JP6414257B2 - Concentration measuring device and concentration measuring method - Google Patents
Concentration measuring device and concentration measuring method Download PDFInfo
- Publication number
- JP6414257B2 JP6414257B2 JP2017051209A JP2017051209A JP6414257B2 JP 6414257 B2 JP6414257 B2 JP 6414257B2 JP 2017051209 A JP2017051209 A JP 2017051209A JP 2017051209 A JP2017051209 A JP 2017051209A JP 6414257 B2 JP6414257 B2 JP 6414257B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- probe light
- probe
- measurement object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000000523 sample Substances 0.000 claims description 92
- 230000003287 optical effect Effects 0.000 claims description 79
- 238000005259 measurement Methods 0.000 claims description 40
- 230000005284 excitation Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000013078 crystal Substances 0.000 description 19
- 238000002834 transmittance Methods 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、レーザ光を用いた差分吸収法により物質の濃度を測定する濃度測定装置及び濃度測定方法に関する。 The present invention relates to a concentration measuring apparatus and a concentration measuring method for measuring a concentration of a substance by a differential absorption method using laser light.
二酸化炭素ガスやメタンガス等の測定対象物の濃度を測定する方法の1つとして、レーザ光を用いた差分吸収法が知られている。この方法では、測定対象物で吸収される波長(即ち、オン波長)のレーザ光と測定対象物で吸収されない波長(即ち、オフ波長)のレーザ光の各透過率を基に測定対象物の濃度を算出する。特許文献1乃至特許文献4は、上記の差分吸収法を用いた濃度測定装置を開示している。 As one of methods for measuring the concentration of a measurement object such as carbon dioxide gas or methane gas, a differential absorption method using laser light is known. In this method, the concentration of the measurement object is based on the transmittances of the laser light having a wavelength that is absorbed by the measurement object (that is, the on wavelength) and the laser light having a wavelength that is not absorbed by the measurement object (that is, the off wavelength). Is calculated. Patent Documents 1 to 4 disclose a concentration measuring device using the differential absorption method.
差分吸収法では、測定対象物を通過したレーザ光の透過率を算出するために、測定対象物に入射する前後でレーザ光の強度を測定する。通常、これらの測定には半導体検出器等の光検出器が個別に使用される。ところが、光検出器の量子効率にばらつきがあるため、得られた強度比に誤差が生じる。 In the differential absorption method, the intensity of the laser light is measured before and after entering the measurement object in order to calculate the transmittance of the laser light that has passed through the measurement object. Usually, a photo detector such as a semiconductor detector is individually used for these measurements. However, since the quantum efficiency of the photodetectors varies, an error occurs in the obtained intensity ratio.
本発明は、測定対象物の濃度を精度良く測定できる濃度測定装置及び濃度測定方法の提供を目的とする。 An object of the present invention is to provide a concentration measuring apparatus and a concentration measuring method capable of accurately measuring the concentration of a measurement object.
本発明の第1の態様は濃度測定装置であって、励起光としてのレーザ光を発生するレーザ光源と、
前記励起光の波長変換によって、測定対象物に対するオン波長及びオフ波長のプローブ光を交互に発生するプローブ光発生部と、予め設定された分岐比を有し、オン波長及びオフ波長の前記プローブ光の一部を強度基準光として分岐させるビームスプリッタと、前記測定対象物を透過した又は前記測定対象物から反射したオン波長及びオフ波長の前記プローブ光を集光する光学系と、前記光学系を経由していないオン波長及びオフ波長の前記強度基準光の光路、並びに前記光学系によって集光されたオン波長及びオフ波長の前記プローブ光の光路を共通の一光路に合流させるミラーと、前記共通の一光路を介したオン波長及びオフ波長の前記強度基準光、並びに前記共通の一光路を介したオン波長及びオフ波長の前記プローブ光を同一の受光面で受光する光検出器と、オン波長及びオフ波長のそれぞれについて、前記強度基準光および前記プローブ光の前記光検出器までの各到達時間の違いから前記プローブ光を特定すると共に、前記プローブ光の強度から前記測定対象物の濃度を算出する濃度算出部とを備え、前記光学系は前記ミラーと前記測定対象物の間に配置されていることを要旨とする。
A first aspect of the present invention is a concentration measuring apparatus, a laser light source that generates laser light as excitation light,
A probe light generator that alternately generates on-wavelength and off-wavelength probe light for the object to be measured by wavelength conversion of the excitation light, and a preset branching ratio, and the on-wavelength and off-wavelength probe light. A beam splitter for branching a part of the beam as intensity reference light, an optical system for condensing the probe light having an on wavelength and an off wavelength transmitted through the measurement object or reflected from the measurement object, and the optical system A mirror that merges the optical paths of the intensity reference light of the on wavelength and the off wavelength not passing through and the optical paths of the probe light of the on wavelength and the off wavelength collected by the optical system into a common optical path, and the common one said intensity reference light-on wavelength and off wavelength through the optical path, and the same receiving the probe light on the wavelength and off wavelength through the common first optical path A photodetector for receiving in for each of the on wavelength and off wavelength, as well as identifying the probe light due to the difference in the time to reach the photodetector of the intensity reference light and the probe light, the probe light and a concentration calculator that calculates the concentration of the measurement object from the intensity, the optical system is a gist that you have placed between the measurement object and the mirror.
本発明の第2の態様は濃度測定方法であって、励起光としてのレーザ光を発生し、前記励起光の波長変換によって、測定対象物に対するオン波長及びオフ波長のプローブ光を交互に発生し、予め設定された分岐比を有するビームスプリッタを用いて、オン波長及びオフ波長の前記プローブ光の一部を強度基準光として分岐させ、光学系を用いて、前記測定対象物を透過した又は前記測定対象物から反射したオン波長及びオフ波長の前記プローブ光を集光し、ミラーを用いて、前記光学系を経由していないオン波長及びオフ波長の前記強度基準光の光路、並びに前記光学系によって集光されたオン波長及びオフ波長の前記プローブ光の光路を共通の一光路に合流させ、前記共通の一光路を介したオン波長及びオフ波長の前記強度基準光、並びに前記共通の一光路を介したオン波長及びオフ波長の前記プローブ光を同一の受光面で受光し、オン波長及びオフ波長のそれぞれについて、前記強度基準光と前記プローブ光の前記受光面までの各到達時間の違いから前記プローブ光を特定すると共に、前記プローブ光の強度から前記測定対象物の濃度を算出することを要旨とする。
A second aspect of the present invention is a concentration measurement method, which generates laser light as excitation light, and alternately generates on-wavelength and off-wavelength probe light for a measurement object by wavelength conversion of the excitation light. Using a beam splitter having a preset branching ratio, branching a part of the probe light having an on wavelength and an off wavelength as intensity reference light , and transmitting the measurement object using an optical system, or The probe light of the on wavelength and the off wavelength reflected from the measurement object is collected, and the optical path of the intensity reference light of the on wavelength and the off wavelength not passing through the optical system using a mirror, and the optical system the optical path of the probe light on the wavelength and off wavelength is condensed are merged into a common first optical path, the intensity reference light-on wavelength and off wavelength via the common first optical path, and Receiving the probe light on the wavelength and off wavelength through the serial common first optical path in the same light-receiving surface for each of the on wavelength and off wavelength, each of the intensity reference light to the light receiving surface of the probe light The gist is to specify the probe light from the difference in arrival time and to calculate the concentration of the measurement object from the intensity of the probe light.
本発明によれば、測定対象物の濃度を精度良く測定できる濃度測定装置及び濃度測定方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the density | concentration measuring apparatus and density | concentration measuring method which can measure the density | concentration of a measuring object with a sufficient precision can be provided.
以下、本発明の一実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
図1は、本実施形態に係る濃度測定装置の構成図である。図2は、本実施形態に係るプローブ光発生部の構成図である。図3は、図2に示すプローブ光発生部の変形例である。図1に示すように、本実施形態の濃度測定装置は、レーザ光源22と、プローブ光発生部24と、光路分岐部27と、光路合流部29と、光検出器26と、濃度算出部28とを備える。
FIG. 1 is a configuration diagram of a concentration measuring apparatus according to the present embodiment. FIG. 2 is a configuration diagram of the probe light generator according to the present embodiment. FIG. 3 is a modification of the probe light generator shown in FIG. As shown in FIG. 1, the concentration measuring apparatus according to the present embodiment includes a
レーザ光源22は、後段のプローブ光発生部24に入力される励起光(ポンプ光)23としてのレーザ光を発生する。レーザ光の波長や発振モード(パルス発振又は連続発振)は、プローブ光発生部24における波長変換の仕様(変換方法、出力波長など)に応じて選定する。本実施形態では、パルスレーザ光源であるNd:YAGレーザを使用する。Nd:YAGレーザは、基本波である1064nmのパルスレーザ光を、数ns〜数十nsのパルス幅、且つ、10Hz〜数kHzの繰り返し周波数で出力する。
The
プローブ光発生部24は、励起光23の波長変換によって、測定対象物に対するオン波長のプローブ光10及びオフ波長のプローブ光12(図4参照)を発生する。以下、説明の便宜上、オフ波長のプローブ光12を単に参照光12と称する。吸収の感度を高める観点からは、図4に示すように、プローブ光10の波長λonが測定対象物Sの吸収線14の波長に一致していることが好ましい。しかしながら、少なくとも吸収線14の波長が、プローブ光10の線幅内に含まれていれば吸収を確認することは可能である。
The
図2に示すように、プローブ光発生部24は、反射面が対向するように光軸(光路)20に沿って配置された終端鏡32と出力鏡34とを有する。出力鏡34と終端鏡32との間隔Dは例えば20mmである。更に、終端鏡32と出力鏡34の間の光軸20上には、波長変換を行う光学素子として、非線形光学結晶36が設けられている。後述するように、非線形光学結晶36は、励起光23の光パラメトリック発振によってプローブ光10及び参照光12を発生する。
As shown in FIG. 2, the
終端鏡32は、励起光23を透過させ、且つ、非線形光学結晶36によって発生したプローブ光10及び参照光12を反射する波長特性を有する。通常、励起光23の波長はプローブ光10及び参照光12の各波長よりも短いので、終端鏡32は所謂ロングパスフィルター(LPF)である。一方、出力鏡34も、終端鏡32と同じく、プローブ光10及び参照光12を反射する波長特性を有する。従って、終端鏡32及び出力鏡34は所謂光共振器を構成する。終端鏡32及び出力鏡34のプローブ光10及び参照光12に対する反射率は50〜99.5%である。
The
非線形光学結晶36は例えばKTP結晶やBBO結晶であり、励起光23による光パラメトリック発振によってオン波長のプローブ光10及びオフ波長の参照光12を発生する。プローブ光10の中心波長λonは例えば2004nm、参照光12の中心波長λoffは例えば1998nmである。非線形光学結晶36によって発生する光の波長は、励起光23の光軸に対する結晶の光学軸36aの角度θを調整することで適宜変更可能である。そこで、本実施形態の非線形光学結晶36は、この角度θを調整できるように回転ステージ38に搭載されている。即ち、回転ステージ38の回転・逆回転を例えば所定の周期で繰り返すことで、プローブ光10及び参照光12が出力鏡34から交互に出射され、測定対象物Sに照射される。なお、回転ステージ38の回転は制御部(図示せず)によって制御される。
The nonlinear
なお、本実施形態のプローブ光発生部については、次のように変形できる。図3に示すプローブ光発生部25は、図2に示すプローブ光発生部24の変形例である。図2のプローブ光発生部24では、波長変換を行う光学素子として非線形光学結晶36を用いていた。一方、図3のプローブ光発生部25は、波長変換を行う光学素子としてレーザ結晶46を用いる。レーザ結晶46は、例えば、Tm:YAG、Tm:YLF、Tm:YVO4、Tm,Ho:YAG、Tm,Ho:YLF、Tm,Ho:YVO4などある。これらのうちの何れかをレーザ結晶46に用いる場合、励起光23を発生するレーザ光源には半導体レーザ(LD)を使用する。半導体レーザは、励起光23として中心波長が例えば785nmの光を発生する。半導体レーザから出射した光は、レーザ結晶46内での変換効率を上げるため、レンズ等の光学系48によってレーザ結晶46に集光される。
Note that the probe light generator of this embodiment can be modified as follows. A
図3に示すように、レーザ結晶46の出射側と出力鏡34との間には、レーザ結晶46から出射した光の波長を選別する波長調整機構42が設置される。波長調整機構42は、例えばエタロンやプリズムであり、波長調整機構42を搭載した回転ステージ44の回転によって、出力鏡34へ進行する光の波長を選別できる。つまり、回転ステージ44の回転・逆回転を例えば所定の周期で繰り返すことで、プローブ光10及び参照光12を交互に出射させることができる。
As shown in FIG. 3, a
プローブ光発生部24(25)から出射したプローブ光10及び参照光12は、光路分岐部27に入射する。光路分岐部27は、プローブ光10及び参照光12の一部をそれぞれ強度基準光15として分岐させる。残りのプローブ光10及び参照光12は、測定対象物Sに照射される。光路分岐部27の分岐比は予め設定されている。従って、強度基準光15を後述の光検出器26で測定することで、出力鏡34を出射した直後のプローブ光10及び参照光12の強度を逆算できる。さらに、逆算したプローブ光10及び参照光12の各強度は、プローブ光10及び参照光12の各透過率を算出する際の基準値として使用される。
The
図5に示すように、本実施形態の光路分岐部27は、例えば、反射率(透過率)が規定されたビームスプリッタである。この場合、ビームスプリッタによって取り出された強度基準光15は、光検出器26の前段に配置された光路合流部29に入射する。
As shown in FIG. 5, the optical
光路合流部29は、光路分岐部27によって取り出された強度基準光15の光路と、測定対象物から到達したプローブ光10及び参照光12の光路を合流させ、これらの光を光検出器26に導くものである。光路合流部29は例えばハーフミラーであり、合流したプローブ光10、参照光12、強度基準光15の全てを光検出器26の受光面(図示せず)に導く。
The optical
また、図6に示すように、本実施形態の光路分岐部27は、プローブ光10及び参照光12を散乱させる散乱体でもよい。散乱体は反射面を有する線状、棒状、板状などの部材であり、プローブ光10及び参照光12の散乱光が光検出器26の受光面に届く位置で、プローブ光10及び参照光12の一部に挿入される。
Further, as shown in FIG. 6, the optical
光検出器26は、測定対象物Sを透過した又は測定対象物Sから反射した、プローブ光10及び参照光12を検出する。さらに、光検出器26は、光路分岐部27によって取り出されたプローブ光10及び参照光12の各強度基準光15も検出する。つまり、光検出器26は、これらの光を同一の受光面で受光する。本実施形態では、光検出器26として、周知の半導体検出器を使用する。半導体検出器は、光の強度に比例した電圧を検出信号として出力する。なお、光検出器26の前段にはプローブ光10及び参照光12を集光するためのレンズ等の光学系30が設けられており、集光率を向上させている。
The
光検出器26は、上述した三種類の光を検出する。従って、そこから得られる検出信号は同一の量子効率の下で生成されることになる。つまり、光検出器の個体差による検出信号上の誤差を排除できるため、測定対象物Sの濃度の算出における精度が向上する。また、従来の濃度測定装置と比べて、使用する検出器の個数を削減できる。従って、構成が簡略になると共に製造コストを削減することができる。
The
濃度算出部28は、濃度測定装置の全体を制御する制御部(図示せず)の一部として構成され、光検出器26によって検出されたプローブ光10及び参照光12の各透過率(吸光度)から測定対象物Sの濃度を算出する。具体的には、濃度算出部28は、参照光12の強度基準光15と、測定対象物を経由した参照光12の各強度から、参照光12の透過率(第1の透過率)を算出する。濃度算出部28は、更に、プローブ光10の強度基準光15と、測定対象物を経由したプローブ光10の各強度から、プローブ光10の透過率(第2の透過率)を算出する。第2の透過率は、第1の透過率に、測定対象物Sへの吸収による透過率(第3の透過率)を乗じたものであることを考慮して、濃度算出部28は、第1の透過率を用いて、第2の透過率から第3の透過率を逆算する。その結果、第3の透過率から測定対象物Sの濃度を算出する。
The
なお、上述の濃度算出において、濃度算出部28は時間分解しながら光検出器26の検出信号を受信することで、当該検出信号を発生した光が、プローブ光10、参照光12、及びこれらの強度基準光15の何れかであるかを特定している。上述したように、プローブ光10、参照光12、及びこれらの強度基準光15は、何れも同一の光検出器26によって検出される。ただし、測定対象物Sに一度に照射されるのはプローブ光10及び参照光12の何れかである。また、測定対象物Sを経由して光検出器26に到達するプローブ光10及び参照光12の光路長は、強度基準光15として光検出器26に到達するプローブ光10及び参照光12の光路長よりも圧倒的に長い。従って、濃度算出部28は、時間分解しながら光検出器26の検出信号を受信することで、図7に示すような測定結果を得る。この図において、時刻t1で現れたピークP1は、強度基準光15の検出信号である。また、時刻t2(>t1)で現れたP2は、P1の強度基準光15として一部が取り出されたプローブ光10(又は参照光12)であって、測定対象物Sを経由したものの検出信号である。このような時間差があるため、光検出器までの各到達時間の違いから前記プローブ光を特定でき、濃度の算出が可能になる。
In the above-described concentration calculation, the
なお、本実施形態では測定対象物として二酸化炭素ガスを挙げたが、本発明が適用される測定対象物はこれに限られず、他の種のガスにも適用可能である。また、気体以外の相(即ち、液体や固体)にも適用可能である。 In the present embodiment, carbon dioxide gas is used as the measurement object. However, the measurement object to which the present invention is applied is not limited to this, and can be applied to other types of gases. Moreover, it is applicable also to phases (namely, liquid and solid) other than gas.
また、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 Further, the present invention is not limited to the above-described embodiment, is shown by the description of the scope of claims, and further includes all modifications within the meaning and scope equivalent to the description of the scope of claims.
10…プローブ光、12…参照光(プローブ光)、14…吸収線、15…強度基準光、20…光軸、22…レーザ光源、23…励起光、24,25…プローブ光発生部、26…光検出器、27…光路分岐部、28…濃度算出部、29…光路合流部、30…光学系、32…終端鏡、34…出力鏡、36…非線形光学結晶、36a…光学軸、38…回転ステージ、42…波長調整機構、44…回転ステージ、46…レーザ結晶、48…光学系
DESCRIPTION OF
Claims (2)
前記励起光の波長変換によって、測定対象物に対するオン波長及びオフ波長のプローブ光を交互に発生するプローブ光発生部と、
予め設定された分岐比を有し、オン波長及びオフ波長の前記プローブ光の一部を強度基準光として分岐させるビームスプリッタと、
前記測定対象物を透過した又は前記測定対象物から反射したオン波長及びオフ波長の前記プローブ光を集光する光学系と、
前記光学系を経由していないオン波長及びオフ波長の前記強度基準光の光路、並びに前記光学系によって集光されたオン波長及びオフ波長の前記プローブ光の光路を共通の一光路に合流させるミラーと、
前記共通の一光路を介したオン波長及びオフ波長の前記強度基準光、並びに前記共通の一光路を介したオン波長及びオフ波長の前記プローブ光を同一の受光面で受光する光検出器と、
オン波長及びオフ波長のそれぞれについて、前記強度基準光および前記プローブ光の前記光検出器までの各到達時間の違いから前記プローブ光を特定すると共に、前記プローブ光の強度から前記測定対象物の濃度を算出する濃度算出部と
を備え、
前記光学系は前記ミラーと前記測定対象物の間に配置されていることを特徴とする濃度測定装置。 A laser light source that generates laser light as excitation light;
A probe light generator that alternately generates on-wavelength and off-wavelength probe light for the measurement object by wavelength conversion of the excitation light; and
A beam splitter having a preset branching ratio and branching a part of the probe light having an on wavelength and an off wavelength as intensity reference light;
An optical system for condensing the probe light having an on wavelength and an off wavelength transmitted through the measurement object or reflected from the measurement object;
A mirror that joins the optical path of the intensity reference light having the on-wavelength and the off-wavelength not passing through the optical system and the optical path of the probe light having the on-wavelength and the off-wavelength collected by the optical system into a common optical path. When,
A photodetector for receiving said intensity reference beam common on wavelength and off wavelength through an optical path, and the probe light on the wavelength and off wavelength through the common first optical path in the same light-receiving surface,
For each of the on wavelength and off wavelength, the concentration of the intensity reference beam and the difference in the time to reach the photodetector of the probe light with identifying the probe light, the measurement object from the intensity of said probe light A concentration calculation unit for calculating
The density measuring apparatus, wherein the optical system is disposed between the mirror and the measurement object.
前記励起光の波長変換によって、測定対象物に対するオン波長及びオフ波長のプローブ光を交互に発生し、
予め設定された分岐比を有するビームスプリッタを用いて、オン波長及びオフ波長の前記プローブ光の一部を強度基準光として分岐させ、
光学系を用いて、前記測定対象物を透過した又は前記測定対象物から反射したオン波長及びオフ波長の前記プローブ光を集光し、
ミラーを用いて、前記光学系を経由していないオン波長及びオフ波長の前記強度基準光の光路、並びに前記光学系によって集光されたオン波長及びオフ波長の前記プローブ光の光路を共通の一光路に合流させ、
前記共通の一光路を介したオン波長及びオフ波長の前記強度基準光、並びに前記共通の一光路を介したオン波長及びオフ波長の前記プローブ光を同一の受光面で受光し、
オン波長及びオフ波長のそれぞれについて、前記強度基準光および前記プローブ光の前記受光面までの各到達時間の差から前記プローブ光を特定すると共に、前記プローブ光の強度から前記測定対象物の濃度を算出する
ことを特徴とする濃度測定方法。 Generates laser light as excitation light,
By the wavelength conversion of the excitation light, on-wavelength and off-wavelength probe lights for the measurement object are alternately generated,
Using a beam splitter having a preset branching ratio, a part of the probe light having an on wavelength and an off wavelength is branched as intensity reference light,
Using an optical system, the probe light having an on wavelength and an off wavelength transmitted through the measurement object or reflected from the measurement object is collected,
Using a mirror, the optical path of the intensity reference light having the on wavelength and the off wavelength that does not pass through the optical system, and the optical path of the probe light having the on wavelength and the off wavelength collected by the optical system are shared. Join the light path ,
Receiving said intensity reference beam common on wavelength and off wavelength through an optical path, and the probe light on the wavelength and off wavelength through the common first optical path in the same light-receiving surface,
For each of the on wavelength and the off wavelength, the probe light is specified from the difference in arrival time of the intensity reference light and the probe light to the light receiving surface, and the concentration of the measurement object is determined from the intensity of the probe light. A concentration measuring method characterized by calculating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051209A JP6414257B2 (en) | 2017-03-16 | 2017-03-16 | Concentration measuring device and concentration measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051209A JP6414257B2 (en) | 2017-03-16 | 2017-03-16 | Concentration measuring device and concentration measuring method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012138624A Division JP6144881B2 (en) | 2012-06-20 | 2012-06-20 | Concentration measuring device and concentration measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017125859A JP2017125859A (en) | 2017-07-20 |
JP6414257B2 true JP6414257B2 (en) | 2018-10-31 |
Family
ID=59364201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017051209A Active JP6414257B2 (en) | 2017-03-16 | 2017-03-16 | Concentration measuring device and concentration measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6414257B2 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59183348A (en) * | 1983-04-01 | 1984-10-18 | Showa Denko Kk | Method and device for measuring ammonia gas concentration |
JPS59218936A (en) * | 1983-05-27 | 1984-12-10 | Nec Corp | Remote spectrum analyzer |
EP0176826A3 (en) * | 1984-09-24 | 1987-09-02 | Kollmorgen Technologies Corporation | Method and apparatus for dual-beam spectral transmission measurements |
JPS63133686A (en) * | 1986-11-26 | 1988-06-06 | Hamamatsu Photonics Kk | Crystal protection mechanism of variable wavelength laser device |
JPH0315742A (en) * | 1989-03-23 | 1991-01-24 | Anritsu Corp | Gas detector |
JPH05264446A (en) * | 1992-03-18 | 1993-10-12 | Anritsu Corp | Gas detector |
US5767519A (en) * | 1996-03-01 | 1998-06-16 | The Aerospace Corporation | Ambient-normalized differential absorption lidar system and method |
US6057923A (en) * | 1998-04-20 | 2000-05-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optical path switching based differential absorption radiometry for substance detection |
US7012696B2 (en) * | 2000-07-12 | 2006-03-14 | Macquarie Research Ltd. | Optical heterodyne detection in optical cavity ringdown spectroscopy |
JP2005351697A (en) * | 2004-06-09 | 2005-12-22 | Olympus Corp | Instrument for measuring component concentrations |
US7902534B2 (en) * | 2004-09-28 | 2011-03-08 | Honeywell International Inc. | Cavity ring down system having a common input/output port |
-
2017
- 2017-03-16 JP JP2017051209A patent/JP6414257B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017125859A (en) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12117340B2 (en) | Light source apparatus for light measurement | |
CN103018012B (en) | A kind of measuring method of transmittance of optical element and device | |
JP2736171B2 (en) | Photo thermal sensor | |
JP4996043B2 (en) | Lightwave distance measuring method and lightwave distance measuring apparatus | |
JP5785740B2 (en) | Laser output and return light detection method in fiber laser processing machine and processing head of fiber laser processing machine | |
CN111818963A (en) | Apparatus and method for measuring distance of laser processing system and laser processing system | |
JP6144881B2 (en) | Concentration measuring device and concentration measuring method | |
JP6793033B2 (en) | Distance measuring device | |
JP6414257B2 (en) | Concentration measuring device and concentration measuring method | |
JP6364305B2 (en) | Hydrogen gas concentration measuring apparatus and method | |
JP6035913B2 (en) | Concentration measuring device and concentration measuring method | |
JP5962327B2 (en) | Concentration measuring device and concentration measuring method | |
JP7158004B2 (en) | Gas concentration measuring device and continuous gas concentration measuring method | |
JP7110686B2 (en) | Concentration measuring device | |
JP4662831B2 (en) | Sample analyzer | |
JP5498004B2 (en) | Yarn speed dependent parameter measurement method | |
JP6089493B2 (en) | Concentration measuring device and concentration measuring method | |
JP4290142B2 (en) | Photothermal conversion measuring apparatus and method | |
JP2019184303A (en) | Concentration measurement device | |
WO2020196442A1 (en) | Laser gas analysis device | |
JP2885979B2 (en) | Temperature distribution detector | |
JPH05267749A (en) | Method of measuring back scattering of ring laser cavity and device | |
JPH0894446A (en) | Wavelength measuring method and device | |
JP2781823B2 (en) | Laser device | |
JPH05169284A (en) | Laser beam device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180917 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6414257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |