.Al:80ppm、N:34ppm、S:65ppm、Sn:0.075%を含み、残部はFeおよび不可避的不純物の組成からなる鋼スラブを連続鋳造にて製造し、1230℃でスラブ加熱した後、熱間の粗圧延で40mmの板厚とし、仕上圧延で2.4mmの厚さに仕上げた。この時、スラブ加熱時の均熱時間を表1のように変化させることで、熱間圧延の粗圧延直後のシートバーの幅方向中心部の表面温度において、そのシートバーにおける温度変動を変化させた。シートバーの表面温度の最小と最大の差をシートバー内温度変動として表1に併記した。ここで、シートバーの表面温度は、粗圧延の最終圧延機の出側上部に設置した放射温度計を用いて測定した。これは幅方向中央部1ヶ所の温度を連続的に測定している。シートバー端部は過剰に温度が低下しているため、長手方向は端部から3mは考慮せず、それ以降で長手方向を連続的に測定し、その測定温度の最大の部分を最高温度部、最小の部分を最低温度部とした。
Example 1
Contains C: 0.062%, Si: 3.16%, Mn: 0.14%, sol.Al: 80ppm, N: 34ppm, S: 65ppm, Sn: 0.075% by weight, with the balance being composed of Fe and inevitable impurities A steel slab was manufactured by continuous casting, heated at 1230 ° C, then hot rolled to a thickness of 40 mm and finished to a thickness of 2.4 mm by finish rolling. At this time, by changing the soaking time at the time of slab heating as shown in Table 1, the temperature fluctuation in the sheet bar is changed at the surface temperature in the center in the width direction of the sheet bar immediately after the rough rolling of the hot rolling. It was. The difference between the minimum and maximum surface temperature of the sheet bar is also shown in Table 1 as the temperature fluctuation in the sheet bar. Here, the surface temperature of the sheet bar was measured using a radiation thermometer installed at the upper part on the exit side of the final rolling mill for rough rolling. This is a continuous measurement of the temperature at one central part in the width direction. Since the temperature at the end of the seat bar has dropped excessively, 3 m from the end is not taken into account in the longitudinal direction. After that, the longitudinal direction is continuously measured, and the maximum temperature is measured at the maximum temperature. The minimum part was defined as the lowest temperature part.

その後、これらの熱延板に1050℃で15秒の熱延板焼鈍を施した後、冷間圧延で1.8mmの板厚とし、1000℃で100秒の中間焼鈍を施し、さらに冷間圧延で0.23mmの板厚に仕上げた。その後、840℃で120秒、55%H-45%N、露点58℃の湿潤雰囲気下での一次再結晶焼鈍を施した。その後、MgOを主体とする焼鈍分離剤を塗布し、1230℃で2時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。 Then, these hot-rolled sheets were subjected to hot-rolled sheet annealing at 1050 ° C. for 15 seconds, then cold rolled to a thickness of 1.8 mm, subjected to intermediate annealing at 1000 ° C. for 100 seconds, and further cold-rolled. Finished to a thickness of 0.23 mm. Thereafter, primary recrystallization annealing was performed at 840 ° C. for 120 seconds in a humid atmosphere of 55% H 2 -45% N 2 and a dew point of 58 ° C. Thereafter, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1230 ° C. for 2 hours in a hydrogen atmosphere.

さらに、電子ビームにて幅方向に連続的に8mmピッチで磁区細分化処理を施した。得られたサンプルの磁束密度BをJIS C2550に記載の方法で測定した。測定位置は、コイル内で粗圧延直後の最低温度部と最高温度部の位置とし、この磁性差を最終磁性のコイル内変動代とした。得られた結果を表1に併記する。 Further, the magnetic domain was subdivided with an electron beam continuously at a pitch of 8 mm in the width direction. The magnetic flux density B 8 of samples obtained was measured by the method described in JIS C2550. The measurement positions were the positions of the lowest temperature portion and the highest temperature portion immediately after rough rolling in the coil, and this magnetic difference was used as the fluctuation in the coil of the final magnetism. The obtained results are also shown in Table 1.

Figure 0006418226
Figure 0006418226

表1から明らかなように、本発明範囲内の条件において良好な磁束密度Bが得られ、かつその変動も小さくなる事がわかる。 As is apparent from Table 1, it can be seen that a good magnetic flux density B 8 can be obtained under the conditions within the scope of the present invention, and that the fluctuations are also small.

(実施例2)
表2記載の種々の成分を含み、残部はFeおよび不可避的不純物の組成からなる鋼スラブを連続鋳造にて製造し、1270℃でスラブ加熱した後、熱間の粗圧延で30mmの板厚とし、仕上圧延で2.7mmの厚さに仕上げた。この時、スラブ加熱時の均熱時間は70分とした。このとき、熱間圧延の粗圧延直後のシートバーの幅方向中心部の表面温度において、そのシートバー表面の温度変動は60℃であった。
(Example 2)
A steel slab containing the various components listed in Table 2 and the balance being made of Fe and inevitable impurities was manufactured by continuous casting, heated at 1270 ° C, and then hot rough rolled to a thickness of 30 mm. Finished to a thickness of 2.7mm by finish rolling. At this time, the soaking time during slab heating was set to 70 minutes. At this time, the temperature fluctuation of the surface of the sheet bar was 60 ° C. at the surface temperature of the center portion in the width direction of the sheet bar immediately after the hot rolling.

その後、975℃で120秒の熱延板焼鈍を施した後、冷間圧延により1.7mmの板厚とした。その後、1100℃で80秒の中間焼鈍を施した後、120℃の温間圧延で0.20mmの板厚に仕上げた。さらに、850℃で100秒、60%H-40%Nで露点60℃の湿潤雰囲気下での一次再結晶焼鈍を施した。 Thereafter, hot-rolled sheet annealing was performed at 975 ° C. for 120 seconds, and then the sheet thickness was 1.7 mm by cold rolling. Then, after intermediate annealing at 1100 ° C. for 80 seconds, it was finished to a thickness of 0.20 mm by warm rolling at 120 ° C. Further, primary recrystallization annealing was performed in a humid atmosphere of 850 ° C. for 100 seconds and 60% H 2 -40% N 2 with a dew point of 60 ° C.

その後、MgOを主体とする焼鈍分離剤を塗布し、1220℃で5時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。さらに、レーザーにて幅方向に連続的に4mmピッチで磁区細分化処理を施した。その後、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を820℃で30秒の条件で施した。   Thereafter, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1220 ° C. for 5 hours under a hydrogen atmosphere. Furthermore, the magnetic domain was subdivided at a 4 mm pitch continuously in the width direction with a laser. Thereafter, planarization annealing was performed at 820 ° C. for 30 seconds, which also served as a tension-imparting coating mainly composed of magnesium phosphate and boric acid.

得られたサンプルの磁束密度BをJIS C2550に記載の方法で測定した。測定位置は、コイル内で粗圧延直後の最低温度部と最高温度部の位置とし、この磁性差を最終磁性のコイル内変動代とした。得られた結果を表2に併記する。 The magnetic flux density B 8 of samples obtained was measured by the method described in JIS C2550. The measurement positions were the positions of the lowest temperature portion and the highest temperature portion immediately after rough rolling in the coil, and this magnetic difference was used as the fluctuation in the coil of the final magnetism. The obtained results are also shown in Table 2.

Figure 0006418226
Figure 0006418226

表2から明らかなように、本発明範囲内の条件において良好な磁束密度Bが得られ、かつその変動も小さくなる事がわかる。 As is apparent from Table 2, it can be seen that a good magnetic flux density B 8 is obtained under the conditions within the scope of the present invention, and that the fluctuation is also small.

(実施例3)
表3記載の種々の成分を含み、残部はFeおよび不可避的不純物の組成からなる鋼スラブを連続鋳造にて製造し、1180℃でスラブ加熱した後、熱間の粗圧延で45mmの板厚とし、仕上圧延で2.0mmの厚さに仕上げた。この時、スラブ加熱時の均熱時間は100分であり、熱間圧延の粗圧延直後のシートバーの幅方向中心部の表面温度において、そのシートバーにおける温度変動は40℃であった。
(Example 3)
A steel slab containing the various components listed in Table 3 and the balance being made of Fe and inevitable impurities is manufactured by continuous casting, heated at 1180 ° C, and then hot hot rolled to a thickness of 45 mm. Finished to a thickness of 2.0 mm by finish rolling. At this time, the soaking time at the time of slab heating was 100 minutes, and the temperature variation in the sheet bar was 40 ° C. at the surface temperature in the center in the width direction of the sheet bar immediately after the hot rolling.

その後1070℃で10秒の熱延板焼鈍を施した後、冷間圧延により0.23mmの板厚に仕上げた。さらに、865℃で100秒、40%H-60%Nで露点42℃の湿潤雰囲気下での一次再結晶焼鈍を施した。その後、MgOを主体とする焼鈍分離剤を塗布し、1200℃で3時間、50%H+50%N雰囲気下で保定する二次再結晶焼鈍を行った。 Thereafter, it was subjected to hot-rolled sheet annealing at 1070 ° C. for 10 seconds and then finished to a thickness of 0.23 mm by cold rolling. Further, primary recrystallization annealing was performed in a humid atmosphere of 865 ° C. for 100 seconds and 40% H 2 -60% N 2 with a dew point of 42 ° C. Thereafter, an annealing separation agent mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1200 ° C. for 3 hours and maintained in a 50% H 2 + 50% N 2 atmosphere.

その後、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。得られたサンプルの磁束密度BをJIS C2550に記載の方法で測定した。測定位置は、コイル内で粗圧延直後の最低温度部と最高温度部の位置とし、この磁性差を最終磁性のコイル内変動代とした。得られた結果を表3に併記する。 Thereafter, flattening annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid. The magnetic flux density B 8 of samples obtained was measured by the method described in JIS C2550. The measurement positions were the positions of the lowest temperature portion and the highest temperature portion immediately after rough rolling in the coil, and this magnetic difference was used as the fluctuation in the coil of the final magnetism. The results obtained are also shown in Table 3.

Figure 0006418226
Figure 0006418226

表3から明らかなように、本発明範囲内の条件において良好な磁束密度Bが得られ、かつその変動も小さくなる事がわかる。 As is apparent from Table 3, it can be seen that a good magnetic flux density B 8 can be obtained under the conditions within the scope of the present invention, and that the fluctuations are also small.

Claims (7)

質量%で、
C:0.100%以下、
Si:2.00%以上8.00%以下、
Mn:0.02%以上1.00%以下、
Sおよび/またはSeを合計で0.0050%超0.0100%以下並びに
Snおよび/またはSbを合計で0.005%以上1.000%以下
を含有し、Nを70ppm未満および酸可溶性Alを150ppm未満に抑制し、残部はFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1300℃以下で加熱し、
該加熱後の鋼スラブに熱間圧延を施して熱延鋼板とし、
該熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
該冷延鋼板に一次再結晶焼鈍を施し、その後、二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
前記熱間圧延の粗圧延直後のシートバーの幅方向中心部における、表面温度の該シートバーの長手方向変動を100℃以内とする方向性電磁鋼板の製造方法。
% By mass
C: 0.100% or less,
Si: 2.00% to 8.00%,
Mn: 0.02% to 1.00%,
S and / or Se in total more than 0.0050% and less than 0.0100% and
A steel slab containing Sn and / or Sb in a total amount of 0.005% or more and 1.000% or less, suppressing N to less than 70 ppm and acid-soluble Al to less than 150 ppm, with the balance being 1300 steel slab having a composition composed of Fe and inevitable impurities Heating below ℃,
Hot-rolled steel sheet is subjected to hot rolling on the heated steel slab,
The hot-rolled steel sheet is subjected to cold rolling two or more times with one or more intermediate annealings to obtain a cold-rolled steel sheet having a final sheet thickness,
The cold rolled steel sheet is subjected to primary recrystallization annealing, and then subjected to secondary recrystallization annealing, a method for producing a grain-oriented electrical steel sheet,
A method for producing a grain-oriented electrical steel sheet, wherein the longitudinal variation of the sheet bar in the longitudinal direction of the sheet bar at the center in the width direction of the sheet bar immediately after the rough rolling of the hot rolling is within 100 ° C.
質量%で、Snおよび/またはSbを合計で0.020%以上0.300%以下を含有する、請求項1に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the content of Sn and / or Sb is 0.020% or more and 0.300% or less in terms of mass%. 前記成分組成は、さらに、
質量%で、
Ni:0.005%以上1.5%以下、
Cu:0.005%以上1.5%以下、
Cr:0.005%以上0.1%以下、
P:0.005%以上0.5%以下、
Mo:0.005%以上0.5%以下、
Ti:0.0005%以上0.1%以下、
Nb:0.0005%以上0.1%以下、
V:0.0005%以上0.1%以下、
B:0.0002%以上0.0025%以下、
Bi:0.005%以上0.1%以下、
Te:0.0005%以上0.10%以下および
Ta:0.0005%以上0.01%以下
のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の方向性電磁鋼板の製造方法。
The component composition further includes:
% By mass
Ni: 0.005% to 1.5%,
Cu: 0.005% to 1.5%,
Cr: 0.005% to 0.1%,
P: 0.005% to 0.5%,
Mo: 0.005% to 0.5%,
Ti: 0.0005% to 0.1%,
Nb: 0.0005% or more and 0.1% or less,
V: 0.0005% to 0.1%,
B: 0.0002% to 0.0025%,
Bi: 0.005% to 0.1%,
Te: 0.0005% to 0.10% and
Ta: The manufacturing method of the grain-oriented electrical steel sheet according to claim 1 or 2, comprising one or more selected from 0.0005% to 0.01%.
前記熱間圧延の粗圧延直後のシートバーの幅方向中心部における、表面温度の該シートバーの長手方向変動を70℃以内とする、請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。   The directivity according to any one of claims 1 to 3, wherein the longitudinal variation of the sheet bar in the longitudinal direction of the sheet bar at the center in the width direction of the sheet bar immediately after the rough rolling of the hot rolling is within 70 ° C. A method for producing electrical steel sheets. 前記冷延鋼板に磁区細分化処理を施す、請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。   The manufacturing method of the grain-oriented electrical steel sheet according to any one of claims 1 to 4, wherein the cold-rolled steel sheet is subjected to a magnetic domain refinement process. 前記磁区細分化処理が、前記二次再結晶焼鈍後の前記冷延鋼板への電子ビーム照射によるものである、請求項5に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 5, wherein the magnetic domain subdividing treatment is performed by electron beam irradiation to the cold-rolled steel sheet after the secondary recrystallization annealing. 前記磁区細分化処理が、前記二次再結晶焼鈍後の前記冷延鋼板へのレーザー照射によるものである、請求項5に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 5, wherein the magnetic domain refinement process is performed by laser irradiation of the cold-rolled steel sheet after the secondary recrystallization annealing.
JP2016233030A 2015-12-04 2016-11-30 Method for producing grain-oriented electrical steel sheet Active JP6418226B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015237989 2015-12-04
JP2015237989 2015-12-04

Publications (2)

Publication Number Publication Date
JP2017106111A JP2017106111A (en) 2017-06-15
JP6418226B2 true JP6418226B2 (en) 2018-11-07

Family

ID=59059194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016233030A Active JP6418226B2 (en) 2015-12-04 2016-11-30 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6418226B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099866B1 (en) * 2017-12-26 2020-04-10 주식회사 포스코 Grain oriented electrical steel sheet method for manufacturing the same
KR102079771B1 (en) * 2017-12-26 2020-02-20 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
JP6866869B2 (en) * 2018-03-30 2021-04-28 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333794B2 (en) * 1994-09-29 2002-10-15 川崎製鉄株式会社 Manufacturing method of non-oriented electrical steel sheet
JP4206664B2 (en) * 2001-12-26 2009-01-14 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP4211260B2 (en) * 2002-01-28 2009-01-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP4196568B2 (en) * 2002-02-18 2008-12-17 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101130724B1 (en) * 2004-12-28 2012-03-28 주식회사 포스코 A method for grain-oriented electrical steel sheet with uniform magnetic properties
KR101570018B1 (en) * 2011-12-28 2015-11-17 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for improving iron loss properties thereof

Also Published As

Publication number Publication date
JP2017106111A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
KR102139134B1 (en) Method of producing grain-oriented electrical steel sheet
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
CN103890211B (en) Grain-oriented electrical steel sheet and manufacturing method thereof
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
JP6260513B2 (en) Method for producing grain-oriented electrical steel sheet
CN103124798B (en) The manufacture method of orientation electromagnetic steel plate
CN103228801A (en) Method for producing directional electromagnetic steel sheet
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
CN102197149A (en) Method for manufacturing grain-oriented electrical steel sheet
JP6512386B2 (en) Method of manufacturing directional magnetic steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP5754115B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP7193041B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2000345305A (en) High magnetic flux density unidirectional electrical steel sheet excellent in high magnetic field iron loss and its manufacturing method
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
KR20230159875A (en) Manufacturing method of grain-oriented electrical steel sheet
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
JP2018090851A (en) Production method of directionality magnetic steel sheet
JP2018095900A (en) Method for producing grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6418226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250